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Abstract

We consider conditions under which the representation of the world
available to a boundedly rational decision-maker, whose awareness in-
creases over time, constitutes an adequate ‘small world’ (in the sense
of Savage 1954) for the assessment of a given decision. Equivalently,
we consider whether boundedly rational decision-makers who gradu-
ally become aware of all relevant contingencies, can pursue a strategy
that is sequentially consistent. We derive conditions on beliefs and
preferences that yield a separation between the set of propositions of
which the boundedly rational decision-maker is aware and those of
which she is unaware and show that these conditions are sufficient to
ensure sequential consistency.
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1 Introduction

Bayesian decision theory and its generalizations provide a powerful set of

tools for analyzing problems involving state-contingent uncertainty. In prob-

lems of this class, decision-makers begin with a complete specification of

uncertainty in terms of a state space (a set of possible states of the world).

The ultimate problem may be formulated as a choice among a set of acts,

represented as mappings from the state space to a set of possible outcomes.

In many applications, there is an intermediate stage in which the decision-

maker may obtain information in the form of a signal about the state of the

world, represented by a refinement of the state space. That is, any possible

realization of the signal means that the true state of the world must lie in

some subset of the state space.

The starting point of Bayesian analysis is the state space, representing all

possible contingencies. A fundamental difficulty with such a state-contingent

models of decision-making under uncertainty is that, in reality, decision-

makers are boundedly rational and do not possess a complete state-contingent

description of the uncertainty they face. Decision makers cannot foresee and

consider all the contingencies relevant to their decisions (Grant & Quiggin,

2007a&b, Heifetz, Meier & Schipper, 2006, Halpern & Rego, 2006a).

In this paper, we consider conditions under which the representation of

the world available to a boundedly rational decision-maker, whose awareness

increases over time, constitutes an adequate ‘small world’ (in the sense of Sav-

age 1954) for the assessment of a given decision. Equivalently, we consider

whether boundedly rational decision-makers who gradually become aware of

all relevant contingencies, can pursue a strategy that is sequentially consis-

tent. Here sequential consistency means that, reconsidering past decisions in

the light of increased awareness about the possible states of the world, but

disregarding information received after the decision was made, the individual

would still regard the decisions as ex ante optimal.

The paper is organized as follows. We first briefly outline in section 2 a

model we developed in Grant and Quiggin (2007a) that provides a represen-

tation in which the state of the world is represented by the truth values for a

set of propositions (the syntactic representation). We use this representation

to describe a game with nature, and derive the expected utility of possible
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strategies from two viewpoints. The external viewpoint is that of an un-

boundedly rational (but not, in general, perfectly informed) decision-maker

with access to a complete set of states of the world and an associated set of

propositions rich enough to describe all possible states. The second is that

of a boundedly rational decision-maker with limited awareness. In Section

3 we derive conditions on beliefs and preferences that yield a separation be-

tween the set of propositions of which the boundedly rational decision-maker

is aware and those of which she is unaware

In4 we present a dynamic model in which individual awareness increases

over time, reaching the maximal (relevant) level of awareness when the game

concludes. We derive our main result, showing that the conditions of Sec-

tion 3 are sufficient to ensure sequential consistency. We conclude with a

discussion of some of the implications of our analysis.

2 Structure and notation

We adapt the model of choice under uncertainty developed by Grant and

Quiggin (2007a) in which an individual does not necessarily possess a com-

plete description of the world. As we discuss below, the underpinnings

of this model can be embedded in a dynamic tree structure that can be

viewed as an extensive-form game between Nature and our boundedly ra-

tional decision-maker, where the awareness of the decision-maker increases

gradually through learning and discovery. But for our purposes here, it is

sufficient for us to model all decisions and beliefs in terms of binary (elemen-

tary) propositions that either nature or the decision-maker determines the

truth value. The key distinction will be between the external viewpoint and

the limited or restricted viewpoint of the decision-maker.

Let the set of states of the world from the external viewpoint be Ω. We

focus on the representation Ω = 2P0 × 2P1
, where P0 = {p0

1, . . . , p
0
M} is a

finite set of ‘elementary’ propositions about the world that are determined

by nature, and P1 = {p1
1, . . . , p

1
N} is a finite set of ‘elementary propositions

(i.e. [binary] decisions) that the individual controls. Each proposition in

P0 is a statement such as ‘The fourth named storm of the year is a force

five hurricane and makes landfall at Galveston.’ Each proposition in P1 is

a statement such as ‘The decision-maker buys flood insurance for her house

3



in Houston.’ Thus, an exhaustive description of the state of the world from

the external or objective viewpoint, consists of an evaluation of each of the

propositions in P0 and P1. With each proposition pin and each possible state

of the world ω in Ω, a fully informed observer can associate a truth value

V (pin;ω) ∈ {0, 1}, which will be 1 if pin is true and 0 if pin is false at ω.

By way of contrast to the external viewpoint, we shall consider a decision

maker who has only limited awareness of the uncertainty embodied in Ω. In

particular, there are propositions both in P0 and in P1 that she does not or

cannot consider. Let P0
r =

{
p0

1, , . . . , p
0
Mr

}
and P1

r =
{
p1

1, , . . . , p
1
Nr

}
denote

the ‘restricted’ sets of propositions that she explicitly considers are under the

control of nature and are under her control, respectively. Correspondingly,

let P0
u =

{
p0
Mr+1, , . . . , p

0
M

}
and P1

u =
{
p1
Nr+1, , . . . , p

1
N

}
, be the sets of propo-

sitions that are controlled respectively, by nature and by her own decisions

that she currently does not consider when formulating her plan of action.

From the viewpoint of our partially aware decision-maker, any state of her

(restricted) world, can be characterized by pair of rational numbers (s0
r, s

1
r),

where s0
r is an element of S0

r ⊆
[
0, 1− 2−Mr

)
∩ Q, and s1

r is an element of

S1
r ⊆

[
0, 1− 2−Nr

)
∩ Q. Formally, the ‘set of strategies for player i, i = 0

(nature),1 (decision-maker) is,

Sir :=

sir ∈ Q : sir =
∑
pin∈Pir

2−n × V
(
pin;ω

)
, for some ω ∈ Ω

 .

The set of unconsidered decisions of nature and the set of unconsidered

decisions of the decision-maker herself can be represented as elements of

S0
U ⊆

[
0, 2−Mr − 2−M

)
∩ Q and S1

U ⊆
[
0, 2−Nr − 2−N

)
∩ Q, respectively,

where for each ω in Ω, we have s0
U ∈ S0

U and s1
U ∈ S1

U, given by

Siu :=

siu ∈ Q : siu =
∑
pin∈Piu

2−n × V
(
pin;ω

)
, for some ω ∈ Ω

 , i = 0, 1.

A state of the world ω in Ω, may be thus viewed as being jointly deter-

mined by a ‘complete strategy’ chosen by nature, that is, a state of nature

s0 ∈ S0, where

S0 = S0
r + S0

u =
{
s0 : s0 = s0

r + s0
u for some s0

r ∈ S0
r, & for some s0

u ∈ S0
u

}
,
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and a ‘complete strategy’ choice of the individual s1 ∈ S1, where

S1 = S1
r + S1

u =
{
s1 : s1 = s1

r + s1
u for some s1

r ∈ S1
r, & for some s1

u ∈ S1
u

}
.

We shall refer to (S0, S1) ⊂ ([0, 1) ∩Q)2 as the (normal or strategic) game-

form associated with Ω and (S0
r, S

1
r) as the restricted game-form for the

decision maker with limited awareness.

2.1 Decision-making in the ‘Large’ and in the ‘Small’

For a finite set E, let ∆ (E) denote the set of probability distributions defined

on E.

Fix a set of states of the world Ω, with associated sets of propositions P0

and P1.

A (fully aware) subjective expected utility maximizer (SEUM) decision-

maker for this large world is characterized by a belief σ0 ∈ ∆ (S0), a conse-

quence function c : S0 × S1 → C, where C is a space of consequences, and a

utility index over consequences, u : C → R. Choices for this individual are

then ranked according to their subjective expected utility. That is, for any

pair of strategies s1 or s̃1 in S1, s1 is at least as good as s̃1 if and only if

the subjective expected utility of the former is greater than or equal to the

subjective expected utility of the latter, that is,∑
s0∈S0

u
(
c
(
s0, s1

))
σ0
(
s0
)
≥
∑
s0∈S0

u
(
c
(
s0, s̃1

))
σ0
(
s0
)

.

For a decision-maker who is only aware of propositions P0
r and P1

r, to

complete the description of her as a subjective expected utility maximizer for

the restricted game-form (S0
r, S

1
r), requires specifying a belief σ0

r ∈ ∆ (S0
r), a

consequence function cr : S0
r×S1

r → Cr, where Cr is the space of consequences

of which she is aware, and a utility index over that space of consequences,

ur : Cr → R. In the terminology of Savage, the restricted game-form (S0
r, S

1
r)

may be regarded as a small world within which decision analysis may be

applied to choose among available strategies ŝ1
r ranked according to their

subjective expected utility:∑
s0r∈S0

r

ur

(
cr
(
s0
r, ŝ

1
r

))
σ0

r

(
s0
r

)
.
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In the next section we shall specify circumstances in which even from the

fully informed perspective (S0, S1), the small world (S0
r, S

1
r) is an appropriate

choice for modelling the decision among available strategies ŝ1
r in S1

r.

3 Consistent Small-world Bayesian Decisions

Suppose the ‘true’ or ‘objective’ uncertainty corresponds to Ω, and the fully

aware SEU maximizer in the large world (S0, S1) is characterized by (σ0, c (., .) , u (.)).

We shall consider a (restricted) game-form given by (S0
r, S

1
r). Notice the

marginal distributions over s0
r and s0

u, derived from σ0, are given by

σ0
r

(
s0
r

)
=
∑
s0u∈S0

u

σ0
(
s0
r + s0

u

)
and σ0

u

(
s0
u

)
=
∑
s0r∈S0

r

σ0
(
s0
r + s0

u

)
, respectively.

Now consider a less than fully aware decision-maker who is a (small-world)

SEU maximizer characterized by (σ0
r, cr (., .) , ur (.)). An ‘optimal’ choice ŝ1

r

given her limited awareness is given by

ŝ1
r ∈ argmax

s1r∈S1
r

∑
s0r∈S0

r

ur

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

)
. (1)

The question we address is the following. Under what conditions can we

be assured that the ‘optimal’ choice ŝ1
r in the small world (S0

r, S
1
r) for the

SEU maximizer (σ0
r, cr (., .) , ur (.)), would be part of the optimal choice in the

large world (S0, S1) for the fully aware SEU maximizer (σ0, c (., .) , u (.)). If

these conditions are satisfied we say that the small world model is consistent

with the large world model.

The first condition is the requirement that the consequence resulting from

the decisions of nature and the individual of which the individual is aware,

is separable from the consequence resulting from the decisions of nature and

the individual of which the individual is unaware. Moreover, the utility index

over this pair of consequences must have the so-called multiplicative form of

Keeney & Raiffa (1976).

Definition 1 (Multiplicative Separable Utility) The fully aware SEU

maximizer’s utility over consequences in the large world is said to be multi-

plicatively separable with respect to the small-world SEU maximizer’s utility

6



if there exists a consequence space Cu, a consequence function cu : S0
u×S1

u →
Cu, and a utility function uu : Cu → R, s.t. for all s0

r ∈ S0
r, all s1

r ∈ S1
r, all

s0
u ∈ S0

u and all s1
u ∈ S1

u,

u
(
c
(
s0
r + s0

u, s
1
r + s1

u

))
= ur

(
cr
(
s0
r, s

1
r

))
+ uu

(
cu
(
s0
u, s

1
u

))
+kur

(
cr
(
s0
r, s

1
r

))
uu

(
cu
(
s0
u, s

1
u

))
,

where k is a constant satisfying:

1 + kur (cr) > 0, for all cr ∈ Cr,
and 1 + kuu (cu) > 0, for all cu ∈ Cu.

The second condition is the requirement that nature’s decisions over

propositions in P0
R are independently distributed with respect to the propo-

sitions in P0
u.

Definition 2 (Belief Independence) For all s0
r ∈ S0

r and all s0
u ∈ S0

u,

σ0
(
s0
r + s0

u

)
= σ0

r

(
s0
r

)
σ0

u

(
s0
u

)
.

To see that these two conditions are jointly sufficient, it is enough to show

that for any ŝ1
r in S1

r that satisfies (1) we have

max
s1∈S1

∑
s0∈S0

u
(
c
(
s0, s1

))
σ0
(
s0
)

= max
s1u∈S1

u

∑
s0∈S0

u
(
c
(
s0, ŝ1

r + s1
u

))
σ0
(
s0
)

. (2)

For the case k = 0, we only require Multiplicative Separable Utility,

since we have

max
s1∈S1

∑
s0∈S0

u
(
c
(
s0, s1

))
σ0
(
s0
)

= max
s1u∈S1

u

∑
s0u∈S0

u

max
s1r∈S1

r

∑
s0r∈S0

r

[
ur

(
cr
(
s0
r, s

1
r

))
+ uu

(
cu
(
s0
u, s

1
u

))]
σ0
(
s0
r + s0

u

)
= max

s1u∈S1
u

∑
s0u∈S0

u

uu

(
cu
(
s0
u, s

1
u

))
σ0

u

(
s0
u

)
+
∑
s0u∈S0

u

max
s1r∈S1

r

ur

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

)
,

and so (2) holds as required.

For the case k 6= 0, set

ûr (cr) := 1 + kur (cr)

and ûu (cu) := 1 + kuu (cu) .
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Now,

max
s1∈S1

∑
s0∈S0

u
(
c
(
s0, s1

))
σ0
(
s0
)

= max
s1u∈S1

u

∑
s0u∈S0

u

max
s1r∈S1

r

∑
s0r∈S0

r

[
ur

(
cr
(
s0
r, s

1
r

))
+ uu

(
cu
(
s0
u, s

1
u

))
+ kur

(
cr
(
s0
r, s

1
r

))
uu

(
cu
(
s0
u, s

1
u

))]
σ0
(
s0
r + s0

u

)
.

For k > 0, we can divide through by 1/k and we obtain,

=
1

k

max
s1u∈S1

u

∑
s0u∈S0

u

max
s1r∈S1

r

∑
s0r∈S0

r

[
kur

(
cr
(
s0
r, s

1
r

))
+ kuu

(
cu
(
s0
u, s

1
u

))
+k2ur

(
cr
(
s0
r, s

1
r

))
uu

(
cu
(
s0
u, s

1
u

))]
σ0
(
s0
r + s0

u

))
=

1

k

max
s1u∈S1

u

∑
s0u∈S0

u

max
s1r∈S1

r

∑
s0r∈S0

r

[
ûr

(
cr
(
s0
r, s

1
r

))
ûu

(
cu
(
s0
u, s

1
u

))]
σ0

r

(
s0
r

)
σ0

u

(
s0
u

)
=

1

k

max
s1u∈S1

u

∑
s0u∈S0

u

ûu

(
cu
(
s0
u, s

1
u

))max
s1r∈S1

r

∑
s0r∈S0

r

ûr

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

)σ0
u

(
s0
u

)
=

1

k

max
s1u∈S1

u

∑
s0u∈S0

u

ûu

(
cu
(
s0
u, s

1
u

))
σ0

u

(
s0
u

)max
s1r∈S1

r

∑
s0r∈S0

r

ûr

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

) ,

and again (2) holds as required.

For k < 0, we can divide through by 1/k < 0, and change the max s to min s

which yields,

=
1

k

min
s1u∈S1

u

∑
s0u∈S0

u

min
s1r∈S1

r

∑
s0r∈S0

r

[
kur

(
cr
(
s0
r, s

1
r

))
+ kuu

(
cu
(
s0
u, s

1
u

))
+k2ur

(
cr
(
s0
r, s

1
r

))
uu

(
cu
(
s0
u, s

1
u

))]
σ0
(
s0
r + s0

u

))
=

1

k

min
s1u∈S1

u

∑
s0u∈S0

u

min
s1r∈S1

r

∑
s0r∈S0

r

[
ûr

(
cr
(
s0
r, s

1
r

))] [
ûu

(
cu
(
s0
u, s

1
u

))]
σ0

r

(
s0
r

)
σ0

u

(
s0
u

)
=

1

k

min
s1u∈S1

u

∑
s0u∈S0

u

ûu

(
cu
(
s0
u, s

1
u

))min
s1r∈S1

r

∑
s0r∈S0

r

ûr

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

)σ0
u

(
s0
u

)
8



=
1

k

min
s1u∈S1

u

∑
s0u∈S0

u

ûu

(
cu
(
s0
u, s

1
u

))
σ0

u

(
s0
u

)min
s1r∈S1

r

∑
s0r∈S0

r

ûr

(
cr
(
s0
r, s

1
r

))
σ0

r

(
s0
r

) ,

and again (2) holds as required.

One example, common in applications, in which preferences admit a

multiplicative separable utility representation, is where the consequences

are monetary amounts and so can be added together, and the individual’s

risk preferences over money lotteries exhibit constant absolute risk aversion

(CARA).

Example 1 (Monetary Consequences and CARA risk preferences)

Suppose, C = Cr = Cu = R+, u (c) = ur (c) = uu (c) = 1 − exp (−αc) and

c (s0
r + s0

u, s
1
r + s1

u) = cr (s0
r, s

1
r) + cu (s0

u, s
1
u).

To see that monetary consequences with CARA risk preferences generate

multiplicatively separable utility, notice that for k = −1,

ur (cr) + uu (cu)− ur (cr)uu (cu)

= 1− exp (−αcr) + 1− exp (−αcu)− [1− exp (−αcr)] [1− exp (−αcu)]

= 1− exp (−αcr) exp (−αcu) = 1− exp (−α [cr + cu]) = u (cr + cu)

An important point to note here is that discussion in terms of ‘bounded

rationality’ does not imply (though it does not rule out) a focus on heuris-

tics inconsistent with standard decision theory. On the contrary, the limits

associated with bounded rationality are even sharper in relation to the appli-

cation of standard decision theory than in other cases. A heuristic decision

process may take account, in some form, of a broad and loosely defined

set of considerations more or less relevant to the decision in question. By

contrast, the requirements for a formal decision process, beginning with the

assignment of a prior probability distribution over the state space, and pro-

ceeding to updating posterior decision probabilities and contingent strategies

are so demanding that in practice, the number of propositions taken into ac-

count is not merely finite (this aspect of boundedness is logically necessary)

but commonly quite small. Hence, the derivation of conditions under which

a particular small world is appropriate should be of particular interest to

highly, but nevertheless boundedly rational decision-makers.

9



4 Dynamics and Sequentially Consistent Bayesian

Decisions

Our analysis so far has focused on the comparisons between a fully aware

decision-maker and one with limited awareness. It is straightforward to ex-

tend the analysis to the case of a set of decision-makers, ordered in terms

of awareness from the least aware to most aware. Such an ordering arises

naturally in the course of a history in which individuals become aware of (or

discover) new propositions over time, but do not forget propositions of which

they are already aware.

More generally, as in Halpern and Rego (2006b) or Grant and Quiggin

(2007b) we may consider extensive form games with Nature (or with other

players, but we will not pursue the multiagent case further here) in which

awareness increases as the game progresses, for example because an individual

is presented with a choice she or he had not previously anticipated. In this

case, the awareness of the decision-maker at any point in time will, in general,

depend on the history of the game up to that time. The possible awareness

states of the player are then partially ordered and (since awareness increases

along any given history) this ordering is consistent with the ordering of partial

histories generated by the dynamic structure of the game.

To put this into the notation introduced above we will consider a special

case in which the increase in awareness depends only on calendar time and not

the particular history of play up to that point in time. The line of argument

developed below, however, can be readily generalized to accommodate history

dependent increases in awareness as well.

Fix an objective state-space Ω = 2P0×2P1
with its associated truth valu-

ation V (pin;ω). Let {P0
1, . . . ,P

0
T} and {P1

1, . . . ,P
1
T} be T element (ordered)

partitions of P0 and P1, respectively.1 Associated with each partition element

Pi
t is a ‘partial’ strategy set Sit where sit in Pi

t corresponds to the rational

1By ordered we simply mean the partitions respect the indexing of propositions in Pi,
i = 0, 1. That is, if pi

n ∈ Pi
t and pi

n′ ∈ Pi
t′ , then t > t′ implies n > n′. In addition, the

fact that both partitions have the same number of partitions is without loss of generality
since (with slight abuse of notation) we allow some of the partition elements to be empty.

10



number given by

Sit :=

sit ∈ Q : sit =
∑
pin∈Pit

2−n × V
(
pin;ω

)
, for some ω ∈ Ω

 , i = 0, 1.

The interpretation is that at the point in time t ∈ {1, . . . , T}, the individ-

ual is aware of nature’s propositions P0
1∪P0

2 . . .∪P0
t and her own propositions

in P1
1 ∪P1

2 . . . ∪P1
t . Correspondingly

(∑t
τ=1 S

0
τ ,
∑t

τ=1 S
1
τ

)
is the (restricted)

game-form for the game against nature she perceives herself to be playing.

Associated with each t ∈ {1, . . . , T}, is a prior belief σt ∈ ∆
(∑t

τ=1 S
0
τ

)
, a

consequence function ct :
(∑t

τ=1 S
0
τ

)
×
(∑t

τ=1 S
1
τ

)
→ Ct where Ct is the space

of consequences of which she is aware at point t, a a utility index ut : Ct → R.

Thus, by repeated application of the results derived above we may derive

conclusions concerning the dynamics of choice under conditions of limited,

but increasing awareness. If all the models
(∑t

τ=1 S
0
τ ,
∑t

τ=1 S
1
τ

)
are consis-

tent with the complete model
(∑t

τ=1 S
0
T ,
∑t

τ=1 S
1
T

)
(and therefore with each

other) we say that the individual’s model of the world is sequentially con-

sistent.

The first restriction on the consequences and utility is the multivariate

analog of multiplicative separable utility.

Definition 3 (Sequential Multiplicative Separable Utility) For each

t = 2, . . . , T , there exists a consequence space Ct, a consequence function

ct : S0
t × S1

t → Ct, and a utility function ut : Ct → R, s.t. for all s0
1 ∈ S0

1 , . . .

all s0
t ∈ S0

t , all s1
1 ∈ S1

1 , . . . , and all s1
t ∈ S1

t ,

ut

(
ct

(
t∑

τ=1

S0
τ ,

t∑
τ=1

S1
τ

))
= ut−1

(
ct−1

(
t−1∑
τ=1

S0
τ ,

t−1∑
τ=1

S1
τ

))
+ ut

(
ct
(
s0
t , s

1
t

))
+ktu

t−1

(
ct−1

(
t−1∑
τ=1

S0
τ ,

t−1∑
τ=1

S1
τ

))
ut
(
ct
(
s0
t , s

1
t

))
,

where kt is a constant satisfying:

1 + ktu
t−1
(
ct−1

)
> 0, for all ct−1 ∈ Ct−1,

and 1 + ktut (ct) > 0, for all ct ∈ Ct.
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The second is simply the multivariate extension of the independence of

the prior beliefs over the partial strategy sets of nature.

To state it, notice that σT ∈ ∆
(∑t

τ=1 S
0
τ

)
, and the marginal σTt ∈ ∆ (S0

t ),

is given by

σTt
(
s0
t

)
=
∑
τ 6=t

∑
s0τ∈S0

τ

σT

(
s0
t +

∑
τ 6=t

s0
τ

)
.

Definition 4 (Multivariate Belief Independence) 1. σ1 (s0
1) ≡ σT1 (s0

1).

2. For each t = 2, . . . , T , and for all s0
1 ∈ S0

1 , . . . all s0
t ∈ S0

t , all s1
1 ∈ S1

1 ,

. . . , and all s1
t ∈ S1

t ,

σt

(
t−1∑
τ=1

s0
τ + s0

t

)
= σt−1

(
t−1∑
τ=1

s0
τ

)
σTt
(
s0
t

)
.

Given the starting point t = 1, the individual perceiving (S0
1 , S

1
1) as the

game-form of the game she is playing against nature, with associated belief

σ1 (s0
1) ≡ σT1 (s0

1) (by multivariate belief independence), consequence func-

tion c1 : S0
1 × S1

1 → C1 and utility u1 : C1 → R, chooses a strategy ŝ1
1

that maximizes her (perceived) subjective expected utility. At point t = 2,

the individual now is made aware of more of nature’s choices and possible

her own decisions, making (S0
1 + S0

2 , S
1
1 + S1

2), the new game-form, with as-

sociated prior belief σ2 (s0
1 + s0

2) = σT1 (s0
1)σ

T
2 (s0

2) and consequence function

c2 : (S0
1 + S0

2)×(S1
1 + S1

2)→ C2 and utility u2 : C2 → R. Applying the analy-

sis from the previous section, it readily follows that (sequential multivariate)

separable utility along with (multivariate) belief independence means that if

the decision maker were selecting her ex ante optimal prior strategy given her

new increased level of awareness, she could so by selecting an ex ante strategy

ŝ1
1 + s1

2. That is, she need not reoptimize over S1
1 . Moreover, with (multi-

variate) belief independence she can simply play the continuation strategy

ŝ1
1 entails at point 2 given her planned responses to new information about

nature’s choice of s0
1 that is revealed at point 2. And so, on for each point

thereafter from point t = 3, until point t = T , at which point she has become

fully aware of the nature of the uncertainty she is facing and her options.
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5 Implications and concluding comments

The conditions derived above are quite stringent, which raises the questions

of how boundedly rational decision-makers should act. One way to address

this question is related to the work of Bordley and Hazen (1992) who consider

a single decision-maker and derive conditions similar to those presented above

to determine when it would be appropriate to apply expected utility theory

in the context of a restricted model similar to (S0
r, S

1
r) . Bordley and Hazen

argue that, if these conditions are not satisfied, the induced preferences over

strategies in (S0
r, S

1
r) may be represented by non-expected utility preferences.

By contrast, the analysis here compares the perspective of boundedly ra-

tional decision-makers with that which they would take if they were fully

aware. This approach has a range of implications. First, consider the per-

spective of an external observer, with the possibility of intervening to affect

the choices of a boundedly aware decision-maker. Such an intervention might

simply involve making the decision-maker aware of some previously uncon-

sidered possibilities, or it might involve actions aimed at encouraging some

choices and discouraging others. Under the conditions derived above, in-

creasing the awareness of the decision-maker will not affect decisions, but

will add to the decision-makers computational burden and is thus undesir-

able. Similarly unless the external decision-maker has private and noncom-

municable information, as distinct from greater awareness of the possible set

of states, intervening directly will reduce the decision-makers welfare. Con-

versely, where the conditions derived above are not satisfied, intervention

may improve welfare.

As is shown by Grant and Quiggin (2007b, Proposition 11, p19) a bound-

edly aware decision-maker cannot know with certainty that there exist propo-

sitions of which they are unaware2. On the other hand, inductive reasoning

may be used to justify the belief that a given small-world model is incomplete,

and that expected utility may need to be modified (leading to non-expected

utility or multiple priors models) or supplemented with heuristics derived

from experience of decisions made under conditions of bounded awareness

2Here knowledge is interpreted in the modal-logical sense appropriate to a state-space
model of the world. A proposition is known to be true if it is true in every state of the
world that may possibly hold.
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(the precautionary principle is a prominent example.of such a heuristic).

In summary, Bayesian decision theory provides an appealing basis for

reasoning and choice for an unboundedly rational individual, capable of for-

mulating a prior distribution over all possible events, and updating it in the

light of new information. In practice, however, boundedly rational individ-

uals can apply Bayesian reasoning only within ‘small worlds’ in the sense

described by Savage (1954). That is, a boundedly rational Bayesian will

define particular subproblems for which she judges that a well-defined prior

over relevant states (the projections of events in the larger world) is available,

and will then apply Bayesian decision theory to these subproblems. The lim-

itation to small worlds raises the problem of determining conditions under

which Bayesian updating is valid, and what response is reasonable if these

conditions are not satisfied.

In this paper, we have presented a dynamic model within which both the

discovery of new propositions and the updating of probability beliefs takes

place over time. Using this model, we have considered independence condi-

tions for newly discovered propositions under which the restricted Bayesian

approach to probability updating is valid.
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[6] Halpern, J., and L. C. Rêgo (2006b), ‘Extensive Games with Possibly

Unaware Players’, Conference on Autonomous Agents and Multiagent

Systems.

[7] Heifetz, A., M. Meier, and B. Schipper (2006): “Interactive Unaware-

ness,” Journal of Economic Theory 130, 78-94.

[8] Keeney, R.L. and H. Raiffa (1976): Decisions with Multiple Objectives.

John Wiley & Sons, Inc, New York.

[9] Savage, L.J. (1954): The Foundations of Statistics. 1972 Dover Publica-

tions Edition, New York.

15


