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contracts

John Quiggin�and Robert G. Chambersy
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Abstract
Insurance contracts are frequently modelled as principal�agent rela-

tionships. Although it is commonly assumed that the principal, in this
case the insurer, has complete freedom to design the contract, the problem
formulation in much of the principal�agent literature presumes that the
contract is constrained-Pareto-e¢ cient. In the present paper, we consider
the implications of a richer speci�cation of the choices available to clients.
In particular, we consider the entire spectrum of possible power di¤er-
entials in the contracting relationship between insurers and clients. Our
central result is that the agent can exploit information asymmetries to
o¤set the bargaining power of the insurer, but that this process is socially
costly.

1 Introduction

A wide variety of economic relationships have been modelled as contracts be-
tween a principal and an agent, made under conditions of imperfect and asym-
metric information. Examples include contracts between employers and em-
ployees, landlords and sharecroppers, or regulators and �rms. In most, though
not all, cases, such contracts involve the provision of some form of risk-sharing
between the principal and the agent. Hence, insurance may be regarded as the
paradigmatic case of a principal�agent relationship.
Insurance contracts typically involve some element of bargaining, frequently

under conditions of unequal bargaining power. Important concerns of bargaining
theory are to formulate precise notions of bargaining power and to formalize the
intuition that parties with greater bargaining power or lower levels of risk aver-
sion will secure more favorable outcomes. Kihlstrom and Roth (1982) analyze
bargaining over insurance in the case where clients facing known risks bargain
with a monopolistic insurer. They show that the insurer will prefer to bar-
gain with a more risk-averse client. This result was also derived independently
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Park

1



by Schlesinger (1984). The same result is obtained, with a more sophisticated
model of bargaining, by Viaene, Veugelers and Dedene (2002).
In all of these analyses, the loss to be insured is �xed, and the equilibrium

bargain is Pareto-e¢ cient. In many cases of interest, however, the client has the
capacity to take action which will a¤ect the occurrence, and magnitude of gains
and losses. This arises most obviously in the case of agricultural insurance,
where the loss to be insured is a loss of production due to climatic shocks or
insect infestation, and clients may undertake such actions as the application of
fertiliser and pesticides (Horowitz and Lichtenberg 1993, Miranda and Glauber
1997, Chambers and Quiggin 2002). However, the same issues arise whenever
clients have the capacity to undertake self-protection (Ehrlich and Becker 1972,
Lewis and Nickerson 1989, Quiggin 2002). When clients are engaged in pro-
duction or self-protection, the insurance contract will a¤ect their productive
decisions, even in the absence of the kind of private information that produces
moral hazard problems. Hence, the distribution of bargaining power may a¤ect
the e¢ ciency of the insurance contract.
The purpose of this paper is to examine the interaction between di¤eren-

tial bargaining power and the e¢ ciency of insurance contracts. The analysis
is undertaken in a framework of state-contingent production, which allows us
to consider as separate choices the level of e¤ort committed by the client and
the riskiness of the equilibrium state-contingent production vector. Our cen-
tral result is that the client can exploit information asymmetries to o¤set the
bargaining power of the insurer, but that this process is socially costly. Hence,
where the client has private information, an increase in her bargaining power
will, in general, enhance welfare.
In the case where the insurer has all the bargaining power, we show that the

client engages in costly self-protection to enhance her subsequent bargaining
position vis-a-vis the insurer. This results in a loss of e¢ ciency relative to the
case in which the services provided by the insurer are in competitive supply,
subject to a zero-expected-pro�t constraint. More generally, in a Nash bargain-
ing framework, the greater the bargaining power of the client, the greater is the
total social surplus.

2 State-contingent production

We use upper-case letters to denote state-independent scalars such as the ex-
pected output Z and the insurer�s expected pro�t P , lower-case letters to denote
state-dependent scalars such as output zs in state s and boldface to denote vec-
tors such as the state-contingent output vector z.
Production is undertaken by the client, who uses a vector of inputs x 2

<N to produce a vector of state-contingent outputs z 2 <M�S . Thus, the
technology may be summarized by the family of feasible output sets Z (x) : The
output zs; observed if state of nature s is realized, is, in general, an element
of <M . To simplify notation, we will focus on the case M = 1 , S = 2. The
general properties of state-contingent production technologies are discussed by
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Chambers and Quiggin (2000).

2.1 The e¤ort cost function

The client�s ex post preferences are of the net returns form

w(y;x) = u(y � g(x));

where u is a di¤erentiable, concave, strictly increasing von Neumann�Morgenstern
utility function, y is the return to the client, and g is a strictly convex and in-
creasing function. 1Letting

C (z) = min fg (x) ; z 2 Z (x)g ;

the client�s maximum expected utility, given state-contingent payments y1 and
y2; and consistent with producing the state-contingent output vector (z1; z2); is

E[w(y;x)] = �1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2));

where �s; s = 1; 2, is the client�s subjective probability of state s; and E is the
expectations operator, taken with respect to the probability vector (�1; �2) :

Assumption 1: The e¤ort-cost function C:<2 ! < is convex, strictly increas-
ing and twice di¤erentiable in each argument.

Following Chambers and Quiggin (2000), we de�ne a state-contingent output
vector (z1; z2) as inherently risky if

C(z1; z2)�C(�z) (1)

where
�z = (�1z1 + �2z2; �1z1 + �2z2):

Here the terminology re�ects the fact that, at a given level of cost for inherently
risky outputs, the client must sacri�ce expected output to remove uncertainty
from production. Notice, in particular, that if this condition is not satis�ed,
a risk-averse client can always costlessly self-insure by choosing to produce the
riskless output �z which yields the same expected output as the risky (z1; z2), but
at lower cost. By the monotonicity of the client�s preference function and his
risk aversion, the riskless output vector will thus always be strongly preferred
to the risky output vector.2

We de�ne (z1; z2) as monotonic if z1 � z2 and impose
1This objective function, referred to as utility of net returns, di¤ers from that commonly

used in the literature on principal�agent relationships, in which preferences over income are
independent of e¤ort (Grossman and Hart 1983; Quiggin and Chambers 1998). The alternative
formulations of the objective function are equivalent if the utility function displays constant
absolute risk aversion, as in Holmstrom and Milgrom (1987).

2 It may appear that all stochastic technologies are inherently risky. This is false. Chambers
and Quiggin (2000) de�ne a class of stochastic technologies (the generalized Schur convex)
which are nowhere inherently risky.
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Assumption 2: Any inherently risky (z1; z2) is monotonic.

To guarantee the existence of a non-trivial optimum we require

Assumption 3: There exists z such that:

Z = �1z1 + �2z2 > C(z):

De�ning expected net social output

�(z) = �1z1 + �2z2 � C(z);

Assumption 3 states that there exists z such that �(z) > 0:

3 The production problem

3.1 The client�s problem without insurance contracts

We �rst consider the problem where the client is the residual claimant, and does
not contract with an insurer. The client receives net return

ns = zs � C(z)

in state s; occurring with probability �s.
Thus for the case of two states of nature, the client seeks to maximize

W (n) = �1u(n1) + �2u(n2):

Denoting @C=@zs by Cs; the client�s �rst-order conditions are of the form

�su
0(zs�C(z1; z2))�(�1u0(z1 � C(z1; z2)) + �2u0(z2 � C(z1; z2)))Cs = 0 s = 1; 2

with equality at an interior solution, and are illustrated in Figure 1 by a tangency
between the client�s indi¤erence curve and isocost curve. Under the stated
conditions, a unique interior optimum will exist. We de�ne

ẑ = argmaxW (z�C(z)1)

to be the solution to the client�s maximization problem, and denote the associ-
ated vector of net returns by n̂:
We �rst observe:

Lemma 1 Under the stated conditions, the optimal choice (ẑ1; ẑ2) is inherently
risky and monotonic.
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Proof: That (ẑ1; ẑ2) is inherently risky follows from the fact that preferences
preserve second-order stochastic dominance, since for (ẑ1; ẑ2) not inherently
risky, the vector (z1 � C(z); z2 � C(z)) is dominated by (Ẑ � C(�z); Ẑ � C(�z))
where

Ẑ = �1ẑ1 + �2ẑ2:

Monotonicity follows by Assumption 2.�
A risk-neutral client chooses z to maximize expected net return

N(z) = Z � C(z)
= �1z1 + �2z2 � C(z1; z2):

The risk-neutral optimum choice of z is denoted zRN and the associated ex-
pected pro�t is denoted NRN : Visually it coincides with a tangency between
the fair-odds line, with slope � (�1=�2) ; and the client�s isocost curve. It will
also be useful to de�ne, for any cost level C;

zRN (C) = argmax
z
f�1z1 + �2z2 : C(z1; z2) � Cg ;

the output vector that maximizes expected revenue, conditional on cost level C:

4 Contracting

We now consider the principal�agent problem that arises when a risk-neutral
insurer contracts with a risk-averse client who is engaged in production under
uncertainty. The insurer has the right to specify contract provisions involving
a payment y to a client for an observed output z, with the insurer receiving
z � y. Hence, if the contract is accepted, the client receives a state-contingent
payment vector y(z) and the insurer receives the state-contingent income vector
z� y: The client is free to take the contract o¤ered by the insurer or to reject
it. If the client rejects the contract, he retains the rights to the state-contingent
output vector z. In our framework, therefore, the contracting problem reduces
to one of simultaneously picking a state-contingent output vector for the client
and a state-contingent payment vector for the insurer. The approach, therefore,
is general enough to permit any degree of interlinkage of contract stipulations
between the client and the insurer.
We consider two polar cases in relation to the insurer�s bargaining power.

In the competitive case, we assume that competition among potential insurers
drives expected pro�t to zero. Hence, the problem is one of designing a con-
tract to maximize the client�s expected utility subject to the constraint that
the insurer must make zero expected pro�t. In the other polar case, we assume
that the insurer has complete monopoly power. Thus the problem is one of
maximizing the insurer�s expected pro�t, subject to the constraint associated
with the client�s right to reject the contract proposed by the insurer and receive
instead the output vector z.

5



This interaction is represented as an extensive-form game. We consider three
possible information structures. In all cases the client can observe, ex post, the
state of nature s, and the insurer can observe, ex post, the output z:
In the �rst-best case, the insurer can observe the state of nature ex post, and

can commit to o¤er a payment schedule y(z) if the client chooses output vector
z. The timing is as follows:
1. The insurer commits to a payment schedule yFB contingent on the client

producing zFB :
2. The client accepts or rejects the insurer�s contract (rejection is represented

as setting y = z).
3. The client chooses the output vector z =(z1; z2):
4. Nature chooses s 2 f1; 2g.
5. The client and the insurer observe the state of nature s; and the output

zFBs
6. If the client accepted the contract at stage 2 and produced zFB ; she

receives nFBs = yFBs � C(zFB); and the insurer receives zFBs � yFBs . If the
contract was rejected, the client receives ns = zs�C(z) and the insurer receives
zero.
In the second-best or symmetric-information case, the insurer can observe

the state of nature s; but the client chooses the output vector z before the
insurer can commit to a payment schedule. Thus, the bargaining sequence is:
1. The client chooses the output vector zSB=(zSB1 ; zSB2 ):
2. The insurer o¤ers a payment schedule ySB=(ySB1 ; ySB2 ) for output zSB :
3. The client accepts or rejects the insurer�s contract.
4. Nature chooses s 2 f1; 2g:
5. The client and the insurer observe the state of nature s; and the output

zSBs
6. If the client accepted the contract at stage 3; she receives nSBs = ySBs �

C(zSB); and the insurer receives zSBs � ySBs . If the contract was rejected, the
client receives ns = zSBs � C(z) and the insurer receives zero.
Except where the insurer has no bargaining power, the second-best case gives

rise to a hold-up problem for the client, who must choose the state-contingent
output vector zSB before the insurer determines the payment schedule ySB :
This is exactly analogous to the classic hold-up problem analyzed by Klein,
Crawford and Alchian (1978), in which one party makes a �xed investment
whose value depends on the subsequent decisions of a speci�c contracting part-
ner. An excellent summary of the hold-up literature is given by Holmstrom and
Roberts (1998).
In the third-best or asymmetric-information case, the insurer can observe

ex post output zs; but not the state of nature. Hence the contract o¤ered by
the insurer must be incentive-compatible. The timing is:
1. The client chooses the output vector zTB=(zTB1 ; zTB2 ):
2. The client announces an output plan ~zTB = (~zTB1 ; ~zTB2 ) (in incentive-

compatible equilibria, zTB= ~zTB):
3. The insurer o¤ers a payment schedule yTB=(yTB1 ; yTB2 ) for output

~zTB=(~zTB1 ; ~zTB2 ).
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4. The client accepts or rejects the insurer�s contract (rejection is represented
as setting yTB= zTB).
5. Nature chooses s 2 f1; 2g:
6. The client observes the state of nature s:
7. The client reports state ~s; (in incentive-compatible equilibria ~s=s):
8. The insurer observes the ex post output zTBs :
9. If the client accepted the contract at stage 4 and produced zTBs = ~zTB~s ;

the client receives nTBs = yTBs �C(zTB); but if zTBs 6= ~zTB~s the client receives an
arbitrarily large negative payo¤. If the contract was rejected, the client receives
ns = z

TB
s � C(z); and the insurer receives zero.

The focus of our analysis is on the interaction between the game structure
and the relative bargaining power of the insurer and client. We �rst observe the
following result, which is valid for any of the information structures considered
in this paper.

Proposition 2 (Prop: Acceptable contract) Suppose z1 � z2: Then any
contract which is acceptable to the client and which yields non-negative pro�ts
to the insurer must satisfy z1 � y1; y2 � z2.

Proof Suppose to the contrary that y2 > z2: Then the contract can only be
pro�table if y1 < z1 and

�1y1 + �2y2 < �1z1 + �2z2:

This means that (z1; z2) second-order stochastically dominates (y1; y2) so
that acceptance of the contract would make the client worse o¤. Other
violations of the conditions can be dealt with similarly. �

5 Monopolistic insurers

In the monopolistic case, a single insurer contracts with clients by specifying
an output vector (z1; z2) and payment vector (y1; y2). Clients must choose
whether to produce the output vector (z1; z2) and receive the payment vector
(y1; y2) proposed by the insurer, or to produce some other output vector (in
which case they must self-insure). Then, after committing to (z1; z2); clients
have the opportunity to accept or decline the contract o¤ered by the insurer.
The problem faced by the client is the need to commit to a production vector

in the knowledge that she will subsequently deal with a insurer who possesses
monopoly bargaining power and who, therefore, has the capacity to capture
all available rents. In all such cases, unless the insurer can commit ex ante
to guarantee the client some minimum utility level, the client must choose her
output vector to maximize the utility of her outside option.

5.1 First-best case

In the �rst-best case, the insurer can commit in advance to providing the client
with a given utility level, conditional on accepting the proposed contract. If

7



the insurer�s proposed contract yields the client less than CE(n̂); the client�s
best response is to reject the o¤er and produce ẑ: If the contract yields at least
CE(n̂); the client�s best response is to produce the output proposed by the
insurer andto accept the contract.
Hence, the insurer�s problem is:

max
y
f �1(z1 � y1) + �2(z2 � y2)g

subject to the constraint

�1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � u (CE(n̂)) :

The insurer will, therefore, choose (zFB1 ; zFB2 ) to maximize

P = �1z1 + �1z2 � C(z1; z2)

and make a state-independent payment Y FB such that

Y FB � C(zFB) = CE(n̂):

It is obvious that ZFB = ZRN ; so that the insurer�s expected pro�t is

PFB = ZRN � Y FB

= �1 (ẑ) + �2 (ẑ) :

The solution is illustrated in Figure 2, by having the client produce at the point
of tangency between the fair-odds line and the isocost curve for C

�
zRN

�
and

then having the insurer de�ne an implicit indemnity structure that leaves the
client at the point of intersection between the fair-odds line and the client�s
indi¤erence curve through n̂:
Comparative statics for this solution are straightforward. Changes in the

client�s risk aversion have no e¤ect on the optimal output. However, the less
risk-averse the client, the smaller the insurer�s pro�t.
We have

Proposition 3 (First-best) In the �rst-best solution, the insurers pro�t is
lower, the less risk-averse is the client, and is equal to zero when the client is
risk-neutral.

5.2 Second-best (symmetric information) case

We next consider the case when the insurer can observe the state of nature,
but cannot commit in advance to a conditional payment y(z). Hence, the client
commits to the production vector (z1; z2) before negotiating with the insurer.
The insurer must then o¤er a payment vector (y1; y2) which the client can
either accept or decline. Since the insurer can observe the state of nature and
the client�s output, the client must announce ~s=s and must therefore announce
~z = z: Given that the client has committed to, and announced, the output z;

8



the best response for the insurer is to o¤er the client exactly W (z�C(z)1); the
utility the client would get from consuming the output (z1; z2) chosen in stage
1. Hence by backward induction, the optimal strategy for the client is to choose
the output ẑ that maximizes this utility. Hence, this game has a unique (weak)
perfect Bayesian equilibrium, which we now explore in detail.
The insurer�s objective function is:

max
y

�1(y1 � z1) + �2(y2 � z2)

subject to the constraint

�1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � u (CE(n̂))

which requires that the client, having committed to the (z1; z2); vector will
�nd the insurer�s contract at least as attractive as the alternative of consuming
(z1; z2):
In the optimal solution, the insurer will o¤er a state-independent payment

of Ŷ ; where
Ŷ � C(ẑ) = CE(n̂):

The insurer�s expected pro�t is

P̂ = Ẑ � Ŷ
= PFB ��1 (ẑ)
= �2 (ẑ)

where
�1 (ẑ) = [Z

FB � C(zFB1 ; zFB2 )]� [Ẑ � C(ẑ1; ẑ2)];

which is the cost of self-protection by the client, and

�2 (ẑ) = P̂ � CE(n̂)

is the client�s risk premium. Under monopoly, the symmetric information case
involves a welfare loss of �1 (ẑ) relative to the �rst-best. This loss re�ects the
cost of self-protection undertaken by the client in anticipation of the hold-up
problem associated with the insurer�s use of monopoly power.

5.3 Third-best (asymmetric information) case

The asymmetric information monopolistic case will be referred to as the third-
best, since both the insurer�s monopoly power and the client�s private infor-
mation reduce aggregate welfare relative to the �rst-best The insurer�s best re-
sponse, given an announced output ~z; is to o¤er a payment schedule y yielding
the client W (~z�C(~z)1) if ~z is produced, and W �W (~z�C(~z)1) if any z 6= ~z is
produced. Hence, in any perfect Bayesian equilibrium, the client produces and
announces ẑ; yielding certainty-equivalent outcome CE(n̂):
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The outcome in state s is that the insurer�s payo¤ is zs� ys; and the client�s
payo¤ is ys � C(z1; z2): Hence the insurer�s problem becomes

max
y

�1(y1 � ẑ1) + �2(y2 � ẑ2)

subject to constraints analogous to those in the competitive case:

�1u(y1 � C(ẑ1; ẑ2)) + �2u(y2 � C(ẑ1; ẑ2)) � u (CE(n̂)) ;

�1u(y1 � C(ẑ1; ẑ2)) + �2u(y2 � C(ẑ1; ẑ2)) � u(y1 � C(ẑ1; ẑ1));
�1u(y1 � C(ẑ1; ẑ2)) + �2u(y2 � C(ẑ1; ẑ2)) � u(y2 � C(ẑ2; ẑ2)); and
�1u(y1 � C(ẑ1; ẑ2)) + �2u(y2 � C(ẑ1; ẑ2)) � �1u(y2 � C(ẑ2; ẑ1)) + �2u(y1 � C(ẑ2; ẑ1)):

Assuming z1 � z2;the incentive compatibility constraints clearly require
y1 � y2 with strict inequality whenever z1 < z2: Hence we obtain the following
Corollary to Proposition 1.

Corollary 4 Any solution to the asymmetric information problem with non-
negativeexpected pro�t for the insurer must have

z1 < y1 < y2 < z2:

Since y2 < z2, the option of producing (z2; z2) and receiving (y2; y2) un-
der the insurance contract is dominated by the alternative of producing z =
(z2; z2) and setting y = z. Also, since (z2; z1) is not inherently risky, the op-
tion of producing (z2; z1) and receiving (y2; y1) is dominated by the alternative
of setting z =(y2; y1) and setting y = z: In each case, the dominating alterna-
tive is dominated by the trivial contract in which the client produces ẑ and
receives payment y = ẑ; yielding net returns n̂: Noting that this contract sat-
is�es all the constraints, we observe that the set of feasible contracts yielding
W � W (ẑ�C(ẑ)1) is non-empty. Assuming that C is �su¢ ciently�convex, the
set of feasible contracts will also be compact. Hence, we have:
Lemma: There exists an optimal pair (y; z) satisfying the constraints (T:1)

to (T:4): For this pair, (y; z); the constraints (T:3) and (T:4) are not binding.
We have proved the following result, previously derived by Grossman and

Hart (1983) for the case of where preferences over income are independent of
e¤ort

Proposition 5 In the asymmetric information problem with competitive insur-
ance and a net returns objective function, the equilibrium will yield the client�s
reservation utility.

We can derive an explicit solution to the insurance problem. Let ui denote
u(yi � C(ẑ1; ẑ2)); i = 1; 2: Then the solution to the problem takes the form

�1u1 + �2u2 = u (CE(n̂))

= u(y1 � C(ẑ1; ẑ1)):
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Hence,
y1 � C(ẑ1; ẑ1) = CE(n̂)

or

y1(ẑ) = CE(n̂)+C(ẑ1; ẑ1)

= Ŷ + C(ẑ1; ẑ1)� C(ẑ1; ẑ2)

and

y2(ẑ)�C(ẑ1; ẑ2) = u�1
�
u (CE(n̂))��1u(y1(ẑ)�C(ẑ1; ẑ2))

�2

�
= u�1

�
u (CE(n̂))��1u(CE(n̂)+C(ẑ1; ẑ1)�C(ẑ1; ẑ2))

�2

�
:

Thus, the insurer�s expected pro�t is

PTB = ẑ � �1y1(ẑ1; ẑ2)� �2y2(ẑ1; ẑ2)
= PFB ��1 (ẑ)��TB2 (ẑ) ;

where �1 is the client�s cost of self-protection as before, and

�TB2 (ẑ) = (�1y1(ẑ) + �2y2(ẑ)� C (ẑ))� CE(n̂)
is the client�s risk premium associated with the requirement for incentive-compatibility.
Moreover, we note that 0 � �TB2 (ẑ) � �2 (ẑ) and

PTB = �2 (ẑ)��TB2 (ẑ) :

The existence of asymmetric information prevents the insurer from fully insuring
the client and capturing the entire risk premium.
The incentive-compatibility constraint implies:

CETB = ŷ1 � C(ẑ1; ẑ1)
so

�TB2 = �1ŷ1 + �2ŷ2 � C(ẑ1; ẑ2)� CETB

= �2(ŷ2 � ŷ1)� (C(ẑ1; ẑ2)� C(ẑ1; ẑ1)):

6 Competitive insurance

We now consider the competitive case, where the insurer�s expected pro�t is
zero. In the symmetric case, the absence of a hold-up problem arising from the
need to deal with a monopolistic insurer means that the client does not need
to commit to costly self-protection prior to contracting. Hence, the �rst-best
outcome is achieved. Under asymmetric information, the problem of inadequate
insurance is mitigated by the capacity of the client to bear more risk than would
be the case in the presence of the hold-up problem, though less than in the
presence of full insurance.
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6.1 First-best and symmetric information cases

In the competitive case, the insurer must o¤er the contract that maximizes
the client�s utility, subject to the insurer making zero expected pro�t. In the
�rst-best case, the insurer will therefore choose (zFB1 ; zFB2 ) to maximize

NFB = �1z1 + �1z2 � C(z1; z2)

and make the payment NFB in both states of nature. It is obvious that NFB =
NRN so that the contract yields the client a welfare gain of

NRN � CE(n̂) = �1 (ẑ) + �2 (ẑ)

relative to the equilibrium without insurance.
Competition among insurers ensures that the insurer must o¤er the most

appealing possible contract to the client, subject to the zero-expected-pro�t
constraint. Hence, even in the absence of an ex ante commitment by the in-
surer, the �rst-best contract is achievable provided that the state of nature is
observable. That is, the symmetric information equilibrium is the same as the
�rst-best. This common outcome is the same as in the �rst-best monopoly
case, except that all the bene�ts of the contract go to the client rather than the
insurer.
Relative to the monopolistic symmetric information case, the client is better

o¤ and the insurer is worse o¤, as would be expected. However, unlike the
monopolistic case, the outcome in the competitive symmetric information case
is Pareto-e¢ cient.

6.2 Asymmetric information case

The asymmetric information case arises when the insurer cannot observe, or at
least contract on, either the state of nature s or the output vector z. Hence it is
possible for the client to misrepresent the output vector to which she has com-
mitted, and support this misrepresentation by misreporting the state of nature
where necessary. For example, the client might commit to (z1; z1) but report
that she has committed to (z1; z2): Whatever state of nature actually occurred,
the client would produce z1 and report the occurrence of state 1.3 We may
con�ne attention to incentive-compatible equilibria, in which such misrepresen-
tation does not occur.
For given z; the optimal payment vector must satisfy

3This is the only relevant possibility, assuming z1 � z2. Since the insurance contract
must have y2 � z2 by Proposition 1, the option of producing (z2; z2) and receiving (y2; y2)
under the insurance contract is dominated by the alternative of not contracting and receiving
(z2; z2). Under the assumption of constant returns to scale, the option of producing (z2; z1)
is dominated by a convex combination of the returns available by producing (z2; z2), yielding
z2 � C(z2; z2); and (z1; z1); yielding z1 � C(z1; z1):
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(T:1) �1y1 + �2y2 = �1z1 + �2z2;

(T:2) �1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � u(y1 � C(z1; z1));
(T:3) �1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � u(y2 � C(z2; z2)); and
(T:4) �1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � �1u(y2 � C(z2; z1))

+�2u(y1 � C(z2; z1))

As in the monopoly case, only the �rst and second constraints will bind in
equilibrium.
Thus, for any announced (z1; z2); competition will induce the insurer to o¤er

an output-dependent payment y that maximizes the client�s utility subject to
the zero pro�t constraint

(T:1) �1y1 + �2y2 = �1z1 + �2z2

and the incentive-compatibility constraint

(T:2) �1u(y1 � C(z1; z2)) + �2u(y2 � C(z1; z2)) � u(y1 � C(z1; z1)):

Let the optimal solution to this problem be denoted y(z): We now consider
some characteristics of the equilibrium pair (y; z):
Consider �rst y(ẑ): Since z1 < y1 < y2 < z2 and

�su
0(zs�C(z1; z2))�(�1u0(z1 � C(z1; z2)) + �2u0(z2 � C(z1; z2)))Cs = 0 s = 1; 2

we must have

�1u
0(y1 � C(z1; z2))� (�1u0(y1 � C(z1; z2)) + �2u0(y2 � C(z1; z2)))C1 < 0 s = 1; 2

�2u
0(y2 � C(z1; z2))� (�1u0(y1 � C(z1; z2)) + �2u0(y2 � C(z1; z2)))C2 > 0 s = 1; 2:

Hence, the client would bene�t from a change which increased z2 and y2; and
reduced z1 and y1 in such a manner as to hold C(z1; z2); z2 � y2 and z1 � y1
constant. Such a change would leave the expected pro�t equal to zero. More-
over, totally di¤erentiating the right-hand side of the incentive-compatibility
constraint yields the following expression for the change in the client�s utility
conditional on producing (z1; z1) :

u0(y1 � C(z1; z1) [dy1 � (C1(z1; z1) + C2(z1; z1)) dz1] :

Observing that C1(z1; z1) + C2(z1; z1) � 1; and dy1 = dz1 < 0; the right-
hand side declines, while the left-hand side increases. Hence, the incentive-
compatibility constraint is satis�ed after the change. It follows that the client
will prefer to choose an output vector z such that
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�1z1 + �2z2 > �1ẑ1 + �2ẑ2

z1 < ẑ1 < ẑ2 < z2:

That is:

Proposition 6 (Prop:spread) The optimal output z in the competitive asym-
metric information solution is derived from a mean-increasing spread of ẑ

Having derived this result it is possible to characterize the welfare losses in
the competitive asymmetric information solution relative to the �rst-best. The
client�s problem at stage 1 is to choose zCAS to maximize

�1u(y1(z)� C(z1; z2)) + �2u(y2(z)� C(z1; z2));

yielding net returns nCAS : Denote the expected output and net returns by
ZCAS ; NCAS :
Relative to the �rst-best, the client incurs a cost of self-protection

�1(z
CAS) + �2(z

CAS) = NRN�NCAS ;

and a cost of incomplete insurance

�2(z
CAS) = NCAS � CE(nCAS):

As noted above, zCAS is riskier than ẑ; and E[nCAS ] � E[n̂]:Hence,�1(zCAS) �
�1 (ẑ) : Moreover, CE(nCAS) � CE(n̂): Hence,

�1(z
CAS) + �2(z

CAS) � �1 (ẑ) + �2 (ẑ) :

As in the monopoly case, the incentive-compatibility constraint implies that:

CE(nCAS) = yCAS1 � C(zCAS1 ; zCAS1 )

so

�2(z
CAS) = �1y

CAS
1 + �2y

CAS
2 � C(zCAS1 ; zCAS2 )� CECAS

= �2(y
CAS
2 � yCAS1 )� (C(zCAS1 ; zCAS2 )� C(zCAS1 ; zCAS1 )):

Since the client was free to choose the output level ẑ;

�TB1 +�TB2 � �CAS1 +�CAS2 :
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7 Bargaining solutions

In the monopolistic solutions considered above, the insurer�s monopoly power al-
lows him to capture the entire rent. Compared to the competitive case, however,
the insurer�s pro�t is less than the reduction in the certainty-equivalent income
of the client, and there is, therefore, a net social loss. In both the symmetric
information and asymmetric information cases, the client must precommit to
an ine¢ cient production vector to secure his reservation utility. In asymmetric
information problems, there is an additional loss relative to the �rst-best arising
from the insurer�s need to o¤er an incentive-compatible contract.
We now consider the possibility of co-operative solutions, in which the client

and insurer can contract, ex ante, so as to avoid one or both of these sources of
divergence from the �rst-best. The solution concept applied is that of a Nash
bargaining solution. The disagreement point is either the symmetric information
solution or the asymmetric information solution derived above for the monopoly
case. The agreement point may be either the �rst-best or an asymmetric infor-
mation solution in which the insurer commits to a payment schedule based on
observed output, but the state of nature is not contractible.
Co-operative bargaining solutions may arise either because clients gain an

increase in bargaining power relative to monopolistic insurers or because the
externality associated with the client�s private information is partially inter-
nalized. As an example of the former process, individual bargaining with a
monopoly insurer may be replaced by collective bargaining. In an employment
relationship, for example, workers may be represented by unions. Alternatively,
policies such as employee stock ownership plans may produce some commonality
of interest between clients and insurers and thereby lead to the internalization
of externalities.

7.1 First-best case

We �rst consider the case where the insurer and client can reach the �rst-best
outcome through bargaining. The disagreement point is one in which the client
chooses some ~z , yielding the reservation certainty-equivalent income CE( ~n). No
contracting takes place and the insurer therefore receives zero.4 The agreement
point is one in which the client produces the �rst-best output zFB = zRN

and receives a nonstochastic payment Y; yielding net income Y � C
�
zFB

�
:

Bargaining therefore determines the payment Y received by the client and the
insurer�s pro�t Z � Y:
Analysis of bargaining problems requires a cardinal speci�cation of the utility

of income under certainty. Diminishing marginal utility of certain income is not
necessarily equivalent to risk-aversion under certainty even though both may
be represented by concavity of the utility function. For simplicity, we assume

4Note that the insurer may contract with otherclients, so that his income in the event of
disagreement is not equal to zero. The existence of outside income will be re�ected in relative
bargaining power.
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that utility for both parties is linear in certainty-equivalent income. (For the
risk-neutral insurer, certainty-equivalent income is equal to expected income.)
The relative bargaining power of the two parties is represented by a para-

meter � 5 . Thus, the bargaining problem is to choose Y to maximize

V̂ =
��
Y � C

�
zFB

��
� CE(~n)

��
P 1��;

where P = Z � Y .
The �rst-order condition on Y is:

�
��
Y � C

�
zFB

��
� CE(~n)

���1
P 1�� = (1��)

��
Y � C

�
zFB

��
� CE(~n)

��
P��

or: ��
Y � C

�
zFB

��
� CE(~n)

�
P

=
�

(1� �) :

As in the analysis of Kihlstrom and Roth (1982), the greater the bargaining
power of the client, the higher is the payment Y:
Totally di¤erentiating with respect to CE(~n) and rearranging yields

(1� �) = (1� �) @Y

@CE(~n)
� � @P

@CE(~n)
;

or, since
@Y

@CE(~n)
+

@P

@CE(~n)
= 0

@Y

@CE(~n)
= (1� �):

Hence, the client�s �nal share of income is increasing in CE(~n) , and the op-
timal choice for the client is ~z = ẑ. However, since the actual output is zFB ,
the choice of ~z only a¤ects the division of the surplus. The analysis of the �rst-
best case con�rms the result derived by Bell (1989) in the context of tenancy
contracts, that, under costless monitoring, the insurer�agent and Nash bargain-
ing solutions, assuming an a¢ ne payment structure, are identical up to a side
payment.
Since, the more risk-averse is the client, the lower is CE(n̂);we obtain the

result that, the more risk-averse is the client, the better o¤ is the insurer. Note
that this is not the standard bargaining theory result: the less risk-averse party,
that is, the one with the less concave cardinal utility of wealth, has more bar-
gaining power. In the present case, both the insurer and the client have cardinal
utility linear in certainty-equivalent wealth. The result arises because, the more
risk-averse is the client, the greater are the gains from insurance. Since these
gains are shared in proportion to bargaining power, the insurer is better o¤. On
the other hand, since the client receives only part of the gains from insurance,
a reduction in CE(n̂) leaves her strictly worse o¤ whenever� < 1:

5 If utility functions display diminishing marginal utility of income, commonly referred to
in the bargaining literature as risk-aversion, the curvature of the cardinal utility functions
may be incorporated in the determination of �:

16



7.2 Bargaining solution with symmetric information

In the symmetric information case, the disagreement point, as before, is one in
which the client chooses some ~z, receiving CE( ~n) and the insurer receives zero.
The agreement point is one in which the output ~z is produced and the insurer
o¤ers full insurance, giving the client a non-stochastic payment Y and receiving
the pro�t

P (~z;Y ) = E[~z]� Y:
Thus, the bargaining problem is to choose Y to maximize

V̂ = ((Y � C (~z))� CE(~n))� P (~z;Y )1��;
which, as before, yields the solution condition

((Y � C (~z))� CE(~n))
P (~z;Y )

=
�

(1� �) :

Totally di¤erentiating with respect to ~z and rearranging yields

(1� �)r~z (Y � C � CE(~n)) = �r~zP (~z;Y )
= � (r~zE[~z]�r~zY ) ;

where r~z denotes the gradient with respect to the subscripted vector. Hence,

r~zY � (1� �)r~zC = (1� �)r~zCE(~n) + �r~zE[~z]:

In the case � = 0; we have

r~z (Y � C) = r~zCE(~n);

and the client will maximize Y �C(~z) = CE(~n) by choosing ~z = ẑ: On the other
hand, if � = 1;

r~z (Y � C) = r~zE[~z]�r~zC;
and the client will maximize Y �C(~z) =E[~z]�C(~z) by choosing ~z = zFB : More
generally, the greater the value of �; the greater the optimal value of E[~z]�C(~z)
and therefore the greater the total surplus. Thus, if the client chooses the output
vector z before the insurer can commit to a payment schedule, bargaining power
matters not only to the division of the surplus but to the size of the surplus. It is
straightforward to show, however, that an increase in � cannot make the insurer
better o¤, so that the bargaining solution is always constrained-Pareto-e¢ cient.

7.3 Bargaining solution with asymmetric information

In the asymmetric information case, the agreement point is one in which the
output ~z is produced and the insurer o¤ers an incentive compatible payment
schedule y receiving pro�t

P (~z;N) = E[~z]� E[y(z;N)];
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where N is the client�s certainty-equivalent net income

N = u�1(W (y�C(z))):

Suppose that the client�s preferences display constant absolute risk aversion.
Then

@P (~z;N)

@N
= 1:

Thus, the bargaining problem is to choose N to maximize:

V̂ = (N�CE(~n))� P (~z;N)1��;

which, assuming constant absolute risk aversion, yields the solution condition

(N�CE(~n))
P (~z;u)

=
�

(1� �) :

Totally di¤erentiating with respect to ~z and rearranging yields

(1� �)r~z (N � CE(~n)) = �r~z
@P (~z;u)

@~z
= �r~z (E[~z]� E[y(z)]) :

In the case � = 0; we have

r~z (N � CE(~n)) = 0;

and the client will maximize N by choosing ~z = ẑ: On the other hand, if � =
1;the client will maximize N by choosing ~z = zTB : Thus, once again, the greater
the client�s bargaining power, the greater the total surplus.
In the model of socially costly exploitation analyzed by Chambers and Quig-

gin (2000), the presence of asymmetric information makes the agent (a tenant
farmer) better o¤, by reducing the return to e¤orts by the principal (a landlord)
aimed at reducing the tenant�s reservation utility. By contrast, in the present
case, asymmetric information never improves the welfare of either party, and
makes both the insurer and the client strictly worse o¤ whenever 0 < � < 1:
The results of the section above may be summarized by

Proposition 7 In the presence of asymmetric bargaining, an increase in the
client�s bargaining power increases the client�s welfare, reduces the insurer�s
welfare and increases total social surplus.

8 Concluding comments

This paper has explored the contracting behavior of clients and insurers under
conditions of asymmetric information and di¤erential bargaining power. The
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main focus of attention has been the interaction between di¤erential bargain-
ing power and two potential sources of departure from the �rst-best. The �rst,
which is applicable to a wide variety of contracting situations, is that clients
anticipating the need to deal with a insurer with monopoly power (or, more gen-
erally, with substantial bargaining power) will undertake costly self-protection
to improve the outside option that will form the basis of subsequent bargain-
ing. The second is the problem of moral hazard, in which the client has private
information about the state of nature.
The crucial result is that di¤erential bargaining power will a¤ect not only

the distribution of surplus but the total surplus generated. When the client
has private information, an increase in the bargaining power of the insurer will
reduce total surplus.
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