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An Information Approach to the Dynamics in
Farm Income: Implications for Farmland

Markets

Matthew J. Salois University of Reading and Charles B. Moss University of
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Abstract

The valuation of farmland is a perennial issue for agricultural policy. This study develops

an informational measure of the dynamic information measure to examine the informa-

tional content of income to farmland in explaining the distribution of farmland values.
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Introduction

The topic of real estate bubbles has gained prominence amidst the recent housing market

crash and financial crisis. The related issue of bubbles in the rural land market is equally

important given that farmland is the most important asset in the farm business and in the

farm household investment portfolio. Volatility in farmland values generates potential eco-

nomic hardship, especially for communities dependent upon agriculture for economic se-

curity (Power and Turvey 2010). Yet the valuation of farmland is not well understood and

remains a problematic exercise (Goodwin, Mishra, and OrtaloMagne 2003).

The dynamics of farmland pricing are only partially explained by market fundamentals in

the long-run, with the relationship breaking down in the short-run. As indicated in Schmitz

(1995) farmland values appear to be in long-run equilibrium, but there is significant corre-

lation in the short-run errors. In other words, farmland markets appear to be efficient in the

long-run, but are not weakly efficient1 in the short-run. Predicting farmland markets is thus
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important not only to the rural community but also for formulating policy responses during

economic turmoil.

Decomposing the information content of asset values is key to understanding the dynam-

ics of farmland prices. Measuring the informational content of asset values originates with

the work of Theil and Leenders (1965) and Fama (1965), who calculate the informational

content of stock market prices using an information measure based on the entropy mea-

sure of Shannon (1948). Since then, use of entropy to forecast financial market volumes

has become a valuable exercise (Molgedey and Ebeling 2000; Maasoumi and Racine 2002;

Robertson, Tallman, and Whiteman 2005; Bentes, Menezes, and D.A. 2008; de Souza,

Moyano, and Querios 2008). We depart from the standard analysis in this paper to exam-

ine the informational content of changes in relative asset values and allow for a regional

decomposition of the information measure.

In particular, we are interested in the dynamic information content in farm returns and

we extend the information measure in Moss, Mishra, and Erickson (2007) to incorporate

persistence into the entropy measure. Specifically, we let the signal in the previous year’s

information measure decay as the number of lags increases. This allows us to obtain a mea-

sure of the loss of information over time. This loss of information can also be interpreted

as the additional entropy between time periods. Thus the larger this measure is, the greater

the dispersion in information between the two sets of information measures.

In the boom-bust cycle debate, one issue is the amount of new information contained

in each year’s income. Similar to the variance bounds formulations (Shiller 1981, 2003;

Campbell and Shiller 1981), if changes in farmland values are determined solely by changes

in income then the information in the changes in farmland values cannot exceed the amount

of information contained in changes in income. The concept is similar to the variance

bounds concept in that given that asset values are derived from income, the variance in

income places a bound on the variance in asset values.

2



Information Theory and Economics

Information theory, originating with Shannon (1948), brought a technical and precise def-

inition of information to the field of statistics. The technical notion of information states

that outcomes conflicting with prior expectations should be given more weight than out-

comes conforming to prior expectations. Shannon popularized the notion of entropy as the

expected information from a distribution, and developed a quantified measure of informa-

tion. The optimal measure of the amount of information, as developed by Shannon, is the

entropy of an outcome or an event (or a signal in Shannon terminology) and is expressed

as

(1) J =−
N

∑
i=1

pi ln(pi)

where J is the measure of entropy and pi is the probability that a given event or signal will

occur. As pi→ 1 then ln(pi)→ 0, meaning a signal that is almost certain to occur contains

no information. The weighted average of each signal that could be received is the total

amount of information in the signal. Entropy was proposed by Shannon as a way of mea-

suring the information contained in a message that causes a change in prior expectations or

probabilities. More generally, entropy measures the uncertainty or volatility of a random

variable or distribution Maasoumi (1993). Shannon named the measure entropy because

of the similarity with the concept of thermodynamics entropy Soofi (2000). Theil (1967)

brought the concepts of information theory and entropy to economics, extending the use of

information measures to a wide-range of applications2. Golan (2006) offers an excellent

introduction to entropy measures and uses in econometrics.

Kullback and Liebler (1951) generalize the Shannon-entropy and develop a relative en-

tropy, or cross-entropy, metric that measures how two distributions differ from each other.

Specifically, the cross-entropy metric measures the discrepancy or inequality between two

distributions, thus often being referred to as a measure of information inequality. The
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Kullback-Leibler function is also interpreted as a measures of the difference of informa-

tion content between distributions. Many generalizations of Shannon entropy exist, but the

Kullback-Leibler function provides a meaningful information quantity that serves as the

basis of the empirical application in this paper (Soofi and Retzer 2002).

The Kullback-Leibler cross-entropy metric is basically a measure of unpredictability or

uncertainty, measuring the divergence between two densities. Given N mutually exclusive

events E = {E1, . . . ,EN}, each event has an associated probability of occurrence. The prior

probabilities, xi, are the probabilities of an event occurring before a message is received

and the posterior probabilities, yi, are the updated, or conditional, probabilities given the

information content of the message. Formally stated then, the cross-entropy metric mea-

sures the unpredictability of an event Ei given the event’s prior and posterior probabilities

of occurrence.

The value of the information contained in the message is proportional to the inequality

between the prior and posterior distributions since a greater discrepancy implies a more

unexpected event. For example, if event E1 has a prior probability of 0.95 and a message

is received resulting in an updated posterior probability of 0.05, then the message is infor-

mative since the probability of the event occurring went from high to low. However if the

message results in an updated posterior probability of 0.94, then the message is uninfor-

mative (or at least no new information) since the probabilities remain mostly unchanged.

This is similar to answering the question "what is the information gain between x and y" or

"what is the distance or divergence between x and y."

The cross-entropy metric, I (y : x), is written as the logarithmic measure of the discrep-

ancy or inequality between the prior and posterior probability distributions

(2) I (y : x) =
N

∑
i=1

yi ln
(

yi

xi

)
≥ 0.
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The cross-entropy, I (y : x), is a measure of the gain or loss in information as a result of

the change from the prior probabilities to the posterior probabilities. When the logarithm

in Equation 2 has 2 as a base, information is measured in binary digits, or bits. Often

the natural log is used, in which case information is measured in nits, where 1 nit is equal

to 1.443 bits. Given that the logarithm is a concave function, I (y : x) is always positive,

meaning the value of the information in the message is always positive. The cross-entropy

measure is also a monotonic function since the greater the information in the signal the

larger the value of the inequality. The more valuable the information in the message the

greater the discrepancy, or information inequality, between the prior and the posterior. If

I (y : x) = 0, then no discrepancy exists between the prior and the posterior and so the

message contains no information. If I (y : x)→ ∞, then the discrepancy is so large that the

information is infinitely valuable or that the receiver of the message is "infinitely" surprised

by the information contained within that message Theil (1967).

The cross-entropy measure has useful aggregation properties that allow decomposition of

the total entropy into a between-group information measure and a within-group information

measure. Suppose that N mutually exclusive events E = {E1, . . . ,EN} can be aggregated

into G≤N sets of events, S = {S1, . . . ,SG} so that each Ei belongs to exactly one Sg, where

g = 1, . . . ,G. The prior and posterior probabilities can be aggregated so that

(3) Xg = ∑
i∈sg

xi

(4) Yg = ∑
i∈sg

yi,

which are the sum of the prior and posterior probabilities, respectively, of the events in set

Sg.
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The cross-entropy measure I (y : x) in Equation 2 can be applied to each group Sg. The

within-group cross-entropy, Ig, is

(5) Ig (y : x) = ∑
i∈Sg

yi

Yg
ln

 yi
Yg
xi
Xg

 .

The between-group cross-entropy, I0, is

(6) I0 (y : x) =
G

∑
g=1

Yg ln
(

Yg

Xg

)
.

The total cross-entropy is equal to the sum of the average within-group cross-entropy,

∑gYgIg, and the between-group cross-entropy, I0 (y : x),

(7) I (y : x) = I0 (y : x)+
G

∑
g=1

YgIg (y : x)

The between-group metric measures the information inequality across groups, whilst the

within-group metric measures information inequality across events of set Sg. The average

within-group inequality, given by Ī =∑YgIg, is a weighted average of the individual within-

group inequalities.

Note that no implications about the content of the message are provided by the cross-

entropy measure. The interpretation of the cross-entropy metric as a measure of informa-

tion depends on the prior and posterior probability distributions involved as well as the

context of the problem under consideration Soofi (1994). The terms xi, yi, Xi, and Yi can

be given an interpretation other than probabilities as long as they satisfy the properties of

probabilities; non-negativity and summing up to unity. For example, consider the states

of the United States and define xi as state i population divided by total U.S. population

and then define yi as per capita income of state i divided by total U.S. per capita income.

The terms xi and yi now have the interpretation of shares, which satisfy the properties of
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probabilities. Moreover, the cross-entropy metric in Equation 2 has the interpretation of

a state income-inequality measure. The income-inequality measure takes on positive val-

ues when per-capita incomes among the states differ and reduces to zero in the instance

of no income-inequality. The aggregate decomposition in Equation 3 through Equation 7

can be used to define regions of the U.S. and compare between-region and within-region

income-inequality.

Entropy Model and Data

The starting point is a typical farmland pricing formula based on the net present value

framework for land price determinantion with rational expectations. Specifically, the model

explains the value of land based on changes in asset valuation over time using the differen-

tial model of farmland values proposed by Schmitz (1995)

(8) ∆Vt =−
E [CFt |Ωt−1](

1+ r j
) +

rtVt

(1+ rt)
+

∞

∑
i=1

E [CFt+i|Ωt ]−E [CFt+i|Ωt−1]
i

∏
j=0

(
1+ rt+ j

)
where Vt is the farmland value per acre at time t, ∆Vt = Vt −Vt−1 is the difference in

farmland values, E [CFt |Ωt−1] is the expected value of cash flows to farmland (typically

Ricardian rent (Ricardo 1996)) given the information available at time t−1 (where the in-

formation set is denoted Ωt−1 , and rt is the effective discount rate (or opportunity cost of

capital) at time t. Schmitz assumed that

(9) γt =
∞

∑
i=1

E [CFt+i|Ωt ]−E [CFt+i|Ωt−1]
i

∏
j=0

(
1+ rt+ j

)
where γt becomes white noise, meaning no information remains in the residual term. How-

ever, Schmitz rejects the hypothesis that the residuals are white noise using a Ljung-Box
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test. Thus, while farmland appears to be appropriately priced in the long-run, the series

contains significant information which could support the notion of rational bubbles.

To measure the persistence in farm returns, this paper proposes an extension of the in-

formation measure used by Moss, Mishra, and Erickson (2007). Specifically, we let pit

be the share of farm revenues this year and pi,t−1 be the share of farm revenues last year.

Therefore, a measure of the new information I1t in γt from Equations 8 and 9 is

(10) I1t =
n

∑
i=1

pit ln
(

pit

pi,t−1

)
This information inequality measures the relative persistence in the spatial value of land

prices.

Next, we consider the decay of the information in the signal by computing the informa-

tion in the second lagged shares pi,t−2 denoted I2t defined as

(11) I2t =
n

∑
i=1

pit ln
(

pit

pi,t−2

)
Taking the difference between Equations 11 and 10 yields a metric of the loss of informa-

tion (additional entropy between data points)

(12)
∆21It =

n

∑
i=1

pit [ln(pit)− ln(pi,t−2)− ln(pi,t)+ ln(pi,t−1)]

=
n

∑
i=1

pit ln
(

pi,t−1

pi,t−2

)
The larger the number, the greater the dispersion in information between the two informa-

tion sets. If the value is positive, there is an information loss, meaning the first information

lag is less than the second information lag so the information in the measure is increasing.

Equations 10, 11, and 12 can be similarly derived for the total value of farmland as well
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as a cross-inequality between total land values and net value added (where net value added

is the prior probability and total land value is the posterior).

The data are publicationed by the National Agriculture Statistics Service (NASS) of

the U.S. Department of Agriculture for 1950 through 2008. Farm real estate values are

obtained from the Agricultural Land Values and Cash Rents publication. Land in farms

are obtained from the Farms, Land in Farms, and Livestock publication. Farm real estate

values are defined as the per acre dollar value of all land and buildings used for agricultural

production. Land in farms is defined as the total acres of farmland, in thousands of acres,

for each state. The total value of farm real estate is computed by multiplying the per acre

dollar real estate value by the total number of acres of farmland for each state. Net value

added is used in place of the more traditional net farm income for describing farm revenues.

Net value added (NVA) includes the net returns to all equity and non-equity holders and

thus represents the contribution of agriculture to the overall economic activity of the United

States.

Results

The results for the information change across time periods are presented in Table 1 for

the ten Economic Research Regions 3. The results in this table indicate whether income

(net value added) contains dynamic information. At the mean and median there is little

change in the information set for value added. In other words, the dynamic probability

doesn’t change the prediction very much. Moreover, many of the information measures

are negative, indicating that first lag may contain more noise than the second lag. Thus,

even if the mean and median are positive, if the first quantile (Q1) is negative, the most

recent information may simply add noise. This oscillation is somewhat consistent with the

dynamic adjustment found by Burt (1986).

A typical result for the information measure reported in Table 1 is that the change in

information is initially negative becoming positive in the second difference. Typically, the
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change in information becomes increasingly positive for the remaining two differences. For

example, the mean and median ∆21It are both negative for the Corn Belt (-0.09 and -0.10

respectively) while the mean and median ∆31It are positive (0.07 and 0.15 respectively).

This may be the result of optimizing behavior at the farm level. Specifically, higher profits

resulting from exogenous factors such as weather or demand shocks may result in increased

plantings that reduce the relative profitability in the intermediate run. Alternatively, the loss

of information may simply be the result of uncertainty caused by short-run noise. In almost

all cases, the first quantile remains negative, indicating that at least 25 percent of the time

the new information does not reduce the information metric. Further, the first quartile is

only negative for ∆21It in the Corn Belt. Thus, the newer information on farmland values

is informative at least 75 percent of the time.

The results for the information change across time periods based on total farmland val-

ues are presented in Table 2. The results in this table examine the value of the dynamic

information in land values. Looking at the change in the relative asset values yields some

significant changes in the information set. For example, the median for the Northeast in-

creases from 0.07 to 0.16 to 0.40, so there are significant changes in the information mea-

sure. More recent values contain more information than lagged values. The consistency

of this result across regions and lags indicates that more recent information always yields

more information in regards to the total value of farmland.

Given that the information measures are greater than zero for the median and mean

throughout Table 2, the question is whether the information measures are increasing or

decreasing over time. In all cases, ∆ j1I > ∆21I for each region. Hence, the information

in the sample declines over time, or information loss occurs in farmland values. The next

question is whether this information loss is is occurring at an increasing or decreasing

rate. To measure this concept we adopt the measure of logarithmic concavity proposed by

Hansen (1988). Specifically, a positive measure is logarithmically concave if
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(13) a2
n ≥ an+1an−1 , n = 1,2, · · ·

and logarithmically convex if

(14) a2
n ≤ an+1an−1 , n = 1,2, · · · .

To apply this concept to the information measures, we compute

(15)
t1 = (∆31I)2−∆21I∆41I

t2 = (∆41I)2−∆31I∆51I.

If t1, t2≥ 0 then the information measure is concave while if t1, t2≤ 0 the measure is convex.

Applying these rules to the median and mean information in Table 2 we see that the median

of the information measure is concave in the Corn Belt, Appalachia, and the Southeast

regions, and the mean of the information measure is concave in the Northeast, Corn Belt,

Appalachia, Southeast, and Delta States. Further, niether measure is convex any any region.

Hence, the information loss is increasing at an increasing rate.

Table 3 gives the difference in information on current land values based on changes

in lagged returns. Results presented here look at the dynamic information in net value

added in predicting land values. Thus, the results indicate how the predictive value of

returns in the explanation of current land values changes over time. The results for this

metric is fairly diverse across regions. For example, the mean information is consistently

positive for the Northeast, Southeast and Southern Plains regions implying that more recent

information on returns is informative in explaining farmland values on average. In addition,

the median is consistently positive for the Northeast region. However, the first quartile for

each distribution is consistently negative. Alternatively, the mean and median information

metric for the Northern Plains, Appalachia, Mountain States, and Pacific States are always
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negative. Building on Equation 15, the information measure is concave for both the mean

and median in the Northeast region.

Conclusions

This paper examines the change in information in net value added to farmland and farm-

land values over time and the relationship between the two. The results indicate that new

information increases the entropy in the short-run, but reduces the entropy in the signal in

the intermediate run. This loss in short-run information may be the result of random shocks

which do not persist or even producer response to market changes. This result is consistent

with the findings of Burt (1986). However, changes in the information are consistently pos-

itive (even at the first quantile) for farmland values. Hence, more recent data on farmland

values is relatively more informative than recent data on net value added.

The results for the information in farmland values over time are fairly uniform. The

minimum and first quartile of the information measures are negative while the median,

third quartile, maximum, and mean are generally positive. In addition, most are increasing,

though by varying magnitudes. This result may contain information about the differen-

tial value of information by region. For example the Mountain states have a very high

maximum value which is much larger than the other regions. The mean and median in-

formation for the Northeast and Southeast are consistently positive. However, the same

values are consistently negative for the Northern Plains, Appalachia, Mountain States, and

Pacific States. This result is consistent with the findings of Schmitz (1995) in that short-run

variations in net value added (or net returns to farmland) may contain significant noise.

The results are less consistent for the lagged information of returns in predicting farm-

land values. For example, while the means and medians are negative many regions, they

are positive for Northeast, Southeast, and Southern Plains. The maximum values are also

quite a bit higher than for the information contianed in lagged farmland values, moreover

the range in general is wider. Returning to the possibility of excess volatility, the data sup-
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ports the contention that the variation in farmland values is smaller than the variation in

net value added. Thus, farmland prices may be more consistent with variance bounds than

common stocks under the formulation of Shiller (1981).
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Notes

1Copeland and Weston (1988, p.332) defines a weakly efficient market (or a weak-form

efficiency) as the case where investors cannot earn excess returns by trading rules based

on historical prices and return information. Ingersoll (1987, pp. 229-230) gives a similar

definition based on random walks.

2Davis (1941) is credited with introducing information theory to the econometrics lit-

erature while Theil (1967) popularized the use of information theory. See Maasoumi and

Racine (2002) for a discussion.

3In this study we use the traditional regions with the Northeastern states include Con-

necticut, Delaware, Maine, Maryland, Massachusetts, New Jersey, New York, Pennsyl-

vania, Rhode Island, and Vermont, Lake States are Michigan, Minnesota, Wisconsin, the

Corn Belt region includes Illinois, Indiana, Iowa, Missouri, and Ohio, the Appalachian re-

gion includes Kentucky, North Carolina, Tennesse, Virginia, and West Virginia, the South-

east states are Alabama, Florida, Georgia, and South Carolina, Delta States are Arkansas,

Louisiana, and Mississippi, the Southern Plains states are Oklahoma and Texas, the Moun-

tain region includes Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, and

Wyoming, and the Pacific states are California, Oregon, and Washington.
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Table 1. Dynamic Information Inequality in Value Added

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Northeast Lake States

Min -3.92 -4.89 -3.67 -4.53 -1.98 -5.47 -5.79 -5.62

Q1 -0.31 -0.15 -0.04 0.05 -0.30 -0.40 -0.28 -0.19

Median 0.04 0.14 0.47 0.50 0.02 -0.01 0.00 0.17

Q3 0.69 0.76 1.00 0.95 0.36 0.52 0.59 0.57

Max 2.97 2.83 4.38 5.26 5.58 5.51 2.31 4.49

Mean 0.18 0.24 0.54 0.63 0.12 0.16 0.03 0.20

Std. Dev. 1.08 1.15 1.16 1.34 1.10 1.45 1.13 1.33

Corn Belt Northern Plains

Min -4.57 -3.06 -2.90 -2.66 -11.23 -3.85 -5.98 -5.33

Q1 -0.96 -0.32 -0.42 -0.22 -0.65 -0.21 -0.23 -0.17

Median -0.10 0.07 0.19 0.13 -0.16 0.11 0.32 0.29

Q3 0.33 0.50 0.60 0.67 0.37 0.65 0.97 1.44

Max 3.06 3.12 3.18 3.09 5.71 7.18 12.10 7.51

Mean -0.09 0.15 0.15 0.22 -0.15 0.43 0.62 0.58

Std. Dev. 1.21 1.05 1.02 1.06 2.48 1.80 3.01 1.92

Continued on next page
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Table 1 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Appalachia Southeast

Min -1.79 -1.15 -1.36 -0.96 -4.41 -4.78 -4.47 -4.75

Q1 -0.29 -0.04 -0.06 -0.01 -0.44 -0.29 -0.22 -0.09

Median -0.08 0.19 0.36 0.40 -0.13 0.12 0.24 0.35

Q3 0.20 0.67 1.06 1.19 0.10 0.62 1.08 0.78

Max 1.30 2.07 3.33 4.17 4.82 2.86 3.95 4.53

Mean -0.06 0.27 0.53 0.70 -0.11 0.10 0.45 0.45

Std. Dev. 0.58 0.63 0.97 1.07 1.17 1.09 1.37 1.29

Delta States Southern Plains

Min -3.05 -2.63 -1.88 -1.73 -1.42 -1.59 -1.33 -1.08

Q1 -0.43 -0.31 -0.09 -0.32 -0.22 -0.19 -0.15 -0.12

Median -0.05 0.02 0.04 0.09 -0.01 0.00 0.03 0.05

Q3 0.08 0.47 0.19 0.46 0.12 0.27 0.30 0.42

Max 2.74 2.91 3.01 3.66 1.36 2.12 1.87 1.82

Mean -0.16 0.04 0.09 0.16 -0.02 0.09 0.09 0.16

Std. Dev. 0.83 0.98 0.81 0.92 0.50 0.66 0.61 0.60

Continued on next page
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Table 1 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Mountain Pacific States

Min -9.18 -8.83 -9.46 -9.67 -0.59 -0.40 -0.21 -0.36

Q1 -0.95 0.05 -0.12 0.04 -0.14 -0.10 -0.07 -0.06

Median -0.14 0.44 0.41 0.52 -0.03 0.01 0.06 0.04

Q3 0.28 1.42 1.48 2.34 0.07 0.18 0.25 0.34

Max 8.36 5.93 7.77 9.45 0.37 0.69 0.82 1.22

Mean -0.41 0.81 1.01 1.19 -0.04 0.06 0.12 0.16

Std. Dev. 2.10 2.13 2.69 2.90 0.21 0.23 0.23 0.32

Regional Inequality Overall Inequality

Min -3.36 -2.39 -0.91 -2.08 -4.54 -2.76 -1.46 -2.17

Q1 -0.41 -0.12 -0.08 0.11 -0.88 0.04 0.05 0.24

Median -0.17 0.22 0.30 0.48 -0.19 0.40 0.59 0.89

Q3 0.04 0.49 0.63 1.06 0.20 0.94 0.99 1.58

Max 2.60 2.75 1.80 3.15 3.34 3.11 3.02 4.69

Mean -0.18 0.28 0.30 0.58 -0.26 0.49 0.60 0.96

Std. Dev. 0.87 0.89 0.63 0.93 1.18 1.10 0.92 1.14
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Table 2. Dynamic Information Inequality in Land Values

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Northeast Lake States

Min -0.06 -0.05 -0.09 -0.05 -0.16 -0.05 -0.03 -0.13

Q1 0.03 0.10 0.16 0.22 0.01 0.01 0.02 0.09

Median 0.07 0.16 0.23 0.40 0.04 0.09 0.16 0.16

Q3 0.14 0.35 0.53 0.93 0.13 0.18 0.29 0.45

Max 1.51 2.33 2.22 2.12 1.30 1.60 1.40 1.05

Mean 0.13 0.28 0.42 0.57 0.12 0.18 0.25 0.29

Std. Dev. 1.08 0.37 0.45 0.49 0.24 0.30 0.34 0.31

Corn Belt Northern Plains

Min -0.05 -0.09 -0.13 -0.12 -0.08 -0.11 -0.02 -0.02

Q1 0.01 0.02 0.04 0.02 0.00 0.01 0.02 0.04

Median 0.04 0.07 0.09 0.09 0.02 0.05 0.07 0.11

Q3 0.08 0.15 0.21 0.23 0.06 0.09 0.15 0.23

Max 0.87 0.82 0.73 0.61 0.28 0.51 0.62 0.87

Mean 0.08 0.11 0.15 0.13 0.04 0.08 0.12 0.15

Std. Dev. 0.14 0.16 0.18 0.16 0.06 0.12 0.14 0.16

Continued on next page
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Table 2 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Appalachia Southeast

Min -0.12 -0.02 -0.04 0.00 -0.32 -0.39 -0.33 -0.27

Q1 0.01 0.03 0.09 0.10 0.02 0.05 0.09 0.19

Median 0.04 0.07 0.13 0.19 0.06 0.11 0.22 0.30

Q3 0.07 0.14 0.24 0.30 0.14 0.35 0.46 0.70

Max 0.39 0.51 0.62 0.94 1.21 1.27 1.63 2.81

Mean 0.05 0.11 0.17 0.23 0.11 0.24 0.40 0.54

Std. Dev. 0.07 0.11 0.14 0.19 0.20 0.31 0.46 0.63

Delta States Southern Plains

Min -0.05 -0.08 -0.21 -0.34 -0.04 -0.08 -0.08 -0.08

Q1 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01

Median 0.03 0.04 0.07 0.09 0.01 0.02 0.03 0.05

Q3 0.07 0.12 0.16 0.20 0.04 0.07 0.11 0.15

Max 0.62 0.77 0.95 1.38 0.59 1.11 1.65 2.10

Mean 0.05 0.09 0.13 0.16 0.04 0.08 0.13 0.17

Std. Dev. 0.10 0.17 0.21 0.28 0.11 0.21 0.32 0.40

Continued on next page
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Table 2 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Mountain Pacific States

Min -1.94 -1.14 -1.01 -1.83 -0.03 -0.08 -0.06 -0.07

Q1 0.03 0.06 0.10 0.14 0.01 0.02 0.03 0.07

Median 0.06 0.15 0.19 0.39 0.04 0.08 0.16 0.22

Q3 0.09 0.37 0.58 0.76 0.11 0.32 0.48 0.53

Max 5.24 5.25 5.47 5.50 0.49 0.65 0.81 1.11

Mean 0.15 0.33 0.51 0.68 0.08 0.16 0.25 0.35

Std. Dev. 0.75 0.85 1.02 1.18 0.10 0.18 0.25 0.34

Regional Inequality Overall Inequality

Min -0.13 -0.12 -0.01 0.04 -0.30 -0.19 -0.03 -0.07

Q1 0.03 0.07 0.14 0.20 0.07 0.16 0.27 0.41

Median 0.05 0.13 0.19 0.30 0.11 0.24 0.40 0.57

Q3 0.13 0.26 0.46 0.61 0.19 0.54 0.83 1.03

Max 0.67 1.12 2.16 2.80 1.05 1.62 2.60 3.58

Mean 0.11 0.24 0.38 0.52 0.18 0.40 0.62 0.84

Std. Dev. 0.14 0.28 0.43 0.56 0.23 0.39 0.56 0.69

23



Table 3. Dynamic Information Cross Inequality Between Land Values and Valued

Added

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Northeast Lake States

Min -6.21 -6.77 -5.03 -4.94 -4.99 -4.97 -4.53 -4.99

Q1 -1.21 -1.00 -0.91 -1.10 -0.67 -0.70 -0.61 -0.96

Median 0.04 0.18 0.22 0.15 -0.06 -0.10 -0.12 -0.17

Q3 0.81 1.23 0.98 1.10 0.62 0.56 0.48 0.47

Max 4.96 4.07 5.48 5.53 4.55 4.58 4.01 5.28

Mean 0.01 0.04 0.12 0.16 -0.10 -0.15 -0.18 -0.21

Std. Dev. 1.92 1.94 1.90 2.30 1.63 1.50 1.55 1.70

Corn Belt Northern Plains

Min -3.48 -3.12 -2.65 -3.75 -5.84 -4.84 -9.24 -6.72

Q1 -1.22 -0.87 -0.74 -0.81 -0.98 -0.86 -0.95 -0.93

Median -0.07 0.00 0.00 -0.12 -0.03 -0.05 -0.09 -0.10

Q3 0.81 0.65 0.55 0.73 1.04 0.50 0.92 0.77

Max 3.00 3.77 2.25 2.67 9.80 9.48 9.51 9.24

Mean -0.03 -0.04 -0.02 -0.01 -0.06 -0.05 -0.09 -0.03

Std. Dev. 1.26 1.27 1.11 1.30 2.15 2.24 2.67 2.47

Continued on next page
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Table 3 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Appalachia Southeast

Min -5.93 -8.95 -12.79 -13.71 -7.96 -7.74 -7.11 -8.35

Q1 -1.50 -2.10 -2.70 -3.23 -0.64 -0.51 -0.62 -0.54

Median -0.18 -0.43 -0.51 -0.76 0.12 0.11 -0.03 -0.16

Q3 0.85 0.99 0.74 0.76 0.55 0.72 0.73 0.99

Max 9.56 9.67 13.34 16.24 7.44 6.35 5.76 7.45

Mean -0.33 -0.53 -0.69 -0.77 0.05 0.07 0.14 0.27

Std. Dev. 2.44 3.60 4.70 5.51 2.14 1.99 1.82 2.44

Delta States Southern Plains

Min -4.53 -4.75 -3.47 -4.57 -2.56 -2.44 -2.40 -0.98

Q1 -0.46 -0.59 -0.62 -0.51 -0.12 -0.15 -0.10 -0.11

Median -0.03 -0.08 -0.05 -0.15 0.00 0.00 0.01 0.02

Q3 0.30 0.35 0.36 0.31 0.19 0.16 0.20 0.24

Max 4.77 5.81 3.64 5.40 2.55 2.85 2.81 2.65

Mean -0.06 -0.08 -0.14 -0.15 0.02 0.04 0.05 0.09

Std. Dev. 1.16 1.40 1.05 1.21 0.60 0.66 0.64 0.54
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Table 3 – continued from previous page

Statistic ∆21I ∆31I ∆41I ∆51I ∆21I ∆31I ∆41I ∆51I

Mountain Pacific States

Min -12.42 -16.38 -19.80 -20.01 -1.42 -2.15 -2.39 -2.35

Q1 -1.31 -1.67 -2.57 -2.54 -0.27 -0.27 -0.33 -0.54

Median -0.20 -0.35 -0.19 0.13 -0.09 -0.06 -0.06 -0.06

Q3 0.57 0.82 1.45 1.09 0.18 0.15 0.15 0.25

Max 15.93 16.35 14.27 17.84 0.85 0.72 0.83 1.00

Mean -0.22 -0.42 -0.42 -0.31 -0.08 -0.11 -0.13 -0.13

Std. Dev. 3.33 4.12 4.55 4.87 0.43 0.47 0.54 0.64

Regional Inequality Overall Inequality

Min -4.21 -3.85 -3.30 -3.44 -5.50 -4.79 -4.43 -4.24

Q1 -0.57 -1.00 -0.80 -1.06 -0.85 -1.48 -1.26 -1.42

Median -0.17 -0.26 -0.13 0.02 -0.25 -0.26 0.01 -0.20

Q3 0.67 0.50 0.58 0.73 0.72 0.66 0.72 1.15

Max 3.69 4.34 3.51 3.66 4.39 4.13 4.95 4.65

Mean -0.11 -0.16 -0.18 -0.13 -0.18 -0.28 -0.31 -0.22

Std. Dev. 1.35 1.51 1.32 1.55 1.66 1.84 1.75 2.02
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