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Abstract

When estimating Loss Given Default (LGD) parameters using a workout
approach, i.e. discounting cash flows over the workout period, the problem
arises of how to take into account partial recoveries from incomplete work-
outs. The simplest approach would see LGD based on complete recovery
profiles only. Whilst simple, this approach may lead to data selection
bias, which may be at the basis of regulatory guidance requiring the as-
sessment of the relevance of incomplete workouts to LGD estimation. De-
spite its importance, few academic contributions have covered this topic.
We enhance this literature by developing a non-parametric estimator that
- under certain distributional assumptions on the recovery profiles - ag-
gregates complete and incomplete workout data to produce unbiased and
more efficient estimates of mean LGD than those obtained from the esti-
mator based on resolved cases only. Our estimator is appropriate in LGD
estimation for wholesale portfolios, where the exposure-weighted LGD es-
timators available in the literature would not be applicable under Basel
II regulatory guidance.
Keywords: Credit risk, bank loans, loss-given-default, LGD, incomplete
observations, mortality curves.
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Introduction

In its advanced internal rating based approach, the New Basel Accord (Basel
II) requires credit institutions to calculate their capital requirements using their
own estimates of Loss Given Default parameters (LGD). One of the most com-
mon approaches to estimating LGD is the workout approach. This is based
on the estimation of individual default recovery rates obtained as the sum of
discounted cash flows of recoveries over the length of the workout period. In-
formation contained in individual recovery rates is then aggregated to produce
LGD parameters that are assigned to individual facilities by means of paramet-
ric or non-parametric models based on facility and (or) borrower characteristics.

When using the workout approach, the problem arises of how to deal with par-
tial recovery profiles of unresolved defaults. These observations may relate to
either relatively recent defaults or older ones involved into particularly lengthy
bankruptcy proceedings. The simplest approach would see these cases excluded
from the estimation process altogether, with LGD based on complete recovery
profiles only. Whilst simple, results based on this approach may be affected
by data selection bias if unresolved cases contain information relevant to LGD
which is not captured by the recovery profiles of resolved defaults. Even in cases
where selection bias is not an issue, inclusion of partial workouts may still be
relevant if they contribute to reduce the error around the estimates. This may
be at the basis of some regulatory guidance (e.g. FSA guidance) requiring the
inclusion of incomplete workouts in the LGD estimation process.

In this paper we present a non parametric estimator that aggregates complete
and incomplete recovery profiles to produce unbiased estimates of LGD. Whilst
building on the mortality rate approach to recovery rate estimation in the pres-
ence of incomplete workouts (Dermine and Neto (2005), Bastos (2009)), the
method developed in this paper contributes to existing contributions in several
respects as outlined below.

Our first contribution is a default-weighted reformulation of the exposure-weighted
Kaplan-Meier estimator of ultimate recovery rates as presented in the literature.
Under suitable discounting of future cash flows,1 both formulations lead to the
same measure of ultimate recovery rate when applied at individual loan level.
Furthermore both formulations may lead to unbiased estimates; nevertheless
the default-weighted one is viewed as more appropriate to ensure compliance
with regulatory guidelines on LGD estimation for e.g. wholesale portfolios.

Incorporating incomplete workouts require a shift from “aggregate partial re-
coveries over time first and then across individuals” to “aggregate partial recov-
eries across individuals first and then over time”, which is the principle of both
methodologies. In the first case, ultimate recovery rates must be realisations

1For a suitable discounting in the multiplicative framework see Dermine and Neto (2005).
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of the same random variable, whereas in the second recovery profiles need to
be realisations of the same stochastic process. For instance, if the sample of
unresolved cases has a large concentration of ‘slow’ workouts, as opposed to a
larger concentration of ‘quick’ workouts in the sample of resolved cases, direct
incorporation of unresolved cases into the estimates would bias the results. We
draw attention to the consequences on the estimation output of not adequately
capturing drivers of the difference in recovery dynamics when aggregating re-
solved and unresolved cases.

Finally we derive sufficient conditions on the distribution of recoveries over
time for the estimator to lead to more precise LGD estimates than those based
on resolved cases only. Changing the order of aggregation allows for incorpo-
ration of unresolved defaults but does not necessarily increase the precision of
estimates. The efficiency gain with respect to the estimator based on resolved
cases depends on the serial correlation of partial recoveries: in the presence of
negative correlations (induced, for instance, by the fact that the ultimate LGD
is not expected to be higher than 100%), the estimator could be less efficient.
We determine a lower bound2 on serial correlation that preserves the efficiency
gain. The simplifying assumption of no serial correlation is widespread across
the literature on net present value; we show that under such an assumption the
proposed estimator is more efficient.

The paper is organized as follows. We review the existing literature and highlight
this paper’s contribution in section 1. In section 2 we introduce a statistical es-
timator of LGD based on both partial and complete recovery data and highlight
its statistical properties. In section 3 we characterise the possible scenarios that
arise when comparing the recovery dynamics of resolved and unresolved cases
and identify the situations where aggregation of data across the two groups
may improve LGD estimates. Section 4 concludes the paper by summarising
the main results and suggesting possible areas of future research.

1 Literature review

Since the advent of the Basel Capital Accord, the modelling of recovery rates has
received increasing interest by academics and practitioners. Various approaches
have been developed, some leveraging on the option-valuation framework - al-
ready used to model probability of default parameters - others relying on his-
torical data to derive estimates of LGD based on realised recovery rates. Whilst
the majority of contributions within this latter strand rely on the exclusive use
of resolved defaults data, a few have modelled LGD using both resolved and
unresolved defaults (see Dermine and Neto (2005), Bastos (2009) and Moody’s
LossCalc (2006)). Our paper contributes to this literature by presenting a model
for the estimation of LGD based on discounted recoveries of both resolved and

2Fuller and Kim (1980) derive the impact of serial correlation on the total variance of an
estimator of discounted cash flows.
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unresolved defaulted loans. Unresolved cases are incorporated by means of an
estimator based on Kaplan and Meier (1958) and its study of mortality rates.
It has been applied to estimate default rates (see Altman (2009) and Altman
and Suggitt (2008)) but only recently to the estimation of recovery rates (see
Dermine and Neto (2005), Bastos (2009)).

The Kaplan-Meier idea is as follows: marginal survival rates mi,u at a given
time u over the workout period are obtained as cash flows during period u nor-
malised by discounted outstanding exposure at the start of period u. Cumulative
recovery rates at a given point in time t are then derived as the complement of
the product of marginal recoveries, namely Mi,t = 1−

∏t
u=1(1−mi,u). Individ-

ual marginal recovery rates can then be aggregated regardless of whether they
relate to resolved defaults or unresolved ones. Bastos (2009) and Dermine and
Neto (2005) calculate average marginal recovery rates weighted by discounted
loan outstanding at each point in time t across all defaults in the sample (re-
solved and unresolved) to come up with an estimate of the recovery rate.

Aggregation of the mi,u to produce an mu can be achieved through default
or exposure-weighting. While a default-weighted aggregation does not coincide
with RR, an exposure-weighted aggregation matches an exposure-weighted re-
covery rate. The second question is about discounting cash flows. Once the
reference point moves from exposure at default to outstanding exposure, cash
flows need to be discounted back to the start (or end) of the period and not to
the time of default. Dermine and Neto (2005) provide an example under discrete
discounting; for our purpose we consider a case of continuous discounting.

We develop a time-additive estimator of recovery rates. Defining the partial
recovery rate at time u as the sum of cash flows over period u normalised by
the exposure at default, the cumulative recovery rate is then the sum of the
partial rates. At loan level this formulation coincides with the multiplicative
version of the estimator. The proposed additive formulation yields an unbiased
estimate, and is in fact a generalisation of the standard estimator which applies
to resolved cases only. Furthermore we establish a condition on correlation of
recoveries under which the estimator proposed is more efficient than the stan-
dard one.

The multiplicative version of Kaplan-Meier cannot be reconciled with the ad-
ditive workout LGD estimator. Our first goal is to propose a non parametric
default-weighted estimator of the recovery rate. The emphasis on default weight-
ing is deemed more appropriate for use in LGD estimation for wholesale port-
folios, where Basel II rules require benchmarking of LGDs to default-weighted
averages of recovery rates. A model based solely on resolved cases is only prefer-
able if the differences in dynamics do not imply differences in ultimate recoveries;
controlling for different recovery dynamics is important to both the accuracy
and precision of estimates. Our second goal is to provide a framework to assess
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whether the inclusion of partial recovery data comes at the cost of biased or
more volatile estimates.

2 An estimator of LGD based on both partial
and complete recovery data

Incorporation of incomplete recovery data into LGD estimation implies intro-
ducing a new dimension into the analysis, namely recovery dynamics. Whilst by
definition it is not possible to compare resolved and unresolved defaults on the
basis of the ultimate recovery (and hence ultimate LGD), all default observa-
tions exhibit a partial recovery history. In what follows, an estimator is derived
that will allow us to express recovery dynamics in terms of partial recovery at
a given time after default. This will allow us to break down recovery histories
into observation windows where they can be compared regardless of whether
they relate to a complete or incomplete workout. Such is the idea behind the
estimation of a mortality rate curve as outlined in Kaplan and Meier (1958).

For a given a facility i, we denote by Ci,t the cash flow associated to it at
time t ∈ {1, . . . , Ti} after default. Ti is the time up to which information on
recovery cash flows3 is available for facility i. Time is measured in discrete units
which can be as granular as allowed by the data, and without loss of generality
we will use annual intervals therein (what changes is what data you throw away
for unresolved cases). Let R be the subset of the population where the full
recovery history is observed. It follows that if i ∈ R then Ti is the year where
the last recovery cash flow is received (resolution year) and if i /∈ R then Ti
coincides with the year preceding the year of truncation. We further denote by
Oi,1 the amount of debt outstanding at default.4

For any loan i, let us denote with RRi the ultimate recovery rate, i.e. the
sum of discounted cash flows over the workout period

RRi =

Ti∑
t=1

RRi,t

where

RRi,t =
Ci,te

−rt

Oi,1

denotes the (discounted) recovery at time t as a fraction of outstanding at de-
fault and r denotes the annual interest rate.5

3This may be a positive cash flow or confirmation that no cash flow has been received in
the period.

4The amount outstanding at the start of period t Di,t is defined using discounted cash
flows. An example is provided in Dermine and Neto (2005).

5Recent NPV literature has focused on the discounting of cash flows under serially cor-
related -stochastic- discount rates and uncorrelated -stochastic- cash flows. By assuming a
constant interest rate we focus on the role of cash flows and their aggregation.
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We denote the population of loans existing in period 1 by P := P1. For a
given S ⊆ P we define St = {i ∈ S : t ≤ Ti} and TS = max{Ti : i ∈ S}.
For each i ∈ R -where R ⊆ P is the set of resolved loans- and t ≤ TR, RRi
is assumed to have mean ρ. In this case recovery information from resolved
defaults is sufficient to produce an unbiased sample estimate of ρ based on the
estimator

RRS =

∑
i∈S RRi

|S|

for every S ⊆ R. The standard estimator RR := RRR is an unbiased estimator
of ρ provided that E[RRi] = ρ.6 RRi can only be observed on the set of resolved
cases. By analogy with Kaplan and Meier (1958) we call it the reduced-sample
estimate.

Remark 1. Let ρt := E[RRi,t] for each observation i. Then
∑TP

t=1 ρt = ρ.

The observation is straightforward provided TP = TR := T is the observation
window length for all observations:

TP∑
t=1

ρt =

TP∑
t=1

E[RRi,t] = E

[
TP∑
t=1

RRi,t

]
= E[RRi] = ρ.

We aim to extend this estimator to allow inclusion of unresolved workouts. In
order to do so, let us introduce some notation. Let RRS,t =

∑
i∈St

RRi,t

|St| . We

define the enlarged-sample estimate of ρ by

R̃R :=

TS∑
t=1

RRS,t.

Proposition 2. The enlarged-sample estimator is an extension of the reduced-
sample one, that is R̃RS = RRS for any S ⊆ R. In particular they coincide on
the set R of resolved cases.

This result -proven in the appendix- relates the enlarged estimator to the reduced-
sample one. Instead, the multiplicative Kaplan-Meier estimator coincides with
an exposure-weighted average.

Proposition 3. For each i ∈ P let E[RRi,t] = ρt. The enlarged-sample esti-

mator R̃R is then an unbiased estimator of ρ.

The proof is straightforward and can be found in the appendix. We have thus
introduced the default-weighted statistic R̃R which under the given assumptions
is an unbiased estimator of the recovery rate. We now provide a sufficient

6This implies that drivers of ultimate LGD on resolved cases (e.g. industry, region, loan
type) are being controlled for.
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condition for it to be more efficient than RR, the average ultimate recovery rate
on resolved cases. Recall that the efficiency of an estimator θ̃ is defined by

e(θ̃) =
I−1θ
Vθ[θ̃]

where I−1θ = Eθ

[(
∂ log f(x,θ)

∂θ

)2]
is the Fisher information amount, where f(x, θ)

is the probability density of the random variable X.

It is plausible to assume that individual recovery profiles are independent, i.e.
Cov[RRi,s, RRj,t] = 0 for each 1 ≤ s ≤ t ≤ T if i 6= j. Serial correlation arises
as past recoveries are likely to determine future ones. We assume a constant
Cov[RRi,s, RRi,t] = σst across individuals which yields the following:

Proposition 4. e(R̃R) ≥ e(RR) if for each t ∈ {1, . . . , T} we have

t∑
u=1

{σuu + 2

T∑
s=u

σus} ≥ 0.

Notice that for t = T the condition becomes the expression for V [R̃R] which
is positive: adding a resolved observation to the sample always improves the
efficiency of the estimator. Notice also that the condition is sufficient but not
necessary: if for some t the inequality fails, the estimator might still be more
efficient depending on the completeness of the observations added. The more
data is provided per observation added, the less inequalities need to be met.

Different views may hold on what a suitable covariance structure would be.
On one hand, strong partial recoveries are indicative of a successful workout
with high recoveries; on the other hand, the exposure amount constitutes both
an objective and a cap to the overall recovery, hence inducing a negative corre-
lation among partial cash flows.

Different datasets might show different attributes. In the presence of serial
correlation -a realistic assumption- proposition 4 provides a test on the covari-
ance structure to determine which data increases the efficiency of the estimator.
Current literature on net present value takes into account forms of dependence
such as comonotonicity. Dhaene et al (2002 a, b) determine approximations
for the distribution of the sum of comonotonic random variables when the dis-
tribution of the partial contributions is known but not the overall dependence
structure.
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3 Partial and complete recovery data: when is
aggregation beneficial?

In this section we highlight the scenarios that arise when dealing with aggre-
gation of partial and complete recovery data. This is based on the comparison
between recovery dynamics of resolved and unresolved cases using the enlarged-
sample estimator.

3.1 Preparing the data for estimation

We organise the observations into a |P | × TP matrix with rows indicating the
individual loan and columns indicating the number of years spent in recovery.
For resolved cases, column entries coincide with actual (discounted) cash flows
of recoveries at the time in which these have occurred, and a zero cash flow entry
otherwise (including post-resolution years). One approach for unresolved cases
is the following where no cash flow is observed a zero entry is input for years in
recovery up to the last observation date (e.g. date at which the recovery profile
was last updated) and a missing value for remaining (yet not observed) years in
recovery.

Once recovery profiles are set, the enlarged-sample estimator R̃R can be ap-
plied to the data to obtain recovery rate profiles across groups of observations.

3.2 Analysing the recovery profiles

Figures 1 and 2 summarise possible dynamics of average partial recovery rates
for resolved and unresolved defaults (i.e. RRR,t and RRP\R,t) where t is number
of full years spent in recovery after default. We are interested in assessing
the statistical significance7 of the difference between these profiles and verify
whether the conditions of proposition 3 for direct application of estimator R̃R
are met.
Scenario 1 corresponds to the case of no statistical difference between average
resolved and unresolved recovery profiles. This is the case described by propo-
sition 3: direct aggregation of partial resolved and unresolved cases would be
beneficial as evidence supports the assumption that recoveries of resolved and
unresolved cases are random draws from the same distribution at each time t.

Scenario 2 illustrates the case where dynamics are significantly different for
some time t and different hypotheses can be made with regard to the unob-
served ultimate recovery rate of unresolved cases (once they resolve). These
may end up resulting in an average recovery rate which is higher than that of
resolved cases (case (a) in graph) or lower (case (c)) or about the same (case
(b)). In all these cases, direct aggregation of partial and complete workouts by

means of estimator R̃R would not be appropriate. Not only this would lead

7Statistical significance of the difference in means between RRR,t and RRP\R,t.
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Figure 1: Scenario 1

Figure 2: Scenario 2 cases a, b and c

to biased LGD estimates (upward or downward bias) but also to potentially
unstable estimates as new recovery information is added to the data.8

In the following section we illustrate how to come up with unbiased and where
possible more precise estimates of LGD by aggregating partial and complete
recovery data. The approach to aggregation depends on the characteristics of
the data and/or individual banks’ preferences between a structural, parametric
model versus a non parametric one. In what follows we will illustrate a non
parametric approach to aggregating information to produce a non parametric
model of LGD. For a comparison with alternative estimation approaches see
section 1.

8Instability depends on the composition of recovery profiles of new unresolved cases added
to the data.
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3.3 Aggregating different recovery dynamics

Case (b) in figure 2 is particularly interesting: here recovery dynamics between
resolved and unresolved cases differ but the enlarged-sample recovery rates are
close. The factors driving the differences in partial rates may be different from
those affecting ultimate rates, as differences in partial recovery rates may cancel
out over time. In this case, LGD estimates based on resolved cases only would
still be unbiased and justifiable on this basis. On the other hand, partial work-
outs information could be used to improve the precision of the estimator.

For simplicity, and without loss of generality, suppose there are only two dif-
ferent recovery dynamics. Let Y be a binary indicator variable available for all
defaults that fully explains differences in partial recovery rates at a given time
t. Let P 0 and P 1 be the set of defaults where Y = 0 and Y = 1 respectively.
The factor Y explains the different partial recovery rates for both resolved and
unresolved cases, i.e. E[RRPk,t] = ρk,t for each t ≤ TP and k ∈ {0, 1}. Suppose
now that the two groups exhibit different recovery dynamics but the same ulti-
mate recovery. This means for each t E[RRik,t] = ρk,t given ik ∈ P k are such
that

∑
t ρk,t = ρ for each k ∈ {0, 1}. Then

E[R̃R] = E

[
TP∑
t=1

RRP,t

]

=

TP∑
t=1

E[RRP,t]

=

TP∑
t=1

∑
i∈Pt

E[RRi,t]

|Pt|

=

TP∑
t=1

∑
i∈P 0

t
E[RRi,t] +

∑
i∈P 1

t
E[RRi,t]

|Pt|

=

TP∑
t=1

|P 0
t |ρ0,t + |P 1

t |ρ1,t
|Pt|

which is different from ρ unless
∑TP

t=1 ρ0,t =
∑TP

t=1 ρ1,t = ρ and |P 0
t | remains

constant over all t (which is in fact the case if P = R). However, in this case
an unbiased estimator of ρ is given by

αR̃RP 0 + (1− α)R̃RP 1

for any α ∈ [0, 1]. The estimator would still produce an unbiased estimate of
the recovery rate.

Identification of the factors driving the differences between recovery dynam-
ics may not be feasible, and even when possible the factors may not be easily
measurable.

9



If no evidence to support conjecture (b) can be found, using information from
resolved cases only would clearly lead to a biased LGD estimate. Whilst in
scenario (a) the bias would be prudent and hence potentially acceptable from a
regulatory point of view9, scenario (c) would suggest that using resolved cases
only would lead to non-conservative estimates of LGD and hence difficult to jus-
tify from a regulatory point of view. In both cases, using recovery information
from both resolved and unresolved cases may lead to improved LGD estimates
versus using resolved cases only.

Whether this result can be achieved depends on the extent to which the factors
driving the differences in dynamics between the two groups can be identified
with enough confidence and controlled for. Implementation of an LGD model
based on this approach would thus require that the drivers be measurable on
performing defaults as well.The estimation approach would in this case result in
a more granular LGD model, with different LGD assigned to facilities/borrowers
depending on the value of the variable Y .

4 Summary and conclusions

In this paper we have derived a statistical estimator that allows to incorporate
incomplete workouts into LGD estimates. The estimator proposed here is more
appropriate than exposure-weighted alternatives available in the literature for
use in LGD estimation for wholesale portfolios, where the rules emphasise the
need for benchmarking LGDs to default-weighted historical LGD rates. Both
formulations arise from the Kaplan-Meier idea originally developed to estimate
mortality rates in the presence of truncated samples. Under standard assump-
tions, the estimator leads to unbiased estimates of LGD. Efficient estimates are
obtained under more stringent assumptions on the degree of correlation among
cash flows recovered over the workout period.

‘Resolvedness’ is not an intrinsic feature of a given facility but a circumstantial
one. For that reason, any empirical similarity or difference between resolved
and unresolved cases must be decomposed into its drivers. If drivers can be
controlled for, the enlarged sample estimator produces unbiased -and poten-
tially more efficient estimates- of LGD parameters. Depending on whether such
variables are also the drivers of ultimate LGD estimates will coincide with ulti-
mate LGD estimates on resolved cases.

With regard to the efficiency property, model developers should consider that
inclusion of unresolved cases may in fact increase rather than reduce the error
around the estimates and as such may be considered not relevant to the estima-
tion process.

9Observed cumulative recovery rates of unresolved cases actually cross resolved ones in the
real data, implying estimates based on resolved cases only are conservative.
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Further theoretical work would include further analysis of the asymptotic prop-
erties of the estimator with respect to the choice of the observation window
(assumed to be annual in this paper). Also, in the multiplicative setting it is
possible to derive a formula for the variance of the estimator, given that marginal
recovery rates are independent. Further possible theoretical work could build
on a comonotonic sum of partial recoveries to calculate the theoretical variance
of the estimator proposed in this paper.

Appendix

Proof of proposition 2.

R̃RS =

TS∑
t=1

RRS,t

=

TS∑
t=1

∑
i∈St

RRi,t

|St|
.

For every i ∈ S, i ∈ R and so if t > Ti it follows Ci,t = 0. Thus St = S for every
t ≤ TS and so

R̃RS =

TS∑
t=1

∑
i∈S

RRi,t

|S|

=

∑
i∈S

TS∑
t=1

RRi,t

|S|

=

∑
i∈S

RRi

|S|
= RRS .

The multiplicative Kaplan-Meier estimator coincides with an exposure-weighted
average under discounted outstanding amounts. For that we define the dis-
counted outstanding Di,t defined recursively by Di,1 = Oi,1 and Di,t+1 =

11



erDi,t − Ci,t

MS = 1−
TS∏
t=1

(1−mi,t)

= 1−
TS∏
t=1

1−

∑
i∈St

Ci,te
−r

∑
i∈S

Di,t



= 1−
TS∏
t=1


∑
i∈St

Di,t − Ci,te−r∑
i∈S

Di,t



= 1−
TS∏
t=1


∑
i∈St

Di,t+1∑
i∈S

Oi,t


= 1−

e−rTS

∑
i∈S

Di,TS+1∑
i∈S

Di,1

using the fact that St ≡ S

Now Di,t+1 = erDi,t−Ci,t and so Di,t+1 = ertD1−
t∑

u=1

Cue
r(t−u), where Di,1 =

Oi,1. Hence we conclude that

MS =

∑
i∈S

TS∑
t=1

Ci,te
−rt

∑
i∈S

Oi,1

which is the exposure-weighted estimate of the recovery rate over the set S ⊆
R.

Applying the same calculations to an average mi,t instead of the exposure-
weighted mi,t would lead neither to a default nor an exposure-weighted recovery
rate.
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Proof of proposition 3.

E[R̃R] = E

[
TP∑
t=1

RRP,t

]

=

TP∑
t=1

E [RRP,t]

=

TP∑
t=1

∑
i∈Pt

E [RRi,t]

|Pt|

=

TP∑
t=1

∑
i∈Pt

ρt

|Pt|

=

TP∑
t=1

ρt
|Pt|
|Pt|

= ρ by observation 1.

Proof of proposition 4. Since E[R̃R] = E[RR], the Fisher information amount

is the same for both estimators and so it is sufficient to prove that V [R̃R] ≤
V [RR]. Under our assumptions on the covariance of partial recoveries, it can
be proven that

Cov[RRP,s, RRP,t] =

∑
i∈Pt

Cov[RRi,s, RRi,t]

|Ps||Pt|

which yields

V [R̃R] =

TP∑
t=1

σtt + 2
∑
s>u σus

|Pt|
.

In order to determine the impact of an additional observation, let us call xt :=
|Pt|. We then have

∂V

∂xt
=

t∑
u=1

−1

x2u

(
σuu + 2

TP∑
s=u

σus

)
(1)

=
−1

x21

(
σuu + 2

TP∑
s=u

σus

)
(2)

For equation (1) notice that adding an observation at time t also adds an ob-
servation at times prior to t, i.e. ∂xs/∂xt = 1 if s < t. Equation (2) follows
from assuming without loss of generality that xu = x1 for u ≤ t. From equation
(2) it follows that ∂V/∂xt ≤ 0 for every t if for all of them the inequality of
proposition 4 holds.
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