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ABSTRACT

We analyze linear models with a single endogenous regressor in the presence of many instrumental
variables. We weaken a key assumption typically made in this literature by allowing all the instruments
to have direct effects on the outcome. We consider restrictions on these direct effects that allow for
point identification of the effect of interest. The setup leads to new insights concerning the properties
of conventional estimators, novel identification strategies, and new estimators to exploit those strategies.
A key assumption underlying the main identification strategy is that the product of the direct effects
of the instruments on the outcome and the effects of the instruments on the endogenous regressor has
expectation zero.  We argue in the context of two specific examples with a group structure that this
assumption has substantive content.
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1 Introduction

A key condition underlying identification of the causal effect in instrumental variable models

is the assumption that the instruments only affect the outcome of interest through their

effect on the endogenous variable. However, in many empirical applications, there is a

concern that instruments may also affect the outcome directly. To address this concern, this

paper establishes conditions under which the effects of interest are identified in settings with

direct effects of instruments on the outcome. Following Kunitomo (1980), Morimune (1983),

Bekker (1994), Hahn (2002), Chamberlain and Imbens (2004), Chao and Swanson (2005),

Hansen, Hausman and Newey (2008), Chioda and Jansson (2009), Anderson, Kunitomo and

Matsushita (2010), and others, we focus on the case with many instruments where each

individual instrument is weak in the Staiger and Stock (1997) sense but collectively the

instruments have substantial predictive power.

In the absence of direct effects of the instruments the limited-information-maximum-

likelihood (liml) estimator is consistent (Bekker, 1994) and efficient (Chioda and Jansson,

2009; Anderson et al., 2010) under the Bekker many-instrument asymptotic sequence given

homoscedasticity. The two-stage-least-squares (tsls) estimator is inconsistent (Kunitomo,

1980; Bekker, 1994), but a bias-corrected version, known as the bias-corrected-two-stage-

least-squares (btsls) (Donald and Newey, 2001), estimator remains consistent. Another

consistent estimator in this setting is the jackknife-instrumental-variables-estimator (jive)

(Phillips and Hale, 1977; Angrist, Imbens and Krueger, 1999). Motivated by our leading

examples, and as in Anatolyev (2011), we also allow the number of exogenous covariates to

increase in proportion with the sample size. This requires some minor modification of the

btsls and jive estimators (denoted by mbtsls and mjive), but does not affect the consistency

of liml.

We examine the robustness of these five estimators (liml, btsls, jive, mbtsls, and mjive)

to the presence of direct effects in this many-instrument setting. We show that liml loses

consistency if direct effects are present. The intuition is that the liml estimator attempts to

impose proportionality of all the reduced form coefficients. This explains the efficiency of

liml in the absence of direct effects, but because the reduced form coefficients are no longer

proportional when direct effects are present, it makes liml sensitive to their presence. On the

other hand, under the assumption that the product of the direct effects of the instruments

on the outcome and the direct effects on the endogenous regressor has expectation zero,

the btsls and jive estimators (in the case with a fixed number of exogenous variables) or

their many-exogenous-variables modifications mbtsls and mjive (in general) remain consis-

[1]



tent. We argue through some examples and a link with the clustering literature that this

identifying assumption, although not innocuous, substantively weakens existing identifica-

tion conditions. The intuition for the robustness compared to liml is that the btsls, jive,

mbtsls, and mjive estimators, like the tsls estimator, can be thought of as two-stage estima-

tors. In the first stage a single instrument is constructed as a function of only instruments

and endogenous regressors, not involving the outcome variable. This constructed instrument

is then used in the second stage to estimate the parameter of interest using methods for

just-identified settings. Identification only requires validity of the constructed instrument,

not of all the individual instruments.

We then study in detail two leading cases that motivate the set up and illustrate the

range and applicability of our new identifying assumptions. Both cases have a clustering

structure where the instruments are related to the cluster indicators. Such settings are

often the reason for the presence of many instruments. The many-instrument asymptotic

approximation implies that, as is common in clustering settings, large sample approximations

are based on the number of clusters growing with the sample size while the number of sampled

units from each cluster remains fixed.

The first of the two special cases arises when the instruments are cluster indicators. For

example, Fryer (2011) and Levitt, List, Neckermann and Sadoff (2011) conducted a series

of experiments where students in randomly selected schools were given varying financial

incentives to improve achievement on test scores. Suppose we are interested in the effect

of test score achievement on outcomes later in life as in Chetty, Friedman, Hilger, Saez,

Schanzenbach and Yagan (2011). One could use the school indicators study as instruments

to capture the fact that the incentives varied between schools. However, one might be

concerned that schools also affect outcomes directly, not just through test scores. Our results

suggest that a sufficient, and, because of the randomization, substantially weaker condition

for identification is that the direct effects of the school on the outcomes are uncorrelated

with the effects of the school on test scores.

In another example within this class, Aizer and Doyle, Jr. (2011) and Nagin and Snod-

grass (2011) study the effect of incarceration on subsequent outcomes. Defendants are ran-

domly assigned to one of a relatively large number of judges. Judges vary in their propensity

to sentence individuals to jail terms. The judge assignment is used as an instrument. One

might be concerned that judges have direct effects on outcomes beyond those mediated

through the effect on incarceration. Our critical identification assumption is that these di-

rect effects of the judges are uncorrelated with the judges’ propensity to incarcerate. This is
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a substantive assumption that may or may not hold in practice, but shifts the discussion of

the validity of inference away from the substantially stronger assumption that judges have

no direct effect on outcomes whatsoever.

In the second case we have a small number of basic instruments. These basic instruments

are interacted with cluster indicators to generate a large number of instruments. Here the

number of exogenous regressors (which includes the cluster indicators) increases proportional

to the number of instruments. This case is motivated by the Angrist and Krueger (1991,

AK from hereon) study where the basic instruments, four quarter of birth indicators, are

interacted with year and state of birth indicators to generate additional instruments. In the

context of this set up our approach suggests new identification strategies that allow for direct

effects of the instruments on the outcome. In the first of these identification strategies, the

average direct effect of the instruments on the outcome is zero. In the second identification

strategy, the average direct effect (equal to the direct effect of the basic instrument) is

unrestricted, but the direct effects are uncorrelated with the effect of the instruments on the

endogenous regressor. Again these are not innocuous assumptions, but they substantively

weaken the assumption that all instruments are valid.

The results in this paper contribute to two strands of literature. First, we contribute

to the recent many-instrument literature that has extended the earlier work by Kunitomo

(1980), Morimune (1983), Bekker (1994), and Chao and Swanson (2005). In recent work

Anatolyev (2011) also relaxes the assumption of fixed number of exogenous regressors. Haus-

man, Newey, Woutersen, Chao and Swanson (2009); Chao, Swanson, Hausman, Newey and

Woutersen (2010) and Ackerberg and Devereux (2009) relax the assumption of homoscedas-

ticity. Hansen et al. (2008), Belloni, Chen, Chernozhukov and Hansen (2011) and Gautier

and Tsybakov (2011) allow the first stage to be estimated non-parametrically. This paper

takes a complementary approach: we relax the assumption of no direct effects, but keep the

rest of the model simple to maintain tractability.

Second, we contribute to the literature studying properties of instrumental variables

methods allowing for direct effects in settings with a fixed number of instruments. The

focus of this literature has been on correcting size distortions of tests, biases of estimators,

sensitivity analyses, and bounds in the presence of direct effects. Fisher (1961, 1966, 1967),

Caner (2007); Berkowitz, Caner and Fang (2008) and Guggenberger (2010) analyze the

implications of local (small) violations of exogeneity assumption. Hahn and Hausman (2005)

compare biases for different estimators in the presence of direct effects. Conley, Hansen and

Rossi (2007); Ashley (2009) and Kraay (2008) propose sensitivity analyses in the presence of
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possibly invalid instruments. Nevo and Rosen (2010) consider assumptions about the sign of

the direct effects of the instruments on the outcome to derive bounds on the parameters of

interest. Reinhold and Woutersen (2011) and Flores and Flores-Lagunes (2010) also derive

bounds allowing for direct effects of the instruments on the outcome. The current paper is

the first to derive (point) identification results in the presence of non-local departures from

the no-direct-effects assumption or exclusion restriction.

The rest of the paper is organized as follows. In Section 2 we introduce the set up and

the notation. In Section 3 we introduce the estimators. In Section 4 we present the main

formal results allowing for direct effects of the instruments. In Section 5 we discuss in detail

two leading cases with a clustering structure. We apply the methods developed in this paper

to the data analyzed by AK in Section 6. Section 7 concludes.

2 Set Up

We consider the following instrumental variables model:

Yi = Xiβ +W ′
iδ + Z ′iγ + εi.

Xi = Z ′iπ12 +W ′
iπ22 + νi.

(2.1)

The first equation relates a scalar outcome Yi, i = 1, . . . , N , to a potentially endogenous

scalar regressor Xi. Wi is a vector of exogenous regressors with dimension LN , and Zi is

a vector of instruments with dimension KN . The second equation relates the endogenous

regressor Xi to the exogenous regressors Wi the instruments Zi. The object of interest is the

coefficient β on the endogenous regressor in the outcome equation.

The model (2.1) modifies the conventional many-instruments model (e.g., Bekker (1994))

in two ways. First, we allow γ to be non-zero, thus allowing for direct effects of the instrument

on the outcome. If we restrict γ = 0, then the exclusion restriction holds, and the instruments

are valid. If we leave γ unrestricted, then β, the coefficient of interest, is not identified. In

this paper, we will be concerned with determining assumptions on γ that are weaker than

γ = 0, but that still allow us to identify β. Second, like Anatolyev (2011), we allow the

number of exogenous regressors, LN , to change with the sample size. The main motivation

for this extension is that often the presence of a large number of instruments is the result

of interacting a few basic instruments with many exogenous covariates. We discuss such an

example in detail in Section 5.2.

Because the number of instruments and the number of exogenous variables changes with
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the sample size, the distribution of some of the random variable also changes with the sample

size. To be precise, we should therefore index the random variables and parameters by the

sample size N . For ease of notation we drop this index.

We assume that the pairs of structural errors (εi, νi) are mutually independent, and

conditionally homoscedastic:

E

[(
εi

νi

)(
εi

νi

)′ ∣∣∣∣∣ Z1, . . . , ZN ,W1, . . . ,WN

]
= Σ

Recent papers by Chao et al. (2010) and Hausman et al. (2009) investigate the implications

of heteroscedasticity in the setting with many valid instruments, and show that liml loses

some of its attractive properties in that case. Our results complement theirs in the sense

that our results highlight a different potential concern with liml. To simplify the derivation

of distributional results, we will assume in addition that the structural errors Normally

distributed. We do not require Normality for consistency arguments.

In the remainder of this section we introduce some additional notation. Let Y be the

N -component vector with ith element Yi, X the N -component vector with ith element Xi,

ε the N -component vector with ith element εi, ν the N -component vector with ith element

νi, W the N ×LN matrix with ith row equal to W ′
i , and Z the N ×KN matrix with ith row

equal to Z ′i. Let X = (X,W) be the full matrix of endogenous and exogenous regressors,

let Y = (Y,X) be the full matrix of endogenous variables, and let Z = (Z,W) be the full

matrix of exogenous variables. Define for an arbitrary N × J matrix S the following four

N ×N matrices, the projection matrix PS, the matrix MS that projects on the orthogonal

complement of S, the diagonal matrix DS with diagonal elements equal to those of the

projection matrix, and the product of MS and (1−DS)−1:

PS = (S (S′S)
−1

S′, MS = I− (S (S′S)
−1

S′, DS = Diag(PS), and HS = MS(1−DS)−1.

We use the subscript ⊥ as shorthand for taking residuals after regression on the exogenous

regressors W, so Z⊥ = MWZ, X⊥ = MWX, Y⊥ = MWY, and Y⊥ = MWY. We also

denote by ιN and N -dimensional vector of ones.

Define the augmented concentration parameter, the two by two matrix ΛN :

ΛN =

(
ΛN,11 ΛN,12

ΛN,12 ΛN,22

)
=
(
γ π12

)′
Z′⊥Z⊥

(
γ π12

)
. (2.2)

The (2, 2) element of ΛN , denoted by ΛN,22 is a key measure of the strength of the instru-
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ments. The (1,1) element, ΛN,11, measures the degree of misspecification. In the case with

valid instruments, γ = 0, ΛN,11 = ΛN,12 = 0 and the only non-zero element of ΛN is ΛN,22.

The (2, 2) element ΛN,22 is closely related to the conventional concentration parameter (Mar-

iano, 1973; Rothenberg, 1984), defined as ΛN,22/Σ22. Here, following Andrews, Moreira and

Stock (2006), we use the version without dividing by the structural variance Σ22 because

that will simplify the discussion later.

3 Estimators

In this section we introduce the five estimators for β whose properties we shall study. All

five have asymptotically equivalent in the setting with a fixed number of valid instruments

and a fixed number of exogenous regressors. Four of these estimators have been introduced

previously, and the fifth is a minor modification of a previously proposed estimator. The

first three estimators fit into the k-class (Nagar, 1959; Theil, 1961, 1971; Davidson and

MacKinnon, 1993). Given a scalar k, a k-class estimator for (β, δ) is given by:(
β̂k

δ̂k

)
=
(
X
′
(I− kMZ)X

)−1 (
X
′
(I− kMZ)Y

)
.

We are primarily interested in the estimator for β, which can be written using the ⊥ notation

as

β̂k = (X′⊥(I− kMZ⊥)X⊥)
−1

(X′⊥(I− kMZ⊥)Y⊥) . (3.1)

A prominent member of the k-class is the two-stage-least-squares (tsls Basmann, 1957; Theil,

1961) estimator, with k̂tsls = 1. This estimator has been shown to be inconsistent under

many-instrument asymptotics, see Kunitomo (1980) and Bekker (1994). We therefore do not

further investigate its properties under the various generalizations of the many-instrument

setup here. Instead we consider a bias-corrected version of the tsls estimator. Nagar (1959)

suggested the correction k̂nagar = 1 + (KN − 2)/N, but the first of the five estimators we

focus on is a slightly different version suggested by Donald and Newey (2001), with

k̂btsls =
1

1− (KN − 2)/N
.

Although in samples with a moderate number of instruments the difference between the

Nagar and Donald-Newey estimators is small, this difference does not go away under many-
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instruments asymptotics with KN/N → αK > 0, and only the Donald-Newey version is

consistent. As we will show in the next section, once we allow LN to increase with sample

size, btsls also loses consistency. To address this issue, the second estimator we consider is a

further modification of the Donald-Newey bias-corrected estimator that achieves consistency

even when LN/N → αL > 0:

k̂mbtsls =
1− LN/N

1−KN/N − LN/N
.

This estimator is also considered in Anatolyev (2011).

The third estimator we consider is the limited-information-maximum-likelihood estimator

(liml, Anderson and Rubin, 1949), with

k̂liml = min
β

(Y −Xβ)′MW (Y −Xβ)

(Y −Xβ)′MZ (Y −Xβ)
.

This estimator has been shown to be asymptotically efficient under many-instrument asymp-

totics (Chioda and Jansson, 2009; Anderson et al., 2010).

The fourth estimator we study in the current paper is the jackknife-instrumental-variables

estimator (jive Phillips and Hale, 1977; Angrist et al., 1999):

β̂jive = (X′⊥ (MW −HZ)X⊥)
−1

(X′⊥ (MW −HZ)Y⊥) . (3.2)

Ackerberg and Devereux (2009) present simulation evidence that this estimator is biased

when the number of exogenous regressors is large, and suggest a bias-corrected version. We

study a new version of the jackknife estimator, closely related to the Ackerberg-Devereux

estimator, which we refer to as the modified jive estimator, or mjive:

β̂mjive = (X′⊥ (MW − (1− LN/N)HZ)X⊥)
−1

(X′⊥ (MW − (1− LN/N)HZ)Y⊥) . (3.3)

We will show that unlike the original jive estimator, this estimator remains consistent even

if LN/N → αL > 0.

The focus of the current paper is on the properties of these five estimators, that is,

β̂btsls, β̂mbtsls, β̂liml, β̂jive, and β̂mjive, under various assumptions about the rates at which the

number of instruments and exogenous regressors increase with the sample size, KN , LN , and

the assumptions about the parameters governing the misspecification, γ.
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4 Many Invalid Instruments

In this section we look at the properties of the five estimators allowing for many exogenous

covariates (LN/N → αL > 0), and allowing for direct effects of the instruments (γ 6= 0). If

we fix αL = 0 and γ = 0, we are in the many instrument case studied in the literature (e.g.

Bekker, 1994; Morimune, 1983; Hahn, 2002; Chao and Swanson, 2005). If we also restrict

αK = 0, we are back in the case with conventional instrumental variables asymptotics

discussed in most textbooks (e.g. Wooldridge, 2002; Angrist and Pischke, 2009).

We make the following assumptions.

Assumption 1.(Instruments and exogenous variables)

(i) Zi ∈ RKN , Wi ∈ RLN , εi ∈ R, νi ∈ R, for i = 1, . . . , N , N = 1, . . . are triangular arrays

of random variables with (Zi,Wi, εi, νi), i = 1, . . . , N exchangeable.

(ii) Z is full column rank with probability one.

(iii) (PZ)ii < c for some c < 1 for all i = 1, . . . , N with probability one.

(iv) maxi≤N |(Z⊥)′iπ12|/
√
N → 0 and;

(v) supN supi≥1

∑
j|(PZ⊥)ij| < C and supN supi≥1

∑
j|(PW)ij| < C for some C <∞ with

probability one

The first two parts of this assumption are standard, with a minor adaption to allow for many

exogenous variables. The remaining three parts are technical assumptions we use to deal

with the jive and mjive estimators.

Assumption 2.(Model)

(i) (εi, νi)
′ | Z,W are iid with mean zero, positive definite covariance matrix Σ, and finite

fourth moments;

(ii) The distribution of (εi, νi)
′ | Z,W is Normal.

For consistency we only use the first part of this assumption. For the distributional results we

use Normality to highlight the specific modifications to the asymptotic distributions coming

from the direct effects of the instruments.

Assumption 3.(Number of instruments and exogenous regressors)

For some 0 ≤ αK < 1 and 0 ≤ αL < 1,

KN/N = αK + o(N−1/2), and LN/N = αL + o(N−1/2).

The first part of this assumption is standard in the many-instrument literature. The second

part is identical to the corresponding assumption in Anatolyev (2011).
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Assumption 4.(Concentration parameter)

For some positive semi-definite Λ with Λ22 > 0,

ΛN/N
p→ Λ, and E [ΛN/N ]→ Λ.

The first part of assumption 4 is a natural extension of the assumption underlying the

Bekker many-instrument asymptotics. The second part of the assumption strengthens this

slightly by also requiring the expectation of the concentration parameter to converge to its

probability limit.

The first main result establishes the probability limit of the estimators.

Theorem 1.(Consistency with Many Invalid Instruments)

Suppose Assumptions 1(i)–(iii), 2(i), 3 and 4 hold. Then:

(i) (k-class) if k̂
p−→ k with k < 1−αL

1−αK−αL
+ Λ22

Σ22(1−αK−αL)
, then:

β̂k̂
p−→ βk = β +

Λ12 + (1− αL − (1− αK − αL)k)Σ12

Λ22 + (1− αL − (1− αK − αL)k)Σ22

,

(ii) (liml) Suppose min eig(Σ−1Λ) < Λ22/Σ22. Then:

βliml = β +
Λ12 −min eig(Σ−1Λ)Σ12

Λ22 −min eig(Σ−1Λ)Σ22

, kliml =
1− αL

1− αK − αL
+

min eig(Σ−1Λ)

1− αK − αL
,

(iii) (btsls)

βbtsls = β +
Λ12 + {αKαL/(1− αK)}Σ12

Λ22 + {αKαL/(1− αK)}Σ22

, kbtsls =
1

1− αK
,

(iv) (mbtsls)

βmbtsls = β +
Λ12

Λ22

, kmbtsls =
1− αL

1− αK − αL
,

(v) (jive) Suppose αL < Λ22/Σ22. Then:

βjive = β +
Λ12 − αLΣ21

Λ22 − αLΣ22

,
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(vi) (mjive)

βmjive = β +
Λ12

Λ22

,

If we impose Λ11 = 0 (implying Λ12 = 0) and αL = 0, the condition for consistency of β̂k̂
is the same as in Chao and Swanson (2005), namely that k̂ → 1/(1 − αK). Having many

exogenous regressors changes the condition on k̂ to k̂ → (1− αL)/(1− αK − αL).

A key finding is the robustness of the mbtsls and mjive estimators relative to the liml

estimator. Specifically, if Λ12 is equal to zero, then mbtsls and mjive are consistent even if

Λ11 differs from zero. If the number of exogenous variables is fixed, then btsls and jive are

also consistent if Λ12 = 0. In order for liml to be consistent for all values of Σ, then it has

to be the case that Λ11 is equal to zero (and that immediately implies that Λ12 = 0). To

provide some intuition, consider the reduced-form based on the model (2.1):

Yi = Z ′i(π12β + γ) +W ′
i (δ + π22β) + (νiβ + εi),

Xi = Z ′iπ12 +W ′
iπ22 + νi.

If the instruments are valid, so that γ = 0, then the vector of reduced-form coefficients

on Zi in the first equation is proportional to π12, the vector of reduced-form coefficients in

the second equation. The liml estimator tries to impose this proportionality. This leads

to efficiency if proportionality holds (Chioda and Jansson, 2009; Anderson et al., 2010).

However, if γ 6= 0, then the proportionality does not hold in the population, and liml

loses consistency. On the other hand, mbtsls and mjive, like tsls, can be thought of as

two stage estimators. In the first stage composite instruments are constructed, one for

each regressor (endogenous or exogenous) based on the data on the endogenous regressor,

the exogenous variables, and the instruments alone. These instruments are then used to

estimate the parameters of interest using a method for just-identified settings, possibly with

some adjustment. In this procedure proportionality of the reduced forms is never exploited.

This explains why Λ12 = 0 is a sufficient condition for consistency, although it results in

efficiency loss relative to liml when proportionality does hold.

Next we consider large sample approximations to the distribution of the estimators.

We make use of Assumption 2(ii), which puts Normality on the error terms. If instead of

Normality we only assumed finite fourth moments (Assumption 2 (i)), then the asymptotic

variance terms would depend on the third and fourth moments of the error terms (Hansen

et al., 2008; van Hasselt, 2010). Assuming Normality leads to simpler asymptotic formulae
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that will allow us to better focus on the effect of relaxing the standard assumptions that

γ = 0 and αL = 0 and highlight the substantive differences. To put the main results for the

case with direct effects in perspective we first present the distributional results for the case

with γ = 0, but αL possibly positive. See Anatolyev (2011) for asymptotic variances for liml

and mbtsls without normality.

Theorem 2.(Asymptotic Normality with Many Exogenous Regressors)

Suppose Assumptions 1–4 hold. Suppose in addition that γ = 0. Then:

(i) (liml)
√
N
(
β̂liml − β

)
| Z d→ N

(
0,Λ−2

22 ·
(

Σ11Λ22 +
αK(1− αL)

1− αK − αL
(
Σ11Σ22 − Σ2

12

)))
(ii) (mbtsls)

√
N
(
β̂mbtsls − β

)
| Z d→ N

(
0,Λ−2

22

(
Σ11Λ22 +

αK(1− αL)

1− αK − αL
(
Σ11Σ22 + Σ2

12

)))
(iii) (mjive) Suppose in addition that N−1

∑
i

1
1−(DZ)ii

→ τ

√
N
(
β̂mjive − β

)
| Z d→

N
(
0,Λ−2

22

(
Σ11Λ22 + (1− αL) ((1− αL)τ − 1)

(
Σ11Σ22 + Σ2

12

)))
. (4.1)

The presence of many exogenous variables increases the asymptotic variance of liml and

mbtsls since (1− αK)αK/(1− αL − αK) > αK/(1− αK) if αL > 0, but the conclusion that

liml is more efficient than mbtsls does not change. Also, by Jensen’s inequality τ ≥ 1
1−αK−αL

,

so that mbtsls has smaller asymptotic variance than mjive.

If we want to determine the asymptotic distribution when γ is allowed to differ from

zero, it no longer suffices to simply condition on Z and treat the sequence of parameters γ

as constant. The reason is because the stochastic behaviour of the estimators now depends

on ΛN,12. Even if the limit Λ12 = 0, if γ differs from zero (and thus Λ11 > 0) it will generally

be the case that ΛN,12 differs from zero for finite N . The stochastic behavior of ΛN,12 affects

the large sample distribution of the estimators, and we need to put sufficient structure on it

to be able to determine this distribution.

The assumption below puts a random effects structure on the direct effects of the in-

strument on the outcome and the endogenous regressor similar to that in Chamberlain and

Imbens (2004). This provides a natural way of determining the stochastic behaviour of ΛN,12,

although it is not necessarily the only way of doing so.

First we redefine the parameters by orthogonalizing them with respect to Z⊥ as(
γ̃ π̃12

)
= (αKZ

′
⊥Z⊥)

1/2
(
γ π12

)
.

[11]



Then we consider the following assumption

Assumption 5.(Incidental parameters)

The pairs (γ̃k, π̃12,k), for k = 1, 2, . . . , KN , are iid with distribution(
γ̃k

π̃12,k

)∣∣∣∣∣Z,W ∼ N

((
µγ

µπ

)
,Ξ

)
.

A key implication of Assumption 5 is that

Λ = plim

(
ΛN

N

)
= plim

(
1

N

(
γ′

π′12

)
Z′⊥Z⊥

(
γ π12

))

= plim

(
1

KN

KN∑
k=1

(
γ̃k

π̃12,k

)(
γ̃k π̃12,k

))
=

(
µγ

µπ

)(
µγ

µπ

)′
+ Ξ.

Hence, if we rule out the knife-edge case Ξ12 = −µγµπ, then under Assumption 5, the

identification condition Λ12 = 0 is equivalent to µγ = 0 and Ξ12 = 0. This equivalence

will be useful in determining more primitive conditions that imply the condition Λ12 = 0.

We defer further discussion of this assumption, and in particular the motivation for making

the independent random effects assumption in terms of (γ̃k, π̃12,k) (instead of in terms of

(γk, π12,k)) to the next section where we consider two special cases. Next we present the

large sample distribution theory for the case with γ 6= 0.

Theorem 3.(Asymptotic Normality with Many Invalid Instruments)

Suppose that Assumptions 1(i)–(iii), 2–5 hold. Suppose in addition that µγ = Ξ12 = 0. Then:

(i) (mbtsls)

√
N
(
β̂mbtsls − β

)
d→

N
(

0,Λ−2
22

(
Σ11Λ22 +

αK(1− αL)

1− αK − αL
(
Σ11Σ22 + Σ2

12

)
+ Λ11

(
Σ22 +

Λ22

αK

)))
,

(ii) (mjive) Suppose that in addition N−1
∑

i
1

1−(DZ)ii
→ τ . Then:

√
N
(
β̂mjive − β

)
d→

N
(

0,Λ−2
22

(
Σ11Λ22 + (1− αL)((1− αL)τ − 1)

(
Σ11Σ22 + Σ2

12

)
+ Λ11

(
Σ22 +

Λ22

αK

)))
,

Compared to Theorem 2 (ii)–(iii), allowing for direct effects leads to an additional term in

the asymptotic variance which is proportional to Λ11, which measures the extent of mis-

[12]



specification. If Λ11 = 0, then the asymptotic variance of mbtsls and mjive reduces to that

in Theorem 2(ii)–(iii). Note that the extra term decreases in the number of instruments.

The intuition is that as the number of instruments increases, we are better able to deal

with the presence of direct effects, as the product of the direct effects and the effects of the

instruments on the endogenous variable gets averaged out to identify β.

5 Two Special Cases

In this section we consider two special cases with additional structure on the data generating

process. In both cases each unit i belongs to a subpopulation or cluster, with cluster indicator

Gi ∈ {1, 2, . . . , GN}. These clusters are closely related to the instruments. We are interested

in large sample approximations where the number of units sample from each subpopulation is

finite, and the number of subpopulations increases proportional to the sample size, leading to

the many-instruments setting. Let the number of units in group g be Ng, with N =
∑GN

g=1 Ng.

For convenience, let us assume that the number of unit sampled from each subpopulation is

the same for all subpopulations, Ng = N/GN for all g.

5.1 Special Case I: Clustering

To focus on the conceptual issues, let us assume there are no exogenous regressors beyond

the intercept, LN = 1. In the first special case the instruments are the cluster indicators,

Zik = 1Gi=k, for k = 1, . . . , GN − 1, so that the number of instruments is the number of

clusters minus one, KN = GN − 1. The general model in (2.1) can now be written as

Yi = δ + βXi +

GN−1∑
k=1

γk1Gi=k + εi, (5.1)

Xi = π22 +

GN−1∑
k=1

π12,k1Gi=k + νi. (5.2)

Exploiting the special structure here, in combination with the equal cluster size, the aug-

mented concentration parameter can be written as the sample covariance matrix of (γk, π12,k):

ΛN =
N

GN

GN−1∑
k=1

(
(γk − γ)2 (γk − γ) (π12,k − π12)

(γk − γ) (π12,k − π12) (π12,k − π12)2

)
,

[13]



where

γ =
1

GN

GN−1∑
k=1

γk, and π12 =
1

GN

GN−1∑
k=1

π12,k.

Now let us consider Assumption 5 and interpret it in this context. Suppose we have a

large population of clusters. Let µY,g and µX,g be the population means of Yi − βXi and

Xi in cluster g, and let µY and µX be the overall population means. In terms of the

original parametrization, we have: π22 = µX,GN
, π12,k = µX,k − µX,GN

, δ = µY,GN
and

γk = µY,k − µY,GN
.

The natural way to impose a random effects structure on the parameters would be to

assume that the cluster means (µY,k, µX,k) are independent and(
µY,k

µX,k

)
∼ N

((
µY

µX

)
,Φ

)
. (5.3)

This implies

(
γ̃ π̃12

)
=

√
GN − 1

GN

B


µY,1 µX,1

...
...

µY,1 µX,1

 , B =
(
IGN−1 − 1−1/

√
GN

GN−1
ιGN−1ι

′
GN−1 − 1√

GN
ιGN−1

)

where the (GN − 1) × GN matrix B satisfies BιGN
= 0, and BB′ = IGN−1. Thus, a ran-

dom effects specification on (µY,k, µX,k) as in (5.3) implies a random effects specification on

(γ̃, π̃12), namely(
γ̃k

π̃12,k

)∣∣∣∣∣Z,W ∼ N

((
0

0

)
,Ξ

)
, with Ξ =

GN − 1

GN

· Φ.

On the other hand, because (γk, π12,k) measure the effect relative to the last group, GN ,

assuming independence of (γk, π12,k) of (γl, π12,l) is not attractive. The random effects as-

sumption on (γ̃k, π̃12,k) is therefore more reasonable than a random effects assumption on

(γk, π12,k) would be. Moreover, the augmented concentration parameter can be expressed as

a sample covariance matrix of (γ̃k, π̃12,k):

ΛN =
N

GN

GN∑
k=1

( (
γ̃k − γ̃

)2 1
GN

∑GN

k=1

(
γ̃k − γ̃

) (
π̃12,k − π̃12

)(
γ̃k − γ̃

) (
π̃12,k − π̃12

) (
π̃12,k − π̃12

)2

)
,
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where γ̃ = 1
GN

∑GN

g=1 γ̃k and π̃12 = 1
GN

∑GN

g=1 π̃12,k.

There is an alternative representation to the set up in (5.1)–(5.2) that ties it in more

closely to the clustering literature. In this alternative representation the demeaned direct

effects µY,g−µY are viewed as random effects reflecting clustering. Let us write the outcome

equation (5.1) as

Yi = µY + βXi + ηi, where ηi =
(
µY,Gi

− µY
)

+ εi,

is the composite residual. The cluster-specific component is equal to the direct effect of the

instrument. Hence, we can think of the residuals ηi having a clustering structure associated

with the instruments

E [ηi|Z] = 0 E [ηiηj|Z] =


Σ11 + Φ11 if i = j,

Φ11 if Gi = Gj, i 6= j,

0 otherwise.

Analogously we can write the second equation with a clustering structure:

Xi = µX + ζi where ζi =
(
µX,Gi

− µX
)

+ νi,

and

E [ζi|Z] = 0 E [ζiζj|Z] =


Σ22 + Φ22 if i = j,

Φ22 if Gi = Gj, i 6= j,

0 otherwise.

In addition, let Φ12 = E [ζiηj|Gi = Gj]. The critical assumption that Λ12 is equal to zero

(equivalent to Φ12 = 0) in this representation amounts to assuming that the cluster compo-

nent in the outcome equation is uncorrelated with the cluster component in the first stage.

This assumption is not innocuous, but assumptions about zero correlations for cluster com-

ponents are often made in clustering settings. It is obviously substantively weaker than

assuming the absence of clustering effects in the outcome equation, or Φ11 = 0.

In this case with the instruments equal to the group dummies the original jive estimator

has an interesting form. The predicted value for Xi underlying the tsls estimator is the

average value of Xj for all units in the cluster,

X̂tsls
i =

1

NGi

∑
j:Gj=Gi

Xj

[15]



The jive estimator modifies that to the average over all units in the cluster, excluding unit

i itself:

X̂ jive
i =

1

NGi
− 1

∑
j:Gj=Gi,j 6=i

Xj.

With a finite number of units per cluster omitting unit i can make a substantial difference,

and this is reflected in the inconsistency of tsls in this setting.

The properties of the previously discussed estimators liml, btsls, mbtsls, jive, and mjive

follow as a special case of Theorems 1-3, specializing it to the case with LN = 1 so that

αL = 0. In this case there is no difference asymptotically between jive and mjive and

between btsls and mbtsls because the number of exogenous variables is fixed.

5.2 Special Case II: Clusters with Interactions

In the second case we maintain the cluster structure with cluster indicatorGi ∈ {1, 2, . . . , GN}.
For each unit there is a binary indicator Qi that serves as the basic instrument. More

generally we could have a number of basic instruments, and allow these to be discrete or

continuous. This special case is motivated by the Angrist-Krueger analysis where the basic

instruments are quarter of birth indicators. We generate additional instruments by inter-

acting the cluster indicator with this binary instrument. We include the cluster indicators

as exogenous covariates, Wi,k = 1Gi=k, so that again KN = LN = GN . Again for ease of

exposition let us assume that the clusters are all equal size, Ng = N/GN for all g, and that

the fraction of Qi = 1 units in each cluster is equal to q =
∑

iQi · 1Gi=g/Ng for all g. The

model can now be written as

Yi = βXi +

KN∑
k=1

δkWik +

KN∑
k=1

γkZik + εi, (5.4)

Xi =

KN∑
k=1

π12,kZik +

KN∑
k=1

π22,kWik + νi. (5.5)

In this case the limit of the augmented concentration parameter is

Λ =

(
µγ

µπ

)(
µγ

µπ

)′
+ Ξ. (5.6)
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We can directly apply the results from Section 4, which imply that mjive and mbtsls are

consistent and asymptotically normally distributed if Λ12 is equal to zero. In this case

Λ12 = 0 is not necessarily an attractive assumption. It would require that µγ · µπ + Ξ12 = 0,

which essentially requires that both µγ and Ξ12 are zero. We can in fact relax the sufficient

conditions for identification in this special setting. We consider two specific alternatives.

First, we assume that µγ = 0, allowing Ξ12 to be different from zero. Second, we consider

the assumption that Ξ12 = 0, allowing µγ to be different from zero. In both cases Λ12 6= 0,

yet the parameter of interest is identified.

Under the first assumption, µγ = 0, we can simply use the Wald estimator with Qi as

the single instrument and Wi = 1 as a single exogenous regressor:

β̂wald =

1
Nq

∑
i : Qi=1 Yi −

1
N(1−q)

∑
i : Qi=0 Yi

1
Nq

∑
i : Qi=1Xi − 1

N(1−q)
∑

i : Qi=0 Xi

Adding the interactions of the type Qi · 1Gi=k as additional instruments would lead to

inconsistency if we use the liml, btsls, mbtsls, jive or mjive estimators.

Theorem 4.(Zero Mean)

Suppose the model in (5.4)-(5.5) holds. Suppose also that Assumptions 1–3 and 5 hold.

Suppose that in addition µγ = 0 and µπ 6= 0. Then β̂wald is consistent for β and satisfies

√
N
(
β̂wald − β

)
d→ N (0, (Ξ11/αK + Σ11)/µ2

π)

In the second case with µγ 6= 0 and Ξ12 = 0, again using all interactions as instruments does

not lead to consistency whether we use liml, btsls, mbtsls, jive or mjive. However, in this

case we can base a consistent estimator on a strategy where we treat Qi as an exogenous

regressor instead of an instrument, and only use the remaining KN − 1 interactions of the

type Qi · 1Gi=k as instruments with the mbtsls or mjive estimators:

Yi = Xiβ +Qiδ0 +

KN∑
i=1

Wikδk + εi (5.7a)

Xi = Qiπ22,0 +

KN∑
k=1

Wikπ22,k +

KN−1∑
k=1

π12,kQiWik + νi (5.7b)

This allows for a direct (common) effect of the original basic instrument, but rules out

interaction effects.
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Theorem 5.(Interactions)

Suppose that the model (5.4)–(5.5) holds. Suppose also that Assumptions 1–5 hold and that

Ξ12 = 0. Then the mbtsls and mjive estimators based on the model (5.7) are consistent for

β. Moreover, under those assumptions:

√
N(β̂mbtsls − β)

d→

N
(

0,Ξ−2
22

(
Ξ11Ξ22/αK + Ξ11Σ22 + Ξ22Σ11 +

(1− αK)αK
(1− 2αK)

(
Σ11Σ22 + Σ2

12

)))
and

√
N(β̂mjive − β)

d→

N
(
0,Ξ−2

22

(
Ξ11Ξ22/αK + Ξ11Σ22 + Ξ22Σ11 + (1− αK)((1− αK)τ − 1)

(
Σ11Σ22 + Σ2

12

)))
where τ = q2

q−αK
+ (1−q)2

1−q−αK
is the probability limit of tr((I−DZ)−1/N).

6 An Application

We apply some of the methods to a subset of the Angrist and Krueger (1991) data. We

use individuals born in the first and fourth quarter (so we have a single binary basic in-

strument, although this is not essential), dropping observations from Alaska because there

are some years birth quarters with no observations, leaving us with observations on 162,487

individuals.

Let Wik, for k = 1, . . . , GN be the cluster indicators, corresponding to year of birth times

state of birth interactions, so that GN = 500, and let Qi be the binary quarter of birth

indicator. The general model we consider is

Yi = βXi +

KN∑
k=1

δkWik +

KN∑
k=1

γkQiWik + εi, (6.1)

Xi =

KN∑
k=1

π12,kQiWik +

KN∑
k=1

π22,kWik + νi. (6.2)
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(
γk

π12,k

)∣∣∣∣∣Z,W ∼ N

((
µγ

µπ

)
,Ξ

)
.

We look at six estimators, the five studied in this paper and the two-stage-least-squares

(tsls) estimator. We consider three sets of instruments and exogenous variables.

In the first setting, we use a single binary instrument, an indicator for being born in

the fourth quarter, Zi = Qi. There are no exogenous covariates beyond the intercept. The

properties of this estimator are captured by Theorem 4. In particular, in this just-identified

case the iv estimator is valid here if the average direct effect of the instruments is zero,

µγ = 0.

In the second case we interact the qob dummy with state of year times year of birth

dummies, for a total of 500 instruments, and 500 exogenous regressors. Here Theorems 1

and 3 contain the relevant results. In this case liml is not consistent unless Ξ11, Ξ12 and µγ

are zero. The mjive and mbtsls estimators are consistent under the weaker condition that

the linear combination Λ12 = Ξ12 + µγ · µπ is equal to zero. Within the context of the model

this setting requires the strongest conditions.

In the third case we only use the interactions as instruments and treat the basic quarter

of birth dummy as an exogenous variable rather than as an excluded instrument. We also

include the year of birth times quarter of birth dummies as exogenous covariates. For this

case Theorem 5 has the appropriate results. Here liml is not consistent unless both Ξ11 and

Ξ12 are equal to zero. The mbtsls and mjive estimators are consistent under the weaker

condition that Ξ12 = 0.

Table 1 presents the estimates and standard errors under various assumptions. Liml,

mbtsls, and mjive yield similar point estimates, irrespective of the set of instruments. Jive

yields smaller point estimates under the designs which include many exogenous regressors,

which is consistent with Theorem 1. On the other hand, the bias of btsls under these designs

appears small.

The standard errors are quite different though for the different estimators when we use a

large number of instruments. Taking into account the large number of exogenous variables

does not appear to matter very much. Neither does taking into account non-zero values for

µγ, Ξ12 or Ξ11. In this specific case this appears to be due to the fact that point estimates

for Λ11 conditional on Λ12 = 0 are close to zero: for this data set there is little evidence for

direct effects of the instruments, consistent with the validity of the instruments.
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7 Conclusion

In this paper we analyze linear models with a single endogenous and many instruments.

Departing from the current literature we allow for direct effects of the instruments on the

outcome. Such direct effects have very different impacts on standard estimators. The liml

estimator, efficient in the many-valid-instrument case, is inconsistent in the presence of such

effects. The btsls and jive estimators are consistent if the direct effects are uncorrelated with

the effects of the instruments on the endogenous regressor. This condition is not innocuous.

In many cases direct effects of the instruments on the outcome may well be correlated with

effects on the endogenous regressor. However, it does shift the discussion of identification

issues in instrumental variables away from the focus on the requirement that none of the

instruments have any direct effects whatsoever, which in cases with many instruments may be

unrealistic, and as this paper shows, unnecessarily restrictive. The results in the paper also

suggest a re-assesment of the merits of liml versus other estimators in the many-instrument

setting.
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Appendices

We first define some additional notation. Write the reduced-form based on Equations (2.1)
as: (

Yi Xi

)
=
(
Zi Wi

)(π11 π12

π21 π22

)
+ V ′i

where π11 = γ + π12β and π21 = δ + π12β, and Vi = (εi + νiβ, νi)
′, and let V be the N by

2 matrix with ith row equal to V ′i . Denote the upper KN × 2 submatrix of the matrix of
reduced-form coefficients by Π1 = (π11, π12). Let:

Γ =

(
1 0
−β 1

)
Let Ω = E[ViV

′
i ] denote the reduced-form covariance matrix. Then:

Ω = Γ−1′ΣΓ−1 =

(
Σ11 + 2Σ12β + Σ22β

2 Σ12 + Σ22β
Σ21 + Σ22β Σ22

)
Let Wd(f, V, V

−1M) denote a d-dimensional non-central Wishart distribution with f de-
grees of freedom, scale parameter V , and non-centrality parameter M . Let S1/2 denote the
symmetric square root of a symmetric positive semi-definite matrix S.

Appendix A Auxilliary Lemmata

Lemma A.1.
Consider the quadratic form Q = (M + U)′C(M + U), where M ∈ RN×S, C ∈ RN×N are
non-stochastic, C is symmetric, and U = (u1, . . . , uN)′, with ui ∼ [0,Ω] iid. Let a ∈ RS be a
non-stochastic vector. Assume ui has finite fourth moments. Denote dC = diag(C). Then:
(i) (Lemma 1, Bekker and van der Ploeg, 2005)

E[Q | C] = M ′CM + tr(C)Ω

var(Qa | C) = a′ΩaM ′C2M + a′M ′C2MaΩ + Ωaa′M ′C2M +MC2Maa′Ω

+ tr(C2)(a′ΩaΩ + Ωaa′Ω)

+ d′CdC [E(a′u)2uu′ − a′Ωaa′Ω− a′ΩaΩ] + 2d′CCMaE[(a′u)uu′]

+M ′CdCE[(a′u)2u′] + E[(a′u)2u]d′CCM

If the distribution of ui is Normal, the last two lines of the variance expression equals
zero.
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(ii) Suppose that the distribution of ui is Normal, and that, as N →∞:

M ′C2M/N → QCM tr(C2)/N → τC2

where the elements cis of C may depend on N . Suppose also that maxi≤N‖mis‖/
√
N →

0 and supN maxi≤N
∑N

j=1|cij| = DC <∞. Then:

√
N (Qa/N − EQa/N)

d→ N (0, V ) ,

where

V = a′ΩaQCM + a′QCMaΩ + Ωaa′QCM +QCMaa
′Ω + τC2(a′ΩaΩ + Ωaa′Ω).

Proof. We only prove Part (ii). We follow the arguments in van Hasselt (2010), who proves
asymptotic Normality of Qa/N when ui are non-normal, but imposes slightly stronger regularity
conditions. By the Cramér-Wold device, it suffices to prove that for any vector b ∈ RS :

N−1/2
(
b′Qa− E

[
b′Qa

]) d→ N
(
0, b′V b

)
. (A.1)

Let mb = Mb be an N -vector with the ith element equal to
∑S

s=1misbs, and similarly for ma, ub

and ua. Let also Ωp,r = p′Ωr, for p, r ∈ {a, b}. Then the left-hand side of (A.1) can be written as:

N−1/2
(
b′Qa− E

[
b′Qa

])
=
∑
i

∑
j

cij(u
a
im

b
i +ma

i u
b
i + uai u

b
i)−

∑
i

ciiΩa,b = N−1/2
∑
i

Da,b
i ,

where, using the fact that cij = cji:

Da,b
N,i = cii(u

a
i u

b
i − Ωa,b) + ubi

∑
j<i

ciju
a
j + uai

∑
j<i

ciju
b
j + ubi

∑
j

cijm
a
j + uai

∑
j

cijm
b
j . (A.2)

{N−1/2Da,b
N,i, 1 ≤ i ≤ N} is a martingale-difference sequence with respect to the filtration FN,i =

σ(u1, . . . , ui). To apply a martingale central limit theorem, we need to verify that:

N−1
N∑
i=1

E
[
(Da,b

N,i)
2 | FN,i−1

]
p→ b′V b (A.3)
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Expanding the expression yields:

N−1
∑
i

E
[
(Da,b

N,i)
2 | Fn,i−1

]
= N−1

∑
i

c2
ii(Ωa,aΩb,b + Ω2

a,b) + Ωb,bN
−1
∑
i

∑
j<i

∑
k<i

cijciku
a
ju

a
k

+ Ωa,aN
−1
∑
i

∑
j<i

∑
k<i

cijciku
b
ju
b
k + 2Ωa,bN

−1
∑
i

∑
j<i

∑
k<i

cijciku
a
ju

b
k

+ Ωb,ba
′M ′C2Ma/N + Ωa,ab

′MC2Mb/N + 2Ωa,bb
′MC2Ma/N

+ 2Ωb,bN
−1
∑
i

∑
j<i

∑
k

cijcikm
a
ku

a
j + 2Ωa,bN

−1
∑
i

∑
j<i

∑
k

cijcikm
b
ku

a
j

+ 2Ωa,bN
−1
∑
i

∑
j<i

∑
k

cijcikm
a
ku

b
j + 2Ωa,aN

−1
∑
i

∑
j<i

∑
k

cijcikm
b
ku

b
j

(A.4)

The last four terms are op(1) since their variance converges to zero. This follows from writing them
as:

N−1
∑
i

∑
j<i

∑
k

cijcikm
p
ku

r
j =

∑
i

N−1
∑
j>i

∑
k

cijcjkm
p
k

uri p, r ∈ {a, b}

and noting that

∑
i

N−1
∑
j>i

∑
k

cijcjkm
p
k

2

≤ (max
i≤N

mp
i /
√
N)2N−1

∑
i

∑
j

cij
∑
k

cik

2

≤ (max
i≤N

mp
i /
√
N)2C4

M → 0

Now consider the terms of the form:

N−1
∑
i

∑
j<i

∑
k<i

cijciku
p
ju
r
k = N−1

∑
i

∑
j<i

c2
iju

p
ju
r
j +N−1

∑
i

∑
j<i

∑
k<j

cijcik(u
p
ju
r
k + cijciku

r
ju
p
k)

=
1

N

∑
j

∑
i>j

c2
ij +

1

2
c2
ii

upju
r
j +N−1

∑
i

∑
j<i

∑
k<j

cijcik(u
p
ju
r
k + urju

p
k)−

1

2N

∑
i

c2
iiu

p
i u
r
i

=
1

2
τC2p′Ωr −

1

2N

∑
i

c2
iiu

p
i u
r
i + op(1)
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The last line follows from applying Chebyshev inequality to the first two terms, and noting that:

var
(

1
N

∑
j

(∑
i>j c

2
ij + 1

2c
2
ii

)
upju

r
j

)
= var(upju

r
j) ·N−2

∑
j

∑
i>j

c2
ij +

1

2
c2
ii

2

≤ var(upju
r
j)N

−2tC2D2
C → 0

var
(

1
N

∑
i

∑
j<i

∑
k<j cijciku

p
ju
r
k

)
= N−2p′Ωpr′Ωp

∑
j

∑
k<j

∑
i>j

cijcik

2

≤ O(N−2D4
C)→ 0

Pulling together the results yields:

N−1
∑
i

E
[
(Da,b

N,i)
2 | Fn,i−1

]
= b′V b+

N−1
∑
i

c2
ii(Ωa,ab

′Ωb + (Ωa,b)
2 − Ωa,au

b
iu
b
i/2− b′Ωbuai uai /2− Ωa,bu

a
i u

b
i)

This establishes (A.3), since the second term is op(1) as maxi c
2
ii/N → 0.

Secondly, it is possible to show that N−2
∑

i E(Da,b
N,i)

4 → 0, so that the Lindeberg condition
holds. Hence, a martingale central limit theorem applies, which yields the result. �

Lemma A.2.
Consider a sequence of random matrices {XN}∞N=1 such that XN ∼ WS(JN ,Ω,Ω

−1ΞN).

Suppose that ΞN/N → Ξ, and that JN/N = α + o(N−1/2), α > 0. Then, for any vector
a ∈ RS

N−1/2 (XNa/N − (ΞN/N + αΩ)a)

d→ N (0, (a′ΩaΞ + a′ΞaΩ + Ωaa′Ξ + Ξaa′Ω) + α(a′ΩaΩ + Ωaa′Ω))

Proof. By definition of a non-central Wishart distribution, we can decompose XN = (U+M)′(U+
M), where U = (u1, . . . , uJN )′, uj ∼ N(0,Ω) iid, M ′M = ΞN , and ΞN/JN → Ξ/α. Hence, we can
apply Lemma A.1 (ii) with C = IJN to get:

J
−1/2
N (XNa− (ΞN + JNΩ)a)

d→ N
(
0, α−1(a′ΩaΞ + a′ΞaΩ + Ωaa′Ξ + Ξaa′Ω) + a′ΩaΩ + Ωaa′Ω

)
which yields the result. �

Lemma A.3.
Suppose Assumptions 1, 2(i), 3 and 4 hold. Then:

Y
′
⊥Y⊥/N

p→ Ψ + (1− αL)Ω (A.5a)

Y
′
⊥PZ⊥Y⊥/N

p→ Ψ + αKΩ (A.5b)

Y
′
⊥HZY⊥/N

p→ Ω (A.5c)
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where

Ψ =

(
Λ11 + 2Λ12β + Λ22β

2 Λ12 + Λ22β
Λ12 + Λ22β Λ22

)
(A.6)

These probability limits also hold conditional on Z.

Proof. First we establish the probability limit of V′PZ⊥V/N . By Lemma A.1 (i):

E[V′PZ⊥V/N | Z⊥] = (KN/N)Ω (A.7)

Fix a ∈ R2. Since PZ⊥ is a projection matrix, 0 ≤ (PZ⊥)ii ≤ 1. Hence,
∑

i(PZ⊥)2
ii ≤

∑
i(PZ⊥)ii ≤

KN . Therefore:

var(V′PZ⊥Va/N) = E var(V′PZ⊥Va/N | PZ⊥)

= E
[
tr(PZ⊥/N

2)
]

(a′ΩaΩ + Ωaa′Ω)

+ E
[
N−2∑

i(PZ⊥)2
ii

]
[E(a′Vi)

2ViV
′
i − a′Ωaa′Ω− a′ΩaΩ]

≤ KN

N2
(a′ΩaΩ + Ωaa′Ω) +

KN

N2
[E(a′vi)

2viv
′
i − a′Ωaa′Ω− a′ΩaΩ]

= O(KN/N
2)

(A.8)

Combining Equations (A.7) and (A.8) with Assumption 3 yields :

V′PZ⊥V/N
p→ αKΩ (A.9)

By similar arguments:

V′MWV/N
p→ (1− αL)Ω (A.10)

Next, by Assumption 2 (i), E[Π′1Z
′
⊥V/N | Z⊥] = 0, so that:

var
(
Π′1Z

′
⊥Va/N

)
= E

[
var
(
Π′1Z

′
⊥Va/N | Z⊥

)]
= (a′Ωa)E

[
Π′1Z

′
⊥Z⊥Π1/N

2
]

= (a′Ωa)Γ−1′E
[
ΛN/N

2
]

Γ−1 = O(1/N)

where the last equality follows by Assumption 4. Consequently:

Π1Z
′
⊥V/N

p→ 0 (A.11)

Combining the representation Y⊥ = Z⊥Π1 + V⊥ with the limits in Equations (A.10) and (A.11),
and Assumption 4 establishes (A.5a):

Y
′
⊥Y⊥/N = Π′1Z

′
⊥Z⊥Π1/N + Π′1Z⊥V/N + V′Z⊥Π1/N + V′MWV/N

= Γ−1ΛNΓ−1/N + (1− αL)Ω + op(1)

= Ψ + (1− αL)Ω

[25]



Claim (A.5b) follows by similar arguments from Equations (A.9) and (A.11):

Y
′
⊥PZ⊥Y⊥/N = Π′1Z

′
⊥Z⊥Π1/N + Π′1Z⊥V/N + V′Z⊥Π1/N + V′PZ⊥V/N

p→ Ψ + αKΩ

Next we prove (A.5c). As an intermediate step, we need to find the probability limit of V′HZV.
Because HZ is symmetric, we can apply Lemma A.1 (i), so that:

E[V′HZV/N ] = E tr(HZ/N)Ω = Ω

since tr(HZ) = N . Denoting t = tr(H2
Z

), we have t = tr(MZ(I−DZ)−2) = tr((I−DZ)−1) ≤ N
1−c

by Assumption 1. Moreover,
∑

i(HZ)2
ii =

∑
i 12 = N . Hence, for any a ∈ RG+1:

var(V′HZVa/N) = E var(V′HZVa/N | Z)

= E[t] · (a′ΩaΩ + Ωaa′Ω)/N2 + E

[∑
i

(HZ)2
ii

]
· [E(a′vi)

2viv
′
i − a′Ωaa′Ω− a′ΩaΩ]/N2

≤ 1

1− c
(a′ΩaΩ + Ωaa′Ω)/N + [E(a′vi)

2viv
′
i − a′Ωaa′Ω− a′ΩaΩ]/N

= O(N−1)

Therefore, by Chebyshev’s inequality:

Y
′
HZY/N = V′HZV/N

p→ Ω (A.12)

Finally, the same calculations go through even if we condition on Z, so that the probability limits
hold also conditional on Z. �

Lemma A.4.
Consider a k-class estimator with k̂

p→ k subject to k < 1−αL

1−αL−αK
+ Λ22/Σ22

1−αL−αK
. Then under

Assumptions 1, 2 (i), 3 and 4:

β̂k̂
p→ β +

Λ12 + (1− αL − (1− αK − αL)k)Σ12

Λ22 + (1− αL − (1− αK − αL)k)Σ22

Proof. Combining Lemma A.3 with the condition k̂ = k + op(1) yields:

(1− k̂)Y
′
⊥Y⊥/N + k̂Y

′
⊥PZ⊥Y⊥/N = (1− k)(Ψ + (1− αL)Ω) + k(Ψ + αKΩ) + op(1)

= Ψ + (1− αL − (1− αK − αL)k)Ω + op(1)
(A.13)

The (2,2) element of (A.13) is given by:

(1− k̂)X′⊥X⊥/N + k̂X′⊥PZ⊥X⊥/N = Λ22 + (1− αL − (1− αK − αL)k)Σ22 + op(1)

becausee Σ22 = Ω22. By the condition on k, Λ22 + (1− αL − (1− αK − αL)k)Σ22 > 0, so that:(
(1− k̂)X′⊥X⊥/N + k̂X′⊥PZ⊥X⊥/N

)−1
= (Λ22 + (1− αL − (1− αK − αL)k)Σ22)−1 + op(1)

[26]



(A.14)

The (1,2) element in Equation (A.13) is given by:

(1− k̂)X′⊥Y⊥/N + k̂X′⊥PZ⊥Y⊥/N = Λ12 + Λ22β + (1− αL − (1− αK − αL)k)Ω12 + op(1)

= Λ12 + (1− αL − (1− αK − αL)k)Σ12 + (1− αL − (1− αK − αL)k)Σ22β + Λ22β + op(1)
(A.15)

Applying Equations (A.14) and (A.15) to β̂k̂:

β̂k̂ =
(1− k̂)X′⊥Y⊥/N + k̂x′⊥PZ⊥Y⊥

(1− k̂)X′⊥X⊥/N + k̂X′⊥PZ⊥X⊥/N
= β+

Λ12 + ((1− k)(1− αL) + αKk)Σ12

Λ22 + ((1− k)(1− αL) + αKk)Σ22
+op(1). �

Appendix B Proofs of Theorems

Proof of Theorem 1. The results for a general k-class estimator, btsls and mbtsls follows di-
rectly from Lemma A.4. We therefore just need to derive the results for liml, jive and mjive.

First, we establish the result for liml. Define

Q̂N (φ) =
φ′Y

′
⊥Y⊥/Nφ

φ′Y
′
⊥MZ⊥Y⊥/Nφ

.

Then

k̂liml = min
β̃

(1,−β̃)Y
′
⊥Y⊥/N(1,−β̃)′

(1,−β̃)Y
′
⊥MZ⊥Y⊥/N(1,−β̃)′

= min
φ∈S1

Q̂N (φ)

where S1 denotes the unit circle in R2. Applying Lemma A.3 yields:

Q̂N (φ)
p→ φ′(Ψ + (1− αL)Ω)φ

(1− αL − αK)φ′Ωφ
≡ φ′Tφ

φ′T⊥φ
≡ Q(φ)

where we define T = Ψ + (1− αL)Ω and T⊥ = (1− αL − αK)Ω. Assumption 2 (i) guarantees that
the denominator is non-zero for any value of φ. The minimum of Q(φ) is achieved at:

min
φ∈S1

Q(φ) =
1− αL

1− αK − αL
+

1

1− αL − αK
min
φ∈S1

φ′Ψφ

φ′Ωφ

=
1− αL

1− αK − αL
+

min eig(Σ−1Λ)

1− αK − αL
= kliml

where the last line follows since the eigenvalues of Ω−1Ψ correspond to the eigenvalues of Σ−1Λ.
The minimand φliml is given by the eigenvector corresponding to the smallest eigenvalue of the
matrix:

1

1− αK − αL
Ω−1 (Ψ + (1− αL)Ω)

[27]



We now need to show that:

k̂liml − kliml = min
φ∈S1

Q̂N (φ)−Q(φliml)
p→ 0 (A.1)

To this end, we first show that the convergence of the objective function is uniform:

sup
φ∈S1

|Q̂N (φ)−Q(φ)| p→ 0 (A.2)

Fix φ ∈ S1. By triangle inequality:

|Q̂N (φ)−Q(φ)| ≤ 1

|φ′Y′⊥MZ⊥Y⊥φ/N |

∣∣∣φ′Y′⊥Y⊥φ/N −Q(φ)φ′Y
′
⊥MZ⊥Y⊥φ/N

∣∣∣
=

1

|φ′Y′⊥MZ⊥Y⊥φ/N |

∣∣∣φ′(Y′⊥Y⊥/N − T )φ−Q(φ)φ′
(
Y
′
⊥MZ⊥Y⊥/N − T⊥

)
φ
∣∣∣

≤ 1

|φ′Y′⊥MZ⊥Y⊥φ/N |

(∣∣∣φ′(Y′⊥Y⊥/N − T )φ
∣∣∣+Q(φ)

∣∣∣φ′ (Y′⊥MZ⊥Y⊥/N − T⊥
)
φ
∣∣∣)

(A.3)

We now need to bound all three terms in the expression uniformly in φ. Because the trace operator
is the inner product under Frobenius norm, by Cauchy-Schwarz inequality:

|φ′(Y′⊥MZ⊥Y⊥/N − T⊥)φ| =
∣∣∣tr((Y

′
⊥MZ⊥Y⊥/N − T⊥)φφ′

)∣∣∣
≤
√

tr((φφ′)2)‖(Y′⊥MZ⊥Y⊥/N − T⊥)‖F
= ‖(Y′⊥MZ⊥Y⊥/N − T⊥‖F
= op(1)

where the third line follows since ‖φ‖2 = 1, and the last line follows since Y
′
⊥MZ⊥Y⊥/N

p→ T⊥ by
Lemma A.3. By similar argument

|φ′(Y′⊥Y⊥/N − T )φ| = op(1)

Finally, we bound the denominator. Because Y
′
⊥MZ⊥Y⊥/N

p→ T⊥ > 0, φ′Y
′
⊥MZ⊥Y⊥φ/N > 0

wpa1, so that wpa1 |φ′Y′⊥MZ⊥Y⊥φ/N | < C for some C < ∞. Applying these bounds and the
fact that Q(φ) is bounded implies that the right-hand side in (A.3) is op(1), which implies (A.2).

Next, denote the argmin of Q̂N (φ) by φ̂. Note that k̂liml and hence φ̂ exists wpa1. We can now
establish (A.1), using the uniform convergence result (A.2):

Q(φliml) ≤ Q(φ̂) = Q̂N (φ̂) + (Q(φ̂)− Q̂N (φ̂)) ≤ Q̂(φliml) + (Q(φ̂)− Q̂n(φ̂))

= Q(φliml) + (Q̂N (φliml)−Q(φliml)) + (Q(φ̂)− Q̂N (φ̂))

= Q(φliml) + op(1)

The probability limit for liml then follows by Lemma A.4.
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It remains to establish the results for jive and mjive. Applying Lemma A.3, we get:

Y
′
(MW −HZ)Y/N

p→ Ψ− αLΩ (A.4)

Y
′
(MW − (1− LN/N)HZ)Y/N

p→ Ψ (A.5)

Because Λ22 > αLΣ22, it follows from the (2,2) element of (A.4) that:

(X′(MW −HZ)X)−1 = (Λ22 − αLΣ22) + op(1)

(X′(MW − (1− LN/N)HZ)X)−1 = Λ22 + op(1)

Combining these with an expansion of the (2,1) element in (A.4) and (A.5) yields the results for
jive and mjive. �

Proof of Theorem 2. All probability statements are conditional on Z. We omit the condition-
ing for ease of notation.

Proof of part (i) The liml estimator is given by the minimand of the objective function:

Q̂N (β̃) =
(Y⊥ −X⊥β̃)′(Y⊥ −X⊥β̃)

(Y⊥ −X⊥β̃)′MZ⊥(Y⊥ −X⊥β̃)

The associated first-order condition is proportional to ĝN (β̂liml) = 0, where

ĝN (β̃) = − 1

N
X′⊥(Y⊥ −X⊥β̃) +

Q̂N (β̃)

N
X′⊥MZ⊥(Y⊥ −X⊥β̃)

The derivative of the first-order condition is given by:

ĝ′N (β̃) =
X′⊥X⊥
N

− Q̂N (β̃)X′⊥MZ⊥X⊥+
2ĝN (β̃)

(Y⊥ −X⊥β̃)′MZ⊥(Y⊥ −X⊥β̃)
X′⊥MZ⊥(Y⊥−X⊥β̃)

We will show that for any estimator β̂ with β̂
p→ β:

ĝ′N (β̂)
p→ Λ22 (A.6)

Secondly, we will show that at the true value:

√
NĝN (β)

d→ N
(

0,Σ12Λ22 +
αK(1− αL)

1− αK − αL
(
Σ11Σ22 − Σ2

12

))
(A.7)

Because the limit of ĝ′N (β̂) does not depend on β and it is positive, and since β̂liml
p→ β is consistent

by Theorem 1, assertion ((i)) the theorem will follow (see Newey and McFadden, 1994)
We first prove (A.6). Let φ = (1,−β). By Lemma A.3 and consistency of β̂:

Q̂N (β̂)
p→ φ′(Ψ + (1− αL)Ω)φ

(1− αL − αK)φ′Ωφ
=

1− αL
1− αL − αK

≡ kliml

ĝN (β̂)
p→ −(1− αL)Σ12 +

1− αL
1− αL − αK

(1− αK − αL)Σ12 = 0

[29]



where we use the fact that Λ11 = Λ12 = 0 since γ = 0. Hence:

ĝ′N (β̂)
p→ Λ22 + (1− αL)Σ22 − kΣ22 + 0 = Λ22

which proves (A.6). It remains to show that ĝN (βliml) satisfies a central limit theorem. Let ν̃ =
ν − %ε, where % = Σ12/Σ11 be a projection of ν onto space orthogonal to ε. We have:

√
NĝN (β) = N−1/2

(
ν ′MZε

ε′MWε

ε′MZε
−X′MWε

)
= N−1/2

(
ν̃ ′MZε

ε′MWε

ε′MZε
− (Z⊥π12 + ν̃)′MWε

)
= N−1/2

(
ν̃ ′MZε · kliml − (Z⊥π12 + ν̃)′MWε

)
+ op(1)

where the third line follows since ε′MWε
ε′MZε

= kliml+op(1) by arguments in Lemma A.3, andN−1/2ν̃ ′MZε

is Op(1). Therefore, we can write:

√
NĝN (β) = N−1/2(Z⊥π12 + ν̃)′

(
klimlMZ −MW

)
ε

This expression is the (2,1) element of the quadratic form:

N−1/2
(
ε Z⊥π12 + ν̃

)′
C
(
ε Z⊥π12 + ν̃

)
where C = klimlMZ−MW. To establish (A.7), we need to check the assumptions of Lemma A.1(ii).
We have:

tr(C) = o(N−1/2) τC2 =
αK(1− αL)

1− αL − αK
(A.8a)

QCM =

(
0 0
0 Λ22

)
cov

(
εi
ν̃i

)
=

(
Σ11 0
0 Σ22 − Σ2

12/Σ11

)
(A.8b)

Applying Lemma A.1 (ii) then yields (A.7).
Proof of part (ii) We can write:

√
N
(
β̂mbtsls − β

)
=
(
X′(MW − k̂mbtslsMZ)X/N

)−1
N−1/2

(
X′(MW − k̂mbtslsMZ)ε

)
By Lemma A.3, we have:(

X′(MW − k̂mbtslsMZ)X/N
)−1

= Λ22 + op(1) (A.9)

The second term is a (2,1) element of the quadratic form:

N−1/2
(
ε Z⊥π12 + ν

)′
C
(
ε Z⊥π12 + ν

)
where C = (MW − k̂mbtslsMZ). Applying Lemma A.1 (ii) with tr(C), τC2 and QCM given by
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Equation (A.8), and cov(εi, νi) = Σ then yields:

N−1/2
(
X′(MW − k̂mbtslsMZ)ε

)
d→ N

(
0,Σ11Λ22 +

αK(1− αL)

1− αL − αK
(Σ11Σ22 + Σ2

12)

)
Combining this result with (A.9) yields part ((ii)) in the Theorem.

Proof of Part (iii) Write the estimator as:

√
N
(
β̂mjive − β

)
= (X′(MW − (1−LN/N)HZ)X/N)−1N−1/2X′(MW − (1−LN/N)HZ)ε.

By Lemma A.3, the first term satisfies:

(X′(MW − (1− LN/N)HZ)X/N)−1 = Λ−1
22 + op(1) (A.10)

The second term is the (2,1) element of:

N−1/2
(
ε Z⊥π12 + ν

)′
C
(
ε Z⊥π12 + ν

)
where C = MW − (1− LN/N)HZ. Because tr(HZ(I−DZ)−1) = tr((I−DZ)−1), we have:

tr(C) = N − LN − (1− LN/N)N = 0

tr(C2/N) = (LN/N − 1) + (1− LN/N)2 tr((I−DZ)−1/N)
p→ (αL − 1) + (1− αL)2τ

QCM is given by Equation (A.8), and cov(εi, νi) = Σ. Moreover, by Assumption 1:

sup
N

max
i≤N

N∑
j=1

|cij | ≤ 1 + sup
N

max
i≤N

N∑
j=1

|(PW)ij |

+ (1− LN/N) sup
N

max
i≤N

N∑
j=1

|(Iij − (PW)ij − (PZ⊥)ij)||((I−DZ)−1)jj |

≤ 1 + CP +
CP

1− CD
<∞

Applying Lemma A.1 (ii) and combining it with (A.10) then yields the result. �

Proof of Theorem 3. Under Assumption 2, we have:

√
αK

(
(Z′⊥Z⊥)−1/2Z′⊥Y

(Z′⊥Z⊥)−1/2Z′⊥X

) ∣∣∣Z ∼ N ((π̃12β + γ̃
π̃12

)
, αKΩ⊗ IKN

)
Y
′
⊥MZ⊥Y⊥ | Z ∼ W2(N −KN − LN ,Ω)

Moreover, these two statistics are independent. Let b = (1,−β)′ and a = (β, 1). Assumption 5

[31]



then implies that unconditionally:

Y
′
⊥PZ⊥Y⊥ ∼ W2(KN ,Γ

−1′ΞΓ−1/αK + Ω,
(

Γ−1′ΞΓ−1/αK + Ω
)−1

KNaa
′µ2
π/αK)

Y
′
⊥MZ⊥Y⊥ ∼ W2(N −KN − LN ,Ω)

with the independence property preserved. Applying Lemma A.2 then after some algebra yields:

N1/2
(
X′⊥MZ⊥Y⊥b/N − (1− αK − αL)Σ12

) d→ N (0, (1− αK − αL)VΣ) (A.11a)

N1/2
(
X′⊥PZ⊥Y⊥/Nb− (αKΣ12)

) d→ N (0, αKVΣ + VΞ) (A.11b)

where

VΣ = Σ22Σ11 + Σ2
12

VΞ = Λ22Σ11 + Λ11Σ22 + α−1
K Λ22Λ11

Equations (A.11) imply:

N1/2
(
X′⊥PZ⊥Y⊥/N + (1− kmbtsls)X

′
⊥MZ⊥Y⊥/N

)
b
d→ N

(
0, VΞ +

αK(1− αL)

1− αK − αL
VΣ

)
Because, by Lemma A.3, (X′⊥PZ⊥X⊥N+(1−kmbtsls)X

′
⊥MZ⊥X⊥/N)−1 p→ Λ−1

22 +op(1), this yields
the claim in the theorem.

Now consider mjive. Write the estimator as:

√
N
(
β̂mjive − β

)
= (X′(MW−(1−LN/N)HZ)X/N)−1N−1/2X′(MW−(1−LN/N)HZ)(Z⊥γ+ε).

By Lemma A.3, the first term satisfies:

(X′(MW − (1− LN/N)HZ)X/N)−1 = Λ−1
22 + op(1) (A.12)

Let where ε̃ = (Z′⊥Z⊥)−1/2Z′⊥ε and ν̃ = (Z′⊥Z⊥)−1/2Z′⊥ν. The second term can be rewritten as:

N−1/2X′(MW − (1− LN/N)HZ)(Z⊥γ + ε)

= N−1/2
(
π′12Z

′
⊥Z⊥γ + π′12Z

′
⊥ε+ γ′Z′⊥ν + ν ′(MW − (1− LN/N)HZ)ε

)
= N−1/2

(
(α
−1/2
K π̃12 + ν̃)′(α

−1/2
K π̃12 + ε̃) + ν ′((I− (1− LN/N)(I−DZ)−1)MWMZ⊥)ε

)
Because (ε̃, ν̃) is independent of MZ⊥(ε, ν), the two terms are independent. The distribution of the
first term is given by the (2,1) element of a random variable with distribution

W2

(
KN ,Ω + α−1

K Ξ, (Ω + α−1
K Ξ)−1

(
0 0

0 KN
αK

µ2
π

))
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so that by Lemma A.2:

N−1/2
(

(α
−1/2
K π̃12 + ν̃)′(α

−1/2
K π̃12 + ε̃)−KNΩ12

)
d→ N

(
0,Σ11Λ22 + αK(Σ11Σ22 + Σ2

12) + Λ11(Σ11 + Λ22/αK)
)

Applying Lemma A.1(ii) to the second term yields:

N−1/2
(
ν ′((I− (1− LN/N)(I−DZ)−1)MWMZ⊥)ε+KNΩ12

)
d→ N

(
0, (αL − 1− αK + (1− αL)2τ)(Σ11Σ22 + Σ2

12)
)

Adding the variances of these limit distributions yields the result. �

Proof of Theorem 4. Because γ̃k =
√
q(1− q)γk and π̃12,k =

√
q(1− q)π12,k, we can write

the estimator as:

β̂wald = β +

1
KN

∑
k γ̃k +

√
q(1− q)

(
1
Nq

∑
i : Qi=1 εi −

1
N(1−q)

∑
i : Qi=0 εi

)
1
KN

∑
k π̃12,k +

√
q(1− q)

(
1
Nq

∑
i : Qi=1 νi −

1
N(1−q)

∑
i : Qi=0 νi

)
By law of large numbers, we have:

1

KN

∑
k

π̃12,k +
√
q(1− q)

 1

Nq

∑
i : Qi=1

νi −
1

N(1− q)
∑

i : Qi=0

νi

 p→ µπ

Therefore, because µπ 6= 0:

√
N
(
β̂wald − β

)
=

1

µπ

√N/KN√
KN

∑
k

γ̃k +

√
(1− q)√
Nq

∑
i : Qi=1

εi −
√
q√

N(1− q)

∑
i : Qi=0

εi

+op(1)

All three terms are Normally distributed and mutually independent. Adding up the variances yields
the result. �

Proof of Theorem 5. Denote the matrices of instruments and exogenous regressors in the
model (5.7) by ∼, so that W̃ = [Q,W], where Q is an N -vector of basic instruments, Z̃ is
the matrix of first KN − 1 columns of Z, and Z̃⊥ = MW̃Z̃. Then PW̃ = PW + PQ⊥ , where

(PQ⊥)ij =
(Qi−q)(Qj−q)
Nq(1−q) . Note that Z remains the same.

Let ν̄k = KN
N

∑
i : Gi=k

νi denote group averages, let ν̄1,k = KN
qN

∑
i : Qi=1,Gi=k

νi denote group

averages for individuals with Qi = 1, and let ν̄0,k = KN
(1−q)N

∑
i : Qi=0,Gi=k

νi denote group averages
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for individuals with Qi = 0. Define:

Σ̂12,k =
KN

N

∑
i : Gi=k

νiεi − ν̄k ε̄k Σ̂22,k =
KN

N

∑
i : Gi=k

ν2
i − ν̄2

k

ε10,k =
KN

N

∑
i : Gi=k

Qi − q√
(1− q)q

εi =
√
q(1− q)(ε̄1,k − ε̄0,k) sγ,εk = γ̃k − µγ + ε10,k

Some tedious algebra shows that the mbtsls estimator is given by:

β̂mbtsls =
(1− k̂mbtsls)X

′MW̃Y + k̂mbtslsX
′PZ̃⊥

Y

(1− k̂mbtsls)X′MW̃X + k̂mbtslsX′PZ̃⊥
X

= β +

1
KN

∑
k

(
sγ,εk sπ12,νk + (1− k̂mbtsls)(Σ̂12,k − ε10,kν10,k)

)
− 1

K2
N

∑
k

∑
l s
π12,ν
l sγ,εk

1
KN

∑
k

(
(sπ12,νk )2 + (1− k̂mbtsls)(Σ̂22,k − ν2

10,k)
)
− 1

K2
N

∑
k

∑
l s
π12,ν
l sπ12,νk

By the weak law of large numbers, we have:

1

KN

∑
k

Σ̂22,k
p→ (1− αK)Σ22

1

KN

∑
k

ν2
10,k

p→ αKΣ22 (A.13a)

1

KN

∑
k

(sπ12,νk )2 p→ Ξ22 + αKΣ22
1

KN

∑
k

sπ12,νk

p→ 0 (A.13b)

Hence:(
1
KN

∑
k

(
(sπ12,νk )2 + (1− k̂mbtsls)(Σ̂22,k − ν2

10,k)
)
− 1

K2
N

∑
k

∑
l s
π12,ν
l sπ12,νk

)−1
= Ξ22+op(1) (A.14)

The nominator can be written as:

1

KN

∑
k

(
sγ,εk sπ12,νk + (1− k̂mbtsls)(Σ̂12,k − ε10,kν10,k)

)
− 1

K2
N

∑
k

∑
l

sπ12,νl sγ,εk =

1

KN

∑
k

Dk,k̂mbtsls
− 1

K2
N

∑
k

sγ,εk sπ12,νk =
1

KN

∑
k

Dk,k̂mbtsls
+ Op(1/KN )

where:

Dk,k̂mbtsls
= sγ,εk sπ12,νk + (1− k̂mbtsls)(Σ̂12,k − ε10,kν10,k)−

1

KN

∑
l<k

(
sπ12,νl sγ,εk + sπ12,νk sγ,εl

)
Note that under the Assumption that Ξ12 = 0, {K−1/2

N Dk,k̂mbtsls
}k≥1 is a martingale difference

sequence with respect to the filtration Fk = σ(γk, π12,k, {εi : Gi = k}, {νi : Gi = k}).
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The next step is to show that:

√
N

KN

∑
k

Dk,k̂mbtsls

d→ N
(

0,Ξ11Ξ22/αK + Ξ11Σ22 + Ξ22Σ11 +
(1− αK)αK
(1− 2αK)

(
Σ11Σ22 + Σ2

12

))
(A.15)

by applying the martingale central limit theorem. The claim of the theorem for mbtsls will then
follow by combining (A.15) with (A.14). To show (A.15), we first need to check that:

1

KN

KN∑
k=1

E[D2
k,k̂mbtsls

| FN,k−1]
p→ Ξ11Ξ22 +αK(Ξ11Σ22 + Ξ22Σ11) +

(1− αK)α2
K

(1− 2αK)

(
Σ11Σ22 + Σ2

12

)
(A.16)

Expanding the left-hand side yields:

E[D2
k,k̂mbtsls

| FN,k−1] = Ξ11Ξ22 +
KN

N
Ξ11Σ22 +

KN

N
Ξ22Σ11 + 2

KN

N
Σ12

1

K2
N

∑
l<k

∑
m<k

sπ12,νl sγ,εm

+ (Ξ11 +
KN

N
Σ11)

1

K2
N

∑
l<k

∑
m<k

sπ12,νl sπ12,νm + (Ξ22 +
KN

N
Σ22)

1

K2
N

∑
l<k

∑
m<k

sγ,εl sγ,εm

+ 2k̂mbtsls(1− k̂mbtsls)Eε10,kν10,kΣ̂12,k + k̂2
mbtsls(KN/N)2(Σ11Σ22 + 2Σ2

12) + (1− k̂mbtsls)
2EΣ̂2

12,k

(A.17)

where the expectations in the last line equal

EΣ̂2
12,k =

KN

N
(1− KN

N
)Σ11Σ22 + (1− KN

N
)Σ2

12

Eε̂10,kν10,kΣ12,k =
KN

N

2

Σ11Σ22 + αΣ2
12

We can therefore write:

1

KN

KN∑
k=1

E[D2
k,k̂mbtsls

| FN,k−1] = Ξ11Ξ22 +
KN

N
Ξ11Σ22

+
KN

N
Ξ22Σ11 +

(1−KN/N)(KN/N)2

(1− 2(KN/N))2

(
Σ11Σ22 + Σ2

12

)
+ 2

KN

N
Σ12

1

K3
N

∑
k

∑
l<k

∑
m<k

sπ12,νl sγ,εm

+ (Ξ11 +
KN

N
Σ11)

1

K3
N

∑
k

∑
l<k

∑
m<k

sπ12,νl sπ12,νm + (Ξ22 +
KN

N
Σ22)

1

K3
N

∑
k

∑
l<k

∑
m<k

sγ,εl sγ,εm

Now, for a, b ∈ {(γ, ε), (π12, ν)}, note that:

1

K3
N

∑
k

∑
l<k

∑
m<k

sbl s
a
m =

1

K3
N

∑
l

(KN − l)sbl sal +
1

K3
N

∑
l

(KN − l)
∑
m<l

(sbl s
a
m + sbms

a
l ) = op(1)
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Therefore, the last three terms are op(1), which proves (A.16). One can also show thatK−2
N

∑
k ED4

k,k̂mbtsls
→

0, which implies (A.15). Next consider the mjive estimator. Let

Σ̂1
12,k =

KN

N

∑
i : Gi=k

Qiviεi Σ0
12,k =

KN

N

∑
i : Gi=k

(1−Qi)viεi

t12
k =

q

q −KN/N

(
Σ̂1

12,k − qν̄1,k ε̄1,k

)
+

1− q
1− q −KN/N

(
Σ̂0

12,k − (1− q)ν̄0,k ε̄0,k

)
Then we can write the mjive estimator as:

β̂mjive =
X′MW̃Y −

(
1− KN

N

)
X′MZ

(
I−DZ

)−1
Y

X′MW̃X−
(

1− KN
N

)
X′MZ

(
I−DZ

)−1
X

= β +

1
KN

∑
k

(
sγ,εk sπ12,νk + Σ̂12,k − ε10,kν10,k − (1− KN

N )t12
k

)
−K−2

N

∑
k

∑
l s
γ,ε
k sπ,νl

1
KN

∑
k

(
(sπ12,νk )2 + Σ̂22,k − ν2

10,k − (1− KN
N )t22

k

)
−K−2

N

∑
k

∑
l s
π,ν
k sπ,νl

Using (A.13) and the fact that by the weak law of large numbers t22
k

p→ Σ22, we get:

(
1

KN

∑
k

(
(sπ12,νk )2 + Σ̂22,k − ν2

10,k − (1− KN

N
)t22
k

)
−K−2

N

∑
k

∑
l

sπ,νk sπ,νl

)−1

= Ξ22 + op(1)

(A.18)

We can rewrite the nominator as:

1

KN

∑
k

(
sγ,εk sπ12,νk + Σ̂12,k − ε10,kν10,k − (1− KN

N
)t12
k

)
−K−2

N

∑
k

∑
l

sγ,εk sπ,νl =
1

KN

∑
k

D̃k+op(K
−1
N )

where:

D̃k = Dk,0 − (1− KN

N
)t12
k

Like in the case of mbtsls, under the Assumption that Ξ12 = 0, {K−1/2
N Dk,k̂mbtsls

}k≥1 is a martingale

difference sequence with respect to the filtration Fk = σ(γk, π12,k, {εi : Gi = k}, {νi : Gi = k}). To
prove the claim of the theorem for mjive, it therefore remains to check that:

1

KN

KN∑
k=1

E[D̃2
k | FN,k−1]

p→

Ξ11Ξ22 + αK(Ξ11Σ22 + Ξ22Σ11) + αK(1− αK)((1− αK)τ − 1)
(
Σ11Σ22 + Σ2

12

)
(A.19)
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and that:

K−2
N

∑
k

ED̃4
k → 0 (A.20)

These two conditions will allow us to apply the martingale central limit theorem to K−1
N

∑
k D̃k.

We first establish (A.19). Using the expansion in (A.17), we get that:

1

KN

KN∑
k=1

E[D̃2
k | FN,k−1] = Ξ11Ξ22 + αK(Ξ11Σ22 + Ξ22Σ11) + αK(1− αK)Σ11Σ22 + (1− αK)Σ2

12

+ (1−KN/N)2E[t12
k t

12
k ]− 2(1−KN/N)E[Dk,0t

12
k ] + op(1)

The remaining expectations are given by:

E[Dk,0t
12
k | FN,k−1] =

KN

N
Σ11Σ22 + Σ2

12

E[t12
k t

12
k | FN,k−1] =

(
q2

1−KN/N
+

(1− q)2

1− q −KN/N

)
KN

N
(Σ11Σ22 + Σ2

12) + Σ2
12

Substituting them in the expansion above yields (A.19). It can also be shown that (A.20) holds,
which proves the result. �
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Table 1: Estimates for Angrist-Krueger Data (N = 162, 487)

Standard Error

Estimator β̂ classic bekker many exo Λ11 > 0

single qob dummy

tsls 0.089 (0.021)

liml 0.089 (0.021) (0.021) (0.021)

btsls 0.089 (0.021) (0.021)

mbtsls 0.089 (0.021) (0.021) (0.021) (0.021)

jive 0.090 (0.021) (0.021)

mjive 0.089 (0.021) (0.021) (0.021) (0.021)

qob interacted with year and state of birth

tsls 0.073 (0.017)

liml 0.095 (0.017) (0.042) (0.042)

btsls 0.097 (0.017) (0.039)

mbtsls 0.098 (0.017) (0.040) (0.040) (0.039)

jive 0.056 (0.017) (0.053)

mjive 0.096 (0.017) (0.054) (0.040) (0.040)

qob interacted with year and state of birth, qob exogenous variable

tsls 0.069 (0.033)

liml 0.093 (0.034) (0.128) (0.128)

btsls 0.099 (0.034) (0.131)

mbtsls 0.102 (0.034) (0.132) (0.132) (0.132)

jive 0.064 (0.033) (0.180)

mjive 0.096 (0.034) (0.184) (0.133) (0.133)
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