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Abstract

We de�ne a notion of correlated equilibrium for games with incomplete information in a general

setting with �nite players, �nite actions, and �nite states, which we call Bayes correlated equilibrium.

The set of Bayes correlated equilibria of a �xed incomplete information game equals the set of

probability distributions over actions, states and types that might arise in any Bayes Nash equilibrium

where players observed additional information. We show that more information always shrinks the set

of Bayes correlated equilibria.
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1 Introduction

We present a notion of correlated equilibrium in games with incomplete information. Aumann (1974),

(1987) introduced the notion of correlated equilibrium in games with complete information. A number of

de�nitions of correlated equilibrium in games with incomplete information have been suggested, notably

in Forges (1993). Our de�nition is driven by a di¤erent motivation from the earlier literature; we seek

the solution concept which characterizes the set of Bayes Nash equilibria which can be sustained by some

information structure in a �xed economic setting. This leads us to suggest an equilibrium notion - Bayes

correlated equilibrium - which is weaker than the weakest de�nition of incomplete information correlated

equilibrium (the Bayesian solution) in Forges (1993), because it allows play to be correlated with states

that are not known by any player.

We distinguish between the "basic game" or "payo¤ environment" from the "information structure" or

"belief environment" in the de�nition of the game. By payo¤ environment, we refer to the set of actions,

the set of payo¤ states, the utility functions of the agents, and the common prior over the payo¤ states.

By belief environment, we refer to the type space of the game, which is generated by a mapping from the

payo¤ states to a probability distribution over types. The separation between payo¤and belief environment

enables us to ask how changes in the belief environment a¤ect the equilibrium set for a given and �xed

payo¤ environment. We introduce a natural partial order on information structures that captures when

one information structure contains more information than another. This partial order is a variation on

a many player generalization of the ordering of Blackwell (1953) introduced by Lehrer, Rosenberg, and

Shmaya (2010), (2011). We show that the set of Bayes correlated equilibria shrinks as the informativeness

of the information structure increases.

The present de�nition of Bayes correlated equilibrium is used prominently in the analysis of our compan-

ion paper, "Robust Predictions in Games with Incomplete Information", Bergemann and Morris (2011b).

In the companion paper, we analyze how much can be said about the joint distribution of actions and

states on the basis of the knowledge of the payo¤ environment alone. There we refer to �robust predic-

tions�as those predictions which can be made with the knowledge of the payo¤ environment alone, and

without any assumption about the belief environment. In the companion paper, the analysis was con�ned

to an environment with quadratic and symmetric payo¤ functions, a continuum of agents and normally

distributed uncertainty about the common payo¤ state. But this tractable class of models enabled us to

o¤er robust predictions in terms of restrictions on the �rst and second moments of the joint distribution

over actions and state. By contrast, here we present the de�nition of the Bayes correlated equilibrium in a

canonical game theoretic framework with a �nite number of agents, a �nite set of pure actions and a �nite

set of payo¤ states. After we introduce the relevant notions, we show in Section 7 how the present results
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translate into the setting with a continuum of anonymous agents that we considered in Bergemann and

Morris (2011b).

A number of papers have considered alternative de�nitions of correlated equilibrium in games with

incomplete information, most notably Forges (1993), (2006). In this paper, we document the relationship

between our version of correlated equilibrium and the various de�nitions in the literature. In the discussion

of the various de�nitions of correlated equilibrium, we will �nd it is useful to divide restrictions that

the various solution concepts impose on the joint distribution over actions, states and types into two

classes: feasibility constraints on the distributions of action-type-state pro�les, which are required to hold

independently of the payo¤ functions, and incentive constraints which re�ect the rationality of players�

choices. The only feasibility condition that we impose in de�ning the Bayes correlated equilibrium is a

consistency requirement that demands that the action-type-state distribution of the equilibrium implies

the distribution on the exogenous variables, namely the common prior on the payo¤ states and types.

In contrast, in many of the existing solution concepts, the feasibility conditions are intended to capture

the outcome of some form of communication among the agents with an uninformed mediator. It is then

natural to impose additional restriction on the action-state type distribution in equilibrium which have

to hold conditional on the agents� types. For example, the �Bayesian solution�, the weakest of Forges�

�ve de�nitions, imposes the restriction, referred to here as join feasibility, that the distribution over states

conditional on agents�types is not changed conditional on the mediator�s recommendations. Our notion of

Bayes correlated equilibrium is closest to the �Bayesian solution�but is strictly weaker than the Bayesian

solution, because we do not insist on join feasibility. Our notion is equivalent to the Bayesian solution if

we add a "dummy player" who observes nature�s move perfectly but does not take any actions.

A number of papers - notably Gossner (2000) and Lehrer, Rosenberg, and Shmaya (2010), (2011) -

have examined comparative statics of how changing the information structure e¤ects the set of predictions

that can be made about players�actions, under Bayes Nash equilibrium or alternative solution concepts.

We review these results and their relation to our new result on the comparative statics of the information

structure. We discussed above that as the agents become more informed, where information is encoded in

their type, the set of possible predictions must be reduced. As the agents have more private information,

the incentive constraints, here referred to as obedience constraints, will become tighter. The role of the

private information in re�ning the equilibrium prediction is important in our "Robust Prediction" agenda.

We will formalize this result here in the general framework of the current paper rather than in the speci�c

environment of quadratic payo¤ functions and normally distributed uncertainty of Bergemann and Morris

(2011b).

We say that two information structures are informationally equivalent to each other if each is more
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informed than the other. We also show that two information structures are informationally equivalent if

and only if they generate the same probability distributions over players�beliefs and higher order beliefs.

Thus it is a corollary of our comparative result that two information structures support the same set of

Bayes correlated equilibria if and only if there are equivalent in terms of the higher order beliefs they

generate.

We also illustrate the notion of Bayes correlated equilibrium and the resulting robust predictions in a

single player two action two state game (decision problem), which is closely related to the sender receiver

problem studied by Kamenica and Gentzkow (forthcoming), where the sender is allowed to commit to a

communication strategy.

In a series of papers collected in Bergemann and Morris (2012) we have studied "robust mechanism

design" (see Bergemann and Morris (2011a) for an introductory essay). In this earlier setting, the agents

knew their own "payo¤ types", and while there was common knowledge of how utilities depended on the

pro�le of payo¤ types, the agents were allowed to have any beliefs and higher order beliefs about others�

payo¤ types. We then de�ned a mechanism to be robust if the social choice function or correspondence

could be truthfully implemented in the direct mechanism as a Bayes Nash equilibrium for any beliefs and

higher order beliefs about others�payo¤ types. In Bergemann and Morris (2007), we discussed the game

theoretic framework underlying the analysis in the mechanism design environment. The notion of Bayes

correlated equilibrium is motivated by the same concern for robustness but it encodes a less demanding

notion of robustness. The Bayes correlated equilibrium insists that the common prior over the state

and type distribution is preserved, and in the case of the �null information structure� that the common

prior over the state alone is preserved, but all additional correlation due to unobserved communication or

information among the agents is permitted.

We proceed as follows. In Section 2, we describe a general incomplete information game and compare

Bayes Nash equilibrium with a solution concept which we call Bayes correlated equilibrium. In Section

3, we describe our robust predictions approach and explain the key role played by an "epistemic" result:

the set of Bayes correlated equilibrium probability distributions over actions, types and payo¤-relevant

variables equals the set of probability distributions of actions, types and payo¤-relevant variables that

might arise in a Bayes Nash equilibrium if players were able to observe additional information signals

beyond their original types.

In Section 4, we explain how the solution concept we dub "Bayes correlated equilibrium" relates to the

literature, in particular Forges (1993), (2006). In Section 5, we report results on comparing information

structures. In Section 6, we review special cases in order to illustrate the robust predictions agenda more

broadly. In Section 7, we describe analogues of our results for continuum anonymous player games, which
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apply to our work in �Robust Predictions in Games with Incomplete Information�. Section 8 concludes

and contains a discussion of the relation to the signed covariance result of Chwe (2006) and the "payo¤

types" environments of Bergemann and Morris (2007).

2 Bayes Nash and Bayes Correlated Equilibrium

Throughout the paper, we will �x a �nite set of players and a �nite set of payo¤ states of the world. There

are I players, 1; 2; :::; I, and we write i for a typical player. We write � for the payo¤ states of the world

and � for a typical element of �.

A "basic game" G consists of (1) for each player i, a �nite set of actions Ai and a utility function

ui : A � �! R; and (2) a full support prior  2 �(�), where we write A = A1 � � � � � AI . Thus

G =
�
(Ai; ui)

I
i=1 ;  

�
. An "information structure" S consists of (1) for each player i, a �nite set of types

or "signals" Ti; and (2) a signal distribution � : � ! �(T ), where we write T = T1 � � � � � TI . Thus

S =
�
(Ti)

I
i=1 ; �

�
.

Together, the "payo¤ environment" or "basic game" G and the "belief environment" or "information

structure" S de�ne a standard "incomplete information game". While we use di¤erent notation, this

division of an incomplete information game into the "basic game" and the "information structure" is a

standard one in the literature, see, for example, Lehrer, Rosenberg, and Shmaya (2010).

A (behavioral) strategy for player i in the incomplete information game game (G;S) is �i : Ti ! �(Ai).

Write bBi for the set of strategies of player i in the game (G;S). The following is the standard de�nition of
Bayes Nash equilibrium in this setting.

De�nition 1 A strategy pro�le � is a Bayes Nash equilibrium (BNE) of (G;S) if for each i = 1; 2; :::; I,

ti 2 Ti and ai 2 Ai with �i (aijti) > 0, we have

X
a�i2A�i

X
t�i2T�i

X
�2�

ui ((ai; a�i) ; �) (�)

0@Y
j 6=i

�j (aj jtj)

1A� ((ti; t�i) j�) (1)

�
X

a�i2A�i

X
t�i2T�i

X
�2�

ui
��
a0i; a�i

�
; �
�
 (�)

0@Y
j 6=i

�j (aj jtj)

1A� ((ti; t�i) j�) ,

for each a0i 2 Ai.

For notational ease, we shall henceforth use the convention of describing a multiple sum through a
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single summation symbol:

X
a�i2A�i

X
t�i2T�i

X
�2�

ui ((ai; a�i) ; �) (�)

0@Y
j 6=i

�j (aj jtj)

1A� ((ti; t�i) j�)

,
X

a�i;t�i;�

ui ((ai; a�i) ; �) (�)

0@Y
j 6=i

�j (aj jtj)

1A� ((ti; t�i) j�) .

The relevant space of uncertainty in the incomplete information game (G;S) is A � T � �, and we will
write � for a typical element of �(A� T ��). There are two kinds of constraints imposed in de�ning
alternative versions of incomplete information correlated equilibrium: "feasibility" constraints and "in-

centive" constraints. Our preferred de�nition will impose one feasibility condition, "consistency", which

simply says that the marginal of distribution � on the exogenous variables T and � is consistent with the

description of the game (G;S).

De�nition 2 Distribution � 2 �(A� T ��) is consistent for (G;S) if, for all t 2 T and � 2 �, we haveX
a2A

� (a; t; �) =  (�)� (tj�) : (2)

We will also impose the weakest natural incentive constraint, "obedience", that says that a player i

who knows his type ti, his recommended action ai and the distribution � only has an incentive to follow

that recommendation.

De�nition 3 Distribution � 2 �(A� T ��) is obedient for (G;S) if, for each i = 1; :::; I, ti 2 Ti and

ai 2 Ai, we have X
a�i;t�i;�

ui ((ai; a�i) ; �) � ((ai; a�i) ; (ti; t�i) ; �) (3)

�
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ;

for all a0i 2 Ai.

Now our leading de�nition of correlated equilibrium for incomplete information games will be:

De�nition 4 A probability distribution � 2 �(A� T ��) is a Bayes correlated equilibrium (BCE) of

(G;S) if it is consistent and obedient.
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As we will discuss in detail below in Section 4, this is a weakening of the de�nition of "Bayesian solution"

in Forges (1993), with the di¤erence that we work with a incomplete information game description that

does not integrate out payo¤ states and thus allows the mediator to make action recommendations that

depend on a payo¤ state that is observed by nobody. We will discuss in the next section why this de�nition

is interesting for our robust predictions agenda.

A Bayes Nash equilibrium � is a strategy pro�le in bB. A Bayes correlated equilibrium � is an element

of �(A� T ��) and thus a distribution over action-type-state pro�les. To compare the two solution
concepts, we would like to discuss the distribution of action-type-state pro�les generated by a BNE.

De�nition 5 Distribution � 2 �(A� T ��) is induced by strategy pro�le � 2 bB if, for each a 2 A,

t 2 T and � 2 �, we have

� (a; t; �) =  (�)� (tj�)
IY
i=1

�i (aijti) . (4)

Distribution � 2 �(A� T ��) is Bayes Nash equilibrium action-type-state distribution of (G;S) if there

exists a Bayesian Nash equilibrium � of (G;S) that induces it.

We also have the following important straightforward observation:

Lemma 1 Every Bayes Nash equilibrium action-type-state distribution of (G;S) is a Bayes correlated

equilibrium of (G;S).

Proof. Consistency follows immediately by summing across action pro�les in equation (4) in the

de�nition of a Bayes Nash equilibrium action-type-state distribution. Now if � is induced by BNE �, thenX
a�i;t�i;�

ui ((ai; a�i) ; �) � ((ai; a�i) ; (ti; t�i) ; �)

=
X

a�i;t�i;�

ui ((ai; a�i) ; �) (�)� (tj�)
IY
j=1

�j (aj jtj) , by (4)

= �i (aijti)
X

a�i;t�i;�

ui ((ai; a�i) ; �) (�)� (tj�)
Y
j 6=i

�j (aj jtj)

� �i (aijti)
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� (tj�)

Y
j 6=i

�j (aj jtj) , by (1)

=
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� (tj�)

IY
j=1

�j (aj jtj)

=
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ,

which establishes the result.
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We will be interested in what can be said about actions and states if types are not observed. This

suggests the following de�nitions.

De�nition 6 Action-state distribution � 2 �(A��) is induced by � 2 �(A� T ��) if it is the marginal
of � on A � �. Action-state distribution � 2 �(A��) is a BNE action-state distribution of (G;S) if it
is induced by a BNE action-type-state distribution of (G;S). Action-state distribution � 2 �(A��) is a
BCE action-state distribution of (G;S) if it is induced by a Bayes correlated equilibrium of (G;S).

An important special information structure is the "null" information with players knowing nothing

about the states. Formally, the null information structure S0 =
���

t0i
	�I

i=1
; �0
�
, where t0i is the singleton

type of player i and �0
�
t0j�
�
= 1 for each � 2 �. We will abbreviate the (degenerate) incomplete

information game (G;S0) to G. Observe that in the special case of a null information structure, the space

A� T �� reduces to A�� and the consistency condition (2) on � 2 �(A��) becomesX
a2A

� (a; �) =  (�) (5)

for all � 2 �; and the obedience constraint (3) reduces toX
a�i;�

ui ((ai; a�i) ; �)� ((ai; a�i) ; �) �
X
a�i;�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; �) ; (6)

for each i = 1; :::; I, ai 2 Ai and a0i 2 Ai. Now the following de�nition is a special case of de�nition 4:

De�nition 7 A probability distribution � 2 �(A��) is a Bayes correlated equilibrium (BCE) of a basic

game G if it is consistent (satisfying condition (5)) and obedient (satisfying condition (6)).

Another important and straightforward observation we will use is that if an action-type-state distrib-

ution � is a BCE of an incomplete information game (G;S), then the action-state distribution induced by

� is a BCE of the basic game:

Lemma 2 If � 2 �(A��) is induced by a BCE � 2 �(A� T ��), then � is a BCE of G.

Proof. Summing consistency condition (2) across types gives consistency condition (5). Summing

obedience condition (3) across types gives obedience condition (6).

As we will discuss in detail below, this result is in the spirit of Proposition 4 of Forges (1993), which

shows that "any" correlated equilibrium solution concept of (G;S) generates an equilibrium of the basic

game G.
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3 Robust Predictions

Consider an analyst who knows that

1. G describes actions, payo¤ functions depending on fundamental states, and a prior distribution on

fundamental states.

2. Players have observed at least information structure S.

3. The full, common prior, information structure is common certainty among the players.

4. The players�actions follow a Bayes Nash equilibrium.

What can she deduce about the joint distribution of actions, types in the "information structure" S

and states? In this section, we will formalize this question and show that all she can deduce is that the

distribution will be a BCE distribution of (G;S).

To formalize this, let eS = �(Zi)Ii=1 ; �� be a supplementary information structure, over and above S,
and suppose each agent i observes a supplementary signal zi 2 Zi, where � : � � T ! Z describes the

distribution of supplementary signals. Now
�
G;S; eS� is an "augmented incomplete information game".

Write �i : Ti � Zi ! �(Ai) for a behavior strategy of player i in the augmented incomplete information

game.

De�nition 8 A strategy pro�le � is a Bayes Nash equilibrium of the augmented game
�
G;S; eS� if, for

each i = 1; 2; :::; I, ti 2 Ti, zi 2 Zi and ai 2 Ai with �i (aij (ti; zi)) > 0, we have

X
a�i;t�i;z�i;�

ui ((ai; a�i) ; �) (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �)

�
X

a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �) .

for each a0i 2 Ai.

Write �� for the probability distribution over A� T �� generated by strategy pro�le �, so

�� (a; t; �) =  (�)� (tj�)
X
z2Z

� (zjt; �)
 

IY
i=1

�i (aijti; zi)
!
:

De�nition 9 A probability distribution � 2 �(A� T ��) is a BNE action-type-state distribution of�
G;S; eS� if there exists a BNE � of

�
G;S; eS� such that � = ��.
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Theorem 1 A probability distribution � 2 �(A� T ��) is a Bayes correlated equilibrium of (G;S) if and
only if it is a BNE action-type-state distribution of

�
G;S; eS� for some augmented information structureeS.

Proof. Suppose that � is a correlated equilibrium of (G;S). ThusX
a�i;t�i;�

ui ((ai; a�i) ; �) � ((ai; a�i) ; (ti; t�i) ; �)

�
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ;

for each i, ti 2 Ti, ai 2 Ai and a0i 2 Ai; andX
a2A

� (a; t; �) =  (�)� (tj�)

for all t 2 T and � 2 �. Construct an augmented information structure eS =
�
(Zi)

I
i=1 ; �

�
with each

Zi = Ai and

� (ajt; �) = � (aj�; t) .

Now in the augmented incomplete information game
�
G;S; eS�, consider the "truthful" strategy pro�le �

with �i (aijti; ai) = 1 for all i, ti and ai. Clearly, we have �� = �. Now

X
a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �)

=
X

a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ;

and thus Nash equilibrium conditions are implied by the correlated equilibrium conditions on �.

Conversely, suppose that � is a Bayes Nash equilibrium of
�
G;S; eS�. Now �i (aij (ti; zi)) > 0 implies

X
a�i;t�i;z�i;�

ui ((ai; a�i) ; �) (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �)

�
X

a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �) .

for each a0i 2 Ai. Thus

X
zi2Zi

�i (aij (ti; zi))
X

a�i;t�i;z�i;�

ui ((ai; a�i) ; �) (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �)

�
X
zi2Zi

�i (aij (ti; zi))
X

a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �) .
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But

X
zi2Zi

�i (aij (ti; zi))
X

a�i;t�i;z�i;�

ui
��
a0i; a�i

�
; �
�
 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj ; zj)

1A� ((zi; z�i) j (ti; t�i) ; �)

=
X

a�i;t�i;�

ui
��
a0i; a�i

�
; �
�
�� ((ai; a�i) ; (ti; t�i) ; �)

and thus BNE conditions imply that �� is a BCE.

An alternative formulation of this result would be to say that BCE captures the implications of common

certainty of rationality (and the common prior assumption) in the game (G;S), since requiring BNE in

some game with augmented information is equivalent to describing a belief closed subset where the game

(G;S) is being played and there is common certainty of rationality. Thus this is an incomplete information

analogue of the Aumann (1987) characterization of correlated equilibrium for complete information games

and thus - as described in more detail in the next section - corresponds to the "partial Bayesian approach"

of Forges (1993), with the di¤erence that she works with the reduced game - integrating out the payo¤

states �.

This result characterizes the behavior consistent with common knowledge of rationality in an incomplete

information setting. Aumann and Dreze (2008) have recently given a characterization of the possible

"values" of a complete information game, i.e., the set of interim expected utilities which would be consistent

with common knowledge of rationality and payo¤s of the game. They show that this set is equal to the

set of interim expected utilities that might arise in a correlated equilibrium of the "doubled" game where

each action of each player had an identical copy. We conjecture that an analogous argument will provide

an analogous result in the present incomplete information setting.

For completeness, we report the corollary that arises from applying Theorem 1 in the special case where

information structure S is null. We then have:

Corollary 1 A probability distribution � 2 �(A��) is a Bayes correlated equilibrium of basic game G

if and only if it is a BNE action-state distribution of (G;S) for some information structure S.

4 Bayes Correlated Equilibrium and the Bayesian Solution

Forges (1993) is titled and identi�es "�ve legitimate de�nitions of correlated equilibrium in games with

incomplete information;" Forges (2006) describes a mistake in Forges (1993) that leads to a sixth de�nition,

the Bayesian solution. Bayes correlated equilibrium is a weakening of the weakest of these solutions for

an incomplete information game (G;S), the Bayesian solution. The weakening arises because we allow
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outcomes to depend on states that no player knows, while Forges�solutions do not. In this Section, we �rst

(in Section 4.1) describe the Bayesian solution and explain how Bayes correlated equilibria can be seen

as Bayesian solutions if we add a dummy player who knows what the true state is but does not take any

actions. Then (in Section 4.2), for completeness, we report on the relation of Bayes correlated equilibrium

and the Bayesian solution to four stronger solution concepts surveyed in Forges (1993), (2006). Finally (in

Section 4.3), we discuss the "universal Bayesian approach" in Forges (1993), which roughly corresponds -

in our language - to Bayes correlated equilibria of the basic game (with the null information structure).

Before we start, let us highlight a few di¤erences between our formulation of games and solution concepts

from that of Forges (1993), which may be helpful in understanding the relation. An important di¤erence

is that we include the distribution of payo¤ states �, which are not necessarily known to players, in our

solution concept, while she integrates out payo¤ states. Three less important di¤erences in the formulation

that it is helpful to bear in mind are:

1. While we directly de�ne solution concepts for (G;S) as subsets of action-type-state distributions

�(A� T ��), she characterizes the set of equilibrium payo¤s satisfying a set of restrictions which

implicitly de�ne the solution concept in our sense.

2. While we work with a "basic game", G =
�
(Ai; ui)

I
i=1 ;  

�
, describing prior and payo¤s and an

"information structure" S =
�
(Ti)

I
i=1 ; �

�
, she distinguishes between the "decision problem with

incomplete information," (Ai; ui)
I
i=1 and includes the prior on payo¤ states in her description of the

"information scheme".

3. While we and Forges (2006) allow for any �nite number of players, Forges (1993) focussed on the two

player case for simplicity.

4.1 Bayesian Solution

Recall that the only feasibility condition we imposed in de�ning Bayes correlated equilibrium was the

consistency requirement (De�nition 2) that the action-type-state distribution implied the distribution on

exogenous variables (types and states) was that of the game (G;S). If the solution concept is intended to

capture the outcome of communication among the players, perhaps by allowing for an uninformed mediator,

it is natural to impose the additional restriction that the distribution over states conditional on agents�

types is not changed conditional on the mediator�s recommendations:
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De�nition 10 Distribution � 2 �(A� T ��) is join feasible for (G;S) if, for all a 2 A and t 2 T such
that X

�2�
� (a; t; �) > 0;

we have
� (a; t; �)X

�02�

�
�
a; t; �0

� =  (�)� (tj�)X
�02�

 
�
�0
�
�
�
tj�0
� (7)

for all � 2 �.

This restriction is equivalent to requiring that there exists a mediator strategy f : T ! �(A) such that

� (a; t; �) =  (�)� (tj�) f (ajt)

for all a 2 A; t 2 T; � 2 �. This assumption is (implicitly) maintained in all Forges�solution concepts for
(G;S) and is made explicit in Lehrer, Rosenberg, and Shmaya (2011) and Lehrer, Rosenberg, and Shmaya

(2010) (e.g., condition 4 on page 676 in Lehrer, Rosenberg, and Shmaya (2010)).

De�nition 11 A probability distribution � 2 �(A� T ��) is a Bayesian solution of (G;S) if it is
consistent, join feasible and obedient.

This is the solution concept discussed in Section 4.4 of Forges (1993) and one of the two discussed in

section 2.5 of Forges (2006). Lehrer, Rosenberg, and Shmaya (2011) refer to this as a "global equilibrium."

It also corresponds to the set of jointly coherent outcomes in Nau (1992), justi�ed from no arbitrage

conditions. Forges and Koessler (2005) provide a justi�cation if players are able to certify their types to

the mediator.

The following is a trivial (one player) example showing that Bayes correlated equilibrium is a more

permissive solution concept than the Bayesian solution for (G;S). Suppose there is one player, I = 1, and

two states, � =
�
�; �0

	
. Let the basic game G = (A1; u1;  ) be de�ned by A1 = fa1; a01g, u1 (a1; �) = 2,

u1
�
a1; �

0� = �1 and u1 (a01; �) = u1
�
a01; �

0� = 0, and  (�) =  
�
�0
�
= 1

2 . And consider the null information

structure S0. Consistency (5), obedience (6) and join feasibility (7) together imply that

� (a1; �) = �
�
a1; �

0� = 1

2
and �

�
a01; �

�
= �

�
a01; �

0� = 0.
This is thus the unique Bayesian solution. However, consistency (5) implies only that

� (a1; �) + �
�
a01; �

�
=

1

2
;

�
�
a1; �

0�+ � �a01; �0� =
1

2
;
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and obedience (6) implies only that

2� (a1; �)� �
�
a1; �

0� � 0;

2�
�
a01; �

�
� �

�
a01; �

0� � 0.

There are many Bayesian correlated equilibria satisfying the above constraints. The one maximizing the

player�s utility has

� (a1; �) = �
�
a01; �

0� = 1

2
and �

�
a1; �

0� = �
�
a01; �

�
= 0.

In Section 4.5, Forges (1993) discusses how more solution concepts are conceivable, including by dropping

join feasibility, and gives an example like the above illustrating this point.

We can link Bayes correlated equilibria to the Bayesian solution in two ways. First, say that an

information structure has no distributed uncertainty if combining the agents� information would allow

them to deduce the state �. Thus:

De�nition 12 Information structure S satis�es no distributed uncertainty if there exists g : T ! � such

that � (tj�) > 0) � = g (t)

An important class of environments where this condition will always be satis�ed is private value en-

vironments. This would be modelled in our language by setting � = �1 � � � � � �I , each Ti = �i and

let

� (tj�) =

8<: 1; if t = �;

0; if t 6= �:

As an example, in Bergemann, Brooks, and Morris (2011) we study �rst price auctions where bidders

know their own values of a signal object. This is a private value environment and thus has no distributed

uncertainty. By the next observation, the Bayesian solutions and Bayes correlated equilibria coincide in

this setting.

Now we have:

Lemma 3 If S satis�es no distributed uncertainty then any consistent � 2 �(A� T ��) is join feasible
and thus, for any basic game G, any Bayes correlated equilibrium of (G;S) is a Bayesian solution of (G;S).

Secondly, given any incomplete information game (G;S), we can add an extra "dummy player" 0 who

has only a trivial action choice but who observes the state �.1 The Bayesian solutions of the game with

the dummy player added will correspond to the Bayes correlated equilibria. Formally, �x a basic game

1We are grateful to Atsushi Kajii for suggesting that we pursue this dummy player interpretation of Bayes correlated

equilibrium.



15

G =
�
(Ai; ui)

I
i=1 ;  

�
and information structure S =

�
(Ti)

I
i=1 ; �

�
. Consider the modi�ed basic game

eG = �� eAi; eui�I
i=0

;  

�
with eA0 = fa0g, eAi = Ai for i = 1; :::; I and eui ��a0; (aj)Ij=1� ; �� = ui

�
(aj)

I
j=1 ; �

�
for i = 1; :::; I (the form of eu0 does not matter since the dummy player 0 does not have any action choice);
and modi�ed information structure eS = ��eTi�I

i=0
; e��, with eT0 = �, eTi = Ti for i = 1; :::; I and

e� ��t0; (ti)Ii=1� j�� =
8<: �

�
(ti)

I
i=1 j�

�
; if t0 = �;

0; if t0 6= �:

Say that distribution e� 2 �� eA� eT ��� corresponds to distribution � 2 �(A� T ��) if
e� ��a0; (ai)Ii=1� ;�t0; (ti)Ii=1� ; �� =

8<: �
�
(ai)

I
i=1 ; (ti)

I
i=1 ; �

�
; if t0 = �;

0; if t0 6= �:

Now we have:

Lemma 4 Distribution � 2 �(A� T ��) is a Bayes correlated equilibrium of (G;S) if and only if the

corresponding e� 2 �� eA� eT ��� is a Bayesian solution of the game � eG; eS� with added dummy player.
4.2 Four More Solution Concepts

We now describe four more de�nitions of correlated equilibrium for an incomplete information game (G;S)

from Forges (1993), (2006) which strengthen the Bayesian solution. It is useful to divide restrictions into

two classes: feasibility constraints on the distribution of action-type-state pro�les, which are required to

hold independent of the payo¤ functions, and incentive constraints which are rationality constraints on

players�action choices. The closest solutions to our notion of Bayes correlated equilibrium rely only on

additional feasibility constraints, maintaining obedience as the only incentive compatibility constraint.

The Bayesian solution concept allowed players to learn about other players�types from the mediator�s

recommendation. The following condition removes this possibility:

De�nition 13 Distribution � 2 �(A� T ��) is belief invariant for (G;S) if, for all ti 2 Ti and ai 2 Ai
such that X

a�i2A�i;t�i2T�i;�2�
� ((ai; a�i) ; (ti; t�i) ; �) > 0;

we have X
a�i2A�i;�2�

� ((ai; a�i) ; (ti; t�i) ; �)X
a�i2A�i;t0�i2T�i;�2�

�
�
(ai; a�i) ;

�
ti; t0�i

�
; �
� =

X
�2�

 (�)� ((ti; t�i) j�)X
t0�i2T�i;�2�

 (�)�
��
ti; t0�i

�
j�
� (8)

for each t�i 2 T�i.
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This is condition 3 on page 676 in Lehrer, Rosenberg, and Shmaya (2010). As Forges (2006) puts it,

"the omniscient mediator can use his knowledge of the types to make his recommendations but the players

should not be able to infer anything on the others�types from their recommendations." This restriction is

added to give the �rst strengthening of the Bayesian solution:

De�nition 14 A probability distribution � 2 �(A� T ��) is a belief invariant Bayesian solution of
(G;S) if it is consistent, join feasible, belief invariant and obedient.

This is the second solution concept discussed in Section 2.5 of Forges (2006); it was discussed informally

in Section 4.4 of Forges (1993) but it was then mistakenly claimed that it was equivalent to agent normal

form correlated equilibrium. This solution concept is also used in Lehrer, Rosenberg, and Shmaya (2010),

(2011). Because they do not work with the reduced game, i.e., they explicitly discuss payo¤ states like �,

it follows that they must explicitly impose a join feasibility restriction.

The belief invariant Bayesian solution allows the mediator to use information about players�types to

make a recommendation to players. Suppose that the mediator has no information about the players�types

when deciding what strategy to recommend as a function of the players�types. This is re�ected in the next

feasibility restriction. A pure strategy in the incomplete information game is function bi : Ti ! Ai. Write

Bi for the set of pure strategies of agent i and B for the set of pure strategy pro�les, B = B1 � � � � �BI .

De�nition 15 Distribution � 2 �(A� T ��) is agent normal form feasible for (G;S) if there exists

q 2 �(B) such that
� (a; t; �) =  (�)� (tj�)

X
fb2Bjb(t)=ag

q (b) (9)

for each a 2 A, t 2 T and � 2 �.

One can show that agent normal form feasibility implies belief invariance. This restriction is added to

give the second stronger solution concept:

De�nition 16 A probability distribution � 2 �(A� T ��) is an agent normal form correlated equilib-

rium of (G;S) if it is consistent, join feasible, agent normal form feasible (and thus belief invariant) and

obedient.

This is the solution concept discussed in Section 4.2 of Forges (1993) and Section 2.3 of Forges (2006). It

corresponds to applying the complete information de�nition of correlated equilibrium to the agent normal

form of the reduced incomplete information game. It was also studied by Samuelson and Zhang (1989)

and Cotter (1994). The solution concept only makes sense on the understanding that the players receive
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a recommendation for each type but do not learn what recommendation they would have received if they

had been di¤erent types. If they did learn the whole strategy that the mediator choose for them in the

strategic form game, then an extra incentive compatibility condition would be required:

De�nition 17 Distribution � 2 �(A� T ��) is strategic form incentive compatible for (G;S) if there

exists such that

� (a; t; �) =  (�)� (tj�)
X

fb2Bjb(t)=ag
q (b) (10)

for each a 2 A, t 2 T and � 2 �; and, for each i = 1; :::; I, ti 2 Ti, ai 2 Ai and bi 2 Bi such that

bi (ti) = ai, we have X
a�i2A�i;t�i2T�i;�2�

 (�)� (tj�)

0@ X
fb�i2B�ijb�i(t�i)=a�ig

q (bi; b�i)

1Aui ((ai; a�i) ; �) (11)

�
X

a�i2A�i;t�i2T�i;�2�
 (�)� (tj�)

0@ X
fb�i2B�ijb�i(t�i)=a�ig

q (bi; b�i)

1Aui
��
a0i; a�i

�
; �
�

for all a0i 2 Ai.

Note that this condition implies both agent normal form feasibility and obedience. This restriction

gives the third stronger solution concept:

De�nition 18 A probability distribution � 2 �(A� T ��) is a strategic form correlated equilibrium of

(G;S) if it is consistent, join feasible and strategic form incentive compatible (and thus agent normal form

feasible, belief invariant and obedient).

This is the solution concept discussed in Section 4.1 of Forges (1993) and Section 2.2 of Forges (2006).

This solution concept was studied by Cotter (1991).

Thus far we have simply been adding restrictions, so that the solution concept have become stronger

as we go from Bayesian solution, to belief invariant Bayesian solution, to agent normal form correlated

equilibrium, to strategic form correlated equilibrium. For the Bayesian solution, an omniscient mediator

who observes players� types for free is assumed. For agent normal form and strategic form correlated

equilibrium, the players�types cannot play a role in the selection of recommendations to the players. An

intermediate assumption is that the players can report their types to the mediator, but will do so truthfully

only if it is incentive compatible to do so. Write �� : T��! A for the mediator�s recommendation strategy

implied by � 2 �(A� T ��), so that, for each t 2 T and � 2 � with
X
a02A

� (a0; t; �) > 0,

�� (ajt; �) =
� (a; t; �)X

a02A
� (a0; t; �)

; for each a 2 A:
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De�nition 19 Distribution � 2 �(A� T ��) is truth telling for (G;S) if, for each i = 1; :::; I and

ti 2 Ti, we have X
a2A;t�i2T�i;�2�

 (�)� ((ti; t�i) j�) �� ((ai; a�i) j (ti; t�i) ; �)ui ((ai; a�i) ; �) (12)

�
X

a2A;t�i2T�i;�2�
 (�)� ((ti; t�i) j�) ��

�
(ai; a�i) j

�
t0i; t�i

�
; �
�
ui ((�i (ai) ; a�i) ; �) ;

for all t0i 2 Ti and �i : Ai ! Ai.

Note that this condition implies obedience (De�nition 3). One can show that this condition is implied

by strategic form incentive compatibility. Now we have the �fth solution concept:

De�nition 20 A probability distribution � 2 �(A� T ��) is a communication equilibrium of (G;S) if

it is consistent, join feasible and truth-telling (and thus obedient).

This is the solution concept discussed in Section 4.3 of Forges (1993) and Section 2.4 of Forges (2006),

and developed earlier in the work of Myerson (1982) and Forges (1986).

Thus we have Forges��ve solution concepts for the incomplete information game (G;S):

1. Bayesian solution (De�nition 11);

2. Belief invariant Bayesian solution (De�nition 14);

3. Agent normal form correlated equilibrium (De�nition 16);

4. Strategic form correlated equilibrium (De�nition 18); and

5. Communication equilibrium (De�nition 20).

As documented by Forges (1993), (2006) and implied by the above de�nitions, we have that the Bayesian

solution [1] is weaker than the belief invariant Bayesian equilibrium solution [2], which is weaker than the

agent normal form correlated equilibrium [3], which is weaker than the strategic form correlated equilibrium

[4]; and also the Bayesian solution [1] is weaker than communication equilibrium [5] which is weaker

than strategic form correlated equilibrium [4]. Examples reported in Forges (1993), (2006) show that

each weak inclusion is strict and that the belief invariant Bayesian solution [2] and agent normal form

correlated equilibrium [3] cannot be ranked relative to communication equilibrium [5]. Our de�nition of

Bayes correlated equilibrium is weaker than the Bayesian solution, the weakest of Forges��ve, because we

do not maintain join feasibility.
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4.3 The Universal Bayesian Approach

In Section 6, Forges (1993) considers a "universal Bayesian approach" in which a prior "information scheme"

(in our language, prior on � and information structure) is not taken as given. Thus her "universal Bayesian

solution" is de�ned for (Ai; ui)
I
i=1. Expressing her ideas in the language of action-state distributions, she

studies the following solution concept.

De�nition 21 A probability distribution � 2 �(A��) is a universal Bayesian solution of (Ai; ui)Ii=1 if
it satis�es (6).

Thus a probability distribution � 2 �(A��) is Bayes correlated equilibrium of G =
�
(Ai; ui)

I
i=1 ;  

�
if and only if it is a universal Bayesian solution and satis�es (5). Recall that Corollary 1 showed that � 2
�(A��) is a Bayes correlated equilibrium of the basic game G if and only if there exists an information

structure S and a Bayes Nash equilibrium action-type-state distribution � 2 �(A� T ��) of (G;S)
which induces � 2 �(A��). This then corresponds to Forges�Proposition 4 when applied to the solution
concept of Nash equilibrium (although she states the results in terms of equilibrium payo¤s rather than

distributions). As she notes, her Proposition 4 is a natural incomplete information generalization of

Aumann (1987) and our Theorem 1 and Corollary 1 are also incomplete information generalizations of

Aumann (1987) stated in di¤erent terms.

5 Comparing Information Structures

An important result for our robust predictions agenda is that as players become more informed, the set

of possible predictions must be reduced, since obedience constraints will become tighter. Put like this, it

sounds like a tautology. The subtle part of presenting a formal version of this claim is identifying the right

notion of "more informed than" under which it is true. In this Section, we �rst introduce our notion of more

informed than (Section 5.1) and show that it is necessary and su¢ cient for reducing the set of predictions

(Section 5.2). Our notion of "more informed than" is a variant of the notion of "non-communicating

garbling" of Lehrer, Rosenberg, and Shmaya (2010), (2011). We study the relation in detail (in Section

5.3) and describe existing results of Gossner (2000), Lehrer, Rosenberg, and Shmaya (2010), (2011) (in

Section 5.4).

5.1 "More Informed Than"

Our formal de�nition of "more informed" works as follows. We require that there exists a joint distribution

over states and signals in both information structures such that (i) the marginals on each information
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structure are correct; and (ii) from the point of view of each individual player, information in the less

informed information structure is a garbling of information in the more informed one. Thus we have the

following formal de�nition:

De�nition 22 Information structure S is more informed than S0 if there exist � : T � � ! �(T 0) and,

for each i, �i : Ti ! �(T 0i ), such that

�0
�
t0j�
�
=
X
t2T

�
�
t0jt; �

�
� (tj�) (13)

for each t0 2 T 0 and � 2 �, satisfying also that for each i = 1; :::; I, ti 2 Ti, t0i 2 T 0i ,X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
= �i

�
t0ijti

�
(14)

for all t�i 2 T�i and � 2 �.
If S is more informed than S0, we refer to � as the mapping transforming S into S0. Information structure

S is informationally equivalent to S0 if S is more informed than S0 and S0 is more informed than S.

It is easy to check that if � is a singleton, then any information structure is informationally equivalent

to any other.

Informational equivalence has an characterization in terms of higher order belief equivalence.

De�nition 23 Two information structures S1 =
��
T 1i
�I
i=1

; �1
�
and S2 =

��
T 2i
�I
i=1

; �2
�
are higher order

belief equivalent if there exists a third type space S� =
�
(T �i )

I
i=1 ; �

�
�
and, for each i, f1i : T

1
i ! T �i and

f2i : T
2
i ! T �i such that (1) for all k, t

� and �,

�k
�n
tkjfk

�
tk
�
= t�

o
j�
�
= �� (t�j�) ; (15)

(2) for all k, i, ti 2 T ki , �, �0
�k (tij�)
�k
�
tij�0

� = ��
�
fki (ti) j�

�
��
�
fki (ti) j�0

� . (16)

It is easy (but notationally burdensome) to show that two information structures are higher order

belief equivalent in this sense if and only if, for any prior over states, they generate the same probability

distribution over beliefs and higher order beliefs (i.e., Mertens-Zamir types). We present a formal

statement of this equivalence in the appendix where we also give the proof of the following lemma:

Lemma 5 Two information structures are informationally equivalent if and only if they are higher order

belief equivalent.
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We can also interpret our de�nition of the "more informed than" relation directly by observing that

the "augmentation" of information we discussed in Section 3 is a canonical way of making an information

structure more informed in the sense of the de�nition. To see this, recall that we considered an information

structure S =
�
(Ti)

I
i=1 ; �

�
and an "augmentation" of that information structure, eS = �(Zi)Ii=1 ; ��, where

� : ��T ! Z. Taken together, S and eS describe a new information structure eS�S = �(Zi � Ti)Ii=1 ; � � ��,
where � � � : �! �

�
(Zi � Ti)Ii=1

�
is de�ned by

� � �
�
(zi; ti)

I
i=1

��� �� = �
�
(ti)

I
i=1

��� ����(zi)Ii=1��� (ti)Ii=1 ; �� :
Now we have:

Lemma 6 Information structure eS � S is more informed that S, for any information structure S and

augmentation eS.
Proof. Fix information structure

�
(Ti)

I
i=1 ; �

�
and augmentation eS = �(Zi)Ii=1 ; ��.

De�ne � : (Zi � Ti)Ii=1 ��! (Ti)
I
i=1 and �i : Zi � Ti ! �(Ti) by:

�
�
(ti)

I
i=1

��� �zi;eti�Ii=1 ; �� =
8<: 1; if

�eti�Ii=1 = (ti)Ii=1 ;
0; if otherwise.

and

�i
�
tij
�
zi;eti�� =

8<: 1; if eti = ti;

0; if otherwise.

Now observe that X
et2T;z2Z

�
�
(ti)

I
i=1

��� �zi;eti�Ii=1 ; ��� � � ��zi;eti�Ii=1��� ��
=

X
z2Z

� � �
�
(zi; ti)

I
i=1

��� ��
= �

�
(ti)

I
i=1

��� �� ;
and

X
t�i2T�i

�
�
(ti; t�i)j (zj)Ij=1 ;

�eti;et�i� ; �� = �
��
ti;et�i��� (zj)Ij=1 ; �eti;et�i� ; �� =

8<: 1; if eti = ti;

0; if otherwise;

= �i
�
tij
�
zi;eti�� :
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We omit the straightforward proof of transitivity of the "more informed than" relation:

Lemma 7 If information structure S is more informed than S0 and S0 is more informed than S00 then S

is more informed than S00:

Now we can use the previous two results to give a tighter characterization of the relation between

augmented information structures and the "more informed than" relation:

Lemma 8 Information structure S is more informed than S0 if and only if there exists an augmentationeS such that S is informationally equivalent to eS � S0.
Proof. Suppose that S is more informed than S0. Consider the augmentation eS = �(Zi)Ii=1 ; �� where

each Zi = Ti and � : T 0 ��! T is de�ned by

�
�
tjt0; �

�
=

� (tj�)� (t0jt; �)X
et2T

�
�etj��� �t0jet; �� :

To see that S is more informed than eS � S0, let b� : T ��! �
�
(Ti � T 0i )

I
i=1

�
and b�i : Ti ! �(Ti � T 0i ) be

de�ned by

b� ��eti; t0i�Ii=1��� (ti)Ii=1 ; �� =
8<: �

�
(t0i)

I
i=1

��� (ti)Ii=1 ; �� ; if
�eti�Ii=1 = (ti)Ii=1 ;

0; if otherwise.

and

b�i ��eti; t0i��� ti� =
8<: �i (t

0
ijti) ; if eti = ti;

0; if otherwise.

Now observe that

� � �0
��
ti; t

0
i

�I
i=1

��� �� = �0
��
t0i
�I
i=1

��� ����(ti)Ii=1��� �t0i�Ii=1 ; ��
=

�0
�
(t0i)

I
i=1

��� ��� �(ti)Ii=1��� ��� �(t0i)Ii=1��� (ti)Ii=1 ; ��X
et2T

�
��eti�Ii=1��� ��� �(t0i)Ii=1��� �eti�Ii=1 ; ��

= �
�
(ti)

I
i=1

��� ��� ��t0i�Ii=1��� (ti)Ii=1 ; �� ;
and

X
et�i2T�i;t0�i2T 0�i

b� ��etj ; t0j�Ij=1��� (tj)Ij=1 ; �� =

8>><>>:
X

t0�i2T 0�i

�

��
t0j

�I
j=1

���� (tj)Ij=1 ; �� ; if eti = ti;

0; if otherwise.

=

8<: �i (t
0
ijti) ; if eti = ti;

0; if otherwise.

= b�i ��eti; t0i��� ti� :
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To see that eS � S0 is more informed than S, let � : (Ti � T 0i )Ii=1 ��! �(T ) and �i : Ti � T 0i ! �(Ti) be

de�ned by

�
�
(ti)

I
i=1

��� �eti; t0i�Ii=1 ; �� =
8<: 1; if

�eti�Ii=1 = (ti)Ii=1 ;
0; if otherwise;

and

�i
�
tij
�eti; t0i�� =

8<: 1; if eti = ti;

0; if otherwise.

Now observe that X
et2T;t02T 0

�
�
(ti)

I
i=1

��� �eti; t0i�Ii=1 ; ��� � �0 ��eti; t0i�Ii=1��� ��
=

X
t02T 0

� � �0
��
ti; t

0
i

�I
i=1

��� ��
= �

�
(ti)

I
i=1

��� ��
and

X
t�i2T�i

�
�
(ti; t�i)j

�etj ; t0j�Ij=1 ; �� =

8<: 1; if eti = ti;

0; if otherwise;

= �i
�
tij
�eti; t0i�� :

Now suppose that S is informationally equivalent to eS � S0. This in particular means that S is more
informed than eS � S0. By Lemma 6, eS � S0 is more informed than S0. So by transitivity (Lemma 7), S is
more informed than S0.

5.2 Comparative Statics of Information

We present the main result of this paper showing that more information reduces the set of Bayes corre-

lated equilibria. Let us write BCE (G;S) for the subset of �(A��) consisting of all BCE action-state
distributions of (G;S). We say that information structure S is "BCE-larger" than S0 if it supports more

outcomes in Bayes correlated equilibrium. Thus:

De�nition 24 Information structure S0 is BCE-larger than information structure S if BCE (G;S) �
BCE (G;S0) for all games G. Information structure S0 is BCE-equivalent to information structure S if S0

is BCE-larger than S and S is BCE-larger than S0.

Now we have:



24

Theorem 2 S0 is BCE-larger than S if and only if S is more informed than S0.

We will prove below that if S is more informed than S0, then S0 is BCE-larger than S. The method

of proof is to show that if S is more informed than S0, we can take any game G and BCE action-state

distribution of (G;S) and show by construction that it is also a BCE action-state distribution of (G;S0).

We use the fact that S is more informed than S0 (and thus give rise to stronger obedience constraints) in

constructing the BCE for (G;S0).

We prove the converse in the appendix (Section ??). The method of proof is as follows. We �x an

information structure S and consider a class of "higher order beliefs" games GS;" indexed by " > 0 with

the property that players can report "-approximations of their higher order beliefs about �. We show that

(GS;"; S) will have a BCE where all types in S report their types truthfully, giving rise to an action-state

distribution ��. Now consider an information structure S0 which is BCE-larger than S. We must have that

for every " > 0, (GS;"; S0) has a BCE inducing action-state distribution ��. We show that this property

implies that S is more informed than S0.

Proof. We will prove here that if S is more informed than S0, then S0 is BCE-larger than S. In

particular, let � 2 �(A� T ��) be any BCE of (G;S). We will construct � 0 2 �(A� T 0 ��) which is
a BCE of (G;S0) which gives rise to the same action-state distribution as �.

Write Vi (ai; a0i; ti) for the expected utility for agent i under distribution � if he is type ti, receives

recommendation ai but chooses action a0i, so that

Vi
�
ai; a

0
i; ti
�
,

X
a�i2A�i;t�i2T�i;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) .

Now - by De�nition 3 - for each i = 1; :::; I, ti 2 Ti and ai 2 Ai, we have

Vi (ai; ai; ti) � Vi
�
ai; a

0
i; ti
�

(17)

for each a0i 2 Ai; and, by De�nition 2, for all t 2 T and � 2 �, we have

X
a2A

� (a; t; �) =  (�)� (tj�) : (18)

Now suppose that S is more informed than S0 and that � is the mapping that transforms S to S0 in that

de�nition. De�ne � 0 2 �(A� T 0 ��) by

� 0
�
a; t0; �

�
=
X
t2T

� (a; t; �)�
�
t0jt; �

�
. (19)
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By construction, for all t0 2 T 0 and � 2 �,X
a2A

� 0
�
a; t0; �

�
=

X
a2A;t2T

� (a; t; �)�
�
t0jt; �

�
, by (19)

=
X
t2T

 (�)� (tj�)�
�
t0jt; �

�
, by (18)

=  (�)�0
�
t0j�
�
, because � transforms S to S0:

Thus � 0 satis�es the consistency condition (De�nition 2) to be a BCE of (G;S0). Symmetrically, write

V 0i (ai; a
0
i; t

0
i) for the expected utility for agent i under distribution �

0 if he is type t0i, receives recommendation

ai but chooses action a0i, so that

V 0i
�
ai; a

0
i; t

0
i

�
,

X
a�i2A�i;t0�i2T 0�i;�2�

ui
��
a0i; a�i

�
; �
�
� 0
�
(ai; a�i) ;

�
t0i; t

0
�i
�
; �
�
.

Now � 0 satis�es the obedience condition (De�nition 3) to be a correlated equilibrium of (G;S0) if for each

i = 1; :::; I, t0i 2 T 0i and ai 2 Ai,
V 0i
�
ai; ai; t

0
i

�
� V 0i

�
ai; a

0
i; t

0
i

�
for all a0i 2 Ai. But

V 0i
�
ai; a

0
i; t

0
i

�
=

X
a�i2A�i;t0�i2T 0�i;�2�

ui
��
a0i; a�i

�
; �
�
� 0
�
(ai; a�i) ;

�
t0i; t

0
�i
�
; �
�

=
X

a�i2A�i;t0�i2T 0�i;�2�;t2T
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)�

�
t0jt; �

�
,

by the de�nition of � 0, see (19)

=
X

a�i2A�i;;t2T;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)

X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
=

X
a�i2A�i;t2T;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) �i

�
t0ijti

�
,

=
X
ti2Ti

�i
�
t0ijti

�24 X
a�i2A�i;t�i2T�i;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)

35
=

X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�
: (20)

Now for each i = 1; :::; I, t0i 2 T 0i and ai 2 Ai,

V 0i
�
ai; ai; t

0
i

�
=

X
ti2Ti

�i
�
t0ijti

�
Vi (ai; ai; ti) , by (20)

�
X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�
, by (17) for each ti 2 Ti

= V 0i
�
ai; a

0
i; t

0
i

�
, by (20)
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for each a0i 2 Ai. Thus � 0 is a BCE of (G;S0). By construction � 0 and � induce the same distribution in
�(A��). Since this argument started with an arbitrary BCE � of (G;S) and an arbitrary G, we have

BCE (G;S) � BCE (G;S0) for all games G.

An immediate corollary of our result is:

Corollary 2 Information structure S0 is BCE-equivalent to S if and only if S0 is informationally equivalent

to S0.

This result can be seen as the common prior / incomplete information correlated equilibrium analogue

of an non-common prior / incomplete rationalizability result of Dekel, Fudenberg, and Morris (2007).

Dekel, Fudenberg, and Morris (2007) suggested a weak de�nition of incomplete information rationalizability

("interim correlated rationalizability") that captured the implications of common certainty of rationality.

It was weaker than some alternative de�nitions in not imposing restrictions on how a player might believe

that opponents�behavior was correlated with payo¤ states; in particular, the correlations could convey

information not known to any player. Dekel, Fudenberg, and Morris (2007) showed that two types in any

type space were equivalent in terms of interim correlated rationalizable actions in all games if and only if

they mapped to the same Mertens-Zamir hierarchy of higher order beliefs about �.

The de�nition of Bayes correlated equilibrium in this paper is weaker than alternative de�nitions of

incomplete information correlated equilibrium in allowing arbitrary correlation with payo¤ states. It is the

natural equilibrium / common prior analogue to the solution concept of interim correlated rationalizability.

It captures the implications of common certainty of rationality and the common prior assumption (assum-

ing no further feasibility restrictions are imposed). Corollary 2 shows that the set of BCE action-state

distributions of (G;S) are the same as the set of BCE action-state distributions of (G;S0) for all games G

if and only if S is informationally equivalent to S0; and, as we noted above, S is informationally equivalent

to S0 if and only if they generate the same probability distribution over Mertens-Zamir hierarchies.

We can add a further connection. Ely and Peski (2006) consider a �ner de�nition of incomplete

information rationalizability that does not allow unexplained correlation between an opponent�s behavior

and the payo¤ state: Dekel, Fudenberg, and Morris (2007) call this solution concept "interim independent

rationalizability." Ely and Peski (2006) show that two types in any type space are equivalent in terms of

interim independent rationalizable actions in all games if and only if they mapped to the same "hierarchies

of conditional beliefs" that they describe. The Bayesian solution can be seen as an equilibrium / common

prior analogue of interim independent rationalizability. And Tang (2010) has shown that two information

structures are "Bayesian solution equivalent" to each other if and only if they give rise to the same

probability distributions over "hierarchies of conditional beliefs," i.e., the hierarchies introduced by Ely
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and Peski (2006).

5.3 Garblings

Lehrer, Rosenberg, and Shmaya (2010), (2011) introduced an elegant language for comparing information

structures. Our "more informed than" relation is a variation on one of their conditions. In this Section,

we review their language and discuss the connection with our "more informed than" relation. In Section

5.4, we discuss the results on the impact of changing information structures on the set of equilibria that

they and Gossner (2000) have derived for other solution concepts.

De�nition 25 Information structure S0 is a garbling of S if there exists � : T ! �(T 0) and satisfying

�0
�
t0j�
�
=
X
t2T

� (tj�) �
�
t0jt
�

for each t0 2 T 0 and � 2 �. The map � is called a garbling that transforms S to S0.

This says that the join of the information in S0 is a garbling in the sense of Blackwell (1951) of the join

of the information in S. Garbling � is non-communicating if, for each i = 1; :::; I, ti 2 Ti, t0i 2 Ti,X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i)

�
=

X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j
�
ti;et�i��

for all t�i;et�i 2 T�i.
De�nition 26 Information structure S0 is a non-communicating garbling of S if there exists a non-

communicating garbling � that transforms S into S0.

This condition requires that each player�s information in S0 is a Blackwell garbling of his information in

S. If garbling � is a non-communicating garbling, we write �i (t
0
ijti) for the (t�i independent) probability

of t0i conditional on ti, i.e.,

�i
�
t0ijti

�
�
X
t0�i2Ti

�
��
t0i; t

0
�i
�
j (ti; t�i)

�
:

Garbling � is coordinated if there exist � 2 �(f1; :::;Kg) and, for each i, �i : Ti�f1; :::;Kg ! �(Ti) such

that

�
�
t0jt
�
=

KX
k=1

� (k)
IY
i=1

�i
�
t0ijti; k

�
for each t 2 T and t0 2 T 0.

De�nition 27 Information structure S0 is a coordinated garbling of S if there exists a coordinated garbling

� that transforms S into S0.
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A garbling is independent if it is coordinated withK = 1, so that there exists, for each i, �i : Ti ! �(Ti)

such that

�
�
t0jt
�
=

IY
i=1

�i
�
t0ijti

�
for each t 2 T and t0 2 T 0.

De�nition 28 Information structure S0 is an independent garbling of S if there exists a independent

garbling � that transforms S into S0

Lehrer, Rosenberg, and Shmaya (2010), (2011) note that, by de�nition, an independent garbling is a

coordinated garbling, a coordinated garbling is a non-communicating garbling and a non-communicating

garbling is a garbling, and present elegant examples showing that none of the reverse implications is true.

Our De�nition 22 says that an information structure S is more informed than information structure S0

if S0 is non-communicating garbling of S in the sense of De�nition 25, with the twist that we allow � to be

a function of � as well as T . Thus if S0 is a non-communicating garbling of S, then S is more informed

than S0. But a robust example in the Appendix (Section 9.4) shows that the converse is not true.

One way to further understand the connection is to introduce a 0th "dummy player" (as we did in

Section 4.1) into both information structures S and S0 who observes � perfectly under both information

structures. Write (as we did in Section 4.1), eS and eS0 for the information structures that arise if we add
the dummy player. Now we have:

Lemma 9 Information structure S is more informed than information structure S0 if and only if eS0 is a
non-communicating garbling of information structure eS:
5.4 The Existing Literature

Say that an information structure S is larger than S0 under a given equilibrium concept if, for every game

G, every action-state distribution induced by an equilibrium of (G;S0) is also induced by an equilibrium

of (G;S). Information structure S is equivalent to S0 under a given equilibrium concept if S is larger than

S0 and S0 is larger than S under that equilibrium.

Theorem 2.8 in Lehrer, Rosenberg, and Shmaya (2011) shows that

1. Two information structures are equivalent under Bayes Nash equilibrium if and only if they are

independent garblings of each other.

2. Two information structures are equivalent under Agent Normal Form correlated equilibrium (De�n-

ition 16) if and only if they are coordinated garblings of each other.
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3. Two information structures are equivalent under the Belief Invariant Bayesian Solution (De�nition

14) if and only if they are non-communicating garblings of each other.

Lehrer, Rosenberg, and Shmaya (2011) note that it is a Corollary 2 - that two information structures

are equivalent under Bayes correlated equilibrium if and only if they are informationally equivalent - has

the same format as the above results in Lehrer, Rosenberg, and Shmaya (2011), and could surely be shown

elegantly and more directly using their methods.

Lehrer, Rosenberg, and Shmaya (2011) do not report results for the "larger than" relation, like our

Theorem 2. The intuitive explanation why we would not expect such results to exist is that "more

information" or "less garbling" will generally (under solution concepts stronger than Bayes correlated

equilibrium) add incentive constraints but also remove feasibility constraints. We were able to prove a

"larger than" characterization because the BCE solution concept ensures that feasibility constraints do

not change as the informativeness of the information structure increases.

To further understand the connection, we can re-interpret our result as a "larger than" result about

the Bayesian solution if we impose constraints on the information structures being compared to make sure

that feasibility constraints do not change.

Corollary 3 Consider two information structures S and S0 with the property that there is a player who

perfectly observes the state � under both S and S0. Then S0 is Bayesian solution larger than S if and only

if S0 is a non-communicating garbling of S.

This follows easily from Theorem 2 and our observations about adding dummy players in Sections 4.1

and 5.3.

Lehrer, Rosenberg, and Shmaya (2010) consider common interest games. Say that information structure

S is better than S0 under a given solution concept if, for every common interest game G, the maximum

(common) equilibrium payo¤ is higher in (G;S) than (G;S0). They show:

1. (Theorem 3.5) Information structure S is better than S0 under Bayes Nash equilibrium if and only

if S0 is a coordinated garbling of S.

2. (Theorem 4.2) Information structure S is better than S0 under Agent Normal Form correlated equi-

librium (De�nition 16) if and only if S0 is a coordinated garbling of S.

3. (Theorem 4.2) Information structure S is better than S0 under Strategic Form correlated equilibrium

(De�nition 18) if and only if S0 is a coordinated garbling of S.

4. (Theorem 4.5) Information structure S is better than S0 under the Belief Invariant Bayesian Solution

(De�nition 14) if and only if S0 is a non-communicating garbling of S.
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5. (Theorem 4.6) Information structure S is better than S0 under Communication equilibrium (De�ni-

tion 20) if and only if S0 is a garbling of S.

Gossner (2000) studies Bayes Nash equilibrium only as a solution concept. His focus is on complete

information games but also reports results for incomplete information games. The idea of his results is

that more correlation possibilities are better for the set of BNE that can be supported. To state Gossner�s

result, write BNE (G;S) for the set of BNE action-state distributions of (G;S) (see De�nition 6), i.e., the

set of distributions on A�� that can be induced by a BNE of (G;S).

De�nition 29 Information structure S is BNE-larger than information structure S0 if BNE (G;S0) �
BNE (G;S) for all basic games G.

An independent garbling � is faithful if whenever for each i, ti 2 Ti and t0i 2 T 0i with �i (t0ijti) > 0, we
have

 (�)�0
��
t0i; t

0
�i
�
j�
�X

et0�i2T 0�i;e�2�
 
�e���0 ��t0i;et0�i� je�� =

 (�)
X

t�i2T�i

� ((ti; t�i) j�)

0@Y
j 6=i

�j

�
t0j jtj

�1A
X

t�i2T�i;e�2�
 
�e��� �(ti; t�i) je��

for all t0�i 2 T 0�i and � 2 �.

De�nition 30 Information structure S0 is a faithful independent garbling of S if there exists a faithful

independent garbling � that transforms S into S0.

Intuitively, this states that information structure S allows more correlation possibilities than S0 but

does not give more information about beliefs and higher order beliefs about payo¤ states. Now we have:

Proposition 1 Information structure S is BNE-larger than S0 if and only if S0 is a faithful independent

garbling of S.

This is Theorem 19 in Gossner (2000). [In the brie�y described (Section 6) statement of Gossner�s result,

his de�nition of BNE-larger ("richer" in his language) refers only to distributions over action pro�les, and

not over action pro�les and �; however his arguments would apply the above result.] An interesting special

case is when S0 is uninformative, i.e., contains neither information about � nor correlation opportunities,

so that there exist, for each i, �i 2 �(T 0i ) such that

�0
�
t0j�
�
=

IY
i=1

�i
�
t0i
�
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for all t0 2 T 0 and � 2 �. In this case, BNE (G;S0) is just equal to the independent distributions over
actions generated by Nash equilibria in the basic game G. This S0 is a faithful independent garbling of S

for any S which is not informative about �: simply set

�
�
t0jt
�
=

IY
i=1

�i
�
t0i
�

for all t0 2 T 0 and � 2 �. Now BNE (G;S) contains BNE (G;S0) because there are weakly more correlation
possibilities in S.

6 The Robust Predictions Agenda

An important motivation for the analysis of the Bayes correlated equilibria is that they represent a robust

prediction for an observer who knows that the game G is being played, but only knows that players have

at observed information structure S but does not know if they have observed more. In Bergemann and

Morris (2011b), we examine BCE in a class of continuum player, continuum action, symmetric, linear best

response games. In Section 7 below, we discuss how the (�nite player, �nite action) results of this paper can

be adapted to that setting. In Bergemann, Brooks, and Morris (2011), we study Bayes correlated equilibria

of a �rst price auction with �nitely many valuations and a continuum of bids, and then characterize which

information structures increase and decrease the seller�s revenue in that setting. In this Section, we will

brie�y illustrate the logic of the approach by considering Bayes correlated equilibria in the degenerate case

of single player games.

The idea of characterizing what might happen across a range of information structures naturally arises

in a variety of contexts. Kamenica and Gentzkow (forthcoming) consider a classic sender-receiver problem

where the "sender" knows the state, a "receiver" (with perhaps di¤erent preferences) will take an action

and the sender must send a message to the receiver. In a twist from the standard "cheap talk" literature,

Kamenica and Gentzkow (forthcoming) assume that the sender can commit ex ante (before observing

the state) to any communication strategy. Thus the problem reduces to a sender choosing the optimal

information structure for the receiver in a one player game (decision problem). The set of outcomes that

could be induced (ignoring the sender�s preferences) is the set of BCE of the one player game. Caplin and

Martin (2011) consider an "ideal observer" who sees a "decision maker" making many choices from action

sets.2 The ideal observer knows a true stochastic mapping from actions to outcomes (and thus utilities)

but does not know what the decision maker�s perception of each choice situation, i.e., his belief about the

true stochastic map. Even without knowing those beliefs, one can impose constraints on observable choice

2We thank Jonathan Weinstein for bringing this work, and its relation to Bayes correlated equilibrium, to our attention.
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behavior. These too will correspond to BCE of a single player game. Caplin and Martin (2011) introduce

this framework to analyze limited perception and run experiments to test rationality within the model and

the nature of information-based framing e¤ects that are revealed. In Section 8.2, we discuss Chwe (2006)

which characterizes the observable implications of incentive constraints; here too the problem is one of

making predictions without observing the underlying signals.

In this Section, we brie�y illustrate the idea of Bayes correlated equilibria, and their implications for

robust predictions, in a one player, two state, two action example. Chwe (2006), Kamenica and Gentzkow

(forthcoming) and Caplin and Martin (2011) all illustrate their results with such examples, and thus we

are replicating some of their formal analysis.

There is one player, and we will thus drop the player subscripts. There are two states, � = f�0; �1g.
Consider the game G with A = fa0; a1g; u (a0; �0) = �, u (a1; �1) = 1 � � and u (a0; �1) = u (a1; �0) = 0;

and  (�0) = � and  (�1) = 1� �, with �; � 2 [0; 1]. Thus the payo¤ matrix is

�0 �1

a0 � 0

a1 0 1� �

Note that this parameterization of payo¤s and beliefs is without loss of generality (if we are interested

in predictions not utilities) up to the assumption that action a1 is not dominated. Consider an arbitrary

information structure S = (T; �), where T is a �nite set and write �k (t) for the probability of signal t in

state �k.

For a motivation like that in Kamenica and Gentzkow (forthcoming), let �0 and �1 represent "innocence"

and "guilt" and let a0 and a1 represent "acquittal" and "conviction".

We are interested in Bayes correlated equilibria of the game (G;S). Suppose that the mediator rec-

ommends action a1 if the player observes signal t in state �k with probability �k (t) (and thus a0 with

probability 1 � �k (t)). Thus the mediator�s behavior is given by (�1; �2) with each �k : T ! [0; 1]. Now

if the player observes signal t and is advised to take action a1, he attaches probability

��0 (t)�0 (t)

��0 (t)�0 (t) + (1� �)�1 (t)�1 (t)

to state �0 and thus follows the recommendation if

(1� �)�1 (t)�1 (t) (1� �) � ��0 (t)�0 (t)�; (21)

or

�1 (t) �
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
�0 (t) . (22)
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If the player observes signal t and is advised to take action a0, he attaches probability

��0 (t) (1� �0 (t))
��0 (t) (1� �0 (t)) + (1� �)�1 (t) (1� �1 (t))

to state �0 and thus follows the recommendation if

(1� �)�1 (t) (1� �1 (t)) (1� �) � ��0 (t) (1� �0 (t))�;

or

(1� �)�1 (t)�1 (t) (1� �) � ��0 (t)�0 (t)�+ (1� �)�1 (t) (1� �)� ��0 (t)�; (23)

or

�1 (t) �
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
�0 (t) +

�
1�

�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

��
. (24)

Now the two obedience constraints (22) and (24) can be combined in the constraint that

�1 (t) �
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
�0 (t) + max

�
0; 1�

�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

��
. (25)

Now distribution � 2 �(A� T ��) is a Bayes correlated equilibrium if and only if

� (a; t; �) =

8>>>>><>>>>>:
(1� �)�1 (t)�1 (t) ; if (a; �) = (a1; �1) ;

(1� �)�1 (t) (1� �1 (t)) ; if (a; �) = (a0; �1) ;

��0 (t)�0 (t) ; if (a; �) = (a1; �0) ;

��0 (t) (1� �0 (t)) ; if (a; �) = (a0; �0) ;

for some (�1; �2) satisfying (25).

To understand how the set of BCE vary with di¤erent information structures, we can consider some

extreme points. Consider the player�s ex ante utility:X
t2T

(���0 (t) (1� �0 (t)) + (1� �) (1� �)�1 (t)�1 (t)) . (26)

(note that for comparison of utility, the parameterization of payo¤s is not longer without loss of generality).

This is maximized by setting �0 (t) = 0 and �1 (t) = 1 for all t 2 T , giving maximum ex ante utility

U (S) = ��+ (1� �) (1� �) .

We write this as a function of the information structure S, although it turns out to be independent of

the information structure. Now we �nd the BCE minimizing the player�s ex ante utility. An alternative

writing of the obedience condition (re-writing (21) and (23)), we have that

(1� �)�1 (t)�1 (t) (1� �)� ��0 (t)�0 (t)� � max f0; (1� �)�1 (t) (1� �)� ��0 (t)�g : (27)
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This condition immediately gives a lower bound ofX
t2T

max f���0 (t) ; (1� �)�1 (t) (1� �)g .

This bound can be obtained by setting �0 (t) = �1 (t) = 1 if�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1; (28)

and �0 (t) = �1 (t) = 0 if �
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
> 1: (29)

Thus in the utility minimizing BCE, each type will take his most preferred action if he had no additional

information beyond his type. This gives minimum ex ante utility

U (S) =
X
t2T

max f���0 (t) ; (1� �)�1 (t) (1� �)g .

Thus we have a robust prediction that with information structure S ex ante utility will be in the interval�
U (S) ; U (S)

�
. The perfect information system S� has T = ft0; t1g, �0 (t0) = 1 and �1 (t1) = 1, this

minimum utility will equal the maximum utility

U (S�) = U (S�) = ��+ (1� �) (1� �) .

With null information system S0 has T = ft�g, �0 (t�) = �1 (t
�) = 1 and thus minimum utility

U (S0) = max f��; (1� �) (1� �)g .

Intuitively more information will increase the minimum ex ante utility and not change the maximum ex

ante utility. Changes in information structure that will most increase ex ante utility are those that have

signals with likelihood ratio �0(t)
�1(t)

a long way from (1��)(1��)
�� .

For a more interesting question, we might be interested in bounding the probability of conviction,

independently of guilt or innocence (following Caplin and Martin (2011), we can think of an aggressive

district attorney). To answer this, consider the probability that action a1 is chosen,X
t2T

(��0 (t)�0 (t) + (1� �)�1 (t)�1 (t)) . (30)

This is maximized for each t subject to the obedience constraint by setting �0 (t) = �1 (t) = 1 if�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1;
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and �1 (t) = 1 and �0 (t) solves

�0 (t) =

�
1� �
�

��
1� �
�

��
�1 (t)

�0 (t)

�
;

otherwise. Write

h (t) = ��0 (t) + (1� �)�1 (t) ;

for the unconditional probability that signal t is realized and

g (t) =
(1� �)�1 (t)

��0 (t) + (1� �)�1 (t)
;

for the posterior probability of guilt. Now the maximum probability that action 1 is taken is

�(S) =
X
t2T

h (t)min

�
1;
g (t)

�

�
:

while by a symmetric argument the minimum probability will be

�(S) =
X
t2T

h (t)max

�
0; 1� 1� g (t)

1� �

�
Thus we have a robust prediction that with information structure S the probability of action a1 will be in

the interval
�
�(S) ;�(S)

�
. The perfect information system S� has

�(S�) = � (S�) = 1� �.

With null information system S0 we have

�(S0) = max

�
0; 1� �

1� �

�
and �(S0) = min

�
1;
1� �
�

�
.

Intuitively more information will increase the minimum probability and decrease the maximum.

7 Symmetric and Anonymous Games

In this section, we specialize our analysis to the case of symmetric games, where there is symmetry across

players in payo¤s in the basic game G and symmetry across signals in the information structure S. Thus

players�labels are assumed to not matter for the description of the game. We will be focusing attention on

"exchangeable equilibria," where players�behavior in equilibrium does not break the underlying symmetry

in the game. In a recent MIT Ph.D., Stein (2011) introduces and analyzes "exchangeable correlated

equilibria" in a complete information setting. Our de�nitions are presumably incomplete information

generalizations of his de�nitions, although we have not examined the relation in detail. The restriction to

exchangeable equilibria will be implicit within our de�nitions.

Once we have an exchangeable �nite player, �nite action, �nite state version of Bayes correlated equi-

librium, it is then possible to present analogue results for continuum player, continuum action, continuum

state games. This will then provide a foundation for our modelling in Bergemann and Morris (2011b):
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7.1 The Finite Case

As before, there are I players and �nite state space �. A "basic game" G now consists of (1) a common

action set A; (2) a common utility function u : A��I (A)��! R; , where u (a; h; �) is a player�s payo¤ if

he chooses action a, the distribution of actions among the I players is h 2 �I (A) and the state is �. (For

any �nite set X, we write �I (X) for the set of probability distributions on X with the property that for

any random variable �; P (� 2 X) 2
�
0; 1I ;

2
I ; :::; 1

	
; and (3) a full support prior  2 �(�). Thus a basic

symmetric game G = (A; u;  ). A symmetric "information structure" S now consists of (1) a common set

of types or "signals" T ; and (2) a signal distribution � : � ! �(�I (T )). Now � (�) 2 �(�I (T )) is a

probability distribution over the realized distribution of signals in the population. Thus S = (T; �). Now

(G;S) describes a standard (symmetric) Bayesian game.

If � 2 �I (A� T ) is a distribution over action-signal pairs, write margT � 2 �I (T ) for the marginal

distribution over signals, so

marg
T

� (t) =
X
a2A

� (a; t)

for each t 2 T ; write margA � 2 �I (A) for the marginal distribution over actions, so

marg
A

� (a) =
X
t2T

� (a; t)

for each a 2 A. If � 2 �(�I (A� T )��) is a distribution over action-signal pair distributions and states,
write marg�I(T )�� � 2 �(�I (T )��) for the marginal distribution over realized distributions of signals
and states, so

marg
�I(T )��

� (g; �) =
X

f�2�I(A�T ):margT �=gg
� (�; �)

for each g 2 �I (T ) and � 2 �. Finally, write � � for the probability distribution on �I (T )�� induced
by  2 �(�) and � : �! �(�I (T )), so

� �  (g; �) =  (�)� (gj�)

for each g 2 �I (T ) and � 2 �.

De�nition 31 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(�I (A� T )��) is a Bayes correlated equilibrium (BCE) of (G;S) ifX
�2�I(A�T );�2�

u (a;margA�; �) � (a; t) � (�; �) �
X

�2�I(A�T );�2�
u
�
a0;margA�; �

�
� (a; t) � (�; �) ; (31)

for each t 2 T , a 2 A and a0 2 A; and

marg�I(T )��� = � �  . (32)
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In the special case of a null information structure (so there are no signals), then the obedience condition

(31) for � 2 �(�I (A)��) will beX
g2�I(A);�2�

u (a; g; �) g (a)� (g; �) �
X

g2�I(A);�2�
u
�
a0; g; �

�
g (a)� (g; �) ;

for each a 2 A and a0 2 A while the consistency condition (32) will be

marg�� =  .

7.2 The Continuum Case

There is a continuum [0; 1] of players and state space �. A "basic game" G now consists of (1) a common

action set A � R; (2) a common utility function u : A � �(A) � �! R; where u (a; h; �) is a player�s

payo¤ if he chooses action a, the distribution of actions among the continuum players is h 2 �(A) and
the state is �; and (3) a full support prior  2 �(�). Thus G = (A; u;  ). An "information structure" S
now consists of (1) a common set of types or "signals" T ; and (2) a signal distribution � : �! �(� (T )).

Now � (�) 2 �(� (T )) is a probability distribution over realized distributions of signals in the population.
Thus S = (T; �). Now (G;S) describes a standard continuum (symmetric and anonymous) Bayesian game.

Now the de�nitions for the continuum case are as before, except that distributions are over a continuum

population and summations are replaced with integrals. We omit the measurability conditions that will be

required in general (they are not an issue for applications we are considering with well de�ned densities).

As before:

� if � 2 �(A� T ) is a distribution over action-signal pairs, write margT � (t) 2 �(T ) and margA� 2
�(A) for the marginal distributions over signals and actions respectively;

� if � 2 �(� (A� T )��), write marg�(T )��� 2 �(� (T )��) for the marginal distribution over
realized distributions of signals and states;

� write �� for the probability distribution on �(T )�� induced by  2 �(�) and � : �! �(� (T )).

De�nition 32 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(� (A� T )��) is a Bayes correlated equilibrium (BCE) of (G;S) ifZ
�2�(A�T );�2�

u (a;margA�; �) � (a; t) d� �
Z

�2�(A�T );�2�

u
�
a0;margA�; �

�
� (a; t) d�; (33)
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for each t 2 T , a 2 A and a0 2 A; and

marg�(T )��� = � �  . (34)

In the special case of a null information structure (so there are no signals), then the obedience condition

(33) for � 2 �(� (A)��) will beZ
g2�(A);�2�

u (a; g; �) g (a) d� �
Z

g2�(A);�2�

u
�
a0; g; �

�
g (a) d�;

for each a 2 A and a0 2 A while the consistency condition (34) will be

marg�� =  :

8 Discussion

8.1 Payo¤Type Spaces

In a body of work collected in Bergemann and Morris (2012), we studied a robust mechanism environments

in a setting where agents knew their own "payo¤ types", there was common knowledge of how utilities

depended on the pro�le of payo¤ types, but agents were allowed to have any beliefs and higher order beliefs

about others�payo¤ types. In Bergemann and Morris (2007), we discussed a game theoretic framework

underlying this work. Here we brie�y how this environment maps into the setting of this paper.

Suppose that � is a product space with � = �1� � � � ��I . Consider the special information structure
where agent i�s set of possible signals is �i, and each agent i observes the realization �i 2 �i, so S�� =�
(�i)

I
i=1 ; id

�
, where id is the identity map id : � ! � with id (�) = � for all �. Now the set of Bayes

correlated equilibria of a game (G;S) describe all the distributions over payo¤ type pro�les and actions

consistent with the common prior and common knowledge of rationality. Bergemann and Morris (2007) -

in the language of this paper - is an analysis of the structure of Bayes correlated equilibria with the special

information structure S��.

8.2 Signed Covariance

Chwe (2006) analyzes statistical implications of incentive compatibility in general, and in particular statis-

tical implications of correlated equilibrium play. We can state his main observation in the language of our

paper. Fix any basic game G. Fix any Bayes correlated equilibrium � 2 �(A��) of the basic game (i.e.,
the game with the null information structure). Fix a player i and action a�i 2 Ai. Consider the random
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variable Ia�i on A�� that as indicator function takes value 1 if a
�
i is played and 0 otherwise:

Ia�i (a; �) ,

8<: 1; if ai = a�i ;

0; if otherwise.

Fix any other action a0i 2 Ai. Let �a�i ;a0i be the random variable on A�� equal to the payo¤ gain to player
i of choosing action a�i rather than a

0
i:

�a�i ;a0i (a; �) , ui ((a
�
i ; a�i) ; �)� ui

��
a0i; a�i

�
; �
�
.

Then, conditional on a�i or a
0
i being played, the random variables Ia�i and �a�i ;a0i have positive covariance.

This is the content of the main result in Chwe (2006). As he notes, this is not merely a re-writing of the

incentive compatibility constraints, since these are linear in probabilities while the covariance is quadratic

in probabilities. Thus his signed conditional covariance result is a necessary property of second order

statistics of a Bayes correlated equilibrium.

We sketch a formal statement and proof. The expectations of Ia�i , �a�i ;a0i and their product, under �,

conditional on the event fa�i ; a0ig occurring, are:

E�
�
Ia�i
���a�i ; a0i	� =

X
a�i;�

� ((a�i ; a�i) ; �)X
a�i;�

� ((a�i ; a�i) ; �) +
X
a�i;�

� ((a0i; a�i) ; �)

E�
�
�a�i ;a0i

���a�i ; a0i	� =

X
a�i;�

(� ((a�i ; a�i) ; �) + � ((a
0
i; a�i) ; �)) (ui ((a

�
i ; a�i) ; �)� ui ((a0i; a�i) ; �))X

a�i;�

(� ((a�i ; a�i) ; �) + � ((a
0
i; a�i) ; �))

E�
�
Ia�i�a�i ;a0i

���a�i ; a0i	� =

X
a�i;�

� ((a�i ; a�i) ; �) (ui ((a
�
i ; a�i) ; �)� ui ((a0i; a�i) ; �))X

a�i;�

(� ((a�i ; a�i) ; �) + � ((a
0
i; a�i) ; �))

:

Now the incentive compatibility condition that that player i prefers a�i to a
0
i when advised to play a

�
i can

be written as

E�
�
Ia�i�a�i ;a0i

���a�i ; a0i	� � 0 (35)

while that incentive compatibility condition that player i prefers a0i to a
�
i when advised to play a

0
i is

E�
��
1� Ia�i

�
�a�i ;a0i

���a�i ; a0i	� � 0
which can be re-written as

E�
�
Ia�i�a�i ;a0i

���a�i ; a0i	� � E� ��a�i ;a0i ���a�i ; a0i	� . (36)
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Now the covariance of Ia�i and �a�i ;a0i , conditional on fa
�
i ; a

0
ig, is

E�
�
Ia�i�a�i ;a0i j

�
a�i ; a

0
i

	�
� E�

�
Ia�i j

�
a�i ; a

0
i

	�
E�
�
�a�i ;a0i j

�
a�i ; a

0
i

	�
If E�

�
�a�i ;a0i j fa

�
i ; a

0
ig
�
� 0, (35) and E�

�
Ia�i j fa

�
i ; a

0
ig
�
� 0 imply that this is non-negative.

If E�
�
�a�i ;a0i j fa

�
i ; a

0
ig
�
� 0, (36) and E�

�
Ia�i j fa

�
i ; a

0
ig
�
� 1 imply that this is non-negative:
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9 Appendix

The appendix collects the remaining proofs and additional material

9.1 Higher Order Belief Equivalence

We present a formal argument that the notion of higher order belief equivalence presented earlier in

De�nition 23 indeed captures all the information contained in the hierarchical belief types of Mertens

and Zamir (1985). Fix �. Let X0 = �, and de�ne Xk = Xk�1 �
�
�
�
Xk�1��I�1. An element of�

�
�
Xk
��1
k=0

, H is called a hierarchy (of beliefs).

Now a prior  2 �(�) and an information system S =
�
(Ti)

I
i=1 ; �

�
together de�ne a �nite common

prior type space ( ; S). We can associate such a common prior type space with a probability distribution

over HI as follows. For each i and ti 2 Ti, write b�1i [ti] 2 �(�) = � �X0
�
for his posterior under a uniform

prior on �, so

b�1i [ti] (�) =
X

t�i2T�i

� ((ti; t�i) j�) (�)X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

�
 
�
�0
� .

Write b�2i (ti) 2 ���� (� (�))I�1� = �
�
X1
�
for his belief over � and the �rst order beliefs of other

players, so

b�2i [ti] ��; �1�i� =
X

ft�i2T�ijb�1j (tj)=�1j for each j 6=ig
� ((ti; t�i) j�) (�)

X
�02�;ft�i2T�ijb�1j (tj)=�1j for each j 6=ig

�
�
(ti; t�i) j�0

�
 
�
�0
� .

Proceeding inductively for k � 2, write b�ki (ti) 2 � �Xk�1� for his belief over � and the (k � 1)th order
beliefs of other players, so

b�ki [ti]��; �k�1�i

�
=

X
ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

� ((ti; t�i) j�) (�)

X
�02�;ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

�
�
(ti; t�i) j�0

�
 (�)

.

Now each b�ki : Ti ! �
�
Xk�1�, we can de�ne b�i : Ti ! H by

b�i [ti] = �b�1i [ti] ; b�2i [ti] ; ::::�
and b� : T ! HI by b� [t] = (b�i [ti])Ii=1
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Now we can identify ( ; S) with a probability distribution � ;S 2 �
�
HI
�
de�ned by

� ;S

�
(�i)

I
i=1

�
=

X
�;ft:b�[t]=(�i)Ii=1g

� (tj�) (�) :

Lemma 10 The following statements are equivalent:

1. Information structures S1 and S2 are higher order belief equivalent;

2. � ;S1 = � ;S2 for all  2 �(�) ;

3. � ;S1 = � ;S2 for some  2 �++ (�) :

Proof. We argue that (1) implies (2) by induction. By (16),

fki (ti) = fki
�
t0i
�
) b�k;1i [ti] = b�k;1i �

t0i
�
.

Now suppose that

fki (ti) = fki
�
t0i
�
) b�k;li [ti] = b�k;li �t0i� .

By (15), we have

fki (ti) = fki
�
t0i
�
) b�k;l+1i [ti] = b�k;l+1i

�
t0i
�
.

But since the premise of the inductive step holds for l = 1, we have that for all l

fki (ti) = fki
�
t0i
�
) b�k;li [ti] = b�k;li �t0i� .

and thus

fki (ti) = fki
�
t0i
�
) b�ki [ti] = b�ki �t0i� .

Clearly (2) implies (3). Now suppose that (3) holds. Let T �i = range
�b�1i � = range

�b�2i �. Let fki (ti) =b�ki (ti). By construction, properties (15) and (16) hold with respect to type space S� = �(T �i )Ii=1 ; ���.
9.2 Proof of Lemma 5

For a pair of mappings �1 : T 1 � � ! �
�
T 2
�
and �2 : T 2 � � ! �

�
T 1
�
, we write �2 � �1 : T 1 � � !

�
�
T 1 ��

�
for the induced Markov process obtained by starting with

�
t1; �

�
, picking t2 according to

�2
�
�jt1; �

�
, picking et1 according to �1 ��jt2; ��, and setting e� = �. Thus

�2 � �1
�et1;e�jt1; �� =

8><>:
X
t2

�1
�
t2jt1; �

�
�2
�et1jt2; �� if e� = �;

0 if otherwise.
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A Markov process � : Z ! �(Z) is idempotent if applying it twice gives the same Markov matrix, i.e.,

de�ning � � � : Z ! �(Z) by

� � �
�
z0jz
�
=
X
z00

�
�
z0jz00

�
�
�
z00jz

�
:

� � � is idempotent if � � � = � or

�
�
z0jz
�
=
X
z00

�
�
z0jz00

�
�
�
z00jz

�
:

Lemma 11 If information structure S1 is informationally equivalent to S2, then there exist mappings e�1
and e�2 such that e�1 � e�2 is idempotent and that preserve the more informed than conditions, (13) and (14)
in each direction.

Proof. Suppose that S1 is informationally equivalent to S2. Then there exist mappings �1 and �2

showing that S1 is more informed than S2 and S2 is more informed than S1 respectively. Consider the

�nite Markov process � , �2 ��1. By the theory of Markov chains, there exists a limit if we keep applying
this Markov process, �1 ,

�
�2 � �1

�1. By construction, �1 is idempotent. Now let

e�1 , �1; (37)

and e�2;1 , �1 � �2. (38)

By hypothesis and construction, e�1 satis�es satis�es (13) and (14). Now, we show that
e�2;1 , � � �2

also satis�es (13) and (14), and the repeated application of the � composition, then establishes that the

limit e�2;1 satis�es (13) and (14). First we show that (13) holds for e�2;1, or:
�1
�
t1j�
�
=
X
t22T 2

e�2;1 �t1jt2; ���2 �t2j�� ;
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now

X
t22T 2

e�2;1 �t1jt2; ���2 �t2j�� =
X
t22T 2

0@X
et12T 1

0@X
et22T 2

�
�2
�
t1jet2; ���1 �et2jet1; ���

1A�2
�et1jt2; ��

1A�2
�
t2j�
�

=
X
et12T 1

0@X
et22T 2

0@��2 �t1jet2; ���1 �et2jet1; ��� X
t22T 2

�2
�et1jt2; ���2 �t2j��

1A1A
=

X
et12T 1

0@X
et22T 2

�
�2
�
t1jet2; ���1 �et2jet1; ���

1A�1
�et1j�� by (13)

=
X
et22T 2

0@�2 �t1jet2; ��
0@ X
et12T 1

�1
�et2jet1; ���1 �et1j��

1A1A
=

X
et22T 2

�2
�
t1jet2; ���2 �et2j�� by (13)

= �1
�
t1j�
�
,

which is precisely the claim that we wanted to establish.

Second, we show that (14) holds for e�2;1, i.e. for:
e�2 �t1jt2; �� = X

et12T 1
0@X
et22T 2

�
�2
�
t1jet2; ���1 �et2jet1; ���

1A�2
�et1jt2; �� ;

we have that

X
t1�i

e�2 �t1jt2; �� =X
t1�i

0@X
et12T 1

0@X
et22T 2

�
�2
�
t1jet2; ���1 �et2jet1; ���

1A�2
�et1jt2; ��

1A
is independent of t2�i and �. Now, we can rewrite

X
t1�i

0@X
et12T 1

0@X
et22T 2

�
�2
�
t1jet2; ���1 �et2jet1; ���

1A�2
�et1jt2; ��

1A
=

X
et12T 1

�2
�et1jt2; ��

0@ X
et22T 2

�
�1
�et2jet1; ���X

t1�i

�2
�
t1jet2; ��

1A ;

and by hypothesis X
t1�i

�2
�
t1jet2; �� , �2i

�
t1i
��et2i � ;
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is independent of et2�i and �, and thus
X
et12T 1

�2
�et1jt2; ��

0@ X
et22T 2

�
�1
�et2jet1; ���X

t1�i

�2
�
t1jet2; ��

1A =
X
et12T 1

�2
�et1jt2; ��

0@ X
et22T 2

�
�1
�et2jet1; ��� �2i �t1i ��et2i �

1A

=
X
et12T 1

�2
�et1jt2; ��

0B@X
et2i2T 2i

�2i
�
t1i
��et2i � X

et2�i2T 2�i
�
�1
�et2jet1; ���

1CA ;

and, again by hypothesis, X
et2�i2T 2�i

�
�1
�et2jet1; ��� , �1i

�et2i jet1i � ;
is independent of et1�i and �, and thus

X
et12T 1

�2
�et1jt2; ��

0B@X
et2i2T 2i

�2i
�
t1i
��et2i � X

et2�i2T 2�i
�
�1
�et2jet1; ���

1CA
=

X
et12T 1

�2
�et1jt2; ��

0@ X
et2i2T 2i

�2i
�
t1i
��et2i � �1i �et2i jet1i �

1A
=

X
et12T 1

�2
�et1jt2; ��

0@ X
et2i2T 2i

�2i
�
t1i
��et2i � �1i �et2i jet1i �

1A
and hence X

et2i2T 2i
�2i
�
t1i
��et2i � �1i �et2i jet1i � , �i

�
t1i jet1i � ;

is independent of �, and thus

X
et12T 1

�2
�et1jt2; ��

0@ X
et2i2T 2i

�2i
�
t1i
��et2i � �1i �et2i jet1i �

1A =
X
et12T 1

�2
�et1jt2; �� �i �t1i jet1i �

=
X
et1i2T 1i

0B@�i �t1i jet1i � X
et1�i2T 1�i

�2
�et1jt2; ��

1CA ;

and again by hypothesis, X
et1�i2T 1�i

�2
�et1jt2; �� ,

is independent of t2�i and �, thus establishing the second claim. Now, we can repeat the operation by

recursion to obtain the same result for e�2;1 , �1 � �2.
We restate Lemma 3.4 of Lehrer, Rosenberg, and Shmaya (2011) in the pointwise version, i.e. condi-

tional on �, needed for our result.
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Lemma 12 (Lemma 3.4, Lehrer, Rosenberg, and Shmaya (2011)) Let T 1 and T 2 be two �nite sets,

let �1 : ��T 1 ! �
�
T 2
�
and �2 : ��T 2 ! �

�
T 1
�
be a pair of stochastic maps, and let �1

�
t1j�
�
2 �

�
T 1
�
,

�2
�
t2j�
�
2 �

�
T 2
�
, be such that:

�2
�
t2j�
�
=
X
t12T 1

�1
�
t2jt1; �

�
�1
�
t1j�
�
; �1

�
t1j�
�
=
X
t22T 2

�2
�
t1jt2; �

�
�2
�
t2j�
�
.

If � = �2 � �1 is idempotent, then:

�1
�
t1 j�

�0@X
et1
�
�et1 ��t1 ��1 �t2jet1; ��

1A = �2
�
t2 j�

�0@X
et1
�2
�et1jt2; �� � �t1 ��et1 �

1A .
De�nition 33 Two information structures S1 =

��
T 1i
�I
i=1

; �1
�
and S2 =

��
T 2i
�I
i=1

; �2
�
are simply

informationally equivalent if they are informationally equivalent and there exists a probability distribution

� : �! �
�
T 1 � T 2

�
such that, for each k = 1; 2, �k is the marginal of � on T k :

�k
�
tkj�

�
=
X
tl

�
�
tk; tlj�

�
; (39)

and for each k = 1; 2 and i = 1; ::; I, X
tl�i

�
��
tli; t

l
�i
�
;
�
tki ; t

k
�i
�
j�
�

X
tl

� (tk; tlj�)

is independent of tk�i and �.

Lemma 13 S1 is informationally equivalent to S2 if and only if they are simply informationally equivalent.

Proof. Suppose S1 =
��
T 1i
�I
i=1

; �1
�
and S2 =

��
T 2i
�I
i=1

; �2
�
are simply informationally equivalent,

then by De�nition 33, they are informationally equivalent.

Suppose S1 =
��
T 1i
�I
i=1

; �1
�
and S2 =

��
T 2i
�I
i=1

; �2
�
are informationally equivalent, then we identify

a distribution � : �! �
�
T 1 � T 2

�
with the properties required by De�nition 33. Let

�
�
t1; t2j�

�
, �1

�
t1 j�

�0@X
et1
�
�et1 ��t1 ��1 �t2jet1; ��

1A ; (40)

and we can also de�ne

�
�
t1; t2j�

�
, �2

�
t2 j�

�0@X
et1
�2
�et1jt2; �� � �t1 ��et1 �

1A : (41)
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Now by the asserting of Lemma 3.4 of Lehrer, Rosenberg, and Shmaya (2011), it follows that for all �; t1; t2

�
�
t1; t2j�

�
= �

�
t1; t2j�

�
.

We �rst establish the marginal property of �. We �rst integrate out t2, using (40):

X
t2

�
�
t1; t2j�

�
= �1

�
t1 j�

�X
t2

0@X
et1
�
�et1 ��t1 ��1 �t2jet1; ��

1A
= �1

�
t1 j�

�0@X
et1
�
�et1 ��t1 �X

t2

�1
�
t2jet1; ��

1A
= �1

�
t1 j�

�X
et1
�
�et1 ��t1 �

= �1
�
t1 j�

�
:

Next we integrate out t1, using (41):

X
t1

�
�
t1; t2j�

�
=

X
t1

�2
�
t2 j�

�0@X
et1
�2
�et1jt2; �� � �t1 ��et1 �

1A
= �2

�
t2 j�

�0@X
et1
�2
�et1jt2; �� X

t1

�
�
t1
��et1 �!

1A
= �2

�
t2 j�

�0@X
et1
�2
�et1jt2; ��

1A
= �2

�
t2 j�

�
.

Now, we establish the independence property, namely that:X
tl�i

�
��
tki ; t

k
�i
�
;
�
tli; t

l
�i
�
j�
�

X
tl

� (tk; tlj�)
; (42)

is independent of tk�i and �. We start with l = 2 :

�
�
tl; tkj�

�
= �k

�
tk j�

�0@X
etk
�
�etk ���tk��k �tljetk; ��

1A
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and hence P
tl�i

�
�
tl; tkj�

�X
tl

� (tk; tlj�)
=

P
tl�i

�k
�
tk j�

� �Petk � �etk ��tk ��k ��tli; tl�i� jetk; ���X
tl

�k (tk j� )
�Petk � �etk jtk ��k ��tli; tl�i� jetk; ���

=

�Petk � �etk ��tk �Ptl�i
�k
��
tli; t

l
�i
�
jetk; ����Petk � �etk jtk �Ptl �

k
��
tli; t

l
�i
�
jetk; ���

=

�Petk � �etk ��tk �Ptl�i
�k
��
tli; t

l
�i
�
jetk; ���Petk � �etk jtk �

=
X
etk
�
�etk ���tk�X

tl�i

�k
��
tli; t

l
�i

�
jetk; �� : (43)

But by the hypothesis of informational equivalence, each interior sumX
tl�i

�k
��
tli; t

l
�i

�
jetk; ��

is independent of � and etk�i, and hence so is any weighted sum over these individual sums.

Similarly, for l = 1, using (41):

�
�
tl; tkj�

�
= �k

�
tk j�

�0@X
etl
�k
�etljtk; �� � �tl ���etl�

1A
and so

P
tl�i

�
�
tl; tkj�

�X
tl

� (tk; tlj�)
=

X
tl�i

�k
�
tk j�

� �Petl �k �etljtk; �� � �tl ��etl ��X
tl

�k (tk j� )
�Petl �k �etljtk; �� � �tl ��etl ��

=

X
tl�i

�Petl �k �etljtk; �� � �tl ��etl ��X
tl

�Petl �k �etljtk; �� � �tl ��etl ��

=
X
etl

0B@�k �etljtk; ��X
tl�i

�
��
tli; t

l
�i

� ���etl�
1CA ; (44)

Now, we would like to show that the interior sumX
tl�i

�
��
tli; t

l
�i

� ���etl� (45)
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is independent of etl�i, once we sum up over tl�i, orX
tl�i

�
��
tli; t

l
�i

� ���etl� , �i

�
tli

���etli� :
Now suppose that � is indeed the direct composition of �2 � �1. Then we can write for l = 1 :

�
�
t1
��et1; � � =X

t2

�2
�
t1
��t2; � ��1 �t2 ��et1; � �

and picking up the sum of (45):X
t1�i

�
��
t1i ; t

1
�i
� ��et1 � =

X
t1�i

X
t2

�2
�
t1
��t2; � ��1 �t2 ��et1; � �

=
X
t2

0@�1 �t2 ��et1; � �X
t1�i

�2
�
t1
��t2; � �

1A :

Now, by the hypothesis of informational equivalence, we can write the interior sum:X
t1�i

�2
�
t1
��t2; � � , �i

�
t1i
��t2i � ,

and hence

X
t2

0@�1 �t2 ��et1; � �X
t1�i

�2
�
t1
��t2; � �

1A =
X
t2

�
�1
�
t2
��et1; � � �i �t1i ��t2i ��

=
X
t2i

0@�i �t1i ��t2i �X
t2�i

�
�1
�
t2
��et1; � ��

1A :

Now, again by the hypothesis of informational equivalence:X
t2�i

�
�1
�
t2
��et1; � �� , �i

�
t2i
��et1i � ,

and hence X
t2i

0@�i �t1i ��t2i �X
t2�i

�
�1
�
t2
��et1; � ��

1A =
X
t2i

�
�i
�
t1i
��t2i � �i �t2i ��et1i ��

and hence it is independent of etl�iand �.
With the equivalence result of Lemma 13, we can now restate Lemma 5 and then establish the corre-

sponding result as follows.
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Lemma 14 Two information structures are simply informationally equivalent if and only if they are higher

order belief equivalent.

Proof. "if" De�ne � : �! �
�
T 1 � T 2

�
by setting

�
�
t1; t2j�

�
=

8<:
�1(t1j�)�2(t2j�)

��(t�j�) , if f1
�
t1
�
= f2

�
t2
�
= t�

0, otherwise

Now by (15), �k is the marginal of � on T k for each k. Now

X
tj�i

�
��
t1i ; t

1
�i
�
;
�
t2i ; t

2
�i
�
j�
�
=

8>>>>>><>>>>>>:
�k
�
tkj�

�
0BBB@

X
t
j
�i

�j(tji ;t
j
�ij�)X

fetji jfji (etji)=fji (tji)g
X
t
j
�i

�j(etji ;tj�ij�)

1CCCA , if f ji �tji� = f2i
�
t2i
�

0, if f1i
�
t1i
�
6= f2i

�
t2i
�

and so �X
tj�i

�
��
t1i ; t

1
�i
�
;
�
t2i ; t

2
�i
�
j�
�

�k
��
tki ; t

k
�i
�
j�
� =

8>>>>>><>>>>>>:

0BBB@
X
t
j
�i

�j(tji ;t
j
�ij�)X

fetji jfji (etji)=fji (tji)g
X
t
j
�i

�j(etji ;tj�ij�)

1CCCA , if f1i �t1i � = f2i
�
t2i
�

0, if f1i
�
t1i
�
6= f2i

�
t2i
�

But (16) implies that X
tj�i

�j
�
tji ; t

j
�ij�

�
X

fetji jfji (etji)=fji (tji)g
X
tj�i

�j
�
tji ; t

j
�ij�

�
is independent of tj�i and �.

"only if" for each i and k, there exists �ki : T
k
i ! �

�
T li
�
such thatX

tj�i

�
��
t1i ; t

1
�i
�
;
�
t2i ; t

2
�i
�
j�
�

�k
��
tki ; t

k
�i
�
j�
� = �ki

�
tlijtki

�
Describe a equivalence class on T 1i [ T 2i by setting tki �i tli if either �ki

�
tlijtki

�
> 0 or �li

�
tki jtli

�
> 0 and let

��i be the transitive closure of �i. Let T �i be the set of equivalence classes of ��i and de�ne fki : T ki ! T �i

by letting fki
�
tki
�
be the equivalence class containing tki . Observe that �

�
t1; t2j�

�
> 0 implies that for each

i, t1i ��i t2i . Thus we can de�ne

�� (t�j�) =
X

ft1jf1(t1)=t�g
�
��
t1i ; t

1
�i
�
;
�
t2i ; t

2
�i
�
j�
�
=

X
ft2jf2(t2)=t�g

�
��
t1i ; t

1
�i
�
;
�
t2i ; t

2
�i
�
j�
�
:
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Now �x t�i . Observe that for each t
1
i 2 T 1i with f1i

�
t1i
�
= t�i ,

�1
�
t1i j�
�
=

X
ft2i jf2i (ti)=t�i g

�1i
�
t2i jt1i

�
�2
�
t2i j�
�
;

and for each t2i 2 T 2i with f2i
�
t2i
�
= t�i ,

�2
�
t2i j�
�
=

X
ft1i jf1i (ti)=t�i g

�2i
�
t1i jt2i

�
�1
�
t1i j�
�
:

This requires that (16) holds.

9.3 Proof of Theorem 2

Proof of Theorem 2. For a �xed �nite information structure S =
�
(Ti)

I
i=1 ; �

�
and assuming a uniform

prior on �, we de�ne for each player i the set of possible higher order beliefs ��i . For a type ti 2 Ti, writeb�1i [ti] 2 �(�) for his posterior under a uniform prior on �, so

b�1i [ti] (�) =
X

t�i2T�i

� ((ti; t�i) j�)X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

� .
Write �1i � �(�) for the range of b�1i and �1i for a typical element of �1i .

Write b�2i (ti) 2 ���� ��
j 6=i
�1j

��
for his belief over � and the �rst order beliefs of other players, so

b�2i [ti] ��; �1�i� =
X

ft�i2T�ijb�1j (tj)=�1j for each j 6=ig
� ((ti; t�i) j�)

X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

� .

Write �2i � �
�
��

�
�
j 6=i
�1j

��
for the range of b�2i and �2i for a typical element of �2i .

Proceeding inductively for k � 2, write b�ki (ti) 2 ���� ��
j 6=i
�k�1j

��
for his belief over � and the

(k � 1)th order beliefs of other players, so

b�ki [ti]��; �k�1�i

�
=

X
ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

� ((ti; t�i) j�)

X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

� .

Write �ki � �
�
��

�
�
j 6=i
�k�1j

��
for the range of b�ki and �ki for a typical element of �ki .
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Each b�ki generates a partition Ti which becomes more re�ned as k increases. Since each Ti is �nite, the
information structure has a depth K, so that the depth of the information structure S is smallest integer

K such that b�ki (ti) = b�ki �t0i�, b�Ki (ti) = b�Ki �t0i�
for all i and k � K. Let ��i [ti] be a list of the �rst Kth level beliefs of player i, so

��i [ti] =
�b�ki [ti]�K

k=1
.

Let ��i � �
k=1;:::;K

�ki be the range of �
�
i .

For the �xed information structure S =
�
(Ti)

I
i=1 ; �

�
and " > 0, we will construct a �nite "higher order

beliefs game" GS;". This is a variation and simpli�cation of such a game used in Dekel, Fudenberg, and

Morris (2006). For any �nite set X, the Euclidean distance between two points �; � 0 2 �(X) is de�ned as

� � � 0 =sX
x2X

�
� (x)� � 0 (x)

�2
A set of probability distributions � � �(X) is said to be an "-grid of �(X) if every point in �(X) is

within " of a point in �. Now let A1i be any "-grid of �(�) includes �
1
i , i.e., all possible �rst order beliefs of

agent i in information structure S. Let A2i be any "-grid of �
�
��

�
�
j 6=i
A1j

��
including �2i . Inductively,

for each k = 2; :::;K, let Aki be any "-grid of �
�
��

�
�
j 6=i
Ak�1j

��
including �ki . Let

Ai = �
k=1;:::;K

Aki .

We want to give players an incentive to truthfully announces their higher order beliefs. We write ai =�
a1i ; :::; a

K
i

�
for a typical element of Ai. Let

ui ((ai; a�i) ; �) = u1i
�
a1i ; �

�
+

KX
k=2

uki

�
aki ; a

k�1
�i

�
.

Now let

u1i
�
a1i ; �

�
= 2a1i (�)�

X
�02�

�
a1i
�
�0
��2

and, for k � 2,
uki

�
aki ; a

k�1
�i

�
= 2aki

�
�; ak�1�i

�
�

X
�02�;eak�1�i 2A

k�1
�i

�
aki

�
�0;eak�1�i

��2
:

Write  0 be the uniform prior on �. This completes the description of the game GS;" =
�
(Ai; ui)

I
i=1 ;  0

�
.
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In the special case of information structure S, the game (GS;"; S) has a BCE where each type truthfully

reports his true �rst K levels of higher order beliefs. Observe that for every " > 0, the game (GS;"; S) has

a BCE satisfying

� (a; t; �) =

8<:  0 (�)� (tj�) ; if a = �� [t] ;

0; if otherwise.
.

This is a BCE because if all other players truthfully announce their types, a player�s best response is to

truthfully announce his type, as he is advised to do. Note that in this BCE, each players� actions are

restricted to the set ��i � Ai. This BCE induces the action-state distribution �� 2 �(A��) satisfying

�� (a; �) =

8><>:
 0 (�)

X
ft:a=��[t]g

� (tj�) ; if a = �� [t] ;

0; if otherwise.

(46)

Now �x any information structure S0 which is BCE-larger than S. Then it must be true that, for every

" > 0, the incomplete information game (GS;"; S0) has a BCE inducing the action-state distribution ��,

de�ned in equation (46). We will show that this implies that S is more informed than S0.

For any � 0 2 �(A� T 0 ��), write � 0 (�jai; t0i) for the induced distribution over A�i �� of a type t0i of
player i advised to take action ai 2 Ai, so that

� 0
�
a�i; �jai; t0i

�
=

X
t0�i

� 0
�
(ai; a�i) ;

�
t0i; t

0
�i
�
; �
�

X
t0�i;a�i;

e�
� 0
�
(ai; a�i)) ;

�
t0i; t

0
�i
�
;e�� :

Now for each " > 0 and let � 0" be any BCE of (GS;"; S
0) inducing the action-state distribution ��. Note that

this is an element of �(�� � T 0 ��), since by assumption only action pro�les in �� are chosen under ��.
Note that a hierarchy of beliefs ��i =

�
��1i ; :::; �

�K
i

�
can be identi�ed in the usual way with a probability

distribution over ���i ��. Now it is a property of best responses in the game GS;" that for each type t0i
following a recommendation to play action ��i in �

0
", we must have� 0" ��j��i ; t0i�� ��i  � ". (47)

To see why, note that a �rst necessary condition is that player i with type t0i and recommendation �
�
i =�

��1i ; :::; �
�K
i

�
has an incentive to set a1i equal to �

�1
i . A necessary condition for this is that his beliefs on

� are within " of ��1i . Now we can argue inductively that, for each k = 2; ::;K, a necessary condition is

that player i with type ti has an incentive to set aki = ��ki . A necessary condition for this is that his beliefs

on Ak�1�i �� are within " of ��ki . But this last condition when k = K is (47).

For each " > 0, � 0" satis�es consistency and is an element of the compact set �(�
� � T 0 ��). Thus

we can �nd a subsequence of the � 0" converging to a limit �
0 which induces ��, is a BCE of (GS;"; S0) for
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every " > 0 and has the property that for each type t0i following a recommendation to play action �
�
i in �

0,

we have

� 0
�
�j��i ; t0i

�
= ��i . (48)

Now

� 0
�
��; t0i; �

�
=

X
t0�i2T�i

� 0
��
��i ; �

�
�i
�
;
�
t0i; t

0
�i
�
; �
�

= � 0
�
��i ; t

0
i

�
� 0
�
���i; �j��i ; t0i

�
= � 0

�
��i ; t

0
i

�
� 0
�
���i; �j��i

�
, by (48) (49)

But now de�ne � : T ��! �(T 0) by

�
�
t0jt; �

�
= � 0

�
t0j�� (t) ; �

�
.

Now

�
�
t0ij (ti; t�i) ; �

�
=

� 0 (��i (ti) ; t
0
i) �

0 ����i (t�i) ; �j��i (ti)�X
et0i
� 0
�
��i (ti) ;et0i� � 0 ����i (t�i) ; �j��i (ti)� , by (49)

=
� 0 (��i (ti) ; t

0
i)X

et0i
� 0
�
��i (ti) ;et0i�

= � 0
�
t0ij��i (ti)

�
.

But now if we de�ne �i : Ti ! �
�
T 0�i
�
by

�i
�
t0ijti

�
= � 0

�
t0ij��i (ti)

�
,

we have established that S is more informed than S0.

9.4 Example of More Informed Than Information Structure

The following is a robust example of non-redundant information structures where S0 is not a non-communicating

garbling of S in the sense of Lehrer, Rosenberg, and Shmaya (2010), (2011), but S is more informed than

S0 in the sense of De�nition 22 and thus - by Theorem 2 - S0 is BCE-richer than S.

Suppose that there is uniform prior on � = f�1; �2g. Information structure S has T1 = ft11; t12g,
T2 = ft21; t22g and � : �! �(T ) given by

� (tj�1) t21 t22

t11
4
9

2
9

t12
2
9

1
9

� (tj�2) t21 t22

t11
1
9

2
9

t12
2
9

4
9
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This information structure simply has each agent observing a conditionally independent signal with "ac-

curacy" 2
3 .

Information structure S0 has T 01 = ft011; t012g, T 02 = ft021; t022g and �0 : �! �(T 0) given by

�0 (t0j�1) t021 t022

t011
13
27

2
27

t012
2
27

10
27

�0 (t0j�2) t021 t022

t011
1
27

11
27

t012
11
27

4
27

First, we identify the garblings relating S and S0 from each agent�s point of view. Observe that

� (t11j�1) =
X
t2

� ((t11; t2) j�1) =
4

9
+
2

9
=
2

3

� (t11j�2) =
X
t2

� ((t11; t2) j�2) =
1

9
+
2

9
=
1

3

�0
�
t011j�1

�
=

X
t02

�0
��
t011; t

0
2

�
j�1
�
=
13

27
+
2

27
=
15

27
=
5

9

�0
�
t011j�2

�
=

X
t02

�0
��
t011; t

0
2

�
j�1
�
=
1

27
+
11

27
=
12

27
=
4

9

Thus there is a unique �1 : T1 ! �(T 01) satisfying

�0
�
t01j�
�
=
X
t1

�1
�
t01jt1

�
� (t1j�)

for all t01 and �, and it is given by

�1 (t
0
1jt1) t011 t012

t11
2
3

1
3

t12
1
3

2
3

(50)

Symmetrically, we have

� (t21j�1) =
X
t1

� ((t1; t21) j�1) =
4

9
+
2

9
=
2

3

� (t21j�2) =
X
t1

� ((t1; t21) j�2) =
1

9
+
2

9
=
1

3

�0
�
t021j�1

�
=

X
t01

�0
��
t01; t

0
21

�
j�1
�
=
13

27
+
2

27
=
15

27
=
5

9

�0
�
t021j�2

�
=

X
t01

�0
��
t01; t

0
21

�
j�1
�
=
1

27
+
11

27
=
12

27
=
4

9

Thus there is a unique �2 : T2 ! �(T 02) satisfying

�0
�
t02j�
�
=
X
t2

�2
�
t02jt2

�
� (t2j�)
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for all t02 and �, and it is given by

�2 (t
0
2jt2) t021 t022

t21
2
3

1
3

t22
1
3

2
3

(51)

Thus from each individual�s point of view, under S0, he is simply observing a noisy version (with accuracy
2
3) of the original signal (with accuracy

2
3).

Now consider the mapping � : T ��! �(T 0).

� (t0jt; �) (t011; t
0
21) (t011; t

0
22) (t012; t

0
21) (t012; t

0
22)

(�1; t11; t21)
2
3 0 0 1

3

(�1; t11; t22)
1
3

1
3 0 1

3

(�1; t12; t21)
1
3 0 1

3
1
3

(�1; t12; t22)
1
3 0 0 2

3

(�2; t11; t21)
1
3

1
3

1
3 0

(�2; t11; t22) 0 2
3

1
3 0

(�2; t12; t21) 0 1
3

2
3 0

(�2; t12; t22) 0 1
3

1
3

1
3

Now if t is drawn according to S and t0 is drawn according to �, we get the following joint distribution

� : �! �(T 0 � T ):

� (t0; tj�) (t011; t
0
21) (t011; t

0
22) (t012; t

0
21) (t012; t

0
22)

(�1; t11; t21)
8
27 0 0 4

27

(�1; t11; t22)
2
27

2
27 0 2

27

(�1; t12; t21)
2
27 0 2

27
2
27

(�1; t12; t22)
1
27 0 0 2

27

(�2; t11; t21)
1
27

1
27

1
27 0

(�2; t11; t22) 0 4
27

2
27 0

(�2; t12; t21) 0 2
27

4
27 0

(�2; t12; t22) 0 4
27

4
27

4
27

(52)

Observe that the marginal of � on T 0 is:

marg� (t0j�1) t021 t022

t011
13
27

2
27

t012
2
27

10
27

marg� (t0j�2) t021 t022

t011
1
27

11
27

t012
11
27

4
27
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This is simply �0.

Also observe that � satis�es the property thatX
t02

�
��
t01; t

0
2

�
j (t1; t2) ; �

�
= �1

�
t01jt1

�
for each t2 and �;

and X
t01

�
��
t01; t

0
2

�
j (t1; t2) ; �

�
= �2

�
t02jt2

�
for each t1 and �.

We have now established that S is more informed than S0 and thus that, for every game G, the set of

Bayes correlated equilibria of (G;S0) contains the Bayes correlated equilibria of (G;S).

However, S0 is not a "non-communicating garbling" of S. We will show this by contradiction. For S0

to be a non-communicating garbling of S, there would have to exist � : T ! �(T 0) satisfying

�0
�
t0j�
�
=
X
t

�
�
t0jt
�
� (tj�)

with X
t02

�
��
t01; t

0
2

�
j (t1; t2)

�
independent of t2 (53)

and X
t01

�
��
t01; t

0
2

�
j (t1; t2)

�
independent of t1 (54)

But X
t02

�0
��
t01; t

0
2

�
j�
�
=

X
t

X
t02

�
�
t01; t

0
2jt1; t2

�
� (tj�)

=
X
t

X
t02

�
�
t01; t

0
2jt1
�
� (tj�) , by (53)

=
X
t1

X
t02

�
�
t01; t

0
2jt1
�X

t2

� ((t1; t2) j�)

But we observed earlier that (50) is the unique expression �1 : T1 ��(T 01) satisfying this equation, so we
have

X
t02

�
��
t01; t

0
2

�
j (t1; t2)

�
= �1

�
t01jt1

�
for each t2 (55)

and, by a symmetric argument,X
t01

�
��
t01; t

0
2

�
j (t1; t2)

�
= �2

�
t02jt2

�
for each t1 (56)
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where �2 is given by (51).

Let us focus on the probability of a �xed pro�le of S0 signals (t011; t
0
21) and write �jk for the probability

of (t011; t
0
21) conditional on (t1j ; t2k) under �, i.e.,

�jk = �
��
t011; t

0
21

�
j (t1j ; t2k)

�
(57)

Now

�11 � min
�
�1
�
t011jt11

�
; �2
�
t021jt21

��
= �1

�
t011jt11

�
=
2

3

�12 � min
�
�1
�
t011jt11

�
; �2
�
t021jt22

��
= �2

�
t021jt22

�
=
1

3
(58)

�21 � min
�
�1
�
t011jt12

�
; �2
�
t021jt21

��
= �1

�
t011jt12

�
=
1

3

�22 � min
�
�1
�
t011jt12

�
; �2
�
t021jt22

��
= �1

�
t011jt12

�
=
1

3

But

�0
��
t011; t

0
21

�
j�1
�
=
X
t

�
��
t011; t

0
21

�
jt
�
� (tj�1)

requires we must have
13

27
=
4

9
�11 +

2

9
�12 +

2

9
�21 +

1

9
�22.

Combined with (58), this requires �11 = 2
3 , �12 =

1
3 , �21 =

1
3 and �22 =

1
3 . However,

�0
��
t011; t

0
21

�
j�2
�
=
X
t

�
��
t011; t

0
21

�
jt
�
� (tj�2)

requires we must have
1

27
=
1

9
�11 +

2

9
�12 +

2

9
�21 +

4

9
�22.

which is a contradiction.
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