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Abstract

The need for integration in the supply chain management leads us
to consider the coordination of two logistic planning functions: trans-
portation and inventory. The coordination of these activities can be
an extremely important source of competitive advantage in the supply
chain management. The battle for cost reduction can pass through the
equilibrium of transportation versus inventory managing costs. In this
work, we study the specific case of an inventory-routing problem for
a week planning period with different types of demand. A heuristic
methodology, based on the Iterated Local Search, is proposed to solve
the Multi-Period Inventory Routing Problem with stochastic and de-
terministic demand.
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1 Introduction

In many industries, the logistic planning functions of transportation and
inventory play an important role and integrating these two areas may lead to
significant gains and more competitive distribution strategies. The coordina-
tion of these activities can be an extremely important source of competitive
advantage in the supply chain management. The battle for cost reduction
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can pass through the equilibrium of transportation costs versus inventory
managing costs.

Both the Vehicle Routing (VR) and the Inventory Management (IM)
problems have been extensively studied separately and there exists a vast
amount of literature on these areas. However, when looking at the two prob-
lems together, the amount of work found is much less. Many models have
been proposed for inventory problems with no routing decisions considered
and many studies exists on vehicle routing problems in which no inventory
management is mentioned.

The problem that considers VR and IM decisions together is known as
the Inventory Routing Problem (IRP). The main objective in the IRP is to
design the set of routes and delivery quantities that minimize transportation
cost while controlling inventory costs. Considering these two problems in an
integrated manner can reduce total costs.

The model we propose is a Multi-Period Inventory-Routing with two
types of customers: the Vendor-Managed Inventory (VMI) customers and
the Customer Managed Inventory (CMI) customers. The VMI customers
have a random demand and the distributor manages the stock at the VMI
customer location. The CMI have fixed demand and the distributor faces
no inventory costs associated with these customers.

The objective is to determine the routes for a week planning period and
the quantities delivered to the VMI points, minimizing total transportation
plus inventory costs.

The motivation of this work can be found on the advantages that can be
obtained when integrating processes along the supply chain. In this partic-
ular case, trying to reduce total costs through the coordination of decisions
between distribution management and inventory management areas. Al-
though there exist some literature on the integration issue, none of them
addresses the specific case of this model: two types of customers, a week
minimum visit and no information on the inventory levels during the pe-
riod.

This paper is organized in the following way: First we make a re-
view on some relevant IRP literature. Then, we expose our Multi-Period
Inventory-Routing Problem with Stochastic and Deterministic De-
mand (MPIRP-SDD) model in detail. In section 4, the solution method,
based on the Iterated Local Search is presented. In section 5, we show the re-
sults of a computational experiment. And finally, we draw some conclusions
and further research.



2 Literature review

Ferdergruen and Simchi-Levi (1995) make a good summary on inventory-
routing problems. These authors divided the IRP models into two variants:
the single period model and the infinite horizon model.

Baita et al. (1998) also present a review on dynamic routing and inven-
tory. These problems are characterized by having a dynamic environment.
Repeated decisions have to be taken at different times within some time
horizon and, earlier decisions influence later decisions.

We will now present a review on IRP literature relevant to our study,
separating the existing work into Finite and Infinite Horizon Models.

2.1 Finite Horizon

For the single period inventory routing model, Ferdergruen and Zipkin (1984)
addressed the problem of allocating a scarce resource, available at the central
depot, among several locations, each with random demand while planning
the deliveries using a fleet of vehicles. At the beginning of the period the
initial inventory is reported to the depot. This information is used to de-
termine the allocation of the available product, for the next day, among the
locations. At the same time the assignment of customers to vehicles and
their routes are determined. After deliveries are made, the demands occur
and inventory carrying and shortage costs are incurred at each location pro-
portional to the end of the period inventory level. In this model it is possible
to choose not to visit some of the locations.

Dror and Ball (1987), decompose the multi-period problem into series of
single period problem. They studied the case where, in each time interval,
only customers, who will reach their safety stock level during this interval,
are serviced. Trudeau and Dror (1992) solve the problem for stochastic
demand.

Bard, Huang, Jaillet and Dror (1998) present a decomposition scheme
for solving inventory routing problems with satellite facilities, in which a
central depot must restock a subset of customers on an intermittent basis.
In this setting, the customer demand is not known with certainty. A unique
aspect is the presence of satellite facilities where vehicles can be reloaded
and customer deliveries continue until the closing time is reached. Jaillet et
al. (2002) present an incremental cost approximation to be used in a rolling
horizon framework for the above problem of minimizing total expected an-
nual delivery costs.

Campbell (1999) presents an inventory-routing problem and an opti-



mization based approach for its solution. In the 1% phase they decide which
customers receive a delivery on each day of the planning period and decide
on the size of deliveries and on the 2" phase the actual delivery routes and
schedules for each day. They consider a small set of delivery routes, con-
structed using a cluster and vehicles are allowed to make multiple trips per
day. The objective is to minimize the average daily distribution cost dur-
ing the planning period without causing stockouts. There is no inventory
holding costs or stockouts costs included in this model.

In the literature we find IRP with specific characteristics, such as consid-
ering a limited amount of product at the warehouse, see Chien et al. (1989).
They address the problem of distributing a limited amount of inventory
among customers using a fleet of vehicles so as to maximize profit. The
problem is to decide how to allocate its available inventory to the different
customers and they assume that the warehouse does not have enough supply
to satisfy each customer maximum demand. In order to determine which
customers must be served and the amount to supply to each selected cus-
tomer, we need routing cost information so that the marginal profit (revenue
minus delivery cost) for each customer can be accurately computed. The
delivery cost for each customer depends on the vehicle routes, which in turn
requires information about customer selection and the mount of inventory
allocated.

Some research can also be found on the Direct Deliveries Strategies! in
IRPs. Burns et al. (1985) developed an analytical method for minimizing
the costs of distributing freight by truck from a supplier to many customers.
They derive formulas for transportation and inventory costs, and determine
the optimal trade-off between these costs. The paper analyses and compares
two distribution strategies Direct Shipping (Direct Delivery) and Peddling?.
For Direct Shipping, the optimal shipment size is given by EOQ model while
for Peddling, the optimal shipment size is a full truck. There is no VRP,
they consider a Minimum Path model inside each region.

Bertazzi et al. (2002) study a multi-period model with deterministic
demand in which a set of products is shipped from a common supplier to
several retailers. A retailer can be visited several times during the time
horizon. A shipping policy consists of determining for each delivery time
instant the set of retailers to visit, the quantity of each product to ship to
each retailer and the route of the vehicle. The inventory policy is an Order

1Direct Delivery Strategies consists in shipping separate loads for each customer.
2A peddling strategy consists in dispatching trucks that deliver items to more than one
customer.



Up-to Level policy®. They investigate the case of a single product and a
single vehicle.

2.2 Infinite Horizon

In the Infinite Horizon IRP, Anily and Ferdergruen (1990) developed a model
of a one warehouse multi-retailer system with vehicle routing costs. The ob-
jective is to determine the feasible replenishment strategies minimizing long
run average transportation and inventory costs. A replenishment strategy
specifies a collection of regions covering all outlets. If an outlet belongs to
several regions a specific fraction of its sales is assigned to each of these
regions. Each time, one of the outlets in a given region, receives a delivery;
this delivery is made by a vehicle that visits all other outlets in the region as
well (in an eflicient sequence or route). These authors allow regions to over-
lap. See Hall (1991) and Anily and Ferdergruen (1991) for more comments
on this model.

Anily, S. and A. Federgruen (1993) extended their analysis on the one
warehouse multiple retailer system with vehicle routing costs, to the case
where inventories may be kept in the warehouse.

Another work on the Infinite Horizon IRP is the one by Barnes-Schuster
and Bassok (1997). These authors studied the situation where retailers
face random demands from known distributions functions. Ordered goods
arrive at depot and are allocated and delivered to the retailers. Retailers
see demands, report to the depot and are charged inventory holding and
shortage costs; depot decides whether or not to place the order for retailer
7. The question that the authors answer is: when it will be effective for the
depot to use Direct Shipping and Order Up-to Level rounded to full trucks
as its sole ordering policy. Effectiveness is defined as the ratio of the long
run average cost per period of the policy at hand to a lower bound on the
long run average cost over all possible policies.

Chan et al. (1998), consider a distribution system consisting of a single
warehouse and many geographically dispersed retailers. The objective is to
determine an inventory policy and a routing strategy such that each retailer
can meet its demands and the long-run average transportation and inventory
costs are minimized. This paper studies the Zero-Inventory Ordering policy*

3A Order Up-to Level policy is a policy where every time a retailer is visited, the
quantity of each product delivered is such that the maximum level of inventory is reached.

4Zero Inventory Policies, are policies under which a retailer is replenished if and only
if its inventory is down to zero.



and the Fixed Partition Policies®.

Also, Kleyweght et al. (2002), studied the problem of determining opti-
mal policies for the distribution of a single product from a single supplier to
multiple customers. The objective is to maximize expected discounted value,
incorporating sales revenues, production costs, transportation costs, inven-
tory holding costs and shortage penalties, over an infinite horizon. They
study the special case of the Direct Deliveries.

In Berman and Larson (2001), the objective is to adjust dynamically the
amount of product provided on scene to each customer so as to minimize
total expected costs, comprising costs of earliness, lateness, product short-
fall, and returning to depot non-empty. This problem can be encountered
within an “industrial gases context”.

Following the above classification, our work can be included in the Finite
Horizon and multi-period group. The model has infinite capacity at the
warehouse, distributor faces both stockout and holding costs, initial stock is
only known at the beginning of the first period and each customer is visited
at least once in the planning period. This model distances from the above
literature on another aspect: the incorporation in the routing problem of
both CMI points and VMI points.

3 The MPIRP-SDD

In this MPIRP-SDD model we consider two types of customers: the Vendor-
Managed Inventory (VMI) customers and the Customer Managed Inventory
(CMI) customers. The VMI customers have a random demand with a known
distribution function for each period in the planning horizon. The distrib-
utor manages the stock at the VMI customer location and is responsible
for the inventory cost incurred on these locations. For this group, it is the
responsibility of the distributor to decide how much to deliver and when.
The distributor has two types of costs related to these points: the holding
cost ( i.e. the cost of having inventory at these points, this cost is per unit
and per period); and a stock out cost (i.e. cost per unit not sold).

The CMI have fixed demand that has to be fully satisfied on a specific day
and the distributor faces no inventory costs associated with these customers.
The CMI customers place an order to the distributor, some time in advance,
to be delivered on an agreed date. These customers decide the quantity and

SFixed Partitioning Policies, partitions the set of retailers into a number of regions, such
that each region is served separatly and independently from all other regions, whenever a
retailer in a set is visited by a vehicle, all other retailers in the set are visited as well.



delivery days and the distributor has no responsibility on the inventory they
posses.

The objective is to determine the routes for a week planning period
(composed of five working days) and the quantities delivered at the VMI
points, minimizing total transportation plus inventory costs. The choice of a
week planning period is motivated by two aspects: the strategic perspective
of the model, our objective is to design a distribution policy in advance; and
for control reasons, there is a minimum frequency of visiting a customer, we
assume that it is at least once in the planning period. We have to decide
when to visit the VMI customers and how much to deliver each time we visit
them. The costs of the model include traveling cost, inventory managing
costs associated with the VMI customers and a fixed cost of using a vehicle.

Although there exist some literature on the integration issue, none of
them addresses the specific case of this model: two types of customers, a
week minimum visit and no information on the inventory levels during the
period.

The motivation of this work is based on the need for coordination within
the supply chain management. In this case, we are trying to coordinate
decisions from the distribution management area with decisions from the
inventory management area. The aim of this model is, by coordinating
strategies in different areas of the SCM try to reduce total costs. In other
words, define an integrated inventory-routing strategy that proves to be
more efficient than a non integrated inventory routing strategy (solving
both problems independently).

So, based on this idea, the objective of this model will be to design the
routes and the delivering quantities in such a way has to minimize total cost.
The decisions will be based on the assumptions explained below.

3.1 Assumptions of the model

The model tries to define the best routes for all customers and the best
delivering quantities for the VMI customers. The first assumption is that
we have two sets of customers and the VMI customers are visited at least
once a week. Another important aspect is that we only know the initial
inventory at the beginning of the first period, and the decisions are taken
for the all week, independently of what occurs during the week.

The assumptions of the model are.

e Set of customers with well known geographical locations.

e Week period delivery system is considered (five working days).



3.2

The

The CMI customers have a demand that is fixed, that is, at the begin-
ning of the period we know the demand and, this exact amount has
to be delivered at a specific day.

There are no inventory costs to be managed at the CMI sites.

There are no handling stock costs at the depot, and we assume that
there is enough amount of product at the depot (unlimited capacity).

VMI customers have stochastic demand, the quantities to deliver de-
pend on the expected demand.

For the VMI customers, demand probability function is known and
varies by customer and from day to day.

At the VMI points, there are inventory holding costs and a cost for
stock out.

The vehicles have a fixed capacity.
The highest demand is always smaller than a vehicle capacity.

There is no fixed number of vehicles but a high fixed cost for the use
of a vehicle.

FEach customer can only be visited once a day and is visited at least
once a week.

The holding and stock out costs only depend on quantities and not on
customers. And the stock out cost is always bigger than the holding
cost.

The MPIRP-SDD

costs of the problem are:

Transportation cost between locations;

Stock out and inventory costs for the VMI customers, per unit of
product and per day;

Fixed cost per vehicle used.

The decisions to be made are the following:



Decide the routes for each day of the week, for each vehicle;
Decide the number of vehicles needed each day of the period;

Decide for each day which of the VMI customers will be included and
where in the tour;

How much to deliver to the VMI customers, on each day.

Objective function:

Objective is to minimize the expected cost at the end of the week:

Min Weekly cost = transportation cost +
inventory holding cost +
stockout cost +

fixed cost for the use of vehicles

Notation:

A = set of CMI customers.
B = set of VMI customers.

n = number of customers, indexed from 1 to n; index 0 denotes the
central depot.

() = capacity of a vehicle.
P = number of periods (in this case, P = 5 periods, from 0 to 4).
¢;; = cost of direct travel from location 7 to location j.

Fip(.) = cumulative distribution function of the demand of one period,
in location ¢, with ¢ € B for day p.

fip = distribution function of the one period demand for customer %
and day p,2=1,..nand p=1,..., P;

h = inventory holding cost per unit and per day.
s = shortage cost per unit and per day.

ﬁf = initial inventory at location z on day p.



d? = demand of customer ¢ on day p with ¢ € A.
T; = set of days where ¢ has a positive demand, with ¢ € A.
C' = fixed cost per vehicle used per day.

K = maximum number of available vehicles.

Variables:
1 if vehicle & travels directly
xif ih = " from customer ¢ to customer j on day p;

0, otherwise.

Yk =Y 0, otherwise.

» { 1, if customer 7 is assigned to vehicle k& on day p;
?

wfk = amount delivered to location ¢ on day p, by vehicle k.

K, = number of vehicles needed on day p.

Transportation cost:

P
E :clsz‘jk

L5k
Inventory cost:
Consider
K
P D
Wy = Z Wik,
k=1
wf = amount delivered to location 7 on day p
p-1 [ Bitw! o
Z Z h Z (ﬁ€ + wf - tip)fip@ip)dtip +s Z (tip - ﬁ? - wf)fip@ip)dtip
1c B p=0 0 Berwip

Fixed cost per vehicle used:
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Let Il-p(wﬁ7 ) represent the inventory managing cost of VMI location ¢ on

day p.
The problem can be stated as follows:

n n K P=1 P=1 P=1
Min 3OS S e+ 30D Lyluh) + D Ky C o
1=0 j=0 k=1 p=0 i€eB p=0 p=0
Subject to:
K
D=1, Vi€A,  VpeT (2)
k=1
KP
> v =Kp  Vp=0,.,P—1 (3)
k=1
S dyh 4> wh<Q Vp=0,.,P—-1 k=0.,K (4)
€A i€B

n n
fojk = ink =y, Vi=1,.,n k=1,..,Kp; p=0,..,P—1 (5)
=0 =0

Z xifjk < ’S’ — 1, V S nonempty subset of {17 ,n}

J2eS

k=1,..K; p=0,...P—1 (6)
K P-1

1< yh, VYieB (7)
k=1 p=0

K

YW <1, VieB p=0,.,P-1 (8)

k=1

yh, < wh < ybh M, VieRB p=0,..,P—1; k=1,.,K; (9)
wh >0, 1 €B p=0,.,P—1 (10)
xfjk €{0,1}; o5, €{0,1}Vi=0,..,mk=1,..,K; p=0,.,P—1 (11)

The meaning of the above constraints is:
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(2) For the CMI, in days where the customer have a positive demand, that
customer is visited by only one vehicle.

(3) The second constraint forces that each day all vehicles go to the depot.

(4) This constraint ensures that the daily loading of a vehicle does not
exceed its capacity.

(5) This constraint guarantees that if the vehicle enters a node, on day p,
it also has to leave that node, on the same day.

(6) Avoids sub-tours, for each vehicle for each day. The sub-tour elimina-
tion constraint represents an exponential number of constraints. The
problem with this constraint is that its number grows exponentially
with n.

(7) The VMI customers are visited at least once a week.

(8) Each day, there can only be at most one vehicle visiting the VMI
customers.

(9) If the amount delivered, by vehicle k, to a VMI i on day p is positive
then, vehicle k& has to visit that location on that day. M represents a
very big value.

(10) The variable w;p, representing the quantity delivered to a random de-
mand customer on a given day is always greater or equal to 0.

(11) This constraint define the variables % 1, and Y4 as binary.

The inventory cost only applies for the VMI customers and is equal to:
the expected inventory holding cost, if the initial stock plus the quantity de-
livered is less than the demand, or a stockout cost otherwise. This expression
applies for the case where demand is a discrete variable.

Since the representation of the probability distribution is difficult to find,
particularly when demand ranges over a large number of possible values,
the discrete random variable is often approximated by a continuous random
variable. Furthermore, when demand ranges from over a large number of
possible values, this approximation will generally yield a nearly exact value
of the optimal amount. In addition, when discrete demand is used, the
resulting expression becomes more difficult to solve analytically.

So, from now on we will consider the demand of the VMI customers as
a continuous random variable:

12



1c B p=0
_ B S 1) ()t
22| s, g6 = b i)t (12

The above inventory cost function (12) only works if the initial inventory

of each period is known in advance, or observed. Since we are planning for

several periods in advance we do not know the demand on each period. The
initial inventory is then also a random variable that depends on the demand
of all the previous periods and on quantities delivered in all the previous

periods.

We will assume that the only quantity we can observe is the initial in-

ventory of each customer at the beginning of period 0.

At each period, if there is a stockout, a cost is incurred and the initial

stock of the following period will be zero.

Bio
Ba
Bio

Biz

ﬁiél

Then, the initial inventory for each period is:

u; > 0
Max {07 U; + Wio — tiO}
Max {0, 3;; +ws1 — tin} =
Mazx {07 Mazx {0, U; + Wio — tiO} + w1 — til}
Max {0, B;9 + wsg — tin} =
Mazx {0, Max { 0, Maz {0, u; + wio — Lo} + } —I—wm—tﬂ}
wi1—1;1
Max {0, ﬁi?, + w;3 — ti3} =
0, Max <0, Maz 0, Maz {0, uFwio—tio} +wio—tio
+w;i1—ti1
+w;z—1t;3

Max

So, the initial stock of period p will be a function of the initial stock of

period 0, of the quantities delivered and demand of all previous periods.

5% (s, Wi, ooy Wip—1, Lio, - Lip—1)
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Assume from now on that the demand follows an exponential distribution
function with the form:

f(t) = a;e” %t (13)

There are many different statistical distribtuions to choose from when
working with inventory control. The exponential distribution function is
commonly used to represent the demand variation in inventory models. See
Lidke and Malstrom (1987) and Snyder (1984).

We need to calculate the inventory cost for each period. So, for each
period we need to consider all the possible scenarios of the previous periods
initial inventory. This is, for period 0, we know the initial inventory, for
period 1 we need to consider two possibilities: stock-out at the end of period
zero (zero initial inventory at period 1) and positive stock at the end of
period 0 (initial stock at period one positive). Then we extend this for the
second, third and fourth periods for all possible combinations.

The expression of the inventory cost function for each customer and each
period can be seen in detail in Ribeiro and Lourengo (2003).

4 Heuristics Solution Method for the MPIRP-SDD

The limitations of available computational techniques make it impractical to
try to solve this problem directly for all but very small instances. The struc-
ture of the problem argues for some type of decomposition. As mentioned
there are two subproblems embedded in the IRP. The first is to decide the
delivery day and the quantity, the second involves routing decisions.

Our decomposition scheme for the IRP is outlined in the following steps:

e Step 1: Obtain an initial solution where the inventory problem is
solved separately without considering any delivery cost.

e Step 2: For each day in the planning horizon, try to find a good feasible
solution by solving a VRP.

e Step 3: Calculate an approximation of the VMI customers delivery
cost.

e Step 4: Determine the new quantities and delivery days for the VMI
customers, taking into account the setup cost.

14



e Step 5: For each day in the planning horizon, try to find a good feasible
solution by solving a VRP.

e Step 6: Repeat steps 3 and 4 until a satisfied solutions is found.

Next, we will explain in more detail each step of the heuristics for the

MPIRP-SDD.
Step 1: The Initial solution - The inventory problem

In the first step of the algorithm we will solve the inventory problem
alone. Considering that there are no transportation costs to be handled.
The cost function (12) only works if the initial inventory of each period is
known in advance. However, one of the assumptions of the model is that
the stock at the VMI locations can only be observed at the beginning of the
planning period. Therefore, the initial inventory is also a random variable
that depends on the demand of all the previous periods and on quantities
delivered in all the previous periods.

We need to calculate, for each VMI customer, the inventory cost for each
period.

For period zero, we observe the initial stock and incur in holding cost if
expected demand exceeds the initial inventory plus the quantity delivered
or a stockout cost otherwise. If there is a stockout, in the next period the
initial stock will be zero.

For the other periods (period 1 to 4), we have to consider all the possible
scenarios of the previous periods. For period 1, for example, we need to
consider two possibilities: stock-out in period zero (zero initial inventory at
period 1) and positive stock at the end of period 0 (initial stock at period
one positive). For each VMI customer i:

Period 1: { gi i 8

For period 2 we need to consider 4 scenarios:

. . ﬁl = 0 and ﬁQ > 0
Period 2: B, > 0 and By — 0
By > 0 and By > 0

Then we extend this for period 3 and 4 following the same reasoning.

15



This inventory problem, is different from other inventory problems that
can be found in the literature. Since, in this particular case we have a
planning horizon, 5 days, for which we need to plan the delivery quantities.
Also, we do not known what is the initial stock at each day for each customer.
We have to decide how often and how much to deliver. Since we do not
allow for negative quantities, we have a non-linear constrained minimization
problem.

This initial solution is obtained by solving the inventory model for each
customer. The inventory cost function results in a complex integral with 5
integrals. This expression is minimizes using the Gauss-Newton method,
with the average demand as a starting point. The objective is to minimize
inventory costs (holding + stock-out costs). The best solution is to de-
liver almost every day to the VMI customers, since there is no setup cost
associated with the deliveries.

In summary, in step 1 we calculate the optimal quantities to deliver on
each day of the week to each VMI customer. We assume an initial solution
for the first day and an exponential distribution function for the demand of
each customer on each day. For the detailed inventory cost function analysis
and solution method see Ribeiro and Lourengo (2003).

Step 2: The VRP

After step 1, we known the quantities and the days to delivery to each
customer. Therefore, we have to solve a VRP each day to obtain the best
routes. To solve the VRP each day, we consider an ILS for all customers
on that specific day and their respective quantities. After, we calculate the
total cost: transportation cost and inventory cost associated with the VMI
customers.

Due to the complexity of the VRP problems (NP-hard) we need to de-
velop an heuristic. Our proposal is to use an heuristic algorithm that as
proven to give quiet good results on other problems and is easy to imple-
ment and modify.

A heuristic algorithm is a solution method that does not guarantee an
optimal solution, but in general has a good level of performance in term of
solution quality and convergence. Heuristics may be constructive (producing
a single solution) or local search (starting from one given random solution
and moving iteratively to other nearby solutions) or combination of both.

Iterated Local Search (ILS) is a simple and generally applicable Meta-
heuristic which iteratively applies local search to modifications of the current
search point. At the beginning of the algorithm, a local search is applied to
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some initial solution. Then, a main loop is repeated until a stopping criterion
is satisfied. This main loop consists of a modification step (“perturbation”),
which returns an intermediate solution corresponding to a modification of
a previously found locally optimal solution. Next, local search is applied to
yielding a locally optimal solution . An “acceptance criterion” then decides
from which solution the search is continued by applying the next “pertur-
bation”. Both, the perturbation step and the acceptance test may be influ-
enced by the search history. ILS is expected to perform better than if the
method restarts local search from a new randomly generated solutions.
ILS algorithms have been applied successfully to a variety of combina-
torial optimization problems. In some cases, these algorithms achieve ex-
tremely high performance and even constitute the current state-of-the-art
metaheuristics, while in other cases the ILS approach is merely competi-
tive with other metaheuristics. IS has many of the desirable features of a
metaheuristic: it is simple, easy to implement, robust, and highly effective.
For a survey in ILS see Lourengo, Martin and Stiitzle (2001) and Lourengo,
Martin and Stiitzle (2002).
Here is a structure of the ILS:
procedure ILS

s°=Generatelnitial Solution

s*=LocalSearch(s®)

repeat

s'=perturbation(s*, history)

s¥=Local search(s’)

s*=AcceptanceCriterion(s*, s*, history)

until termination condition met

end

The ILS used was based in the heuristic developed by Stiitzle(1998) and
Kunz (2000). The structure of the algorithm is the following:

Savings heuristic (Clarke and Wright (1964)) for the initial solution.
ILS for TSP on each tour:

— Local Search for TSP: 2-opt.

— Kick move for TSP: double bridge, this perturbations cuts four
edges, and introduces four new ones.

— Acceptance criterion: better; this means that the new tour is
accepted if it has a lower cost.
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ILS for the VRP

— Local Search for the assignment problem: 2-opt. We have two
possibilities for a 2-opt: A customer of a tour is postponed into
another or a customer trades with another customer from another
tour. First, if capacity restrictions allow and it reduces costs, a
city is inserted in the tour. Only if it can not be inserted, then
we check if an exchange with another tour improves the solution.

— Kick move for VRP: Numb-crosser: exchanges final pieces through
the number of customers, exchanges 1/3 of the tour, a tour is cho-
sen by chance and then break the tour.

— Acceptance criterion: Best;

ILS for the TSP on the new routes: The same as for the first ILS
implemented in the first part.

At the end of 2, we have obtained an initial solution for the MPIRP-
SDD model based on a sub-optimization of the two existing problems: the
routing and the inventory problem. Now, Step 3 to 6 consists in developing
an heuristic method that improves this initial solution.

Step 3: Inventory and transportation - The setup cost
approach

When considering the inventory problem separately from the transporta-
tion problem, the best solution is to deliver frequently, every day or almost
every day, however, this implies higher transportation costs. Our objective
is to balance the delivery costs with the inventory cost. One way to do this
is by considering a setup cost: a cost per delivery made to a VMI customer.
This setup cost only applies to these set of customers since, the CMI cus-
tomers have to be visited on a specified day and no changes are allowed on
these customer’s orders. If a VMI customer is visited on day p, then there
is a fixed cost associated with this customer, on this day.

We will obtain the setup cost by calculating the approximate cost of
serving a VMI customer on a specific day, this is, the cost of including a
customer ¢ on tour j on day p. This is an approximation since the real value
would have to consider the relationship between the delivering decisions of
all the other customers and the best corresponding routes.

It is logical to think that if a customer is close to a group of customers
that are visited on day p, than we have a lower cost of delivering that
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customer on that day. This is, the setup cost of customer 7z will depend on
the location of this customer with respect to other customers in the route.

This cost represents the cost associated with delivering to a customer on
a day p, and will only depend on distance. This setup cost will be calculated
in the following way:

gl-p = cost of going to customer 7 on day p.

f = a fixed setup weight per distance unit.

Let 7 and k& be the previous and successor customer in the route of
customer ¢ on day p, then.

gip = (Cji + Cip — Cjk) x 0 (14)

At Step 3 we have calculated the setup cost for each VMI customer on
each day.

Step 4: New deliveries

Now, we have an inventory model with a setup cost. For each VMI cus-
tomer we need to redefine the optimal deliveries. For a more detail discrip-
tion of this inventory model with setup costs see Ribeiro and Lourengo(2003).

The procedure can be summarized as follows:

e Consider all possible combinations of delivery days.
Solve the inventory problem for each combination.

Add the corresponding setup cost in each solution.(obtained in Step
3)

Choose, for each VMI customer, the solution with the lowest total cost
(inventory + setup).

At this stage we obtain the new set of delivery days and quantities.

Step 5: New VRP

For each day in the planning horizon, and using the new delivering quan-
tities from Step 4, find a good feasible solution by solving a VRP (repeating
Step 2).

Step 6: Repeat
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Repeat steps 3 to 6 until a satisfied solution is found, or until a certain
number of iterations have been performed.

We will present a computational experiment on the application of this
method to the MPIRP-SDD.

5 Computational Results

In this section we will present a computational study that assess the im-
pact of integrating transportation and inventory. To analyse this impact
it is interesting to compare two solutions: The integrated solution and the
non-integrated solution. This non-integrated solution is characterized by the
separability of the two problems: the inventory and the routing are inde-
pendent, first we solve the inventory problem and use the solution to decide
the routes. The solution of the integrated problem is the one obtained after
the running of the algorithm presented in the previous section.

The objective is to compare the two solutions (the integrated versus the
non-integrated solution) obtained when solving the two different problems
(Inventory and Routing) and analyzing the impact of considering the prob-
lems in an integrated form.

There are two ways in which we will orient this analysis: the first is to
compare total costs; and the second is to make a multi-objective approach.
In this second perspective the inventory cost and the routing cost are the
two objectives that we would like to minimize. Instead of choosing the best
total cost we will consider all non-dominated solutions obtained from the
algorithm and would be the responsibility of the decision maker to choose.

Next we will explain the data used and analyze some important results
of this experiment.

5.1 The data

For the computational experiment we have generated several sets of exam-
ples, each group with different characteristics concerning: total number of
customers (100, 200, 400); percentage of VMI customers (10% and 50%);
type of demand (equal every day, different each day) and setup cost param-
eter (high setup cost =100 per distance unit and low setup cost, 6 = 10
per distance unit).

For the VMI customers, we have used a demand parameter «y, (for each
customer ¢ and day p) that follows a normal distribution with mean 50 and
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standard deviation 20 for each customer. In the cases where demand is
different every day the standard deviation between days used was 5.

The initial stock for each customer was generated by a random uniform
distribution between 0 and 50.

The results were obtained considering 8 iterations. The stockout cost
used was twice the holding cost, in this experiment h = 2 and s = 4. There
is a fixed charge per vehicle used per day: C' = 200.

5.2 Analysis of the results

We can start by looking at a few examples in terms of the solutions obtained
at each iteration, see Figure 1.

The non-integrated solution corresponds to the initial solution obtained
at the end of step 2 of the algorithm. By continuing the algorithm (step 3
to 6) and exploring other VMI delivery strategies, the new inventory cost
increases but, allows some savings in terms of routing. In Figure 1, iteration
0 corresponds to the non-integrated solution while the other iterations 1 to
7 correspond to integrated solutions. In these two particular examples, the
best solution would be found at iterations 1. However, supposing that a
higher preference was given to reduce routing costs, then the best solution
would be at iteration 7 for example A and 2 for example B.
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Example A : Inventory, Routing and Total Costs, example Example B : Inventory, Routing and Total Costs, example
of 200 customers, 10% VMI, high setup cost.

of 100 customers, 50% VMI, low setup cost.
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Figure 1: Examples of Inventory, Routing and Total Costs at each
iteration.

Figure 1: Examples of Inventory, Routing and Total Costs at each iter-
ation.

In Table 1, we present the average total cost improvemet for each prob-
lem size. This average Cost Reduction was calculated by comparing, for
each group of examples, the best solution for the non-integrated (i.e. the
initial solution obtained at the end of step 2) versus integrated case (i.e.
the best solution in terms of total cost, obtained by the algorithm). The
average savings, for instances of 100 customers with 10% VMI customers,
when integrating routing and inventory is 1,42% of the total cost.
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Problem  Number Average Total Cost

Size VMl Reduction
100 10 1,42%
50 0,99%
200 20 0,94%
100 2,09%
400 40 0,26%
200 0,06%

Table 1: Average Total Cost Reduction for each group size.

In Figure 2, we can see the trade-off between Inventory cost and Rout-
ing cost. This corresponds to viewing the problem has a multi-objective
problem, where all the set of non-dominated solution are of interest for the
decision maker to choose the best delivering and routing strategy. In exam-
ple C' we would have three non-dominated solutions (the three circles in the
graph).In example D, only two solutions would be non-dominated (the two
circles in the graph).

Example C Example D

146500 142500

1460001 @ [ 142000 ® .
3 145500 - 2 141500 |

O

o 145000 - J
£ e g 141000 "
3 144500 | 3 140500 {

144000 - 1

o 140000 o
143500 : 139500

11800 12000 12200 12400 12600 12800 23000 24000 25000 26000 27000 28000

Inventory Cost Inventory Cost

Figure 2: Trade-off between Inventory and Transportation cost.

We also compared the non-integrated solution with the best solution in
terms of routing cost. Table 2 considers the trade-off between inventory
and routing costs when going from the solution of the non-integrated case
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to the integrated one. The results are shown in terms of average variation
in routing and inventory: the inventory costs increase and the routing costs
decrease.

The best solution in terms of transportation cost always implies an in-
crease in inventory cost. The difference in the magnitude of these variations
is justified on one hand by the values chosen for the inventory costs and
transportation cost. And, on the other hand, by the existence of other cus-
tomers, the CMI customers. These customers have fixed delivery days and
quantities: The higher is the percentage of CMI customers the less we can
reduce routing costs by concentrating deliveries (the impact on total routing
cost is less visible).

bl Nt High setup cost parameter Low setup cost parameter
rgiZ:m l:/TMer Equal demand Different demand Equal demand Different demand
ip_cost vrp_cost ip_cost vrp_cost ip_cost vrp_cost ip_cost vrp_cost

100 10 -0,19 0,03 -0,22 0,03 -0,07 0,01 -0,08 0,02
50 -0,21 0,05 -0,19 0,04 -0,06 0,05 -0,06 0,05

200 20 -0,16 0,03 -0,15 0,02 -0,05 0,01 -0,03 0,01
100 -0,18 0,12 -0,17 0,12 -0,04 0,03 -0,04 0,03

400 40 -0,15 0,02 -0,14 0,02 -0,02 0,01 -0,02 0,01
200 -0,15 0,11 -0,15 0,11 -0,03 0,02 -0,02 0,02

Table 2: Trade-off between inventory and routing costs.

In terms of delivery days, when optimizing separately we obtain an av-
erage of 4,68 delivery days a week, for the VMI customers, while for the
integrated case, this average falls to 3,49 delivery days a week.

Another analysis that can be done is in terms of vehicles needed. When
we integrate transportation and inventory, this implies that the delivery
frequency is reduced and we are able to reduce the number of routes. As-
suming that the distributor pays a fixed charge per use of a vehicle then,
by reducing the number of routes at the end of the week the distributor is
able to reduce routing costs. Table 3, shows for each group of examples, the
average reduction in the number of vehicles needed per week. The higher
is the percentage of VMI customers, the more we can reduce the number of
vehicles needed. This reduction is higher when the setup cost parameter is
high. A higher setup cost parameter means that solutions with fewer de-
liveries are preferable. For example, in the group with 100 customers 10 of
them VMI, for the integrated solution, the total number of vehicles needed
per week reduces on average 2,81% and 1,73% for the cases with high and
low setup cost parameter respectively.
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Sroblem.  Nimber Reduction N. of vehicles

Size VM| High setup cost Low setup cost
parameter parameter
100 10 -2,81% -1,73%
50 -12,34% -4,67%
200 20 -2,55% -1,65%
100 -12,02% -3,19%
400 40 -2,08% -0,99%
200 -10,65% -2,14%

Table 3: Reduction in the total number of vehicles.

In terms of run time, Table 4 summarizes the average number of running
time per problem, measured in seconds:

Problem Number Average Run
Size VMI Time in seconds
100 10 110,73
50 113,88
200 20 465,72
100 376,39
400 40 1783,901
200 1490,591

Table 4: Average run time

The non-integrated inventory solution consists of delivering almost every
day. In Table 5, we see the average number of delivery days, for the non-
integrated problem for examples with different variations in demand. For
each group the standard deviation of demand between days is 0, 5, 10, 20.
The higher the standard deviation, the fewer the average number of delivery
days.
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Average number of delivery days

Demand Inventory
variations minimization
0 4,68
5 4,56
10 4,38
20 3,98

Table 5: Average number of delivery days.

The above results show that the distributor who has VMI customers
gains from considering inventory and routing in an integrated manner, and
this gain can be seen in terms of total cost reduction. The best delivery
strategy will be to deliver very frequently which implicates higher trans-
portation costs. When including the cost of delivering, the solution has few
delivery days and transportation costs are reduced. The magnitude of this
improvement depends on the problem size, on the proportion of VMI cus-
tomers in the problem and also on the unit costs chosen for both problems.
It is also interesting to consider the problem in a multi-objective perspective.
For this case, analyze the set of non-dominated solutions and it becomes the
responsibility of the decision maker to choose the best solution based on a
given inventory strategy and a delivering plan associated.

6 Conclusions

The logistic planning functions of transportation and inventory play an im-
portant role in may industries and integrating these two areas may lead to
significant gains and more competitive distribution strategies. The move-
ment towards more integrated processes cannot ignore these tow key logistic
fields.

In this paper, we present a Multi-Period Inventory Routing Problem
with Stochastic and Deterministic Demand. We have considered the par-
ticular case of a distribution firm that has to decide on its distribution and
inventory strategies. This firm has two types of customers, the VMI and
CMI customers and decisions have to be made on the quantities delivered
and days of visit to the VMI customers, and also in relation with the route
planning for the complete set of customers for a week planning period. The
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additional assumption of only observing stock levels at the beginning of the
planning period brings more complexity into the model. The objective of
this model is to design an integrated Inventory-Routing strategy for a dis-
tributor that has to manage inventory and transportation costs of their VMI
customers. Considering the inventory and transportation management in an
integrated mode can yield to a better performance. As far as we know, there
no studies on the IRP with these characteristics. This model can be applied
in many distribution processes: for example, in the retailing industry for
suppliers of supermarkets and department stores.

An heuristic approach, based on the ILS was constructed to solve this
problem. The heuristic has 6 steps, on the first step an initial solution
for the inventory problem is obtined. Then, for each day in the planning
horizon, tries to find a good feasible solution by solving a VRP. On step 3, an
approximation of the VMI customers delivery cost is calculated and based
on the results the new quantities and delivery days for the VMI customers
are obtained. The process is repeated on the new routes until a satisfied
solution is found.

A computational study was done to analyse the impact of integrating
Inventory and Routing: the results show that cost reductions are obtained
when considering inventory and routing in an integrated manner. The degree
of this improvement depends on the problem size, on the proportion of
VMI customers in the problem and also on the unit costs chosen for both
problems. Given the relationship between the inventory and transportation
costs, the decision maker can decide how much of the deliveries to the VMI
customers to concentrate.

We are considering future extensions of this work: One includes the
analysis of the case where demand faces a distribution function different than
the one we have assumed in our work, for example, the Normal distribution.
Another interesting extension is to measure the setup costs, in Step 3 of
the algorithm, in a dynamic way, this is, taking into consideration not only
the precessor and successor customers in the tour but a global effect on the

week plan. Finally, we would also like to develop a multi-objective model
and solution method to solve the MPIRP-SDD.
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