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Abstract 

 

 The effectiveness of decision rules depends on characteristics of both rules and 

environments. A theoretical analysis of environments specifies the relative predictive 

accuracies of the lexicographic rule �take-the-best� (TTB) and other simple strategies 

for binary choice. We identify three factors: how the environment weights variables; 

characteristics of choice sets; and error.  For cases involving from three to five binary 

cues, TTB is effective across many environments. However, hybrids of equal weights 

(EW) and TTB models are more effective as environments become more 

compensatory.  In the presence of error, TTB and similar models do not predict much 

better than a naïve model that exploits dominance.  We emphasize psychological 

implications and the need for more complete theories of the environment that include 

the role of error. 

  

Keywords: Decision making, Bounded rationality, Lexicographic rules 

JEL classification: D81, M10. 
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�Take-the-Best� and other simple strategies: Why and when  they 

work �well� in binary choice  

 

 

 Imagine that you are facing a binary choice.  You must decide which of two 

alternatives, A or B, is �better� in the sense of having more of a specific criterion.  

Examples could include choosing between two job candidates, two stocks, two 

restaurants, which route to take on a trip, and so on.  In other words, this is a familiar 

judgment and decision making task. Imagine further that the information on which 

you can make your judgment is limited to several (k) binary cues, i.e., cues that 

indicate presence or absence of an attribute relevant to the task.  Thus, if the number 

of cues (k) is, say, three, option A can be characterized by the vector or cue profile 

  A = {xa1, xa2, xa3}             (1) 

where the  xaj can only take the values of 0 or 1  (j = 1,.., 3). 

 Similarly, option B can be characterized by the vector or cue profile 

  B = {xb1, xb2, xb3}                (2) 

where the  xbj can only take the values of 0 or 1  (j = 1,.., 3). 

 Finally, assume that the environment determines the correct answer, A or B, 

by weighting the cues according to some function.   In what follows, we assume an 

additive function1 where the sum of all the weights is equal to 1, i.e., let βj be the 

weight given to attribute j  (j = 1,..,k) such that ∑
=

k

j
j

1
β = 1.       

In many studies, simple lexicographic rules have demonstrated remarkably 

accurate performance in binary choice when compared to statistical benchmarks 

(Gigerenzer & Goldstein, 1996; Gigerenzer, Todd & the ABC Group, 1999; 
                                                 
1 As noted by Dawes and Corrigan (1974), many nonlinear functions can be well approximated by 
linear functions and particularly when the former are conditionally monotonic with respect to the 
criterion variable. The presence of error or �noise� also makes linear approximations more �optimal.�  
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Martignon & Hoffrage, 2002).  Of particular interest is the rule known as �take-the-

best� (henceforth TTB) which works as follows.  First, the model assumes knowledge 

of the differential ability of the cues to predict the criterion, i.e., the cue validities (in 

this case, assume that the order is x.1, x.2, x.3). Second, choice between A and B is 

made if the first cue (x.1) can discriminate between the options; if the first cue cannot, 

the second cue is used to make the choice; and so on.  Finally, if none of the cues can 

discriminate, choice is made at random.  From a cognitive viewpoint, this rule can be 

easily implemented.    It does not require many mental operations nor, in many cases, 

examining much information (often just the first cue). However, it does require 

ordering the cues by their validities. (For further details, see Gigerenzer & Goldstein, 

1996; Gigerenzer, Todd et al., 1999.) 

TTB has been presented as an example of a �fast and frugal� heuristic, an 

element of the �adaptive toolbox� of bounded rationality (Gigerenzer & Goldstein, 

1996; Gigerenzer & Selten, 2001).  In addition to demonstrations of its predictive 

ability, several experimental studies have addressed whether and when people 

actually use TTB-like mental strategies (see, e.g., Hoffrage & Rieskamp, 1999; 2002; 

Bröder, 2000; Bröder & Schiffer, 2003; Newell & Shanks, 2003; Newell, Weston, & 

Shanks, 2003). Overall, there is evidence that people do use TTB-like processes but, 

not to the exclusion of other strategies.  

In this paper, we emphasize that the performance of response strategies or 

decision rules depends on characteristics of both the rules and of the environments in 

which they operate (Brunswik, 1952; Simon, 1956). A complete theory of 

psychological functioning needs to specify both.  However, whereas investigators 

have had little difficulty in specifying rules, the specification of task environments has 

proven more problematic.  Our goal is to illuminate this issue and our approach is 



 5

theoretical. It involves specifying abstract characterizations of tasks and noting how 

different models would be expected to perform in these environments.   

In conceptualizing environments for binary choice, we emphasize three 

dimensions. One is the type of function used by the environment to decide which 

alternative is correct.  The second is the type of distribution of cue profiles in the 

choice set.  The third is the role of error. This can be located in the application of the 

model, the environment, or both.   

The paper is organized as follows. We first define the different models we 

consider. Second, we examine their theoretical performance under both non-

compensatory and compensatory weighting functions in environments characterized 

by lack of error. This is done separately for models involving three, four and five 

cues.2  Third, we investigate one aspect of error in models: namely, failure to apply 

the model appropriately, i.e., to respect the ecological ordering of cues in TTB.  

Fourth, we consider how different distributions of cue profiles affect the relative 

performance of simple models and illustrate this using the 20 datasets of Czerlinski, 

Gigerenzer, and Goldstein (1999).  Fifth, the importance of error the environment 

may contain is highlighted by lack of agreement between theoretical predictions of 

model performance based on characteristics of distributions and actual empirical 

results. We therefore use simulation to examine the role of error.  Finally, we discuss 

our results from both psychological and prescriptive perspectives. 

In brief, we show that at a theoretical level TTB does work �well� as a model 

of binary choice. But to understand how �well� requires specifying appropriate 

benchmarks. The normative standard involves models such as Bayesian networks, 

multiple regression or exemplar-based approaches (cf., Chater, Oaksford, Nakisa, & 
                                                 
2 We limit our analysis to three, four, and five cues for two reasons. One is to reduce analytical 
complexity. The second is that three, four, and five cues seem sufficient to understand what people can 
actually do within limited information processing constraints. 
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Redington, 2003). Whereas such comparisons are interesting, we do not believe they 

are the most illuminating.  There are two reasons.   

First, the advantage of simple models in the tradition of the �adaptive toolbox�   

(Gigerenzer & Selten, 2001) is that they can be used in many situations where people 

lack the experience necessary to develop more sophisticated processes.3  Second, 

when dealing with small samples, it is well-known that regression analysis (and other 

optimizing techniques) produces parameter estimates with large standard deviations 

such that predictions to further samples are subject to much error.  In these cases, 

regression analysis and similar tools become �straw men� that lack meaning (see, e.g., 

Einhorn & Hogarth, 1975).  

Instead, we compare TTB to other simple models, some of which incorporate 

features of TTB.  For example, we explore one model that combines features of both 

TTB and equal weighting � called EW/TTB. Moreover, we show that this model 

improves the predictive ability of TTB in certain environments and yet, when the 

number of variables is small, does not require much additional information 

processing.   

To establish a yardstick for simple models, we propose that all reasonable 

models of binary choice should exploit dominance. This leads to the following 

benchmark.  Choose according to dominance.  If there is no dominance, choose at 

random.  As we show, this strategy � that we call DOMRAN � actually predicts quite 

well in the kinds of environments studied by Gigerenzer and his colleagues. In 

particular, when data are �noisy� its performance does not fall far behind that of TTB. 

                                                 
3 As argued by Chater et al. (2003), it is clear that many basic physical and psychological processes can 
be well modeled by what most would classify as complex normative models.  However, note that most 
of these processes (as an example, consider perception) have evolved over many years of evolution 
thereby implying much data in their �development.�  Paradoxically, many �higher order� mental 
processes are used in situations involving scarce data which effectively preclude using complex 
normative models (see also Todd & Gigerenzer, 2000). 
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Thus in interpreting the performance of TTB and similar models, it is important to 

investigate how they predict in cases that cannot be decided by dominance.  What is 

the marginal predictive significance compared to the standard set by DOMRAN? 

 

The different models 

 In comparing the different models that we investigate, it is of interest to note: 

(1) what knowledge they require about the variables (i.e., the cues) such as relative 

importance and, if so, how accurate this needs to be; (2) how many cues must be 

examined to make a decision; (3) whether explicit calculations are required; (4) the 

number of comparisons to be made; and (5) whether random choice is used to break 

ties.  Table 1 provides an overview of such characteristics.  As will be seen, some of 

the models are combinations of different models. 

DOMRAN.  This exploits dominance. If one alternative dominates another, it 

is chosen; if not, choice is made at random.  The psychological inspiration is provided 

by the work of Montgomery (1983) who has documented how people seek to find and 

exploit dominance and may even distort information so that dominance can be 

�justified.�  In general, we suspect that screening for dominance occurs frequently and 

thus this model provides a useful lower bound in terms of a �reasonable� simple 

strategy.    

----------------------------------------------- 
Insert Table 1 about here 

----------------------------------------------- 

 EW.  In the equal weighting or �tallying� model (Gigerenzer, Todd, et al., 

1999), each variable is given the same weight and the alternative chosen has the larger 

weighted sum. In practice, since variables take the values of 0 or 1, this is equivalent 

to summing the variables of each alternative and choosing the larger sum.     When the 
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sums are equal, choice is made at random.  This model involves examining all data, 

making two sums, and one comparison. It has proven useful in predicting many 

phenomena when people do not know the relative weights to give to variables (Dawes 

& Corrigan, 1974; Dawes, 1979; Einhorn & Hogarth, 1975).   

TTB. See description above. 

 EW/TTB hybrids.  As will be seen below, in many cases EW results in ties.  

The hybrid models operate in two phases. In the first, EW is used � on all or a subset 

of the variables (to be specified).  If EW favors one alternative, it is chosen.  

Otherwise, choice is made by TTB. 

 It is important to note that in all of the models, the signs of the correlations 

between cues and criterion are assumed to be known, i.e., the variables are scaled 

such that a cue value of �1� implies a greater value on the criterion than a cue value of 

�0.�  In addition, we do not deal with cases involving missing values of cues.  

 Finally, although all these models appear to be different, we shall show below 

(see Discussion) that, when decisions are made by examining sequentially differences 

between cue values of the alternatives, all of these models can be thought of as 

belonging to the same general psychological process. The critical distinctions between 

the models lie in the rules used to stop the decision process. 

 

Non-compensatory and compensatory functions 

 We first characterize environments by the types of functions used to classify 

choices.  In doing this, we follow the lead of Martignon and Hoffrage (1999; 2002) 

who have distinguished between non-compensatory and compensatory functions. 

Specifically, Martignon and Hoffrage define by non-compensatory any weighting 

scheme or function that has the property that, when weights are ordered from largest 
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to smallest, each weight is larger than the sum of all weights that are smaller than it, 

i.e.,  

∑>
i

ij ββ , for any ji > , 1,...,1 −= kj .                         (3) 

Martignon and Hoffrage define all other functions as compensatory.  Thus, for three 

cues, β1 > (β2+ β3) in the non-compensatory case whereas β1 ≤ (β2+  β3) in the 

compensatory case  (assuming that β1 > β2>  β3).  An important theoretical result 

proven by Martignon and Hoffrage (1999; 2002) is that TTB is the optimal model for 

choice when weighting functions comply with their definition of non-compensatory 

environments.4   Thus, the bulk of our attention will be focused on what happens 

when weighting functions are compensatory.  Moreover, we provide separate analyses 

for cases involving three, four, and five cues. 

 

Different cue environments 

The 3-cue environment   

In empirical tests of TTB and other models conducted by the ABC Group, the 

basic task involves seeing how models predict between all possible pairs of a set of 

choice alternatives. Thus, given n alternatives, each characterized by binary vectors of 

length k, predictions are made for the n(n-1)/2 possible pairs of alternatives.  Thus, 

with 30 alternatives there are 435 pairs to predict, with 40 alternatives, 780 pairs, and 

so on.   However, even though there may be many pairs to predict, it should be clear 

that the distinct cue profiles that characterize alternatives are limited by the number of 

k binary cues.  More specifically, the number of distinct cue profiles is 2k such that 

with three cues there are eight distinct profiles, with four cues, 16 profiles, with five 

                                                 
4  It is important to emphasize that this is a theoretical result, i.e., the βj�s are environmental 
parameters.  
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cues, 32 profiles, and so on.   This means that, in large samples of alternatives, many 

predictions must involve cases involving identical cue profiles (so-called �repeats�) 

and that the distribution of cue profiles among the alternatives affects results.  This, as 

we shall show below, is an important insight.  

To illustrate the effects of different cue profiles, consider the case of three cues 

and the eight different profiles that can result from these cues.  These are shown in the 

top left section of Table 2 where the distinct cue profiles are given the labels A, B, C, 

D, E, F, G, and H.  (Profile A is (1, 1, 1); profile B is (1, 1, 0); and so on.)   

Furthermore, assume that the variables have been ordered in importance, that is β1 > 

β2 > β3.   

---------------------------------------------------- 
Insert Table 2 about here 

---------------------------------------------------- 

  Now consider the vectors of the arithmetical differences between the two 

vectors representing the attributes of the alternatives. In the case of A and B, above, 

this is 

A � B = {xa1-xb1, xa2-xb2, xa3-xb3}            (4)   

where each element of the vector can take values of  1, 0, or -1 depending on the 

characteristics of the alternatives. These are shown to the right of the eight distinct 

profiles. Thus, the first set of difference vectors under the letter A shows the 

differences between A and the seven other profiles (B to H); those under B the 

differences between B and its successors (C to H); those under C the differences 

between C and its successors (D to H); and so on.  

The difference vectors provide a simple way of assessing the predictions of 

different models for each combination of cue profile types.  First, if all the elements 

of a difference vector are non-negative and at least one is positive, the first cue profile 
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dominates the second.  Thus, as can be seen, cue profile A dominates all the other 

profiles � B through H.  Similarly, B dominates D but not E, and so on. Cases 

involving dominance are indicated by a �d� in the matrix on the right hand side of 

Table 2.  

Second, consider cases where the difference vectors contain negative elements 

such as the B-C pairing that takes the values 0, 1, -1 and restrict attention to weighting 

functions that are strictly compensatory, i.e., where β1 > β2 > β3 . Indeed, in this paper, 

we only consider strict inequalities.5  TTB chooses B over C based on the first 

difference that appears here between values of the second variable. Moreover, this 

prediction is consistent with any model where β2 > β3. Thus, TTB also predicts this 

case correctly when the weighting function is strictly compensatory.   Continuing to 

examine all cases that do not involve dominance, we use the fact that β1 > β2 > β3 to 

determine consistency between the choices of TTB and any strictly compensatory 

weighting function. These consistent cases are marked by a �c� in the appropriate 

places on the right hand side of Table 2. 

Third, by the same logic, it is clear that TTB does not predict the D-E pairing 

correctly in the compensatory case where β1 < (β2 + β3). This is indicated by marking 

a �w� in the appropriate cell on the right of Table 2.   

Fourth, we also indicate the letter �t� in cases where the EW model predicts 

ties, as in B-E and C-E.   

Finally, Table 2 summarizes TTB�s predictions between all cue profile types 

for strictly compensatory weighting functions. There are 19 cases involving 

dominance.  Thus, all models considered in this paper would make the same 

                                                 
5 The effect of this may be to underestimate marginally the performance of TTB (see Appendix).   
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predictions for these cases.  Of the remaining nine cases, TTB predicts eight correctly 

and makes one error. 

The left hand side of Table 3 shows the accuracy of  the various models for 

three cues when the population of cue profiles consists of just one of each type   (i.e., 

A through H), for both non-compensatory and compensatory weighting functions.  

First, TTB is 100% accurate for non-compensatory functions � as proven by 

Martignon and Hoffrage (1999; 2002). (To simplify reading of tables, we adopt the 

practice of highlighting the largest figures in relevant comparisons in bold.)   

------------------------------------ 
Insert Table 3 about here 

------------------------------------ 

Second, TTB makes one error for compensatory functions where it achieves an 

overall accuracy rate of 96%. 

Third, EW makes one error for non-compensatory functions and no errors for 

compensatory functions.  However, as can be seen from Table 2, there are six cases 

where EW predicts ties for compensatory functions where decisions have to be made 

at random � hence its expected predictive accuracy of 89%.  Thus the trade-off 

between the performances of TTB and EW is one sure error versus six cases that are 

decided by chance.   

Fourth, EW/TTB makes one error with non-compensatory functions and no 

errors with compensatory functions.  More specifically, it makes the same error as 

EW with the non-compensatory function but all ties are correctly resolved by the TTB 

mechanism.  For the compensatory functions, EW/TTB has perfect performance 

because, first, it correctly predicts the D-E case for which TTB makes an error and, 

second, all of the EW ties are again correctly resolved by the TTB mechanism.  
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To summarize, in the 3-cue case TTB is optimal for non-compensatory 

functions and EW/TTB is optimal for compensatory functions. Moreover, these 

optimality statements can be made about TTB and EW/TTB irrespective of 

distributions of cue profiles precisely because they never make mistakes.6    

 It is important to emphasize this result from a psychological viewpoint.  In 

many situations, people will not know whether they are being confronted by non-

compensatory or compensatory functions.  Thus, until they learn the characteristics of 

the environments they face, one would expect to see the use of different decision 

rules.  In 3-cue environments, EW/TTB is not a difficult strategy to execute. 

  

The 4-cue environment  

The operational definitions of compensatory and non-compensatory functions 

are quite straightforward in the 3-cue case. However, defining compensatory 

functions by violations of the condition for non-compensatory functions leads to 

several distinct classes of the former in the 4-cue case.  Specifically, if � for four cues 

� we define non-compensatory by the conditions that, first, ∑>
i

ij ββ , for any ji > , 

1,...,1 −= kj , and second, that β1 > β2 > β3 > β4, there are several compensatory 

functions that violate the first condition to different extents. 

For instance, if we specify that β1 <β2 + β3  (which in turn implies that β1 < β2 

+ β3+ β4), this can be accompanied by either  β2 < β3 + β4  or  β2  > β3 + β4.   In fact, as 

shown in the Appendix, there are five different classes of weighting functions that 

span the parameter space of compensatory environments � see Figure 1. As in the 3-

cue case, we only consider strict inequalities in dividing up the parameter space.      

                                                 
6 The expected predicted performances of these optimal models will not necessarily always be 100%.  
This can occur when the distribution of cue profiles contains one or more �repeats� of the same profile. 
We consider this issue in more detail below.   
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To illustrate differences between the weighting functions, Table 4 provides 

numerical examples. As can be seen, CF1, CF2, and CF3 are close to �non-

compensatory� and CF5 can accommodate distributions of weights that vary from the 

first being much larger than the others to a set of almost equal weights.  

------------------------------------------------------- 
Insert Table 4 and Figure 1 about here 

------------------------------------------------------ 

With four cues, there are 120 distinctive profile pairings.  The right hand side 

of Table 3 characterizes the performance of the different models.  Compared to the 3-

cue case, we have an additional hybrid model labeled EW-3/TTB.  This is a 

modification of EW/TTB that works as follows.  In the first stage, the decision maker 

uses an equal weighting model on the three most important variables (i.e., omitting 

the fourth). If this points to a decision, it is taken. If there is a tie, it is resolved by 

TTB.7   

In this 4-cue world, 54% of the distinctive pairings involve dominance such 

that the expected performance of DOMRAN is 77%, i.e., 54% + 0.5(100%-54%). 

TTB makes, of course, no errors in the non-compensatory case and is unique in this 

respect.  CF4 and CF5 are unable to provide unambiguous choices for three and five 

cue profile pairings respectively (see Appendix, Table A1). Operationally, these cases 

have been treated as ties which all models are assumed to predict correctly with 

probability of 0.5. 

Overall, with populations of unique cue profile pairings, the pattern of results 

for the 4-cue case matches that of three cues.  For non-compensatory (CF1) and close 

to non-compensatory functions (CF1, CF2, CF3), TTB makes the least numbers of 

errors.  As the functions become more compensatory (CF4, CF5), it is the EW/TTB 

                                                 
7 Why, the reader may ask, do we not also define a EW-2/TTB model? The reason is that this latter 
model makes predictions that are identical to those of TTB. 
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models that perform relatively better. In particular, under CF5, EW makes no errors 

such that the TTB contribution to EW/TTB is the correct allocation of all EW ties.     

 

The 5-cue environment  

The 5-cue environment exhibits the same general trends. However, it is more 

complex. There are 496 distinctive profile pairings; 23 different types of 

compensatory functions (see Appendix, Figure A1); and many more cases where 

functions imply ambiguous predictions (see Appendix, Table A2). Once again, we 

draw attention to the numerical examples of parameters in Table 4. Functions CF1 

through CF17 are close to �non-compensatory� and, even with CF23 it is possible to 

have the weight of the first variable much larger than the others.     

--------------------------------------------------------- 
Insert Table 5 about here 

--------------------------------------------------------- 

Table 5 presents the expected predictive accuracies of the different models for 

the 5-cue case for non-compensatory functions and 12 of the 23 compensatory 

functions.   The models are the same as in the 4-cue case except that the EW/TTB 

hybrids include a version based on the first four most important cues. At the foot of 

Table 5 we also indicate the number of ambiguous choices for each set of weighting 

functions.  These become much larger as the parameters indicate more compensatory 

environments. 

TTB is 100% correct with the non-compensatory function (as must be the 

case) but its performance drops off in relative terms as the functions become more 

compensatory. It makes the smallest number of errors, as defined above, through 

CF16. EW-3/TTB has the best performance for CF18, CF19, and CF20, and the 

EW/TTB hybrids perform relatively well for the most compensatory functions: see 

EW-4/TTB for CF22, and EW/TTB for CF23.    
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Summary 

As shown by Martignon and Hoffrage (1999; 2002), TTB is optimal when 

environments are non-compensatory (by their definition). In addition, for the 3-, 4-, 

and 5-cue cases, TTB is one of the best strategies when environments consist of 

unique cue profile pairings.  Moreover, even in fairly compensatory environments, 

TTB does well.  However, as the environments become more compensatory, hybrid 

strategies such as EW/TTB become more effective in a relative sense.  In these 

strategies, TTB intervenes when EW predicts ties. The EW/TTB hybrid is 100% 

accurate with 3-cues and the strategy of preference for the most compensatory 

strategies in the 4- and 5-cue cases, i.e., for CF5 in the 4-cue case, and CF23 in the 5-

cue case. 

 From a psychological perspective, TTB is useful in both non-compensatory 

and compensatory environments.  In the former, it is all that is needed for choice.  In 

the latter, it acts as a tie-breaker for EW or �almost EW� models (e.g., when EW is 

calculated on a subset of the variables).  From an empirical viewpoint, therefore, to 

the extent that people�s decision making is well adapted to their environments, one 

should expect to see the use of TTB in conjunction with other models.   

Finally, we note that although the DOMRAN strategy has the lowest expected 

performance in all cases, in absolute terms its expected performance is quite high, i.e., 

84% in the 3-cue case, 77% in the 4 cue-case, and 71% in the 5-cue case.  As we shall 

demonstrate below, the fact that DOMRAN provides such a high �lower benchmark� 

is important for understanding the relative success of simple models for binary choice. 
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Error in the application of models 

All the simple models we investigate assume correct knowledge and use of the 

signs of the zero-order correlations between cues and criterion.  In addition, TTB is 

assumed to know and use the relative sizes of the β-parameters associated with the 

cues.8 What happens, therefore, when the cues used in the TTB process are not 

considered in the appropriate order, i.e., there is error in knowledge and/or application 

of the TTB model? 

We begin by examining the 3-cue case since this is simpler than the 4- and 5-

cue cases and suggests the direction of more complicated results.   

With 3 cues, there are 3! (= 6) possible orderings of the cues. These are shown 

in Table 6 together with results of different models. (Once again, characters in bold 

indicate the best expected correct percentages within classes of parameters, non-

compensatory and compensatory.) In the non-compensatory case, TTB remains the 

best strategy but only provided the most important variable is correctly identified as 

such.  For all other orderings, EW/TTB has the best expected correct predictions.   In 

the compensatory case, EW/TTB is better than the other strategies no matter the order 

in which variables enter the models. (However, note comments about EW below.)  

At the foot of Table 6, we have also indicated the means of the different 

columns as well as the expected performance of models that are not affected by the 

order in which cues are examined.  As noted previously, DOMRAN has expected 

performance of 84%. Indeed, this outperforms the last three cue orderings of all 

models with the exception of EW/TTB. EW achieves 86% and 89% for the non-

compensatory and compensatory weighting functions, respectively. The means of the 

TTB columns equal the performance of what Gigerenzer, Todd et al. (1999) refer to 

                                                 
8  Recall, however, that it does not require precise knowledge of the sizes of the β-parameters and, in 
this sense, the prior knowledge requirements are not necessarily that onerous. 
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as the MINIMALIST strategy. This is the performance that would be expected of a 

TTB model where the order of the variables entering the model is decided at random.9 

However, MINIMALIST fails to reach the expected performance level of EW which 

actually matches the mean of EW/TTB.  Thus EW matches or exceeds EW/TTB in 

roughly half of the possible orderings (i.e., the lower orderings).  

Parenthetically, one way to interpret the expected performance level of 

MINIMALIST is to consider situations where people cannot control the order in 

which cues are examined or, indeed, which cues will eventually become available.  In 

these situations, decisions are made by using cues in the order in which they are 

accessed.  Thus, if the environment essentially randomizes the ordering of cues, a 

TTB-like strategy will have the expected performance of MINIMALIST.  However, if 

the more (less) important cues happen to be accessed first, the strategy will be more 

(less) effective than MINIMALIST. 

------------------------------------------------------- 
Insert Tables 6 and 7 about here 

------------------------------------------------------- 

As shown in Table 7, in the 4-cue case there are 24 different possible 

orderings of the variables.  For clarity, we only present the results of three of the six 

possible weighting functions � NonCF, CF2, and CF5.  Once again, we emphasize the 

best predictions within an order in bold characters.  Overall, results mirror the 3-cue 

case.  When the functions are non-compensatory or least compensatory, TTB 

performs best provided the most important variable enters the model first.  Otherwise, 

EW/TTB performs best and is best across the range of orderings as the parameters 

become more compensatory (see CF5).   DOMRAN achieves 77% in this population 

                                                 
9 In the MINIMALIST strategy, variables enter the model in a random order for each binary choice.  
The assumption being made here is that the expected performance level of MINIMALIST is equal to 
that of the mean of TTB across all possible orderings, i.e., the expected performance of MINIMALIST 
is equivalent to that obtained by sampling different cue orderings at random. 
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and this is clearly a better score than achieved by different models that fail to identify 

the appropriate ordering of the variables. Interestingly, DOMRAN only exceeds 

EW/TTB in the most compensatory case (CF5) in the last (and most incorrect) 

ordering (77% vs. 76%). Finally, EW matches the mean of EW/TTB across orderings.  

Table 8 presents the analogous results for 5-cue models. Given that there are 

120 different ways in which the cues can enter models and 24 different weighting 

functions, we neither show the results of all cue orderings nor of all weighting 

functions. Instead, we illustrate the trends by showing significant subsets of 

combinations of functions and cue orderings.  Overall, these are similar to the results 

of the 3- and 4-cue cases.  First, for non-compensatory functions (NonCF) as well as 

lower levels of compensatory functions (CF1 to CF17), TTB performs best provided 

the most important cue enters the model first. When this does not occur, EW/TTB 

performs better.  Second, EW/TTB is dominant across all cue orderings for the most 

compensatory set of weighting functions (CF23).  Third, DOMRAN is superior to 

many of the combinations of cue orders and models where the cue orderings are 

inappropriate (with the exception of EW/TTB).  And fourth, as before, MINIMALIST 

(the mean of TTB across cue orderings) is inferior to EW which is equal to the mean 

of EW/TTB. 

------------------------------------------------- 
Insert Table 8 about here 

------------------------------------------------- 

  Overall, differences between the models across the different combinations of 

weighting functions are small. Moreover, provided the first two most important 

variables enter the models in the appropriate order, TTB and EW/TTB do quite well 

in an absolute sense, i.e., approximate expected success rates of 90% and above. 

However, the major result for populations of distinctive cue pairings is that TTB is 
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best provided the most important cue or variable does enter the model first and the 

weighting functions are not the most compensatory. Otherwise, EW/TTB should be 

preferred.   

It is perhaps surprising that all models seem to have quite high expected 

correct predictions even when cue orderings are inappropriate. However, once again 

the DOMRAN model provides a good naïve benchmark with which to calibrate this 

impression.  It is consistently superior to many results achieved with incorrect cue 

orderings.   

      

Different distributions of cue profiles 

The above results are conditioned on populations consisting of unique cue 

profiles. However, characteristics of choice sets are an important dimension of 

environmental variability. In particular, we would expect both the general level of 

predictive ability as well as relative differences between models to depend on 

characteristics of the distributions of cue profiles in given populations.  We consider 

three main factors that we illustrate by the three distributions shown in Table 9. 

-------------------------------------------------- 
Insert Table 9 about here 

------------------------------------------------- 

First, distributions can differ in the number of dominating cue profiles. In 

general, the greater the proportion of dominating cue profiles, the greater is the 

expected performance of all models.  In Table 9, Distribution III has a lower 

proportion of dominating profiles than the other distributions.  Hence, DOMRAN (as 

well as the other models) performs less well here than in the other distributions. 
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Second, when there are repeats of the same cue profile, all models would only 

be expected to discriminate correctly between such cases at a rate of 50%.10  Thus, the 

general level of predictability between two populations depends, in part, on the 

number of repeated profiles in each.  Specifically, repeats lower overall expected 

performance.  In Table 9, Distribution III contains several repeats. 

Third, the conflict implicit in the difference vectors has more impact on the 

relative success of some models than of others. For instance, TTB always makes 

mistakes for the D-E choice in the 3-cue case with the compensatory weighting 

function (see Table 2), but EW � and thus EW/TTB � does not. Hence, the presence 

or absence of D-E choices in a population can affect the relative success of these 

decision rules.  As a case in point, D-E conflict is present in Distributions I and III but 

absent from Distribution II.  Note, in particular, that TTB has predicted performance 

of 100% correct in Distribution II but 96% and 80% in Distributions I and III, 

respectively.  

More generally, distributions or �choice environments� can be described as 

being �TTB-friendly� or �TTB-unfriendly� for compensatory functions depending on 

the absence or presence of cue profile pairings that TTB classifies incorrectly.  Thus, 

Distribution II in Table 9 can be described as TTB-friendly (there are no D-E 

pairings) whereas Distribution III is TTB-unfriendly.      

Whether a distribution is TTB-friendly or TTB-unfriendly can be 

characterized by asking how it varies from a uniform distribution (e.g., Distribution I 

in Table 9) in terms of the number of errors made by TTB.  Specifically, we describe 

choice environments with uniform distributions of cue profiles as �TTB-neutral.�  
                                                 
10   In a world without error, repeat profiles must have identical values on the dependent variable. Thus, 
it could be argued, it does not matter which profile is selected because each must be �correct.�  In this 
work, however, we take a more conservative approach and assume that one of the two alternatives is 
indeed correct. Thus, models can only discriminate the correct alternative by chance, i.e., with 
probability of 0.50. 
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Thus, if the expected number of TTB errors in a distribution is less (more) than that 

expected on the basis of a uniform distribution, it will be described as TTB-friendly 

(TTB-unfriendly). As an example, consider Distribution III in Table 9. This has 16 

observations such that a uniform �equivalent� would have two observations of each 

cue profile type.  This uniform distribution would have two D observations and two E 

observations and, consequently, make four TTB errors (i.e., there are 2 x 2 D-E 

pairings).  In Distribution III, note that TTB makes 12 errors (i.e., there are 2 x 6 D-E 

pairings).  Because 12 is greater than four, we describe Distribution III as TTB-

unfriendly.  Distribution II, on the other hand, is TTB-friendly because 0 < 1. In short, 

when the number of predicted TTB errors is smaller (greater) than expected on the 

basis of a uniform distribution, we describe the distribution as TTB-friendly (TTB-

unfriendly). 

 Parenthetically, we note that the predictive success of lexicographic models 

such as TTB has sometimes been attributed to correlation between the cues. However, 

this is not a complete explanation. As indicated above, TTB is quite successful in 

TTB-neutral environments in which the intercorrelations between cues are zero, i.e., 

uniform distributions of distinctive cue profiles (see Tables 3 and 5 through 8). What 

is critical to the performance of TTB is the presence or absence of the specific cue 

pairings that it predicts incorrectly, i.e., whether the distributions are TTB-unfriendly 

or TTB-friendly. 

 

Some empirical distributions  

The data in Table 9 were constructed for illustrative purposes.  What can be 

said about �real� data?  To examine the characteristics of different distributions, we 
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use 20 datasets created by Czerlinski et. al (1999).11  First, we ignore the empirical 

criterion variables and examine the characteristics of the datasets by cue profiles.  

What proportions of the choices in each dataset involve dominance and repeats? To 

what extent are these datasets TTB-friendly or TTB-unfriendly?   

Second, we use the actual distributions of cue profiles to predict the 

performance of TTB and other simple models assuming both non-compensatory and 

compensatory weighting functions, i.e., given the distributions of cue profiles, and 

assuming no error, we calculate the expected predictive performance of the models.    

Third, we contrast these theoretical predictions with actual predictions by the 

models of the criteria in the 20 datasets.   

We emphasize that the theoretical predictions are made assuming no error � 

either in the environment or in the models (i.e., knowledge and application).  In the 

subsequent section, we consider effects of error.   

 Table 10 reports characteristics of the 20 datasets that we have split into three 

groups according to numbers of cues (three, four, and five).  The 5-cue set actually 

includes datasets that had more than five cues. However, in each of these we have 

only considered the five most important cues (determined by examining cue validities 

across all data).  First, in addition to numbers of observations, we report the number 

of cases where all models make identical choices, i.e., for cases involving dominance 

and repeated cue profiles (in the second and third columns of the table). The total 

number of common choices (i.e., the sum of dominant pairs and repeats) is large, 

varying from 39% to 96% with an average of 67%.  In other words, the predictions of 

models can only be distinguished on about one-third of these data. We shall return to 

this point below. 

                                                 
11 We are very grateful to these researchers for making their data available on their website.  See 
http://www-abc.mpib-berlin.mpg.de/sim/Heuristica/environments/ 
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Second, Table 10 illustrates the extent to which the datasets are TTB-friendly 

or TTB-unfriendly. That is, for each dataset we calculate the ratio of the number of 

TTB errors that would be expected in a uniform distribution of cue profiles (of size 

equal to the actual distribution) with the theoretical number of TTB errors implied by 

the actual distribution.   

We begin by considering the 3-cue sets.   The four 3-cue datasets are all TTB-

friendly.  Indeed, for three of the distributions, the ratios of expected errors are 

infinite because there are no expected TTB errors in the actual distributions.  For 

these distributions, therefore, TTB is expected to perform as well as EW/TTB for 

compensatory functions. This is shown in the upper part of Table 11 that details 

predictions of the models for both non-compensatory and compensatory functions.        

------------------------------------------------- 
Insert Tables 10 and 11 about here 

------------------------------------------------  

 There are two 4-cue distributions.  However, to assess whether a distribution is 

TTB-friendly or TTB-unfriendly, specific compensatory weighting function must be 

used. Here we use CF2 and CF5. As can be seen, one distribution (�Oxidant�) is TTB-

friendly, whereas the other (�Land rent�) is not.  The effect of this can be seen in the 

theoretical predictions in Table 11. Predictions for �Oxidant� for TTB are uniformly 

high across all weighting functions. For �Land rent,� on the other hand, the TTB 

prediction under the most compensatory weighting scheme (CF5) is much lower than 

under the other schemes (79% vs. 96% and 92%). 

 The 5-cue datasets have a mix of TTB-friendly, TTB-unfriendly, and TTB-

neutral distributions. Once again, classification of TTB-friendly or TTB-unfriendly 

depends on specifying particular weighting functions. In this case, we illustrate CF9 
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and CF23. In terms of theoretical predictions (Table 11), there is a tendency for TTB 

predictions to be lower under CF23 than CF9 with the reverse occurring for EW/TTB. 

Finally, note that the averages of the DOMRAN predictions are fairly high 

thereby suggesting that strategies that exploit dominance should be quite predictive. 

At a process level, this is important because TTB makes identical predictions to what 

can be called a DOM/TTB strategy, i.e., use dominance to choose; if this fails, use 

TTB. 

How do the theoretical predictions in Table 11 compare with predictions for 

the actual data?   Figure 2 reports mean predictive accuracies of the models across all 

20 datasets on holdout samples using 1,000 replications. Specifically, for each dataset 

we randomly sampled a proportion of the possible choices, fit parameters as 

appropriate (e.g., calculating cue validities in TTB), and then used these parameters to 

predict the remaining choices in the dataset (i.e., the holdout sample).12 We replicated 

this process 1,000 times and used different proportions of fitting and holdout samples 

� a 50/50 split and a 20/80 split.  

---------------------------------------------------- 
Insert Figure 2 about here 

--------------------------------------------------- 

Figure 2 reveals four major trends. First, the differences between TTB, 

EW/TTB and EW are small (this is also true of the results of all the datasets that have 

been averaged). Second, the accuracy levels of the empirical predictions of all models 

except DOMRAN (and to a lesser extent EW) are some 20% below that of the 

theoretical predictions. Third, and as might be expected, predictability is somewhat 

greater in the 50/50 split than in the 20/80 split.    

                                                 
12 Once again, we limited the number of cues in any dataset to five. 
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Fourth, DOMRAN is the least successful of the models. However, the 

difference between DOMRAN and the other models is small (at most between 4% 

and 5% in predictive accuracy).   Indeed, compared to the other models, the 

differences between the theoretical DOMRAN predictions in Table 11 (average of 

77%) and those actually realized (68% for the 50/50 split � Figure 2) are much 

smaller.  Perhaps the surprising story of these data is not that TTB is the best of the 

simple models (an important finding), but that the naïve DOMRAN benchmark does 

so well.      

  Finally, the important role of error in the empirical datasets is highlighted by 

the fact that, across the 20 datasets, there is no correlation between the theoretical 

DOMRAN predictions (Table 11) and the cross-validated predictive accuracies of 

DOMRAN in the 50/50 split (r =  0.043, ns).  

 

Understanding the role of error 

 As noted above, error can be thought of as being located in models or in the 

environment.  Errors in models can result from lack of knowledge (e.g., not knowing 

the correct order in which to consult variables in TTB) or execution (e.g., people 

might have appropriate knowledge but make errors in using models) or both.  In 

addition, error in the environment can affect error in models. For example, it is 

probably more difficult for people to learn the relative sizes of the β-parameters in 

noisy as opposed to error-free environments.  

 Imagine the kinds of error that might occur within the linear model 

environments considered in this paper.  First, consider the model of the error-free 

environment  
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          yi  = ∑
=

k

j
j

1
β xij          j = 1,�..,k               (5) 

where yi  is the dependent variable, the βj�s are the weighting function parameters, and 

the xij can take the values of  0 or 1.  Within this framework, one can conceive of at 

least three types of error: (1) noise that affects the distribution of yi conditional on 

values of ∑
=

k

j
j

1
β xij ; (2) noise that affects the weighting parameters, e.g., the βj�s are 

not identical for all observations; and (3) errors in the independent variables, e.g., 

such that the xij cannot always be perceived accurately.  Finally, these errors may not 

be well behaved in the sense of having, say, constant variances. 

 It is beyond the scope of this paper to investigate all these sources of error. We 

therefore consider only the first which we specify as follows 

                   yi  = ∑
=

k

j
j

1
β xij +εi          (6)     

where ε i  is a normally distributed random error term (0,σ2). However, as suggested 

above, the use of TTB in the �real world� can induce error in knowledge in that, 

because the βj parameters are unknown, their relative sizes can only be estimated  on 

the basis of samples.  The accuracy of such knowledge therefore depends on both the 

size of the sample used for estimation and the importance of error in the environment.   

 We conducted several simulations with 4-cue models.  For different 

populations of cue profiles, we used the following methodology. (1) We used 

equation (6) to create yi values for the population of cue profiles with particular 

specifications of the βj parameters and the error term. (2) We sampled at random 50% 

of the yi values of these populations and calculated goodness of fit for each of the 

simple models. (In essence, this involved ordering variables by the cue validities 

estimated in the samples.)  (3) We then used the fitted values to predict the remaining 
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50% of the population.  (4) We repeated steps (2) and (3) a further 99 times. (5) The 

whole process � steps (1) through (4) � was done 100 times re-generating errors from 

a normal distribution so that we finally obtained estimates of the predictive abilities of 

the models based on 10,000 trials (i.e., 100 x 100).  

------------------------------------------------------- 
Insert Tables 12 and 13 about here 

------------------------------------------------------- 

 Table 12 provides information about the different populations used in the 

simulations as well as the extent to which the relative sizes of cue validities estimated 

at step (2) matched the relative sizes of the underlying, ecological β-parameters.  We 

sampled from five different populations, using three different sets of β-parameters 

(NonCF, CF2, and CF5), and with three levels of random error (none or �0� with σ = 

0, medium or �M� with σ = 0.40, and large or �L� with σ = 1.00). However this was 

not done in a factorial manner.  

 The data in Tables 12 and 13 are presented in four panels:  A, B, C, and D. 

The population distribution in panel A was the uniform distribution of all 16 

distinctive cue profiles for the 4-cue case.  In this panel, we used both NonCF and 

CF5 weighting parameters and the three levels of random error.  To interpret the sizes 

of these errors, we estimated regression equations from our samples (regressing the yi 

on the xij) and noted how much variance was not �accounted for,� i.e., (1-R2) � see the 

right hand side of Table 12.   

The populations in panel B were created by splitting the uniform population in 

panel A into two: one population being TTB friendly (n=8); and the other TTB-

unfriendly (n=8).  Once again, we simulated using three levels of error (0, M, L) but 

only used one set of β-parameters corresponding to CF5.    
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In panels C and D we created populations with the characteristics of the cue 

profile distributions of the �oxidant� and �land rent� data analyzed by Gigerenzer et 

al. (1999) � see Table 10.  For both of these populations, we used two sets of β-

parameters, CF2 and CF5, and three levels of error (0, M, L). 

Table 12 shows that, as the level of environmental error increases, there is a 

decrease in the probability of correctly matching the relative sizes of cue validities 

with the corresponding ecological β-parameters.  Moreover, even in the no error 

condition, only one figure is above 50% (the 58% for the TTB-friendly distribution in 

panel B), and the other estimates vary between 14% and 35%.   As to identifying the 

number of times that the most important variable is identified as such, there is 

considerable success in the no error condition and particularly when weighting 

functions are more non-compensatory, e.g., NonCF vs. CF5 and CF2 vs. CF5.  

However, the mean rate of correct identification in the medium error condition is only 

about 50%.  

Table 13 presents the results of cross-validated predictions. The overall 

conclusion is that error has a large impact on the predictive abilities of the different 

models. Across all panels, note first that, in the presence of large error, all models 

make essentially random predictions, i.e., close to 50%.  With medium levels of error, 

differences between the performances of the different models are small with the 

exception of the TTB-friendly data (in panel B) where DOMRAN is some 8% below 

TTB and EW/TTB. Otherwise, the predictive ability of DOMRAN is never more than 

5% below the performance of the other models.   

The largest differences between the models occur when there is no error.  In 

the non-compensatory case of panel A, TTB performs at 91% and DOMRAN at 70%; 

for the CF5 parameters EW/TTB performs at 89% and DOMRAN at 73%.  There are 
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also large differences for the TTB-friendly case in panel B but not for the TTB-

unfriendly case.  Indeed, in this latter case, none of the models are too successful. 

As noted above, the condition with no error captures the effects of lack of 

knowledge, i.e., when the relative sizes of cue validities estimated in small samples do 

not match their ecological counterparts. For example, from the theoretical analysis in 

Table 3 (that assumes a perfect match between relative sizes of cue validities and β-

parameters), the predictions for TTB and EW/TTB are 100% and 93%, respectively, 

for NonCF, and 94% and 98%, respectively, for CF5.  In the simulation results � see 

Table 13, panel A � we observe the same order of differences between the models but 

at some 10% below the theoretical results shown in Table 3.  Interestingly, DOMRAN 

has a predicted 77% success rate in Table 3 but achieves somewhat less in the 

simulation experiment, i.e., 70% and 73%.  Similar conclusions apply to the results in 

panels C and D.  

To conclude, two types of error affect the predictive ability of TTB and TTB-

dependent models (such as EW/TTB) in these simulations. One is imperfect 

knowledge that results in not using cues in their appropriate order. The second is 

noise in the relation between cues and the criterion.   Moreover, the level of such 

noise in the environment affects lack of knowledge in the model. 

 

Discussion 

 This paper has investigated the important issue of why and when simple 

decision rules such as TTB are effective in binary choice.  Our discussion is organized 

as follows. We first summarize our results.  Second, we consider how characteristics 

of models and environments interact to produce variation in choices. In doing so, we 

emphasize the need to develop more adequate theories of decision environments and, 
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in particular, the role of error. Finally, we discuss the use of TTB as a prescriptive 

model. 

 

Principal findings  

 Our main results can be summarized as follows. First, in environments 

characterized by populations of all distinctive pairings of alternatives, no error, and 

known relative sizes of cue validities, TTB is an effective strategy � even in the 

presence of quite compensatory weighting functions. On the other hand, EW/TTB is 

optimal for the more compensatory functions.  In the 3-cue case, EW/TTB is optimal 

for all compensatory functions and this holds irrespective of whether the choice set 

does or does not consist of all distinctive pairings of alternatives.    

 Second, when � in the same kinds of environments � errors are made in the 

relative sizes of cue validities, TTB typically remains the most effective strategy 

provided the most important cue is identified as such.  When this is not the case, 

EW/TTB should be preferred even though TTB is still quite effective.  However, to 

place this latter finding in context, recall that both EW and DOMRAN frequently 

perform better than TTB when this uses incorrect cue orderings. 

 Third, both the absolute and relative expected performances of models are 

affected by characteristics of sets of choice alternatives.  Specifically, the numbers of 

dominance pairs and repeats in a distribution of cue profiles affect overall levels of 

expected predictive accuracy � increasing in the former and decreasing in the latter. In 

addition, all simple models considered here make the same predictions for all 

dominance pairs and have the same expected performance with respect to repeats.  

Thus, differences between the models only occur in subsets of data. Within these 

subsets, performance of the models is differentially sensitive to the presence or 
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absence of specific pairings of cue profiles (such as the D-E pairing in the 3-cue case). 

It is always possible to �engineer� environments that are more or less �friendly� to 

different models. 

 Fourth, we reanalyzed the data of Czerlinski et al. (1999) from two 

perspectives.  In one, we used characteristics of the distributions of cue profiles to 

predict expected performance of the models assuming environments with no error 

and, in the case of TTB, correct orderings of cue validities.  For these environments, 

TTB generally had expected predictive accuracy exceeding 90% with EW and 

EW/TTB not being quite as effective (with some exceptions for EW/TTB).  The 

theoretical performance of DOMRAN was around 77% (averaging across all 

datasets).  However, when we put these models to cross-validated predictive tests 

using the empirical criterion values,  TTB, EW/TTB, and EW all had similar 

performance and were only superior to DOMRAN by 3% or 4% (across datasets, 

DOMRAN averaged 68%).13  Error in the real-world datasets caused significant 

degradation in predictive ability and these analyses led to two important insights.  The 

first was the need to understand the role of error. The second was the relative 

predictive success of the naïve DOMRAN model which proved to be a meaningful 

benchmark for the other �simple� models.    

 Fifth, we also demonstrated in simulation experiments that, in the presence of 

error, the performance of DOMRAN does not lie far behind that of the other models.  

In addition, we noted that error in the environment affects errors of knowledge, i.e., 

failure to identify the correct relative sizes of cue validities when using TTB. 

 

                                                 
13  At the same time, it should be noted that all models made the same predictions for some two-thirds 
of the datasets (see Table 10). Thus, the superiority of TTB and the other models over DOMRAN was 
achieved on just one-third of all predictions. 
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Environments and models  

 Psychological understanding is enhanced to the extent that theory identifies 

relevant characteristics of models and environments and their interactions. In this 

paper, we have highlighted three dimensions of environments: the function �used� by 

the environment to weight variables; characteristics of sets of choice alternatives; and 

the role of error. 

 The models we investigated differed in terms of both knowledge and 

processes, i.e., prior knowledge of relative importance of variables, amount of 

information to consult, use of calculations, and numbers of comparisons (see Table 1). 

Despite these differences, it is instructive to consider similarities. In particular, all the 

models can be thought of as belonging to the same general process that examines 

differences between cues in a sequential manner. This is illustrated by the flowchart 

in Figure 3. 

-------------------------------------------------------- 
Insert Figure 3 about here 

------------------------------------------------------- 

To amplify, consider how the difference between two cues is processed.  In 

box 1, a cue is identified and appropriately scaled (i.e., as 0 or 1). In box 2, the 

difference,  δj , between the values on the cue for each alternative (A and B) is 

calculated. If δj ≠ 0, it is possible to stop the process (box 3) and make a choice (box 

4), i.e., choose A if δj = 1, and B if δj = -1.  (The process, however, does not need to 

stop at box 3.) If, δj = 0, a new variable can be selected (i.e., going back to box 1), or 

the process can be stopped by way of boxes 6 and 7. 

To explain these latter boxes, return to box 3 and the decision to continue the 

process. This leads to adding δj to a running total in box 6 (set to zero before each 
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new choice).14  The next decision to stop the process can be made at box 7.  If yes, the 

decision taken (box 8) depends on the sum in box 6.  If ∑
=

k

j 1

δj ≠ 0, the decision is A if 

∑
=

k

j 1

δj >0, and B if ∑
=

k

j 1

δj < 0 (box 9). If, however ∑
=

k

j 1

δj = 0, the decision is either 

made at random or the process can start again (i.e., as in EW/TTB). 

 As the flowchart illustrates, it is not costly for people to switch between 

models at a cognitive level. Indeed, the decision as to which model to use can be 

made while engaged in the process itself.  Also, recall that all models make identical 

choices for those subsets of the choice alternatives that involve dominance or repeats. 

What matters is how the models treat the remaining choices. 

 To illuminate this issue, it is instructive to focus on the comparison of TTB 

with EW.  Whereas TTB always makes choices by treating some variables as being 

more important than others, EW predicts ties between certain pairs of alternatives and 

is forced to choose between these pairs at random. However, to perform better than 

EW on these cases, TTB does not always need to be correct; its success rate only 

needs to exceed 50%. (A little knowledge is better than none.) On the other hand, on 

occasions when TTB is mistaken, EW sometimes makes correct decisions. In creating 

the EW/TTB composites, therefore, the advantages of both models can be achieved in 

the more compensatory environments.  Indeed, as shown in the 3-cue case, the 

EW/TTB composite produces optimal performance and also tends toward this in the 

4- and 5-cue cases as the weighting functions become more compensatory. 

 TTB differs from the other models in two major respects:  it imposes an order 

in which cues are examined, and it can exit the process before consulting all 

                                                 
14 We assume here the presence of a mental counter that sequentially updates the number of variables 
in favor of, say, alternative A by 1, and those in favor of alternative B by �1.  
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information (i.e., the models differ in their �stopping� rules). When the environmental 

weighting function is non-compensatory, stopping the process �early� is sensible 

precisely because subsequent cues cannot change the decision. However, as the 

environment becomes more compensatory, more information should be examined. 

 As noted above, environments can be created that are more or less �friendly� 

toward different models in terms of how they affect relative predictive performance 

(see also Shanteau & Thomas, 2000).  For example, an environment where EW faced 

many (few) ties would be �unfriendly� (�friendly�) to EW.   Similarly, we defined 

environments that were �TTB-friendly� or �TTB-unfriendly� by the extent to which 

they contained pairs leading to less or more errors made by TTB compared to the 

number of TTB errors that would be made in a uniform distribution of all possible 

pairings of alternatives with the same number of observations (cf. Table 10).   

This leads to an implication and a question.  The implication is that in 

interpreting predictive success, it is important to characterize whether environments 

are friendly or unfriendly to different models.  The question � and it is important � is 

to understand the types of environments that people encounter in their decision 

making activities.  For example, to what extent do the datasets compiled by Czerlinski 

et al. (1999) characterize the kinds of choices that people face in their natural 

ecologies?  We simply do not know. 

 TTB both operates on binary cues and avoids the conflicts inherent in making 

trade-offs in choice. These features raise the intriguing issue of when TTB-like 

models are likely to be used in everyday life.  The original work by Gigerenzer and 

Goldstein (1996), for example, suggested situations where recognition (yes or no) 

provided the first cue.  More generally, it is intriguing to speculate that TTB-like 

processes will be triggered when the attributes of choice are characterized by the 
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presence (1) or absence (0) of qualitative states for which trade-offs are difficult to 

make.  In particular, if the cues are affective in nature, TTB provides both a way to 

avoid possible emotional trade-offs and, in many circumstances, an effective decision 

tool.   

 From a psychological perspective, the work undertaken here can be seen as 

consistent with the notion that people use different strategies for binary choice.  

Although, as we noted, different models can sometimes be thought of as subroutines 

within a more general process (see Figure 3). We find it unlikely that people will 

always use the same heuristic but � and as evidence suggests � they will adapt the 

heuristics they use to the structures of the task they experience, e.g., consulting more 

information in more compensatory environments (cf. Payne, Bettman & Johnson, 

1993).   

 Finally, the importance of error in the environment was highlighted by our use 

of Czerlinski et al�s (1999) empirical datasets.  However, since we do not know the 

true ecological models that generated the 20 datasets, it is difficult to understand 

exactly how error affected empirical predictions relative to theoretical predictions 

based on distributional characteristics.  Indeed, we noted that there can be several 

different types of error within the theoretical linear worlds that we investigated and 

that some of these can interact with errors in models (e.g., knowledge � see the 

simulation results, above).  Much more research is needed to illuminate these issues. 

  

Prescriptive considerations   

 In most of the environments examined in this work, TTB has been shown to 

be an effective, simple model of choice.  To what extent, therefore, should it be 

prescribed as a way to choose?    
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 Assume first that underlying assumptions are met, i.e., that the zero-order 

correlations between cues and criterion are known as well as the relative importance 

of variables.  In this case, key issues center on the extent to which the environmental 

weighting function is compensatory and characteristics of the cue profiles. 

 Given sufficient resources, e.g., time, we first recommend checking for 

dominance. Indeed, with few cues this may be a simpler strategy than accessing 

relative cue validities from memory. Moreover, exploiting dominance can imbue the 

decision maker with appropriate confidence. Failing this, our recommendation is to 

use TTB or EW/TTB (and certainly in the 3-cue case).  Briefly, if the decision maker 

feels uncomfortable about relying on TTB alone (e.g., she senses that the environment 

is compensatory), then the choice should also be examined using EW/TTB.  If there is 

uncertainty about which variable is most important, then EW/TTB is the model to 

follow.  

 As a general point, it should be noted that all TTB errors (i.e., with 

compensatory weighting functions) occur because the decision process stops too soon, 

i.e., it fails to consider enough pertinent information. In the 4-cue case, for example, 

no errors ever occur if the process is decided by the third or fourth most important 

variable.  Thus, the reluctance people express to base important decisions on only one 

or two cues may be a consequence of having experienced errors in the past when all 

available information was not consulted. Where people�s intuitions may lead them 

astray is in assessing when choices require more information and when they do not. 

 For decisions taken under time pressure, people should exploit the fact that 

TTB has a high success rate.  (In particular, in using this strategy they will 

automatically exploit dominance even though they may never know this.)  Two 

further issues concern feedback and the relative importance of decisions. With good 
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feedback, people can learn to make appropriate responses.  Failing accurate feedback 

or being faced with important decisions under time pressure, however, they are not 

powerless. Specifically, they can �rehearse� similar decisions (e.g., through 

simulations) and then use this knowledge to know what to do in real situations, e.g., 

what would happen if TTB or another heuristic were used in similar circumstances?   

 Of course, not all binary choice situations have the simple structures (e.g., 

linear weighting functions and binary cues) of the situations examined in this paper.  

There is a need for more research to examine generalizations of TTB-like models in 

more complex environments, i.e., involving different types of non-linear weighting 

functions, continuous cues, and so on.  In addition, it will be important to investigate 

sensitivity to other errors in knowledge, e.g., concerning the zero-order correlations 

between cues and criterion. 

  

  



 39

References 

 

Bröder, A. (2000). Assessing the empirical validity of the �Take-The-Best� heuristic  

as a model of human probabilistic inference.  Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 26 (5), 1332-1346. 

Bröder, A., & Schiffer, S. (2003). Take the best versus simultaneous feature  

matching: Probabilistic inferences from memory and effects of representation 

format. Journal of Experimental Psychology: General, 132 (2), 277-293. 

Brunswik, E. (1952). The conceptual framework of psychology. Chicago: The 

University of Chicago Press. 

Chater, N., Oaksford, M., Nakisa, R., & Redington, M. (2003). Fast, frugal, and  

rational: How rational norms explain behavior. Organizational Behavior and 

Human Decision Processes, 90, 63-86. 

Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple  

heuristics? In G Gigerenzer, P. M. Todd and the ABC Research Group. Simple 

heuristics that make us smart (pp. 97-118).  New York:  Oxford University 

Press. 

Dawes, R. M. (1979). The robust beauty of improper linear models. American

 Psychologist, 34, 571-582. 

Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making.  

Psychological Bulletin, 81, 95-106. 

Einhorn, H. J., & Hogarth, R. M.  (1975). Unit weighting schemes for decision  

making. Organizational Behavior and Human Performance, 13, 171-192. 

Gigerenzer, G., & Goldstein, D. (1996). Reasoning the fast and frugal way: Models of  

bounded rationality. Psychological Review, 103, 650-669. 



 40

Gigerenzer, G., & Selten, R. (2001). Rethinking rationality. In G. Gigerenzer & R.  

Selten (Eds.), Bounded rationality: The adaptive toolbox (pp. 1-13). 

Cambridge, MA: MIT Press. 

Gigerenzer, G., Todd, P. M., and the ABC Research Group. (1999). Simple heuristics  

that make us smart.  New York:  Oxford University Press. 

Martignon, L., & Hoffrage, U. (1999). Why does one-reason decision making  

work?  A case study in ecological rationality. In G Gigerenzer, P. M. Todd and 

the ABC Research Group. Simple heuristics that make us smart (pp. 119-140).  

New York:  Oxford University Press. 

Martignon, L., & Hoffrage, U. (2002).  Fast, frugal, and fit: Simple heuristics for  

 paired comparison. Theory and Decision, 52, 29-71. 

Montgomery, H. (1983). Decision rules and the search for a dominance structure:  

Towards a process model of decision making. In P. Humphreys, O. Svenson, 

& A. Vari (Eds.), Analysing and aiding decision processes (pp. 343-369). 

Amsterdam: North Holland. 

Newell, B. R., & Shanks, D. R. (2003). Take the best or look at the rest? Factors  

influencing �one-reason� decision making. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 29(1), 53-65. 

Newell, B. R., Weston, N. J., & Shanks, D. R. (2003). Empirical tests of a fast-and- 

frugal heuristic:  Not everyone �takes-the-best.� Organizational Behavior and 

Human Decision Processes, 91, 82-96. 

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker.  

New York: Cambridge University Press. 

Rieskamp, J., &  Hoffrage, U.  (1999). When do people use simple heuristics, and  



 41

how can we tell? In G Gigerenzer, P. M. Todd and the ABC Research Group. 

Simple heuristics that make us smart (pp. 141-167).  New York:  Oxford 

University Press. 

Rieskamp, J., &  Hoffrage, U.  (2002). The use of simple heuristics: Inferences and  

preferences under time pressure.  Manuscript, Max Planck Institute for 

Human Development, Berlin.  

Shanteau, J., & Thomas, R. P. (2000). Fast and frugal heuristics:  What about  

unfriendly environments?  Behavioral and Brain Sciences, 23, 762-763. 

Simon, H. A. (1956). Rational choice and the structure of environments. 

Psychological Review, 63, 129-138. 

Todd, P. M., & Gigerenzer, G. (2000). Précis of Simple heuristics that make us smart.   

Behavioral and Brain Sciences, 23, 727-780. 

 

  

 

 

 

 

 

 

 

 

 

 

 



 42

Table 1 -- Prior information and cognitive 
operations required by different models for binary choice 

      
      
 Prior Amount of  Number of Random  
 information* information Calculations Comparisons choice if tie 
  to consult    
      
DOMRAN None All None Equal to  Yes 
    number   
    of variables  
      
      
EW None All Yes, two  One Yes 
   sums    
      
      
      
TTB Rank-order Variable None Variable -- Yes 
 of importance   from one to   
 of variables   number of  
    variables  
      
EW/TTB hybrids Rank-order All Yes, two  One, if  Yes 
 of importance   sums choice by EW.  
 of variables    Otherwise,  
    more.  
      
      
      
      
* For all models, the decision maker is assumed to know the sign of the zero order correlation 
between cues and the criterion.    
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         Table 2 -- Basic analysis of 3-cue case         
                      
Profiles   Difference vectors (column minus row)  Classification of difference vectors 

 cues                   

Profile type x1 x2 x3   A B C D E F G   A B C D E F G 

A 1 1 1  B 0 0 1        B d       

B 1 1 0                   

C 1 0 1  C 0 1 0 0 1 -1       C d t,c      

D 1 0 0                   

E 0 1 1  D 0 1 1 0 1 0 0 0 1      D d d d     

F 0 1 0                   

G 0 0 1  E 1 0 0 1 0 -1 1 -1 0 1 -1 -1     E d t,c t,c w    

H 0 0 0                   

      F 1 0 1 1 0 0 1 -1 1 1 -1 0 0 0 1    F d d c t,c d   

                      

     G 1 1 0 1 1 -1 1 0 0 1 0 -1 0 1 0 0 1 -1   G d c d t,c d t,c  

                      

     H 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1  H d d d d d d d 

                      

           Legend:         No.of cases 
           d = dominance relation        19 
           c = TTB predicts correctly in compensatory case (β1 >β2 >β3 &  β1 < (β2 +β3))  8 
           w = TTB predicts incorrectly in compensatory case     1 
           t = EW predicts tie         

                     28 
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  Table 3 -- Expected predictive accuracy (%'s) for 3- and 4-cue cases   
          
          
 3-cue cases  4- cue cases 

 NonCF CF  NonCF CF1 CF2 CF3 CF4* CF5* 
Models          
          
DOMRAN 84 84 | 77 77 77 77 77 77 
   |       
   |       
EW 86 89 | 81 83 82 84 85 87 

No of errors** 1 0 | 9 7 8 6 4 0 
   |       
   |       
TTB 100 96 | 100 98 99 98 96 94 

No of errors** 0 1 | 0 2 1 3 3 5 
   |       
   |       
EW/TTB 96 100 | 93 94 93 95 95 98 

No of errors** 1 0 | 9 7 8 6 4 0 
   |       
   |       
EW-3/TTB x x | 97 95 98 96 99 96 

No of errors**   | 4 6 3 5 0 2 
          
          
Notes:          
NonCF = non-compensatory functions        
CF = compensatory functions        
* Functions contain some ambiguous cases (3 for CF4 and 5 for CF5 -- see Appendix). Thus, even though a model may 
      make no errors,  its expected predicted accuracy is less than 100% due to the presence of these ambiguous cases. 
** Errors involve misclassifications by the models (from totals of 28 and 120 choices for the 3- and 4-cue cases, respectively). 
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Table 4 -- Exemplar weights of different weighting functions 
      
4-cue models      
      
 β1 β2 β3 β4  
NonCF 0.53 0.24 0.13 0.10  
CF1 0.57 0.19 0.14 0.10  
CF2 0.48 0.29 0.14 0.10  
CF3 0.48 0.22 0.17 0.13  
CF4 0.42 0.31 0.15 0.12  
CF5 0.40 0.25 0.20 0.15  
CF5 0.29 0.26 0.24 0.21  
      
      
5-cue models      
      
 β1 β2 β3 β4 β5 
NonCF 0.55 0.24 0.11 0.07 0.03 
CF1 0.53 0.25 0.10 0.07 0.05 
CF2 0.56 0.21 0.13 0.09 0.01 
CF3 0.55 0.20 0.10 0.09 0.06 
CF4 0.52 0.19 0.15 0.08 0.06 
CF5 0.55 0.21 0.12 0.10 0.02 
CF6 0.49 0.26 0.17 0.05 0.03 
CF7 0.48 0.26 0.13 0.08 0.06 
CF8 0.48 0.26 0.14 0.08 0.05 
CF9 0.50 0.23 0.13 0.08 0.06 
CF10 0.47 0.21 0.17 0.08 0.07 
CF11 0.49 0.19 0.16 0.10 0.07 
CF12 0.46 0.28 0.16 0.06 0.05 
CF13 0.46 0.28 0.11 0.09 0.06 
CF14 0.45 0.27 0.14 0.08 0.05 
CF15 0.44 0.27 0.14 0.09 0.06 
CF16 0.44 0.25 0.18 0.09 0.04 
CF17 0.42 0.20 0.14 0.13 0.11 
CF18 0.42 0.36 0.12 0.07 0.03 
CF19 0.35 0.33 0.16 0.10 0.07 
CF20 0.34 0.29 0.18 0.09 0.09 
CF21 0.36 0.29 0.17 0.10 0.07 
CF22 0.32 0.27 0.22 0.17 0.02 
CF23 0.36 0.21 0.18 0.15 0.09 
CF23 0.24 0.22 0.20 0.18 0.16 
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Table 5 -- Expected predictive accuracy (%'s) for the 5-cue case 
              
 NonCF CF2 CF4 CF6 CF8 CF10 CF12 CF14 CF16 CF18 CF20 CF22 CF23 
Models              
              
DOMRAN 71 71 71 71 71 71 71 71 71 71 71 71 71 

              
EW 78 78 79 78 78 80 79 79 80 81 81 83 85 

No of errors* 55 53 45 54 52 44 49 47 39 34 30 14 2 
              

TTB 100 100 98 100 99 98 99 99 97 96 96 93 91 
No of errors* 0 2 6 1 3 7 3 5 9 9 11 15 21 

              
EW/TTB 89 89 90 89 90 91 90 90 91 91 92 93 95 

No of errors* 55 53 45 54 52 44 49 47 39 34 30 14 2 
              

EW-4/TTB 93 93 94 93 93 94 94 94 95 95 96 96 95 
No of errors* 36 34 28 35 33 27 30 28 22 16 12 1 5 

              
EW-3/TTB 97 96 95 97 97 95 98 97 96 98 98 95 93 

No of errors* 16 18 22 15 17 21 10 12 16 0 2 6 13 
              
Ambiguous cases** 0 0 6 0 0 6 3 3 9 19 21 38 43 
              
Notes:       
NonCF = non-compensatory functions            
CF = compensatory functions             
* Errors involve misclassifications by the models (from total of 496 choices).         
** Functions contain some ambiguous cases (see Appendix). All models are assumed to be 50% correct on these cases.      
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Table 6 -- Sensitivity to different cue orderings for   
   3-cue case (populations of distinctive pairings) 

           
           
     Expected correct - %  
           

Cue orderings |  Non-compensatory  |   Compensatory  | 
    |   |   | 
   1st 2nd 3rd | TTB EW/TTB | TTB EW/TTB | 

1 x1 x2 x3 | 100 96 | 96 100 | 
2 x1 x3 x2 | 93 89 | 89 93 | 
3 x2 x1 x3 | 86 89 | 89 93 | 
4 x2 x3 x1 | 79 82 | 82 86 | 
5 x3 x1 x2 | 79 82 | 82 86 | 
6 x3 x2 x1 | 71 75 | 75 79 | 

    |   |   | 
  Means | 85 86 | 86 89 | 
            
Notes:           
           
(1) Bold entries indicate best predictions within orderings.     
           
(2) Expected performance (%) of models not affected by ordering:   

     NonCF  CF     
  DOMRAN   84 84     
   EW   86 89     
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Table 7 -- Sensitivity to different cue orderings for   

 some 4-cue models (populations of distinctive pairings) 
              
      Expected correct -- % 
                  
              

Cue orderings | Non-Compensatory | Compensatory   | 

     |   | CF2 | CF5 | 

 1st 2nd 3rd 4th | TTB EW/TTB | TTB EW/TTB | TTB EW/TTB | 

1 x1 x2 x3 x4 | 100 93 | 99 93 | 94 98 | 
2 x1 x2 x4 x3 | 97 89 | 96 90 | 90 95 | 
3 x1 x3 x2 x4 | 93 89 | 93 90 | 90 95 | 
4 x1 x3 x4 x2 | 90 86 | 89 87 | 87 91 | 
5 x1 x4 x2 x3 | 90 86 | 89 87 | 87 91 | 
6 x1 x4 x3 x2 | 87 83 | 86 83 | 84 88 | 
7 x2 x1 x3 x4 | 87 88 | 88 88 | 88 94 | 
8 x2 x1 x4 x3 | 83 84 | 84 85 | 85 90 | 
9 x2 x3 x1 x4 | 80 84 | 81 85 | 83 90 | 

10 x2 x3 x4 x1 | 77 81 | 78 82 | 80 87 | 
11 x2 x4 x1 x3 | 77 81 | 78 82 | 80 87 | 
12 x2 x4 x3 x1 | 73 78 | 74 78 | 76 84 | 
13 x3 x1 x2 x4 | 80 84 | 81 85 | 85 90 | 
14 x3 x1 x4 x2 | 77 81 | 78 82 | 81 87 | 
15 x3 x2 x1 x4 | 73 81 | 74 82 | 80 87 | 
16 x3 x2 x4 x1 | 70 78 | 71 78 | 76 84 | 
17 x3 x4 x1 x2 | 70 78 | 71 78 | 76 84 | 
18 x3 x4 x2 x1 | 67 74 | 68 75 | 73 80 | 
19 x4 x1 x2 x3 | 77 81 | 78 82 | 79 86 | 
20 x4 x1 x3 x2 | 73 78 | 74 78 | 75 83 | 
21 x4 x2 x1 x3 | 70 78 | 71 78 | 75 83 | 
22 x4 x2 x3 x1 | 67 74 | 68 75 | 72 80 | 
23 x4 x3 x1 x2 | 67 74 | 68 75 | 72 80 | 
24 x4 x3 x2 x1 | 63 71 | 64 72 | 69 76 | 

     |   |   |   | 
   Means | 79 81 | 79 82 | 81 87 | 
              
Notes:             
              
(1) Bold entries indicate best predictions within orderings.       
              
(2) Expected performance (%) of models not affected by ordering       

     NonCF CF2 CF5       
  DOMRAN   77 77 77       
  EW    81 82 87       
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Table 8 -- Sensitivity to different cue orderings for some 5-cue models (populations of distinctive pairings)   
                    
       Expected correct -- %  

 Cue orderings   | Non-compensatory | Compensatory | 
      |   | CF1 | CF9 | CF17 | CF23 | 

 1st 2nd 3rd 4th 5th | TTB EW/TTB | TTB EW/TTB | TTB EW/TTB | TTB EW/TTB | TTB EW/TTB | 

1 x1 x2 x3 x4 x5 | 100 89 | 99 90 | 99 90 | 96 93 | 91 95 | 

2 x1 x2 x3 x5 x4 | 98 87 | 98 88 | 97 89 | 94 91 | 90 94 | 

3 x1 x2 x4 x3 x5 | 97 87 | 98 88 | 97 89 | 94 91 | 90 94 | 

4 x1 x2 x4 x5 x3 | 95 86 | 96 87 | 95 87 | 92 90 | 88 92 | 

5 x1 x2 x5 x3 x4 | 95 86 | 96 87 | 95 87 | 92 90 | 88 92 | 
: : : : : : | : : | : : | : : | : : | : : | 

11 x1 x3 x5 x2 x4 | 89 83 | 88 84 | 88 85 | 89 88 | 85 90 | 

12 x1 x3 x5 x4 x2 | 87 82 | 86 83 | 87 83 | 87 86 | 83 88 | 

13 x1 x4 x2 x3 x5 | 90 85 | 91 86 | 91 86 | 91 89 | 87 92 | 

14 x1 x4 x2 x5 x3 | 89 83 | 90 84 | 90 85 | 90 88 | 85 90 | 

15 x1 x4 x3 x2 x5 | 87 83 | 88 84 | 88 85 | 89 88 | 85 90 | 
: : : : : : | : : | : : | : : | : : | : : | 

21 x1 x5 x3 x2 x4 | 86 82 | 86 83 | 87 83 | 87 86 | 83 88 | 

22 x1 x5 x3 x4 x2 | 84 80 | 85 81 | 85 82 | 85 84 | 81 86 | 

23 x1 x5 x4 x2 x3 | 84 80 | 85 81 | 85 82 | 85 84 | 81 86 | 

24 x1 x5 x4 x3 x2 | 82 78 | 83 79 | 83 80 | 84 82 | 79 85 | 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

25 x2 x1 x3 x4 x5 | 87 85 | 86 86 | 86 86 | 85 89 | 86 92 | 

: : : : : : | : : | : : | : : | : : | : : | 

31 x2 x3 x1 x4 x5 | 81 83 | 80 83 | 80 84 | 79 86 | 82 91 | 

32 x2 x3 x1 x5 x4 | 79 81 | 78 82 | 78 82 | 77 85 | 81 89 | 

33 x2 x3 x4 x1 x5 | 77 81 | 77 82 | 76 82 | 76 85 | 80 89 | 

34 x2 x3 x4 x5 x1 | 76 79 | 75 80 | 75 81 | 74 83 | 78 87 | 

35 x2 x3 x5 x1 x4 | 76 79 | 75 80 | 75 81 | 74 83 | 78 87 | 

: : : : : : | : : | : : | : : | : : | : : | 

41 x2 x4 x5 x1 x3 | 73 78 | 73 78 | 73 79 | 73 82 | 77 86 | 

42 x2 x4 x5 x3 x1 | 71 76 | 72 77 | 72 77 | 71 80 | 75 84 | 

43 x2 x5 x1 x3 x4 | 76 79 | 77 80 | 76 81 | 76 83 | 79 87 | 

44 x2 x5 x1 x4 x3 | 74 78 | 75 78 | 75 79 | 74 82 | 77 85 | 
45 x2 x5 x3 x1 x4 | 73 78 | 73 78 | 73 79 | 73 82 | 76 85 | 

: : : : : : | : : | : : | : : | : : | : : | 

61 x3 x4 x1 x2 x5 | 71 78 | 70 79 | 71 80 | 74 83 | 77 87 | 

62 x3 x4 x1 x5 x2 | 69 77 | 69 78 | 69 78 | 72 81 | 75 85 | 

63 x3 x4 x2 x1 x5 | 68 77 | 67 78 | 68 78 | 71 81 | 75 85 | 

64 x3 x4 x2 x5 x1 | 66 75 | 65 76 | 66 77 | 69 80 | 73 84 | 

65 x3 x4 x5 x1 x2 | 66 75 | 65 76 | 66 77 | 69 80 | 73 84 | 

: : : : : : | : : | : : | : : | : : | : : | 

81 x4 x2 x3 x1 x5 | 68 77 | 69 78 | 69 78 | 71 81 | 75 85 | 

82 x4 x2 x3 x5 x1 | 66 75 | 67 76 | 68 77 | 70 80 | 73 83 | 

83 x4 x2 x5 x1 x3 | 66 75 | 67 76 | 68 77 | 70 80 | 73 83 | 

84 x4 x2 x5 x3 x1 | 65 74 | 65 74 | 66 75 | 68 78 | 72 82 | 

85 x4 x3 x1 x2 x5 | 68 77 | 69 78 | 69 78 | 72 81 | 75 85 | 

: : : : : : | : : | : : | : : | : : | : : | 

116 x5 x4 x1 x3 x2 | 63 72 | 64 73 | 64 73 | 67 76 | 67 78 | 

117 x5 x4 x2 x1 x3 | 61 72 | 62 73 | 63 73 | 65 76 | 67 78 | 

118 x5 x4 x2 x3 x1 | 60 70 | 61 71 | 61 72 | 63 74 | 66 77 | 

119 x5 x4 x3 x1 x2 | 60 70 | 61 71 | 61 72 | 63 74 | 66 77 | 

120 x5 x4 x3 x2 x1 | 58 69 | 59 70 | 60 70 | 62 73 | 64 75 | 

      |   |   |   |   |   | 
     Means | 74 78 | 74 79 | 74 79 | 76 82 | 77 85 | 

Notes:                   
(1) Bold entries predict the best predictions within orderings.            
(2) Expected performance (%) of models not affected by ordering:            

    NonCF CF1 CF9 CF17 CF23            
  DOMRAN  71 71 71 71 71            
 EW   78 79 79 82 85            
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Table 9-- Some distributions of cue profiles for the 3-cue case 
       

    Distributions 
    (entries: number of profiles) 

Cue profile type x1 x2 x3 I II III 

A 1 1 1 1 1 0 
B 1 1 0 1 1 2 
C 1 0 1 1 1 0 
D 1 0 0 1 1 2 
E 0 1 1 1 0 6 
F 0 1 0 1 1 0 
G 0 0 1 1 1 3 
H 0 0 0 1 1 3 
       

Characteristics of distributions      

a) Total number of binary choices   28 21 120 

b) Percentages of choices involving dominance 68 71 51 
c) Presence of repeats?   No No Yes 

d) TTB-error cases DE, as percentage of total 4 0 10 
e) Overall characterization   TTB-neutral TTB-friendly TTB-unfriendly 

       
Predicted correct (%'s)  assuming      
compensatory weighting function:     
       
   TTB 96 100 80 

   EW 89 91 83 

   EW/TTB 100 100 90 
   DOMRAN 84 86 75 
       
Note: Bold entries indicate best predictions within distributions.   
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Table 10 -- Characterization of empirical datasets  
           
           
 n  Choices (%) involving:       
Datasets   Dominant   Ratio of expected TTB  Overall  
  | Pairs Repeats | errors:Uniform/actual  characterized as 

3-cues:  |   | CF 

Ozone 11 | 53 18 | Infinite  F 
Attractiveness of women 30 | 51 17 | Infinite  F 
Attractiveness of men 32 | 57 21 | 2.67  F 
Fish fertility 395 | 72 21 | Infinite  F 
  |   |      

4-cues:  |   | CF2 CF5  CF2 CF5 

Oxidant  17 | 45 6 | Infinite 2.50  F F 
Land rent 58 | 42 9 | 0.29 0.39  U U 
  |   |      

5-cues:  |   | CF9 CF23  CF9 CF23 

Homelessness 50 | 47 6 | Infinite 1.24 to 4.94  F F 
Body fat 218 | 66 8 | 7.62 4.88  F F 
City populations 83 | 67 25 | 28/1 to 63/1 84/1 to 189/1  F F 
High school dropout rates 57 | 70 26 | 4.67 8.40  F F 
Cows' manure 14 | 13 33 | Infinite Infinite  F F 
Mortality 20 | 71 8 | 1.17 1.62  N F 
House prices 22 | 75 13 | 1.75 3.00  N F 
Car accidents 37 | 35 4 | Infinite 1.11  F N 
Rainfall 24 | 49 4 | 1.75 1.24  N N 
Obesity at 18 46 | 72 10 | 0.41 to 1.65 0.55 to 2.21  N N 
Fuel consumption 48 | 47 6 | 0.13 to 0.52 0.38 to 1.50  U N 
Professors' salaries 51 | 48 9 | 0.47 0.89  U N 
Mammals' sleep 35 | 49 14 | 0.35 1.00  U N 
Biodiversity 26 | 42 7 | 0.35 0.68  U U 
           
 Means 54 13       
       Legend:     
       F stands for TTB-friendly  
       U stands for TTB-unfriendly  
       N stands for TTB-neutral  
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Table 11 -- Theoretical predictions (% correct) for 20 datasets based on 
distributions of cue profiles 

         
Datasets         
         

3-cue:  NonCF CF    

 DOMRAN TTB TTB EW/TTB EW    

Ozone 76 91 91 91 87    
Attractiveness of women 75 90 91 90 80    
Attractiveness of men 78 89 89 90 81    
Fish fertility 86 89 89 89 86    

Means 79 90 90 90 84    

4-cue:  NonCF CF2 CF5 

 DOMRAN TTB TTB EW/TTB EW TTB EW/TTB EW 

Oxidant 72 97 96 91 81 93 95 84 
Land rent 71 96 92 82 71 79 91 82 

Means 72 97 94 87 76 86 93 83 
         

5-cue:  NonCF CF9 CF23 

 DOMRAN TTB TTB EW/TTB EW TTB EW/TTB EW 

Homelessness 74 97 97 94 84 94 95 86 
Body fat 83 96 96 93 89 94 95 91 
City populations 84 87 87 87 84 87 87 84 
High school dropout rates 85 87 87 87 86 86 87 86 
Cows' manure 57 84 84 82 82 83 83 83 
Mortality 85 96 93 86 83 87 92 89 
House prices 87 93 92 89 87 89 92 90 
Car accidents 68 98 98 91 79 91 94 84 
Rainfall 74 98 97 90 82 89 95 88 
Obesity at 18 86 95 93 91 86 90 94 90 
Fuel consumption 73 97 92 87 79 88 91 83 
Professors' salaries 74 96 91 78 71 82 86 80 
Mammals' sleep 75 93 90 79 72 89 79 73 
Biodiversity 71 97 81 90 75 81 90 84 

Means 77 94 91 87 81 88 90 85 
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Table 12 -- Relative accuracy of cue validities from known populations 
           
           
  Estimated cue validities Cue associated with largest Size of error 

   match relative sizes β-parameter has largest  expressed as (1-R2) 

   of β-parameters (%) estimated cue validity (%)    

 Error: None Medium Large  None Medium Large  None Medium Large 
           
 Distributions          
           
(A) Uniform           
 (n=16)          
 NonCF 32 12 7 100 54 33 0.00 0.41 0.55 
          
 CF5 28 10 7 80 40 30 0.00 0.41 0.61 
          
          
(B) TTB-friendly CF5 58 32 31 97 68 55 0.00 0.14 0.33 
 (n=8)         
          
 TTB-unfriendly CF5 25 18 28 58 46 54 0.00 0.41 0.44 
 (n=8)         
          
          
(C) Oxidant         
 (n=17)         
 CF2 14 7 6 92 45 30 0.00 0.47 0.68 
          
 CF5 15 7 5 75 36 31 0.00 0.50 0.66 
           
           
(D) Land rent          
 (n=58)          
 CF2 35 14 6 100 60 35 0.00 0.60 0.80 
          
 CF5 25 11 4 38 44 31 0.00 0.64 0.81 
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Table 13 -- Correct predictions (%) for different populations and models under varying sets 
of weighting parameters and error conditions: averages based on 10,000 trials  (4-cue case) 

           

(A) Distribution: Uniform (n = 16)* 

 β-parameters: NonCF  CF5 

  TTB EW/ TTB EW DOMRAN  TTB EW/ TTB EW DOMRAN

 Error          
 None 91 83 73 70  86 89 81 73 
 Medium 62 62 60 57  60 61 60 57 
 Large 49 49 50 47  47 47 48 47 

(B) Distribution: TTB friendly (n = 8)**  TTB unfriendly (n = 8)*** 

 β-parameters: CF5  CF5 

  TTB EW/ TTB EW DOMRAN  TTB EW/ TTB EW DOMRAN
 Error          
 None 97 95 90 78  56 53 54 56 
 Medium 68 68 66 60  51 52 52 52 
 Large 50 50 51 48  45 45 45 45 

(C) Distribution: Oxidant (n = 17) 

 β-parameters: CF2  CF5 

  TTB EW/ TTB EW DOMRAN  TTB EW/ TTB EW DOMRAN
 Error          
 None 81 81 78 70  80 81 77 70 
 Medium 62 62 61 57  59 59 58 56 
 Large 49 49 50 48  48 48 49 47 

(D) Distribution: Land rent (n = 58) 

 β-parameters: CF2  CF5 

  TTB EW/ TTB EW DOMRAN  TTB EW/ TTB EW DOMRAN
 Error          
 None 83 76 68 65  79 84 78 70 
 Medium 60 59 57 56  58 59 58 56 
 Large 48 48 48 47  47 47 48 46 

Notes:            

 β-parameters NonCF CF2 CF5       
 β1 0.52 0.48 0.40       
 β2 0.24 0.28 0.25       
 β3 0.14 0.14 0.20       
 β4 0.10 0.10 0.15       
           
* Population of distinctive cue profiles profiles involved in TTB errors    
** Population of distinctive cue profiles less       
*** Population of distinctive cue profiles less profiles not involved in TTB errors  
           
Errors are normally distributed with mean of  0 and standard deviation of 0,40 (medium) and 1,00 (large). 
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Figure 1 -- Classification of compensatory (CF) and non-compensatory functions 

(non-CF) for the 4-cue case 

 

 
  

 
 
 
 
 
 
 
 

    
      CF5    CF4              CF3             CF2           CF1  Non-CF 

 

 

 

  

In tabular representation: 

Functions / 

Between-weights 

relations 

β1  vs. β2 + β3 β1  vs. β2 + β3+ β4 β2  vs. β3+ β4 

Non-CF β1  > β2 + β3   β1  > β2 + β3+ β4 β2  > β3+ β4 

CF1 β1  > β2 + β3   β1  > β2 + β3+ β4 β2  < β3+ β4 

CF2 β1  > β2 + β3   β1  < β2 + β3+ β4 β2  > β3+ β4 

CF3 β1  > β2 + β3   β1  < β2 + β3+ β4 β2  < β3+ β4 

CF4 β1  < β2 + β3   β1  < β2 + β3+ β4 β2  > β3+ β4 

CF5 β1  < β2 + β3   β1  < β2 + β3+ β4 β2  < β3+ β4 

 

 
 

 

321 βββ +< 321 βββ +>

4321 ββββ ++<

(this implies  4321 ββββ ++< ) 
 

4321 ββββ ++>

432 βββ +< 432 βββ +> 432 βββ +< 432 βββ +<432 βββ +> 432 βββ +>
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Figure 2 -- Predictions in holdout samples with 1,000 trials. 
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Figure 3 -- Flowchart of simple binary choice models 
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Appendix � Specification of �incorrect� and �uncertain� cases for  
the 3-, 4-, and 5-cue models 

 
 

 As demonstrated by Martignon and Hoffrage (1999; 2002), TTB is optimal 

within a theoretical world when the weighting function is non-compensatory. Using 

the same notation as the main text, Martignon and Hoffrage define non-compensatory 

weighting functions as having the property that, when ordered from largest to 

smallest, each weight is greater than the sum of all weights to its right-hand side, i.e. 

∑>
i

ij ββ , for any ji > , 1,...,1 −= kj .   (A1)  

All other weighting functions are said to be compensatory. Thus, all compensatory 

weighting functions are broadly defined by  

∑≤
i

ij ββ , for any ji > , 1,...,1 −= kj ,    (A2)  

which is the complementary set to that defined by (A1).  

To understand why we stress the broadness of this definition, consider the 

following two weighting functions for the 4-cue case. In the first, all the weights jβ  

satisfy the compensatory condition (A2). In the second, all the weights jβ  satisfy the 

non-compensatory condition (A1) except for the second weight 2β , 

where 432 βββ +< . Clearly, by the definition in (A1), both functions are 

compensatory.  However, as this example illustrates, compensatory functions can be 

distinguished by �degree of compensation� which, in turn, can be defined by the 

number of restrictions on the relative sizes of the weights that do not satisfy the non-

compensatory condition (A1). Thus, whereas all the weights of the first function fail 

to satisfy condition (A1), there is one weight in the second equation, 2β  that does 

meet the non-compensatory condition (A1). In this sense, therefore, we can say that 

the first function is �more compensatory� than the second. 
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It should also be emphasized that the range of compensatory functions 

includes functions with both weak and strict compensatory relations between cues, i.e. 

with ∑≤
i

ij ββ  and ∑<
i

ij ββ , for any ji > , 1,...,1 −= kj .  Thus, functions that 

involve a mix of weak compensatory, strict compensatory and non-compensatory 

relations are also classified as compensatory due to fact they are not in the set defined 

by (A1). For example, the 4-cue case function, which is characterized by the 

following restrictions 321 βββ +≤ , 4321 ββββ ++< , and 432 βββ +> , is also 

considered compensatory by the Martignon and Hoffrage (1999; 2002) definition.  

 To understand the effectiveness of TTB when dealing with compensatory 

weighting functions, the �optimal� would be to prove a theorem analogous to the non-

compensatory case. Unfortunately, this approach has not yet yielded satisfactory 

results. On the other hand, by specifying forms of compensatory weighting schemes 

that span the possible space of functions, we can still gain considerable insight into 

the properties of TTB.  This is the pragmatic approach adopted in this paper and 

involves the following steps. 

 First, we examine the nature of the conflicts between the n(n-1)/2 possible 

distinctive pairings of cue profiles where n = 2k  and  k is the number of cues in the 

model being examined.  This examination is done using the vector of differences in 

cue profiles as described in the main text (equation 4).  As an example, consider two 

cue profiles, A and B, and k cues. This leads to the difference vector 

A � B = {xa1-xb1, xa2-xb2..,�., xak-xbk}         (A3) 

where the variables have been ordered, from left to right, in accordance with the 

relative sizes of cue weights (from largest to smallest) and, by definition, elements can 

only take the values 1, 0, or -1.  (As noted in the main text, application of TTB simply 

involves reading the difference vector from left to right and choosing according to the 
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first nonzero element.  If this is 1, the choice is A; if it is -1, the choice is B. If all 

elements are equal to 0, choice is made at random. However, this latter case cannot 

occur when only distinctive pairings are considered). 

 Second, having specified the difference vectors, these are separated into four 

categories: dominance; correct; incorrect; and uncertain.  

For cases of dominance, all elements of each difference vectors must be non-

negative and at least one must be positive. In these cases, TTB makes the same 

choices as any weighting strategy, compensatory or not, characterized by βj ≥ 0  for all 

j = 1,..,k.   

To classify difference vectors to the other categories, we need to provide more 

precise specification of compensatory weighting functions, broadly defined by (A2).    

For ease of exposition, consider first the 3-cue case. To classify the difference 

vectors that do not involve dominance, we exploit the fact that βj > βj+1 for j = 1,..,k-1. 

There are 6 distinct difference vector profiles:  (1,1,-1), (1, 0,-1), (1,-1,1), (1,-1,0), 

(0,1,-1), and (1,-1,-1) � see Table 2. (Note, some difference vectors have the same 

profiles.) For the first five profiles, it must be the case that any rule satisfying βj > 

βj+1 for j = 1,..,k-1, will make the same choices as TTB and these are therefore all 

classified as �correct.�  To see this, note that the effect of any element having the 

value -1 will be more than compensated for by any element to its left that has the 

value 1.   

The only vector that does not meet this criterion is the last one (1,-1,-1).  Here 

the effect of the second element is clearly more than compensated for by the first; 

however, this still leaves a -1 as the third element. If the compensatory function 
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involves strict variants of the restrictions (A2), i.e., 321 βββ +< ,15 then the difference 

vector (1,-1,-1) is classified as �incorrect.� If, however, the compensatory relation 

(A2) is weak, i.e., 321 βββ +≤ , then the difference vector (1,-1,-1) may be classified 

as �incorrect� or �correct�.  In the case of equality, i.e., 321 βββ += , TTB will be 

correct, on average, 50% of the time because here we assume that choice under the 

compensatory strategy is made at random.  

As this example illustrates, TTB will perform marginally better under a weak 

compensatory scheme than under the corresponding strict compensatory scheme.  In 

other words, a compensatory scheme that involves only strict inequalities of the 

form ∑<
i

ij ββ , for any ji > , 1,...,1 −= kj  provides a lower bound on the 

performance of  TTB.  

While in the 3-cue case there are only two different compensatory functions 

consistent with the definition (A2) (i.e., involving either 321 βββ +<  

or 321 βββ +≤ ), for the 4- or 5-cue models the classification of compensatory 

functions is more complex. However, conditional on the classification (see below), 

examination of the 4- and 5-cue models is carried out in the same manner.  

First, we identify all the dominance pairs. Second, using the fact that βj > βj+1 

for j = 1,..,k-1, we isolate those difference vectors that unambiguously lead to correct 

predictions for the TTB model.  Third, we allocate the remaining difference vectors 

into �correct�, �incorrect� and �uncertain� categories in accordance with the 

inequalities that characterize particular compensatory strategies. 

 

                                                 
15 Note that � using the expressions (1) and (2) � the only relation between weights that needs to be 
considered to classify a 3-cue weighting function as compensatory or not, is that between β1 and β2 + 

β3.  
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Consider the classification of the space of compensatory and non-

compensatory functions for the 4-cue case. Consistent with what is stated above, we 

simplify our task by only considering strict compensatory schemes. (This reduces the 

number of possible schemes but, as noted above, provides a more conservative 

estimate of TTB�s performance.)  Our classification of the different models is 

illustrated by the tree diagram in Figure 1 in the main text.  

To initiate the classification, relate the first weight, β1, to the sum of the next 

two, i.e., β2 + β3, and observe that there are two cases, β1 < β2 + β3 and β1 > β2 + β3.  

For the former, note that β1 < β2 + β3 implies that β1 < β2 + β3+ β4  such that when this 

condition is subdivided, we are left with two possible cases denoted CF5 and CF4.   

Thus, CF4 is characterized by β1 < β2 + β3  and  β2 < β3 + β4  and  CF5 by β1  < β2 + β3 

and  β2  < β3 + β4. (Recall also that βj > βj+1 for j = 1,.., k-1.)    

The right hand side of Figure 1 deals with β1 > β2 + β3. This is accompanied by 

two other conditions (β1 < β2 + β3+ β4   and β1 > β2 + β3+ β4 ) 16  which, in turn, can 

each have two further conditions (β2  < β3 + β4  and  β2  > β3 + β4 ), thereby resulting in 

four additional models. Of these models, three are compensatory (CF3, CF2, and 

CF1) and one meets the non-compensatory condition specified in (A1) above. The full 

classification of strict compensatory strategies therefore includes five different sets of 

inequalities characterizing between-weights relations (CF1-CF5). These are also 

characterized in tabular form in the lower part of Figure 1. 

Now, for each compensatory strategy depicted in Figure 1, we classify the 

ambiguous difference vectors as �correct�, �incorrect� or �uncertain�, making use of 

the inequalities that characterize each compensatory strategy. The resulting 

                                                 
16 For more-than-4-cue cases, the tree should be extended at this point by relating β1 and further sums 
of the next weights, i.e. for the 5-cue case we should also relate β1  and  β2 + β3+ β4+ β5 , for the 6-cue 
case � additionally β1  and  β2 + β3+ β4+ β5+ β6, and so on. 



 63

classifications of the difference profiles for each of the five compensatory strategies 

are shown in Table A1.  

------------------------------------------------------------------ 
Insert Table A1 about here 

----------------------------------------------------------------- 
First, note that there are 10 ambiguous difference-vector profiles, i.e., cases 

that do not involve dominance and cannot be classified as �correct� or �incorrect� in 

accordance with the constraint that βj > βj+1 for j = 1,..,k-1. Given that, in the 4-cue 

case, there are 120 possible pairings, this means that, when the population consists of 

all distinctive pairings, the lower bound of TTB�s performance cannot fall below 92 

% (i.e., 110 of 120).  

As can be seen from Table A1, the 4-cue case involves profiles that, for the 

compensatory functions specified, cannot be classified as �correct� or �incorrect.� 

These are referred to as �uncertain� and arise because we are now dealing with 4- as 

opposed to 3-element vectors. To illustrate how this occurs, consider, the 

compensatory function 4 (CF4) and the difference profile (1,-1,-1,1).  Under this 

weighting function, 1β  is smaller than ( )32 ββ + . However, it is not clear whether 

( )41 ββ +  is greater or smaller than ( )32 ββ + . 

 For the 5-cue model, we have adopted the same line of reasoning as above for 

specifying different strict compensatory strategies.  See Figure A1 and Table A2. For 

the 5-cue case, the total number of ambiguous profiles to be classified as either 

�correct�, �incorrect� or �uncertain� is 66 from a total of 496. This means that the 

lower bound of TTB�s performance is 87% for a population of distinctive pairings. 

Indeed, under the �most compensatory� function, analogous to CF5 in the 4-cue case, 

TTB is expected to make 91 % correct predictions (see Table 6). 

----------------------------------------------------------------- 
Insert Figure A1 and Table A2   

------------------------------------------------------------------ 
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Table A1 -- Classification of ambiguous difference vector profiles 
under different compensatory functions:  4-cue case 

Difference profiles,         
classified differently under different 

functions  Weighting functions 

x1 x2 x3 x4 # cases  Non-CF CF1 CF2 CF3 CF4 CF5 

1 -1 -1 0 2  c c c c w w 
1 -1 -1 -1 1  c c w w w w 
0 1 -1 -1 2  c w c w c w 
1 0 -1 -1 2  c c c c c u 
1 -1 0 -1 2  c c c c u u 
1 -1 -1 1 1  c c c c u u 

   Total 10               

     Total correct 120 118 119 117 114 110 
     Total incorrect 0 2 1 3 3 5 
     Total uncertain 0 0 0 0 3 5 
Legend:            
c = correct           
w = incorrect           
u = uncertain           
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Table A2 -- Classification of ambiguous difference vector profiles under different compensatory functions: 5-cue case 
Difference profiles,                          

classified differently under different functions                         

x1 x2 x3 x4 x5 # cases Non-CF CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 CF15 CF16 CF17 CF18 CF19 CF20 CF21 CF22 CF23 

1 0 -1 -1 -1 2 c c c c c c c c c c c c c c c c c u c c u u u u 
1 -1 0 -1 -1 2 c c c c c c c c c c c c c u c u c u u w u w u w 
1 -1 -1 0 0 4 c c c c c c c c c c c c c c c c c c w w w w w w 
1 -1 -1 0 -1 2 c c c c c c c c c c c c u u u u u u w w w w w w 
1 -1 -1 -1 0 2 c c c c c c c c c c c c w w w w w w w w w w w w 
1 -1 -1 -1 -1 1 c c c c c c w w w w w w w w w w w w w w w w w w 
0 1 -1 -1 0 4 c c c c w w c c c c w w c c c c w w c c c c w w 
0 1 -1 -1 -1 2 c c w w w w c c w w w w c c w w w w c c w w w w 
0 0 1 -1 -1 4 c w c w c w c w c w c w c w c w c w c w c w c w 
1 1 -1 -1 -1 1 c c c c c c c c c c c c c c c c c c c c c c u c 
1 0 0 -1 -1 4 c c c c c c c c c c c c c c c c c c c c c c c u 
1 0 -1 0 -1 4 c c c c c c c c c c c c c c c c c c c c c c u u 
1 0 -1 -1 1 2 c c c c c c c c c c c c c c c c c c c c c c u u 
1 0 -1 -1 0 4 c c c c c c c c c c c c c c c c c c c c c c u u 
1 -1 1 -1 -1 1 c c c c c c c c c c c c c c c c c c c u c u c u 
1 -1 0 0 -1 4 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 0 -1 1 2 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 0 -1 0 4 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 -1 1 1 1 c c c c c c c c c c c c c c c c c c u c u c u c 
1 -1 -1 1 0 2 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 -1 1 -1 1 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 -1 0 1 2 c c c c c c c c c c c c c c c c c c u u u u u u 
1 -1 -1 -1 1 1 c c c c c c c c c c c c u u u u u u u u u u u u 
0 1 0 -1 -1 4 c c c c c u c c c c c u c c c c c u c c c c c u 
0 1 -1 0 -1 4 c c c c u u c c c c u u c c c c u u c c c c u u 
0 1 -1 -1 1 2 c c c c u u c c c c u u c c c c u u c c c c u u 

    Total 66                                                 
     Total correct 496 492 494 490 484 476 495 491 493 489 483 475 490 484 488 482 478 466 468 464 464 460 443 432 

       Total incorrect 0 4 2 6 6 10 1 5 3 7 7 11 3 7 5 9 9 13 9 15 11 17 15 21 

Legend:  Total uncertain 0 0 0 0 6 10 0 0 0 0 6 10 3 5 3 5 9 17 19 17 21 19 38 43 

c = correct                         

w = incorrect                         

u = uncertain                         
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Figure A1 -- Classification of compensatory (CF) and non-compensatory functions (NonCF) for the 5-cue case . 
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