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Abstract

A method is offered that makes it possible to apply generalized canonical
correlations analysis (CANCOR) to two or more matrices of different row and
column order. The new method optimizes the generalized canonical correlation
analysis objective by considering only the observed values. This is achieved by
employing selection matrices. We present and discuss fit measures to assess
the quality of the solutions. In a simulation study we assess the performance
of our new method and compare it to an existing procedure called GENCOM,
proposed by Green and Carroll. We find that our new method outperforms the
GENCOM algorithm both with respect to model fit and recovery of the true
structure. Moreover, as our new method does not require any type of iteration it
is easier to implement and requires less computation. We illustrate the method
by means of an example concerning the relative positions of political parties in
the Netherlands based on provincial data.
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1 Introduction

Carroll (1968) introduced a generalization of canonical correlation analysis that al-
lows the simultaneous analysis of n sets of variables. His method is referred to as
CANCOR. In CANCOR linear combinations of the variables of the individual obser-
vation matrices are chosen in such a way that the sum of the squared correlations
between the linear combinations and an (unknown) group configuration is at a max-
imum. Some important advantages of CANCOR are its ease of computation and the
flexibility of the input data. In particular, the fact that the columns of the individual
observation matrices may correspond to different variables and that the number of
columns for each observation matrix may differ, makes the method widely applicable.
Steenkamp, Van Trijp, and Ten Berge (1994), for example, make use of this flexibility
in their analysis of data in which individuals evaluated a set of objects using only
criteria that they deem important. Another possible application concerns the simul-
taneous analysis of several multidimensional scaling solutions to derive a common
configuration. The multidimensional scaling solutions (i.e. the coordinate matrices)
may then again be of different dimensionality. Hence, the CANCOR model can be
applied in a range of research settings.

In this paper we generalize the CANCOR method such that it can be applied
to data where not only the number of columns for each individual data matrix may
differ, but also the number of rows. Thus, individual observation matrices can be
of different row and column orders. This type of data is particularly interesting as
it allows, for example, the simultaneous analysis of several multidimensional scaling
solutions obtained at different time points (or from different regions) where not all
objects are observed at all times (or in all regions). Or, we may consider data where
individuals evaluate only objects that they deem relevant (or that they are familiar
with), using only the attributes that they find relevant.

The new method that we propose does not require any type of iteration and yields
immediate solutions based on the observed values alone. In that sense, it differs from
a method proposed by Green and Carroll (1988) to deal with missing observations
in CANCOR. In the Green and Carroll approach missing values are estimated and a
solution is obtained using an iterative algorithm which they call GENCOM.

The performance of our new method will be assessed using a simulation study.
By varying several factors, such as the number of missing rows and columns, and the
number of observations, we evaluate the performance of our method under various
conditions. Also, we will use the simulation study to compare our new method
with the existing GENCOM algorithm. Finally, the methods are illustrated using an
example on the positioning of political parties in the Netherlands.

The paper is organized as follows. First we briefly introduce CANCOR using a
similar formulation as employed by Steenkamp, Van Trijp, and Ten Berge (1994).
Then, in Section 3, we introduce our new approach for generalized canonical corre-
lation analysis applied to data with different row and column orders. Measures to
assess the quality of the solutions are given in Section 4. In Section 5 we briefly
present Green and Carroll’s (1988) algorithm and in Section 6 the simulation study
and its results are described. An application concerning the political landscape in



the Netherlands is given in Section 7 and the paper is concluded with a discussion of
our results.

2 Generalized canonical correlation analysis: CAN-
COR

Suppose we have n column centered data matrices X; of orders m X p; where the
rows for the different data matrices correspond to the same objects. The X; may for
example correspond to coordinate matrices obtained using multidimensional scaling
methods, or they may represent (centered) observation matrices where (the same) m
objects are evaluated using p; attributes. We can analyze such data using CANCOR,
a generalization of canonical correlation analysis introduced by Carroll (1968). In
CANCOR, we obtain an orthogonal k£ dimensional group configuration Y and k
linear combinations of the centered data matrices X; in such a way that the sum of
the squared distances between the group configuration Y and the linear combinations
is minimized.
The objective of CANCOR can be expressed in the following way:

ril’%r(l ¢ = trace Y (Y — X;A;) (Y — XGA,) (1)

=1
st Y'Y =1, (2)

It is known, e.g. Carroll (1968), that the group configuration matrix Y can be
obtained using the eigenequation

(il X, (X!X;) ! X;> Y = YA, (3)

where A is a diagonal matrix with diagonal elements );, being the k largest eigenval-
ues of 7, X, (X/X;) " X/ (where we have assumed that the X/s are of full column
rank) and the columns of Y are corresponding eigenvectors. The matrices A; can be
calculated as

A= (XIX,) XY (4)

The computational ease as well as the flexibility in the dimensionality of the input
matrices X; make the method very appealing for several types of applications. Green
and Carroll (1988), for example, apply the method to obtain a composite of several
multidimensional scaling solutions. Steenkamp, Van Trijp, and Ten Berge (1994) use
the method to obtain a common perceptual map based on consumer’s judgments of
brands using idiosyncratic sets of attributes.

Squared correlations The eigenvalues in A are equal to the average squared cor-
relation between the dimensions of the group configuration Y and the linear combi-
nations X;A,;. That is,

1
)\j = 5Zp1237
=1
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where pgj denotes, for the ith observation matrix, the squared correlation between
the jth linear combination of X; and the jth dimension of Y. Hence,

P2 = (Yé-XiaiU)f
T (vivs) (alg XiXiag))

where y; denotes the jth column of Y, a;;) is the jth column of A; and we used
(2) and (4). It should be noted that Carroll (1968) formulates CANCOR as the
optimization of the sum (over i) of these squared correlations.

Another way to interpret the squared correlations is obtained by observing the
relationship with regression analysis. For the ith observation matrix and the jth
dimension we can write

= yiX; (XIX;) " Xy,

y; = X,a,) + ey, (5)

where e;; is a k x 1 vector of residuals. Hence, the elements of A; can be interpreted
as regression coefficients from the ordinary least squares regression of y; on X;. Using
this relationship it is not difficult to see that the squared correlation pfj is equivalent
to the multiple correlation coefficient R? obtained in the regression analysis (5).

3 Generalized Canonical Correlation Analysis with
unequal number of rows

As shown in the previous section, we can apply CANCOR to obtain a group configu-
ration for a set of m objects based on n individual observation matrices. Furthermore,
the number of attributes used to evaluate the objects may differ per observation ma-
trix (i.e. the number of columns of X; is individual specific). The number of objects,
on the other hand, must always be equal to the size of the complete set. This implies
that, if we are, for example, comparing several multidimensional scaling configura-
tions, each configuration consists of the same set of objects.

The situation, however, may occur that for each observation matrix X; only data
on a subset of the m objects is available. Hence, instead of n matrices of order m x p;
we have n matrices of orders m; x p;. That is, the row and column orders of the X;
matrices are individual specific. In this section we will extent the CANCOR approach
in such a way that a group configuration for the set of m objects can be obtained
based on the m; x p; observation matrices.

Like before, we are interested in obtaining a group configuration that summarizes
the complex relationships between the objects based on the observations matrices of
different dimensionalities. Therefore, we derive the group configuration Y in such a
way that the sum (over the n subjects) of the distances between the coordinates for
the observed objects and the corresponding linear combinations of the attributes is
minimized. Thus, we will only consider the distances (differences) between the linear
combinations of the observed m; rows of X; and the corresponding rows in the m x k
group configuration Y. This can be achieved by employing selection matrices.



If we have m; observed rows for individual ¢ we introduce an m X m selection
matrix K; with elements

Ki 1 if we have an observation for individual ¢ in the jth row
Za 0 else '

It is easily verified that these selection matrices are idempotent, i.e. K;K; = K.
By adding m — m; rows to the observed matrices X; (in such a way that the rows
of the different X; ’s correspond) we obtain n matrices, say XI, of order m x p;.
Premultiplying Y and X} with K; yields matrices with zero-rows corresponding to
the unobserved objects.

Using the idempotent selection matrices K;, we can formulate as objective

. * / *
iy ¢ = trace ; (KY - K, X7A,) (K,)Y — K, XA,), (6)
and we will minimize this objective subject to the constraint Y'KY =nlj, where
K=" K,

The standardization Y'KY =nl, implies that objects which are relatively infre-
quently observed receive larger weights than objects that are relatively often observed.
This weighting of the objects is similar to the weighting of coordinates in, for exam-
ple, correspondence analysis (see, e.g., Greenacre, 1984). It prevents the configuration
from being dominated by objects that are relatively often observed. Moreover, if each
subject observes all m objects, that is, K; = I,,, for ¢ = 1,...,n, our approach is
identical to CANCOR.

Assuming, for the moment, that all matrices X}'K;X; are non-singular, we find
that the group configuration can be obtained from the following eigenequation,

K :XD 'X'’K 2Y* = Y*A, (7)
where X = ( KiXj KoX3 - KX )
XK X*
X3 Ko X ;
D= ) , Y* = %KEY and the objective
XK, X"

is minimized when the largest eigenvalues and corresponding eigenvectors are selected.
(A complete derivation using matrix derivatives can be found in appendix A.)
The individual linear combinations can be calculated using

A =D 'X'Y, (8)

where A = (A} A, - Al )
Alternatively, we can write, in accordance with (3) and (4),
i=1

K32 (Z KX (XK, X:) ™ XK) K 2Y* = Y*A,

and
A = (XVK X XYKY.



Rank problems Thus far we have assumed that the matrices XK;X! are non-
singular. This, however, need not be the case. If a subject for example evaluates
m; objects using p; attributes with m; < p; then the rank of K;X’ is smaller than
or equal to m;. Hence, X}'K;X7 is singular. Although a similar problem can occur
in CANCOR, i.e. when the rank of X, is smaller than p;, it receives no attention
in the literature. A reason for this is perhaps the fact that in the CANCOR case
the problem may be avoided by taking the number of rows, i.e. m, sufficiently large.
Here, however, we do not wish to impose any explicit restrictions on the m/s.
To resolve the singularity problem we consider the singular value decomposition
of K;X7, i.e.
K. X; =U;®; V], (9)

where U/U; = V.V, = I, and k; denotes the rank of K;X!. Now, instead of
using the m x p; data matrix K; X7, we may use the linear combinations obtained by
postmultiplying K, X7 with V,, i.e.

X; = KXV, (10)

which is an m X k; matrix of full column rank. Thus, the dependencies among the
columns of the original data matrix are used to obtain a matrix that has full column
rank.

By substituting X; for K, X7 we have decreased the dimensionality of the original
data matrix in such a way that the singularity problems no longer occur and the
calculation of the group configuration becomes straightforward. However, using X;
we obtain linear combinations for the x; columns of )v(i rather than for the original p;
columns of K;X7?. For the calculation of the group configuration matrix Y this does
not matter. However, if we are interested in the linear combinations for the original
p; columns, some additional steps are required.

Let A; denote the matrix of linear combinations based on the X; matrices, i.e.,

A= (XX) XY
= (VIX/KX;V,) ' VIXIK,Y
= & 'UY, (11)
where we used (9), (10), and the idempotency of K;. Now, in order to obtain linear

combinations for the p; columns of K;X} we need to pre-multiply A, by V,. Using
(9) and (11) we obtain

A, = VA, =V, UY = V,®2VV,3,UK,Y =(X'K, X)) "X K;Y. (12)
Because,
(XK X)) =Vi®;°V,,

where, generically, B* denotes the Moore Penrose inverse of B. Thus, instead of
taking the linear combinations (10), we may simply replace the inverses in (7) and
(8) by the Moore Penrose-inverses.



4 Assessing the quality of the CANCOR solution

4.1 Squared correlations

For each subject we can calculate squared correlations between the linear combina-
tions of the observations and the jth dimension of the group configuration as

, (y;KiX,-ai(j))Q v KX (XIKX;) ™ XKy,
Pij (KinyKiXia(i)j) == P— = 7 :
(YjKin) (ai(j)XiKiXiai(j)Yj) y;iKiy;
where, y; denotes the jth column of Y, a;(;) is the jth column of A; and, for conve-
nience, we have dropped the superscribed *'s. If X!K;X; is singular we replace the
regular inverse by the Moore Penrose inverse. Note that y K;y; is not necessarily
equal to one. Consequently, the sum, over 7, of the squared correlations between the
linear combinations X;a,;) and the jth dimension of the group configuration Y, is
not necessarily equal to the jth diagonal element of A. Instead, the eigenvalues A,

are equal to weighted sums of squared correlations where the weights are (y;-K,-yj)_l
for i = 1,...n. These weighted sums of squared correlations are maximized.
Another way to interpret the squared correlations is obtained by observing the
analogy with regression analysis. For the ith individual and the jth dimension we
have
Kiy; = KiX;a;;) + e;;, (13)
where e;; is a vector of residuals. Hence, the elements of A; can be interpreted as
regression coefficients, and the squared correlation ,ofj (Kiyj,KiXiai(j)) is equiva-

lent to the multiple correlation coefficient R? obtained in the ordinary least squares
regression of K;y; and K;X;.

4.2 Redundancy

In order to assess the quality of the solution it would also be interesting to see how
well the group configuration represents the individual data. For this purpose we will
use the redundancy index introduced by Stewart and Love (1968). The redundancy
index can be seen as a multivariate extension of the multiple correlation coefficient.
It is defined as the variance of the predicted variables divided by the variance of the
predictor variables. Here we will use the redundancy index to assess how well the
original data are represented by the k£ dimensional group configuration. That is, we
will, for each individual, consider the prediction of K;X; by K;Y.

For the prediction of K;X; by K;Y, we consider the following model: K;X; =
K,YB,; + E, where B, is a matrix of coefficients and E is a matrix of residuals.
Hence, B, = (Y’ K,-Y)f1 Y'K;X; and X; = K;YB,. The redundancy index for the ith
individual, defined as the variance of the predicted variables divided by the variance
of the predictor variables, can be calculate as

o B Var(Xi) B trace (X;KZY (Y/KiY)—l Y’KiXi)
Xy = Var (K1X1> B tI‘aCG(X;KzXz> .




A high redundancy index indicates that a large amount of variation present in
the individual’s original data matrix X; is accounted for by the group configuration
Y. An overall measure of fit can be obtained by calculating the average redundancy
index

- 12
RIX\Y = 5 ZRIX1|Y (14)
=1

Steenkamp, Van Trijp, and Ten Berge (1994) use a similar measure of fit which
they call variance accounted for (VAF). They calculate the VAF as the average of
the multiple correlation coefficients obtained in the regressions of x;(;, where x;;
denotes the jth column of X;, on Y. It is not difficult to see that for standardized
variables, that is if X/K;X; = I,, the average redundancy index and VAF are the
same.

4.3 Determining the dimensionality of the group configura-
tion

The choice of the dimensionality of the group configuration depends on the inter-
pretability of the solution and on the amount of variation accounted for. In particular,
the number of dimensions must be such that a substantial part of the variation in the
data is described. There does not appear to exists a clear cut procedure for determin-
ing the dimensionality of the group configuration Y, however, we can use the various
measures described in the previous sections to select the number of dimensions that
are needed.

As described in Section 4.1, A\, i.e. the kth diagonal element of A, is a weighted
sum of squared correlations between the linear combinations X;a,) and the kth
dimension of the group configuration. Relatively low values for )y indicate that, on
average, the kth linear combinations are not highly correlated with the kth dimension
of the group configuration. Thus, the kth and, as the diagonal elements of A are
non-increasing, subsequent dimensions, can be considered superfluous. To determine
what is "relatively low” one may, as is often done in for example principal component
analysis, plot the \’s and look for an appropriate number of dimensions.

An alternative measure that one can consider is the average redundancy index
given in (14). From the close relationship between the multiple correlation coefficient
and the redundancy index it follows that adding dimensions to the group configura-
tion will lead to an increase in the redundancy indices RIy,y and hence in WXW. If
dimensions that describe little variance are added, the increase in the average redun-
dancy index will be small. Therefore, in a similar way as described for the eigenvalues
Ak, we can consider the average redundancy index WXW for solutions of different di-
mensionality and determine the number of dimensions. Note however, that, unlike
the eigenvalues \i, the redundancy indices for different dimensionality must be cal-
culated separately. That is, for different k& values the redundancy indices must be
calculated as described in the previous section.



5 Green and Carroll’s GENCOM algorithm

Green and Carroll (1988) proposed an iterative procedure for dealing with missing
elements in CANCOR. Their method is more general than the approach presented
here in the sense that it can also be used when only certain cells, rather than complete
rows, of the X matrices are missing. The basic principle in their approach, which they
call GENCOM, is to treat the non-observed rows as missing values and to estimate
these missing values using an iterative procedure. Green and Carroll (1988) do not
give details on numerical properties of the algorithm.

When complete rows are missing the GENCOM algorithm can be formulated as
follows:

1. For each X7 calculate Xl(-t) by replacing the missing values by the column aver-
ages. Thus, the elements of the rows of th) that correspond to missing values,
become: m%_X:-" 1,,. (The superscribed t's correspond to iterations).

2. Construct Y® by applying CANCOR to the th) matrices and by supplement-
ing a column of ones (for estimating the intercept term) to the thus obtained
configuration matrix.

3. For each X; use ordinary least-squares to fit: X; = Y(t)*BZ(-t), where X; is the

original data matrix of order m; x p;, and Y®* is the matrix of corresponding
-1
rows of Y®. Thus, B{" = (Y<t>*'Y<t>*) Y®X,.

4. Let th)* = Y(t)BZ(-t) and calculate th) by replacing the missing values of the
original X} matrix with the corresponding elements of Xz(-t)*7 whilst keeping the

observed values unaltered.

5. Go to step 2, and repeat until the differences between two subsequent Y®)
matrices becomes smaller than a certain convergence criterion.

Note that, like before, index ¢ indicates different observation matrices, whereas
index ¢t was used to indicate different iterations.

6 Simulation

We will assess the performance of our new approach and the GENCOM algorithm
using a simulation study. In this simulation study, synthetic data is generated for
several parameter settings so that the methods can be evaluated under various condi-
tions. To assess the performance of the methods we will use the measures described
in Section 4. Moreover, as the true configuration is known, we will be able to see how
well the methods succeed in recovering the true structure.

6.1 Experimental design

In generating the synthetic data sets we vary a number of factors that might affect
the performance of the methods. First of all, the number of X; matrices, that is
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the number of observations n, was chosen to be either low (10) or high (120). The
case with low n corresponds to applications where we have several multidimensional
scaling solutions and we want to obtain a group configuration. The high value of
n corresponds to the situation in which a group of individuals is asked to evaluate
objects. Secondly, although the size of the complete set of objects m was fixed at 14,
the distribution of the number of objects evaluated by each individual, i.e. m;, was
varied. In particular, we considered three cases: low, medium and high variability. In
the low variability case the number of objects follows a discrete uniform distribution
between 4 and 6, for the medium variability the number of objects is uniform between
4 and 10, and for the high variability the number of objects is uniformly distributed
between 4 and 14. Moreover, to determine which objects are observed by the ith
individual m; different numbers between 1 and 14 were drawn (without replacement).
These numbers then corresponded to ”observed” rows and entries of the other, i.e.
the "unobserved” rows, were changed to zeros. The m; numbers were drawn in such
a way that the odds for the first four, the next six and the last four rows were: 5
to 3 to 1. Thus, the first 4 rows were 5 times as likely to be drawn than the last
4 rows. By using such a distribution we avoid the situation in which, on average,
all objects are observed equally often. Instead we have a group of common objects
(many observations), a group of somewhat less common objects and a group of rare
objects. The absolute number of observations for each group depends of course on
the number of observations n.

Thirdly, for the number of attributes used by each individual, i.e. the number
of columns p; of X;, we considered two cases: Low variability; number of attributes
uniform between 2 and 4, and high variability; number of attributes uniform between
2 and 10. Fourthly, we considered four levels for the amount of noise added to the
true (simulated) configurations. As Y., is orthogonal its values lie between —1 and
1. We perturb the Y., matrices by adding white noise multiplied by a factor r and
we chose as values for r: 0.125,0.25,0.375 and 0.5. This means that for the high noise
case, i.e. r = 0.5, the noise follows a normal distribution with standard deviation
equal to 0.5. Finally, the dimensionality of the group configuration was fixed at two,
allowing graphical representations of the results.

In order to study the influence of the parameter settings we simulated for each
true configuration matrix Y. , 25 X matrices corresponding to the same parameter
settings. Thus, for one Y., we have 25 x 4 x 3 X 2 x 2 = 1200 simulated X matrices.

6.2 Data generation process

The data generation process can be summarized as follows:

1. An m x k group configuration Y. is constructed by drawing from a standard
normal distribution and then calculating an orthogonal base.

2. White noise multiplied by a factor r is added to Yye-

3. For each individual we randomly choose the number of rows, m;, the number
of columns, p;, as well as a vector of m; different numbers (between 1 and
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m) which indicate which rows we consider to be observed by the ith individual.
”Non-observed” rows are replaced by zeroes. (Later, when applying GENCOM,
these zeroes will be imputed according to the GENCOM algorithm as outlined
in Section 5). The resulting m x k matrix is post multiplied by a (uniform)
random matrix of order k£ x p;. Thus, the observation matrices X; are of order
m X p; and contain m; non-zero (i.e. observed) rows.

4. The n individual X; matrices are collected in one mn x p matrix X.

5. Green and Carroll’s GENCOM and our new generalized CANCOR. approach
are applied to the simulated observations matrices collected in X.

6.3 Evaluation criteria and analysis

To assess the performance of our new method and the GENCOM approach we con-
sider, as measure for the model fit, the average redundancy index WX‘Y as described
in Section 4.2. In addition, as the true configuration is known, we can also assess
the fit of our configuration with respect to the true configuration. To do this we
employ the alienation coefficient as described by Borg and Leuter (1985). The alien-
ation coefficient, which lies between zero and one, can be interpreted as a measure
of unexplained variance. We use it to compare the Euclidean distances between the
rows of the true configuration, with the Euclidean distances between the rows of the
retrieved configuration. The lower the alienation coefficient, the better the retrieval
of the original distances, and perfect recovery is indicated by zero.

Finally, for our new method, we plot the average eigenvalues (i.e. the weighted
sums of squared correlations between dimensions of the group configuration and the
linear combinations) for several parameter settings, to see whether the distribution
of the eigenvalues provides a good indicator for determining the dimensionality of the
solution. A similar procedure cannot be used for GENCOM because, in GENCOM,
each iteration involves the computation of eigenvalues and eigenvectors of a function
of the imputed data matrices. As seen in step 3 of the GENCOM algorithm, the
imputations depend on the choice of the dimensionality k. Consequently, the distri-
bution of the eigenvalues depends on the chosen dimensionality and does not provide
information concerning the true dimensionality.

6.4 Results

The average redundancy indices are gathered in Table 1 and the average alienation
coefficients can be found in Table 2. We see that, for all conditions, our new method
yields a higher fit than the GENCOM approach. The recovery of the true structure,
as measured by the alienation coefficient, is also seen to be better for the new method.
(Recall that the alienation coefficient is a measure of unexplained variance, the lower
the value, the better the recovery of original distances).

For both methods the fit decreases if more noise is added and increases when, on
average, more objects are considered (i.e. the case object variation high). Hence,
when there are few missing rows in each data matrix, the fit is better. Increasing
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the attribute variance does not affect the results for our method. For the GENCOM
approach, however, it leads to a lower fit and poorer recovery. A higher attribute
variance means that individual observation matrices consist, on average, of more
columns than in the case with low attribute variance. The underlying structure re-
mains two-dimensional. Apparently, our new method is not affected by the redundant
information given in the extra columns. The GENCOM approach on the other hand,
suffers considerably from the higher dimensionality of the data matrices. This is
probably due to the fact that by increasing the number of attributes more elements
are imputed.

In Tables 1 and 2 we see that, for the simulations with a low number of individuals
(n=10), both methods yield a higher fit but poorer recovery. This can be explained
by the fact that with fewer observations, it becomes easier to fit noise. The sample
variances for both the redundancy index and the alienation coefficient are also larger
for both methods when there are fewer observations.

The effect of the level of object variation on the recovery of the true structure is
strong for both methods. More object variation yields a much better recovery of the
true structure. Especially when the amount of noise is low.

A repeated measures analysis of variance was carried out to establish whether the
differences for the different conditions where significant. Except for the effect of the
attribute variation in the new method, all differences where significant at the 0.05
level.

In Figures 1 and 2 the average eigenvalues are plotted for different parameter
settings. (As the number of attributes does not affect the solution of our method
the plots corresponding to high attribute variation are not presented here.) It is
immediately clear from these plots that the object variation plays a major role in the
distribution of the eigenvalues. In particular, for a high object variation and a low
level of noise (i.e. 7 < 0.25) there is a sharp drop in the value of the eigenvalues after
the second eigenvalue. Thus indicating, correctly, that a two dimensional solution
should be considered. If the amount of added noise increases, that is if we consider
higher values for the coefficient r, the drop is less clear but, for high object variation,
it remains present. When the number of observations is low, i.e. n = 10, the drop in
the values of the eigenvalues is less clear and, for low object variation and high noise,
non-existent.

7 Application to empirical data

To illustrate the generalized CANCOR, method introduced in this paper we apply
it in an empirical study on the positioning of political parties in The Netherlands.
In March 2003 elections were held in the 12 provinces of the Netherlands for the
provincial governments. A total of 28 political parties took part in the elections. Of
these 28 political parties only 6 joint the elections in all 12 provinces, whereas 18
parties took part in only one province.

In order to help the voter in comparing the political programs of all parties in
a particular province, several tests appeared on the Internet. One popular test was
the so-called stemwijzer (vote-indicator) developed by the Instituut voor Politiek en
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Table 1: Average Redundancy Indices (VB indicates our new method, GC stands for the GENCOM
approach).

n=120
Attribute Variation Low Attribute Variation High
Obj. Var: Low Med High Low Med High
Noise VB GC VB GC VB GC|VB GC VB GC VB GC

0.125 081 070 083 079 084 082|082 060 083 071 084 0.78
0.250 0.74 0.65 0.67 065 0.66 064 |0.75 056 0.67 055 0.66 0.53
0.375 0.72 064 060 058 056 054|072 055 0.60 049 0.56 0.44
0.500 0.72 063 058 056 053 049 0.71 055 0.58 047 0.52 0.40

n=10

0.125 0.81 0.70 083 0.79 0.84 0.82]0.82 0.60 0.83 0.71 0.84 0.78
0.250 0.74 0.65 0.67 0.65 0.66 0.64|0.75 056 0.67 0.55 0.66 0.53
0.375 0.72 0.64 060 058 0.56 0.541]0.72 055 0.60 0.49 056 044
0.500 0.72 0.63 058 0.56 0.53 0.49 | 0.71 055 0.58 0.47 0.52 0.40

Table 2: Average Alienation Coefficients (VB indicates our new method, GC stands for the GEN-
COM approach).

n=120
Attribute Variation Low Attribute Variation High
Obj. Var: Low Med High Low Med High
Noise VB GC VB GC VB GC|VB GC VB GC VB GC

0.125 0.25 058 0.18 0.17 013 0.08] 025 074 018 041 0.13 0.19
0.250 033 069 021 038 015 019033 081 021 064 015 0.51
0.375 042 075 0.27 057 020 043|042 083 0.27 075 0.20 0.65
0.500 049 077 036 065 027 056|049 083 036 080 0.27 0.76

n=10

0.125 0.45 0.54 028 030 021 019|045 0.63 0.28 0.41 0.20 0.26
0.250 0.53 0.58 042 044 031 0.33]0.53 065 0.42 0.56 0.32 049
0.375 0.57 0.60 0.51 0.53 0.43 0.47 | 0.57 0.67 0.51 0.63 0.43 0.60
0.500 0.59 0.62 055 056 0.50 0.54 | 059 0.67 055 0.65 0.51 0.64
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Participatie (IPP; Dutch Centre for Political Participation) in collaboration with the
Documentatiecentrum Nederlandse Politieke Partijen (DNPP; Documentation centre
Dutch Political Parties). The test was constructed in the following way. For each
province, a set of propositions concerning relevant political issues was assembled and
send to the participating political parties. Each party then reported whether they
agreed, disagreed or were neutral with respect to each proposition. These propositions
(ranging from 22 in one province to 31 in two others) were included in the stemwijzer
website (www.stemwijzer.nl).

Individuals could access the stemwijzer website, select the appropriate province,
and indicate for each of the propositions whether they agreed, disagreed, were neutral
or did not have an opinion. The respondent’s opinions were then compared to those
of the participating parties and a summary of this comparison was provided assisting
the respondent in determining which party to vote for.

We used the official party evaluations of the propositions (which can be found on
the stemwijzer website) to construct, for each province, a map of the relative posi-
tions of the participating political parties. For this purpose we applied PRINCALS
(principal component analysis for ordinal data, see e.g., Gifi, 1990) to the raw data.
In each province, a four dimensional solution accounted for approximately 80% of
the variance. Hence, we have twelve configurations each of which depicts the relative
positions of a subset of the 28 political parties. The size of the subsets ranged from 8
(in Limburg) to 14 (in Noord-Holland). The average number of participating parties
in each province was 10. To obtain a map of all 28 political parties, we applied the
generalized CANCOR method to the twelve 4-dimensional PRINCALS solutions.

To decide on the number of dimensions of the group configuration the weighted
sums of squared correlations, i.e. the \’s, do not provide a clear cut-off point. How-
ever, on the basis of the average redundancy index (WX‘Y = 0.60) and the in-
terpretability of the group configuration, we selected the two dimensional solution.
Adding a third dimension led to a relatively small (0.13) increase in the average
redundancy.

It is easily verified that rotation of Y and A; (for i = 1,...,n) over the same angle,
does not affect the value of objective function (6). Hence, in order to simplify its in-
terpretation, we rotated the two-dimensional group configuration to simple structure
using Kaiser’s varimax criterion. The rotated configuration can be found in Figure 3.

To interpret the group configuration we will first focus on parties that joined
the elections in at least 6 provinces. These parties, which are circled in Figure 3,
also participated in the national elections and their relative positions in the Dutch
political landscape are relatively well understood. We see that these 9 parties lie
on a semi-circle. Starting from the upper-left we can move counterclockwise from
the left-wing parties, Groen Links and SP, to the right-wing party LPF. Hence, the
first dimension describes the traditional distinction between left-wing and right-wing
parties. The second dimension separates parties that can be considered to be more
traditional and conservative, in particular with respect to issues concerning political
and governmental innovations, from the, in that respect, more progressive political
parties. All religious parties (Christen Unie, SGP, and CDA) are located at the low
end (traditional) of dimension 2. The relative positions of these nine parties are

16



y y y L5/Groen . . . .

1 — -
i +LNH 7
06 #LPU 4

*#Groenen
+FMLimb
04l vhil i
LFlevo
_EEIJ"DOF'
GG LIkS> 4P ooy G
02k S +FHP +Pvleel .
¥ orfh
Aanders #/9p
+GEBF
oF + -
+LB/EOF H7H TR
a2 . :
04 1 1 1 il I ‘191 \DA 1 1 1 i
08 06 0.4 02 0 oz’ 04 06 na 1

Figure 3: Group configuration (after varimax rotation) obtained using the generalized
CANCOR approach.
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Figure 4: Points corresponding to the parties SP, CDA and LPF in the individual
configurations.

similar to those obtained by Groenen (2003) in his mapping of political parties based
on their political programs for the Dutch national elections of January 2003.

The group configuration makes it possible to see the relative positions of local
political parties with respect to the national ones. This is done in nearly all cases on
the bases of only one observation for the local parties. Furthermore, the group con-
figuration of our CANCOR procedure reveals the relative positions of many political
parties that did not overlap in the provinces they joint in the actual elections. In
Figure 3 we see that the local parties are located relatively close to the progressive
parties and are far from the traditional parties. Hence, the second dimension also
separates the regional parties from (some of the) national parties.

The squared correlations between dimensions of the individual configuration and
the group configuration (i.e. the correlations between the columns of Y; and Y)
are given in Table 3. These squared correlations give an indication of how well the
individual configurations are represented by the group configuration. We see that, in
general, these squared correlations are quite high. This indicates that the positions of
the political parties are quite stable over the provinces. This is illustrated in Figure
4, where we have plotted the points that correspond to the LPF, CDA and the SP
for each individual configuration, together with the points corresponding to the nine
large parties in the group configuration.

It is difficult to discern, without further research, why the squared correlations
for Zuid-Holland (dimension 2) and Noord-Brabant are relatively low. However, the
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Table 3: Squared correlations

CANCOR GENCOM

diml dim2 |dim1l dim?2

1) Friesland 097 098 | 0.68  0.88
2)  Groningen 094 089 | 097 0.82
3) Drente 092 087 | 0.60 0.83
4)  Overijssel 0.89 0.77 | 0.59 0.73
5)  Gelderland 0.96 092 | 0.88 0.84
6) Flevoland 097 089 | 073 081
7)  Utrecht 1.00 094 | 077  0.83
8) Noord-Holland | 0.88 0.88 0.95 0.91
9) Zuid-Holland 094  0.17 | 0.61 0.29
10) Zeecland 0.88 0.77 | 052  0.87
11) Noord-Brabant | 0.45 0.69 | 0.51 0.51
12) Limburg 0.96 088 | 0.79  0.94

discrepancy suggests that in these provinces, the relative positions of the national
parties with respect to each other are quite different from the structure in other
provinces. The poor correspondence between the individual configuration of Noord-
Brabant with the group configuration (as indicated by the low squared correlations)
is illustrated in Figure 5, where we have plotted the individual configuration together
with the appropriate points in the group configuration. In Figure 6 a similar plot is
presented for the, well represented, province Utrecht.

GENCOM We also applied GENCOM to the political party data. We chose the
algorithm to terminate when the sum of squared differences between two subsequent
group configurations became smaller than 2.2 x 107¢ (computer accuracy). This
occurred after 740 iterations. In order to simplify the comparison between the two
group configurations we rotated the GENCOM solution in such a way that the sum
of squared differences between the GENCOM and the CANCOR solution was at a
minimum. In other words, we applied Procrustes rotation to the GENCOM solution.
The resulting two-dimensional group configuration is presented in Figure 7.

The differences between the configurations obtained using GENCOM and CAN-
COR are relatively small. In particular, the positions of the large political parties
(i.e. the ones that joined in more than 9 provinces) are quite similar in both plots.
The positions of some of the regional parties, however, differ substantially between
the GENCOM and CANCOR solutions. The average redundancy index for the two-
dimensional GENCOM solution is 0.53. The squared correlations between dimensions
of the individual configurations with the group configuration, both for the CANCOR
and the GENCOM solutions, can be found in Table 3. Hence, the fit, both in terms
of the average redundancy index— 0.60 for CANCOR versus 0.53 for GENCOM- and
the average squared correlations, is better in our non-iterative CANCOR approach.
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Figure 5: Joint plot of the individual configuration of Noord-Brabant and the group
configuration.
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Figure 6: Joint plot of the individual configuration of Utrecht and the group config-
uration.

8 Discussion

In this paper we offered a method that makes it possible to apply generalized canonical
correlation analysis to matrices of different row and column orders. This new method
derives a group configuration for a set of objects based on observation matrices of
(potentially) different row and column order. In contrast to GENCOM, an existing
generalization proposed by Green and Carroll (1988) that makes it possible to apply
CANCOR in the presence of missing data, our new method does not require any
type of iteration. The solution is obtained immediately by means of an eigenvalue
decomposition.

A simulation study was used to assess the performance of our new method and
to compare it to the GENCOM approach. We found that, both with respect to
the fit as well as the recovery of the true structure, our method performed better
than the GENCOM approach. This was further illustrated in the empirical example
concerning the political landscape in the Netherlands.

There are many fields in which our new method can be applied. It can, for ex-
ample, be used to obtain a configuration for a set of objects on the basis of several
configurations of subsets. Our analysis of the political landscape in the Netherlands
based on provincial data is an example of such an application. Other possible ap-
plications concern the analysis of data in which individuals evaluate a set of objects
(e.g. products, brands, political parties) with which they are familiar, using a set of
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Figure 7: Group configuration (after rotation) obtained using the GENCOM algo-
rithm.

attributes that they deem relevant. Hence, both the object and attribute sets are
individual specific. Problems concerning a-priori fixed sets of objects and attributes,
such as the familiarity and relevance of the objects and attributes to all individuals,
are thus avoided. In addition, the task for the individuals will be easier when they
only need to judge objects that they are familiar with, using relevant criteria.

An important problem that one encounters when applying the generalized CAN-
COR approach introduced in this paper concerns the dimensionality of the group
configuration. That is, the choice of the number of dimensions that are needed to
adequately summarize the data. In our simulation study we showed that the sum of
weighted squared correlations, i.e. the eigenvalues, provide a good indication concern-
ing the true dimensionality when the level of noise is low and the subsets of objects
used by the individuals are relatively large. When there is no clear drop in the values
of the eigenvalues, a choice can be made on the basis of the average redundancy index
and the interpretability of the solution. Further research is needed to obtain a more
objective measure to determine the number of dimensions.

Throughout the paper we have restricted ourselves to the generalized canonical
correlation analysis approach commonly referred to as CANCOR. There are, however,
other multivariate methods that can be used to obtain a group configuration based
on several data sets. Steenkamp, Van Trijp, and Ten Berge (1994), in their analysis
of matrices of equal row and different column order, describe empirical results of
three different methods: Generalized Procrustes analysis (Gower, 1975, Ten Berge,
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1977), INDSCAL (Carroll and Chang, 1970), and CANCOR. They find that the
three methods perform about equally well. In addition, Commandeur (1991) and
Ten Berge, Kiers and Commandeur (1993) offer generalizations of Procrustes analysis
that allow the analysis of several data sets with missing rows and columns. It would
be interesting to see whether the similar results obtained when applying generalized
Procrustes analysis and CANCOR to matrices of different column order carry over to
the more general case where the data matrices have different row and column orders.

The results obtained in both the simulation study and the empirical illustration,
suggest that the method introduced in this paper can be of great practical value in
a wide range of applications. Its flexibility can be used to allow individuals a much
greater freedom in evaluating sets of objects and obtaining a group configuration
based on these evaluations.

A Derivation of the generalized CANCOR solu-
tion
Recall the objective function (6):
rﬁ%l ¢ = tlrauceizz1 (KY — K X;A) (K)Y — K, X;A)). (15)
s.t. YKY = nl;.

where K =3"" | K, and we have discarded the superscribed *’s for ease of notation.
Expanding the bracketed expressions yields

¢ = traceYYKY+ Z trace AIX K, X;A; — 2 Z trace YYK; X, A,
i=1 =1

= trace Y'KY + trace A'DA — 2trace Y'XA,

WhereXE( KiX; KX, - KX, )7 A= ( Al Ay - A )/ and
XK, X,

oo XK, X

X! K, X,
Minimization of ¢ is equivalent to maximization of —¢ and hence (15) is equivalent
to
max ¢* = 2trace Y'XA — trace A'DA — trace Y'KY

s.t. YKY = nl;.

Inserting the constraint gives as Lagrangian function

1 = 2trace Y'XA — trace A'DA — nk — trace L(Y'KY — nl)
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where L is the k x k& matrix of Lagrange multipliers. Note that, as the restrictions
are symmetric, the matrix of Lagrange multipliers is symmetric, i.e. L = L. Taking
derivatives with respect to A and Y yields as first order conditions

dA :2trace Y'XdA — 2trace A'DdA =0 (16)
dY :2trace A’X'dY — 2trace LY'KdY = 0 (17)

(for a treatment of matrix differentials see, e.g., Magnus and Neudecker, 1999). From
(16) we get

X'Y = DA.
Hence
A'X'Y = A'DA, (18)
and, assuming that the matrices X!K;X,; are nonsingular for all i,
A =D 'X'Y. (19)

Using the definitions for A, D, and X, we see that
A = (X'KX,) ' XK Y.

Due to the symmetry of K and L the first-order condition in (17) can be expressed
as

XA =KYL. (20)
Inserting the expression for A yields
XD 'X'Y = KYL. (21)

Premultiplying this by ﬁK*% gives

%K%XDlX’K%K%Y :%K%YL.

Let
L = UAU'
where U'U = UU’ =1, and A is a diagonal matrix of eigenvalues. Then
L KIXD XK IKIYU = LKiYUA
n vn

and, without loss of generality, we can express (21) as
K XD 'X'K2Y*= Y*A,

where Y* = ﬁK%YU so that Y*Y* = I. Hence, Y* is a matrix of eigenvectors
corresponding to a matrix of eigenvalues A.

From (20) it follows that L =1 Y’XA. Inserting this and using (18) in the objective
function ¢* yields

max ¢* = ntrace A — nk.
AY

Thus, in order to obtain a maximum for ¢* we must select the k largest eigenvalues
1 1 . .
of K72XD !'X’K~2 and corresponding eigenvectors.
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