
Finance a úv r - Czech Journal of Economics and Finance, 58, 2008, no. 5-6                                    261 

JEL Classification: C6, C 44, C53, F2, F21, G1, G11, G15, G2, G21 
Keywords: financial options; real options; Discrete Binomial Model; pricing; stochastic dynamic Bellman 

Optimization Principle; switch options 

Application of the American Real Flexible
Switch Options Methodology 
A Generalized Approach*

Zden k ZMEŠKAL – Technical University of Ostrava (VŠB-TU) , Faculty of Economics, 
Department of Finance (zdenek.zmeskal@vsb.cz) 

Abstract 
The paper deals with the inclusion of flexibility in financial decision-making under risk. It 
describes the application of the real options methodology with the possibility of sequential 
multinomial decision-making. The basic intention is to describe and apply a generalized 
approach and methodology of the flexibility modeling and valuation based on multiple 
choices and non-symmetrical switching costs under risk. The stochastic dynamic Bellman 
optimization principle is explained and applied. The optimization criterion of the present 
expected value is derived and used. Likewise, an option valuation approach based on re-
plication strategy and risk-neutral probability is applied. An illustrative example of the ap-
plication of the real multinomial flexible non-symmetrical switch options methodology is 
presented for three chosen modes. The option flexible values are computed. The usefulness, 
effectiveness, and suitability of applying the generalized flexibility model in company valu-
ation and project evaluation is verified and confirmed. The significance of applying the ge-
neralized methodology in transition market economies is discussed and verified. 

1. Introduction 
Real options represent a flexible approach to financial decision-making in 

the strategic decisions of non-financial companies concerning real assets (assets, debt, 
equity, investments, commodity, electricity, temperature, land, research costs, techno-
logy, processes, and production). Flexibility is an important aspect that is often 
neglected in financial decision-making and valuation. This finding concerns both 
highly developed countries and transition market economies.  

The real options methodology is based on the financial options methodology 
applied to real assets. In comparison with the traditional passive strategies, it takes 
into consideration active measures in real projects managing in the future. Examples 
of flexible actions include project abandonment, temporary shutdown of production, 
expansions, contractions, changes in technological processes, the design of production 
structure parameters, sales, purchases, etc.  

The real options topic has been a focus of attention for the academic and mana-
gerial community for several years and represents a fundamental innovation in corpo-
rate finance. The key texts concerning the real options methodology and applications 
include for instance (Black, Scholes, 1973), (Brennan, Schwarz, 1985), (McDonald, 
Siegel, 1986), (Kulatilaka, 1993), (Kulatilaka, Trigeorgis, 1994), (Dixit, Pindyck, 1994), 
(Sick, 1995), (Smith, Nau, 1995), (Trigeorgis, 1998), (Brennan, Trigeorgis, 1999), (Bel-
lalah, 2001), (Howel et al., 2001), (Ronn, 2002), (Vollert, 2002), (Smit, Trigeorgis, 
2004), and (Brandao, Dyer, 2005). 
* The paper is supported by research project MSM 619891007. 
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We can distinguish several types of real options models, from simplified to 
complex ones. These models can be categorized according to the following basic cha-
racteristics: (i) valuation approach (replication strategy, arbitrage principle, mar-
tingale approach, complete market, incomplete market); (ii) payoff function (plain 
vanilla, path dependent, look back, barrier); (iii) choice variability (binary, chooser, 
exchange, multiple switching); (iv) inclusion of switching costs (neglected, symmetri-
cal, non-symmetrical); (v) number of underlying factors (one-factor, spread, rainbow, 
basket, multi-factor); (vi) random process (Brown, mean-reverting, jump diffusion, 
Schwartz); (vii) exercise moment possibility (European, American, Bermudian, swing); 
(viii) mathematical solution (continuous, discrete-binomial, discrete-trinomial, discrete- 
-multinomial, random scenarios simulation). Furthermore, the published particular fea-
tures and research findings will be introduced later in the appropriate parts of the paper. 

The intention and motivation of the paper is to propose, describe, and apply 
a specific generalized complex real options model. The novelty and uniqueness of 
the model consists in the particular combination of basic characteristics introduced. 
The model is characterized by: (i) a replication valuation strategy under a complete 
market; (ii) a plain vanilla payoff function; (iii) multiple switching among modes; 
(iv) non-symmetrical switching costs; (v) one-factor; (vi) a geometric Brown pro-
cess; (vii) an American option type; (viii) discrete-binomial approximation.  

The crucial features of the proposed model are multiple choices, American 
options, and non-symmetrical switching costs in particular. These real option models 
come out of the stochastic dynamic programming based on Bellman optimization 
principle. This approach is for example introduced in (Kulatilaka, 1988), (Trigeorgis, 
1991), (Dixit, Pindyck, 1994), (Kulatilaka, Trigeorgis, 1994), (Smith, Nau, 1995), 
(Trigeorgis, 1998), (Baldwin, Clark, 2000), (Duckworth, Zervos, 2001), (Chung-Li 
Tseng, Barz, 2002), (Weston, 2002), (Dangla, Wirl, 2004), (Fontes, 2008), (Dulluri, 
Raghavan, 2008), and (Erraisa, Sadowsky, 2008). 

Another goal of the paper is to demonstrate the application necessity and use-
fulness of the proposed methodology in financial decision-making in both transition 
and highly developed market economies. 

The paper is organized as follows. The first section is devoted to the descrip-
tion of the real options methodology without switching costs based on risk-neutral 
probability and the replication strategy. A generalized methodology of sequential mul-
tinomial American options, non-symmetrical switching options and cash-flow will be 
described in the second section. Then a discrete stochastic dynamic Bellman opti-
mization model with the present expected optimization criterion will be applied. 
The last section gives an illustrative example of the applied generalized methodology 
for three modes, including an evaluation of flexibility value and a sensitivity analy-
sis. 

2. Description of Real Option Valuation without Switching Costs  
The generalized valuation principle is called the martingale principle; see e.g. 

(Musiela, Rutkowski, 1997) and (Luenberger, 1998). The principle is defined such that 
a value has to be equal to its expected future value, implying that the random process 
shows no trend. In case of a risk-neutral approach, the martingale methodology is de-
fined as the ratio of the random value and a risk-free asset. So, after rearranging 
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                                        r dt
t t dtV e E V                                                 (1) 

where tV  is the value, r  is the risk-free rate, dt is the time interval, and t dtE V  
is the risk-neutral expected value. We can gain the same result for a complete market 
under the replication valuation strategy or the arbitrage principle. 

2.1 Derivation and Description of Replication Strategy 
One of the basic approaches to derivatives valuation under a complete market 

is the replication strategy; see e.g. (Sick, 1995) and (Smith, Nau, 1995). Having de-
rived the replication strategy, we assume a compact (effective) market and an asset 
that pays income (dividends, coupons, etc.) proportional to the asset price. The re-
plication strategy will be applied to a discrete binomial model and one risk (random) 
factor. The model is a discrete one and for the sake of simplicity intra-interval con-
tinuous compounding is applied.  

The replication strategy is based on creating a portfolio from an underlying 
asset S and a risk-free asset B such that for every situation the derivative value is 
replicated; this means that the derivative value equals the portfolio value.  

The portfolio value at appraising time t is t t t ta S B f ; 

the portfolio value at time t dt  given a rising price is 
u r dt u

t dt t dt t t dta S B e f   

and the portfolio value at time t dt  given a declining price is 
d r dt d

t dt t dt t t tda S B e f  

where t  is the portfolio value, S is the underlying asset value, a is the amount of 
underlying asset, B is the risk-free asset value, f is the derivative value, r is the risk- 
-free rate, u (d) are the indexes of growth (decline) of the underlying asset, and u

t dtS  
d
t dtS  are their prices in up-movements (down-movements).  

By solving the three equations for variables a, B, and ft, we can get a general 
formula for the derivative price,  

      
r dt d u r dt

r dt u dt t dt t dt t
t t dt t dtu d u d

t dt t dt t dt t dt

e S S S e S
f e f f

S S S S
              (2) 

This is the general formula for derivative price valuation by the replication stra-
tegy, which can be written as follows,  

       1r dt u d
t t dt t dtf e f p f p , or r dt

t t dtf e E f               (3) 

Here 
r dt d

t t dt
u d
t dt t dt

e S S
p

S S
                                                                                (4) 

implies the risk-neutral probability of an up-movement and t dtE f  is the risk-neu-
tral expected value.  
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The derivative price is determined as the present value of the expected value 
in the following period. This probability can be considered neither as market growth 
nor as a subjective probability. Due to (3) the derivative price is equal to the present 
value of the risk-neutral expected value of the subsequent period, which conforms to 
the generalized martingale principle, see (1). 

There are several ways of calibrating the generalized model, see e.g. (Cox, 
Ross, Rubinstein, 1979), (Jarrow, Rudd, 1983), (Boyle, 1988), (Boyle, Evnine, Gibbs, 
1989), (Madan, Milne, Shefrin, 1989), (Kamrad, Ritchken, 1991), (Trigeorgis, 1991), 
(Kulatilaka, 1993), (Smith, Nau, 1995), and (Luenberger, 1998).  

Applying the approach of Cox, Ross, and Rubinstein (1979) we can express 
the underlying asset price, under proportional continuous income c, according to 
the geometric Brown process as follows: ;u u c dt d d c dt

t dt t t dt tS S e S S e . Be-

cause u dte e , d dte e , then after substitution into (4) and re-arranging we 
can get the particular risk-neutral probability formula 

                                      
r c dt d

u d
e e

p
e e

                                                       (5) 

This formula can be generalized after substituting for the risk-neutral proba-

bility growth parameter g r c dt , as follows
g d

u d
e e

p
e e

. 

2.2 Valuation Procedure for American Options without Switching Costs 
Applying the replication strategy described above, the option pricing proce-

dure using the discrete binomial model respecting a stochastic dynamic programming 
model and risk-neutral probability can be divided into the following steps. 

(i)  Determination of the risk-neutral growth parameter g . 

   (ii)  Underlying asset modeling  
(a) A subjective approach based on expert estimation and forecasting.  
(b) An objective approach based on statistical estimation of a random underly-
ing asset on a market data basis (e.g. an arithmetic, geometric Brown process, 
a mean-reversion process, the Vasicek, Schwartz, CIR or Ito process, etc.). 
In the case of the geometric Brown process according to the Cox, Ross, and 
Rubinstein (1979) calibration we first compute the up-movement and down- 
-movement indexes, which characterize the volatility coinciding with market 
volatility, then u dte e , d dte e  and u u

t dt tS S e , d d
t dt tS S e . 

   (iii)  At the maturity day, T, the option price is equal to the intrinsic value 
u u

T Tf g , respective d d
T Tf g .The computation of the intrinsic value (the pay-

off function), g, depends on the option type. For example, for a call option, 
max ;0u u

t tg S X , and for a put option, max ;0u u
t tg X S , X being 

the exercise price.  
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   (iv) Working backwards from the end to the beginning of the binomial tree, 
the price of the option is calculated at every node and also at the initial node 
according to the formulas.  
The price for a European option is 1r dt u d

t t dt t dtf e f p f p . 

The price for an American option, which can be exercised whenever during 
a pre-specified period, is max q

t tq S
f g , which means 

1

 or 1
max ; 1q S r dt u d

t t t t dt t dtq S q S
f g g e f p f p  

Function q
tg  represents exercise of the option, while 1

tg  represents non- 
-exercise of the option. Parameter q represents the choice (option) of pro-
cess, generally called a mode, p depicts the risk-neutral probability defined 
previously. At the beginning of the period, 0f  is then the sought price of 
the option. 

   (v)  Determination of the decision-making variables, tQ , 
1

 or 1
arg max ; 1q S r dt u d

t t t t dt t dt
q S q S

Q g g e f p f p  

The function argmax represents the argument of the maximum of the func-
tion, so the decision parameter q corresponds to the maximum value of the ob-
jective function.  

   (vi)  A sensitivity analysis concerning the input data.  

3. Description of Real Option Valuation with Switching Costs  
Dynamic programming represents an optimal management problem for find-

ing the optimal decision-making trajectory. It is a multi-period optimization method 
based on Bellman optimization principle. By contrast with deterministic programming, 
stochastic dynamic programming means that the whole process is of a random type.  

The optimization of the whole process under this approach means that it is 
possible to optimize particular periods separately. The final system state depends on 
all previous states and also on the initial state. The optimal decision is made with re-
spect to the future possible states and also to future forward-looking decision-making. 

Bellman optimality principle, which is considered to be an axiom, means that 
whatever the initial decision is, the following decisions have to be of optimal strategy 
with respect to the previous decision. 

The application assumptions of the principle are that the process must be di-
visible into periods and the objective function must be separable. Thus, the optimiza-
tion objective function must be expressible as the aggregation of the optimization 
functions for particular periods. The calculation procedure is performed recurrently 
from the final period to the initial period, i.e., in the opposite direction to the process 
flow. 

The assumptions of stochastic dynamic programming are: the process is divi-
sible into particular periods; the periods are characterized by possible random states; 
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the particular decisions are depicted by the mode (e.g. technology, equipment, pro-
cess, stage of development); and the total objective function must be separable such 
that it is expressed as the aggregation of particular objective functions.  

The problem solved by stochastic dynamic programming is formulated in such 
a way that regardless of the initial state it is necessary to determine a decision tra-
jectory that coincides with the optimal total objective function. The basic point is 
the division of the whole process (an N-period extreme process) into particular 
periods, and for every period the optimal solution is found. So, at the beginning of 
every period the system is in a certain mode and, according to the period optimi-
zation criteria result, a decision follows on whether to transit to a new mode or to 
keep the existing mode. The solution procedure consists in transforming the whole 
process into the successive finding of particular optimal solutions. The backward 
recurrent procedure is then applied.  

3.1 Derivation of the Recurrent Formula for the Present Expected Value 
Criteria

Present value is one of the basic principles and criteria of financial decision- 
-making. This optimization criterion fulfils the condition of separation, so dynamic 
programming according to Bellman optimization principle can be employed. For 
decision-making under risk, maximization of the present expected value is applied 
for the optimal choice of mode and trajectory. Subsequently, the recurrent present 
expected value formula is derived and explained. 

Under the assumption that the cash flow of a given period is paid at the be-
ginning of the period, the present value of the cash flow is formulated as follows:  

                             
1 1

0 0

N N

N t t t t
t t

V E x E x  

where NV  is the value with N periods to the final period and tx  is the cash flow at 
the beginning of the particular period. The discount factor is generally depicted as 

1 t
t R ; for the sake of simplicity 1

1 1 R . The equation can be re-
written as follows:  

     
1 1 1

0 0 1 0 1 1
1 1 2

N N N

N t t t t t t
t t t

V x E x x E x x x E x  

The value of the particular period can therefore be expressed recurrently de-
pending on the subsequent period as follows  

        0 1N NV x E V , where 
1

1 1 1
2

N

N t t
t

E V x E x  

Analogously for the following period  

  
1 1 1

1 1 1 1 2 1 2 2
2 2 3

N N N

N t t t t t t
t t t

V x E x x E x x x E x  
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It is apparent that the value of a particular period can again be expressed in 
terms of the subsequent period  

       1 1 2N NV x E V , where 
1

2 2 2
3

N

N t t
t

V x E x  

Generally, the recurrent formula for every period is 

                   

1 1

1
1 1

1

1 1
2

N N

N k k t k t k tt k
t k t k

N

k k tt k
t k

V x E x x E x

x x E x
 

and so any period value can be determined in terms of the subsequent period in this 
way 

                               1N k k N kV x E V  

Here N-k depicts the number of periods until the end of the first phase.  
The value of the last period can be written as follows: 

                                       1 1 0NV x E V  

In the preceding paragraphs the recurrent formulae of the present expected 
value was shown. Now, the possibility of deciding about the mode choice will be 
carried out under the present expected value optimization criteria. 

Firstly, an example for two modes A and B will be described. The initial mode 
will be A, and the cost of switching from A to B is depicted as ,A BC . The cost in-
curred with no change in mode A is depicted as ,A AC . Usually, , 0A AC , because no 
costs are incurred. A positive switching cost means a cash outlay and a negative one 
represents a cash inflow. Applying the previous results, the recurrent formulae for 
solving the problem are  

                0 , 1 0 , 1,
max ;A A A B B

N A A N A B NA B
V x C E V x C E V                 (6) 

             , 1 , 1,
max ;A A A B B

N k k A A N k k A B N kA B
V x C E V x C E V           (7) 

                         1 1 , 0 1 , 0,
max ;A A A B B

N A A N A BA B
V x C V x C V                    (8) 

Secondly, we can derive by induction the formulas for the three modes A, B, 
and C. The initial mode will again be A. Here, the costs of switching from A to A, 
A to B, and A to C are depicted as ,A AC , ,A BC , and ,A CC , respectively.  

In this case, the recurrent formulas are the following: 

  0 , 1 0 , 1 0 , 1, ,
max ; ;A A A B B C C

N A A N A B N A C NA B C
V x C E V x C E V x C E V  

                                                                                                                                    (9) 
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        , 1 , 1

, ,
, 1

; ;
max

A A B B
k A A N k k A B N kA

N k C CA B C
k A C N k

x C E V x C E V
V

x C E V
         (10) 

     1 1 , 0 1 , 0 1 , 0, ,
max ; ;A A A B B C C

N A A N A B N A CA B C
V x C V x C V x C V     (11) 

We can generalize the previous results for switching between a larger number 
of modes under the assumption that the initial mode is m and the subsequent mode 
is q, which is chosen from mode set S. The procedure can be generalized according to 
the following recurrent formulas: 

                          ,0 1max q qm
N m q Nq S

V x C E V                                  (12) 

                       , 1max q qm
N k m qk N kq S

V x C E V                               (13) 

                              1 ,1 0max q qm
m qNq S

V x C V                                    (14) 

These generalized formulas derived are similar to those in, for example, (Ku-
latilaka, 1988), (Kulatilaka, Trigeorgis, 1994), (Weston, 2002), and (Erraisa, Sadows-
ky, 2008).  

3.2 Valuation Procedure for American Options with Switching Costs 
In contrast to section 2.2, the valuation procedure in this section is founded on 

a cash-flow basis. The valuation procedure for multinomial options with non-sym-
metrical switch options in respect of stochastic dynamic programming on Bellman 
principle expressed by recurrent equations, under the discrete binomial model and 
risk-neutral probability, is performed in the following steps.  

(i)  Determination of the risk-neutral growth parameter g . 

(ii)  Modeling of cash flow as the underlying asset. 
(a) A subjective approach based on expert estimation and forecasting.  
(b) An objective approach based on statistical estimation and forecasting of 
a random process. In the case of a geometric Brown process according to 
the Cox, Ross, and Rubinstein (1979) calibration: 

1, , 1,;u d
t s u t s t s d tx x U x x D  

where u dtU e e  and d dtD e e . 

(iii)  At the beginning of the second phase the value for the second phase is 0,
q

sV , 
where s is the state and q is the mode. 

(iv) The value is calculated by a backward recurrent procedure from the end to 
the beginning of the binomial tree for the states s and modes q of a parti-
cular period in accordance with the generalized recurrent Bellman stochastic 
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equations (12), (13), and (14). Here p  is the risk-neutral probability of 
an up-movement and 1q p  is the risk-neutral probability of a down-mo-
vement. 
The valuation formula for period one to the end of the first phase is 

1, ,1, 0,max q qm
s m qN s sq S

V x C V                                                            (15) 

The valuation formula for other periods based on the recurrent procedure is 

, ,, 1 , 1 ,max q q qm
N k s m qk s N k s u N k s dq S

V x C p V q V                (16) 

The valuation formula at the beginning of the whole first phase (the first pe-
riod) is  

, ,0, 1, 1,max q q qm
N s m qs N s u N s dq S

V x C p V q V                          (17) 

(v)  Identification of the decision variant for state s and time t, ,t sQ is 

, ,, 1 , 1 ,arg max q q q
t s m qk s N k s u N k s d

q S
Q x C p V q V  

(vi)  A sensitivity analysis concerning the input data. 

4. Example of Company Valuation with Dynamic Flexibility Based on American 
Switch Options with Non-symmetrical Switching Costs 

This section applies the generalized flexible approach with the possibility of 
a dynamic choice of particular modes (switch option) to find the optimal trajectory 
on an expected present value basis. Three variants will be investigated depending on 
the initial mode (situation) of the company: Variant 1 – Mode A (normal production), 
Variant 2 – Mode B (expanded production), Variant 3 – Mode C (contracted produc-
tion). Switching in these three variants is assumed. 

A stochastic dynamic programming model based on the binomial model (Ame-
rican options; non-symmetrical switching costs; replication value strategy; risk- 
-neutral approach; expected present value objective function) will be employed. 
The applied model is of two-phase type. The first phase, with random cash flow, 
takes 4 years, and the second non-random phase is the perpetuity version. We assume 
that the random cash flow (the underlying asset) follows a geometric Brown process. 

4.1 Computation Procedure and Results 
The input data of the applied model are the following: risk-free rate r = 10 % 

(discount factor 0.9091); up-movement index U = 1.2; value for beginning of second 
phase 0,

q
sV  for states s and modes q, see Figure 1. The price of the underlying asset S 

is 10, and the rate of contraction or expansion is 15 %. The risk-neutral probability of 
an up-movement is 72 .73 %p and that of a down-movement is 1q p  
= 27.27 %. Table 1 shows the switching costs Cij connected with switching between 
particular modes. Keeping the same mode is linked with no switching costs, of course. 
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Positive values mean a cash outflow and negative ones a cash inflow. The impossibility 
of switching between modes is expressed by a penalty value, . It is apparent that 
the switching costs are non-symmetrical. 

The computation procedure, conforming to the methodology of stochastic dy-
namic programming valuation of multinomial options (see section 3.2 and equations 
(12), (13), and (14)), for the three initial modes is presented in Figure 1  

The three columns show the procedure for the three initial states: Mode A 
(normal production), Mode B (expansion in production) and Mode C (contraction in 
production). The rows show the four steps of the procedure: (I) the cash flow tree, 
(II) the pre-calculation (the present expected value), (III) the maximum value, and 
(IV) the assigned mode.  

The computation procedure is shown in Figure 1 and is decomposed into 
the following steps.  

Step 1: Cash flow calculations according to a geometric Brown process for 
modes A, B, and C in part I, 1, , 1,;u d

t s u t s t s d tx x U x x D .  

Step 2: For time 4 the present expected value calculations 1, 0,
qm

s sE V V  

are performed. So, for mode A, 37.7 0.9091 41.5 . The values in part II for modes 
A, B, and C at time 4 are calculated similarly.  

Step 3: Calculation of the maximum value for time 4 in part III according to 
equation , ,, 1 , 1 ,max q q qm

N k s m qk s N k s u N k s dq S
V x C p V q V . In particular, 

for mode A 62.2 max 20.7 0 37.7; 23.8 5 43.4; 17.6 ( 4) 32 . The values 
in part III for modes A, B, and C at time 4 are calculated similarly. 

Step 4: Due to , ,, 1 , 1 ,arg max q q q
t s m qk s N k s u N k s d

q S
Q x C p V q V  

the particular modes are assigned in part III for original modes A, B, and C. 

Step 5: For time 3 the present expected value due to 

,
m

N k sV , 1 , 1 ,
q qm

N k s N k s u N k s dV p V q V  is calculated. So, for mode A, 

51.5 0.9091 0.7273 62.2 0.2727 41.7 . The values in part II for modes A, B, 
and C at time 3 are calculated similarly.  

The values for time 3 are calculated analogously to Step 3 and Step 4. 
The procedure goes by backwardation analogously to Steps 5, 3, and 4 for times 2,  
1, and 0.  

TABLE 1  Switching Costs between Modes 
Subsequent mode jSwitching cost Ci, j A B C

A 0 5 -4 
B -3 0  Initial mode i 
C 4  0 

 



272                                Finance a úv r - Czech Journal of Economics and Finance, 58, 2008, no. 5-6 

The calculated results show the company values with flexible modes (actions) 
for three modes; normal, expansion and contraction. All three variants according to 
initial mode are investigated and evaluated. The resulting values for the three variants 
at the initial node of the present value in part III are 73.424, 78.424, and 68.379 
monetary units. 

It is apparent that if the initial mode is A, then it is optimal to switch to B, 
and, under unfavorable conditions, to A or C. If the initial mode is B, then the mode 
is maintained; only under unfavorable circumstances is it switched to A. If the initial 
mode is C, then it is switched immediately to A and, under unfavorable conditions, 
back to C. We can conclude that the initial mode significantly influences the optimal 
decision (switching mode) trajectory.  

The flexibility values for every initial mode are given in Table 2. It shows 
the values of the company for initial modes A, B, and C from Figure 1. It also 
presents the results of the computation without flexibility and the flexibility value 
(calculated by subtracting the value with flexibility from the value without flexi-
bility).  

We can see in Table 2 resulting values of modes without flexibility, values 
with flexibility, and flexibility values. It is apparent that mode B is the most stable 
and valuable. Mode C has the greatest flexibility value. 

The influence of switching costs on the final value is significant. This influ-
ence is investigated by sensitivity analysis. This involves computing the change in 
company value dependent on the relative (percentage) change in the switching cost. 
The results are illustrated in Graph 1. The value is most influenced by the switching 
cost of mode C, followed by mode A. The switching cost of mode B does not sig-
nificantly influence the value.  

TABLE 2  Flexibility Values According to Particular Modes 

Starting modes 
Value 

A B C
with flexibility 73.424 78.424 68.379 
without flexibility 68.182 78.409 57.955 
flexibility 5.243 0.015 10.424 

 
GRAPH 1  Sensitivity of Value to Switching Costs for Particular Modes 
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5. Conclusions 
The purpose of the paper was to derive, describe, explain, and verify the pos-

sibility of applying the generalized real multinomial switch options methodology 
based on non-symmetrical switching costs to company decision-making. The basic 
approach of the paper was to apply the stochastic dynamic programming problem 
under Bellman optimality principle on the present expected value criterion. The repli-
cation strategy and risk-neutral approach were applied.  

Firstly, the valuation of real American options without switching costs was 
described. As the basic principle, the replication strategy for a complete market under 
the risk-neutral approach was explained.  

Secondly, the generalized recurrent valuation optimization formula with multi-
nomial decisions (options) based on real American switch options with non-symme-
trical switching costs was described. Bellman principle of optimality for the present 
expected value was derived and applied.  

Thirdly, the generalized flexible real American switch options methodology 
with non-symmetrical switching costs was applied using the example of company va-
luation with options to select and switch between three modes: normal production, 
expansion and contraction. The same modes as the initial ones were assumed. A sen-
sitivity analysis was carried out as well. The results showed the significance of flexi-
bility aspects and the influence of non-symmetrical switching costs on decision- 
-making under risk. The stability of the results was verified by means of a switching 
cost sensitivity analysis. 

The influence of switching costs is multi-fold. If we assume that the switching 
costs are null or symmetrical (equal switching costs when going into and out of 
a mode), the optimal decision is to choose the mode with the maximum cash flow. 
However, for non-symmetrical switching costs and when more than two modes are 
used, the optimal decisions are influenced and determined by the future options 
(choices). This is a consequence of considerable inertia and the hysteresis effect. For 
example, it can be optimal to postpone a project even if the net present value is po-
sitive, or to continue a production process even though the production cash flow is 
temporarily under the variable cost level. 

It was shown that the stability of the solution can be suitably verified by 
a sensitivity analysis concerning the input data, and the switching costs in particu-
lar. A generalized approach to option value sensitivity analysis based on the fuzzy 
sets methodology is presented for instance in (Zmeškal, 1999, 2001). 

It was explained and verified that the generalized multinomial flexible switch 
options approach with non-symmetrical switching costs suitably models the real de-
cision-making and valuation conditions. This generalized approach incorporates and 
covers the full range of decision-making aspects and features: risk, flexibility, mul-
tiple optionality (switching), time dynamics, and non-symmetrical switching costs. 

The generalized real options methodology described in this paper can be 
viewed as a basic and common approach to financial decision-making, including 
company valuation and project evaluation under flexible conditions and switch op-
tions variants. This ensues from the preceding explanations and discussions. It is also 
possible and appropriate to apply the generalized real options methodology to a small 
open economy in a transition phase. The usefulness of the model lies in the fact that 
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it allows for more realistic decision-making. There is no doubt that this approach 
allows us to obtain more project portfolio and decision-making variants and better 
manage companies’ economic efficiency.  
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