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Abstract: The agricultural commodity crisis of 2006-8 and the recent evolution of  
commodity  markets  have  reignited  anxieties  in  Finland  over  fast-rising  food  
prices and food security. Although the impact of farm commodity price shocks on 
the final consumer is mitigated by a large degree of processing as well as the  
complex  structure of  the food chain,  little  is  known about  the strength of  the  
linkages between food markets and input markets. Using monthly series of price 
indices from 1995 to 2010, we estimate a vector error-correction (VEC) model in  
a co-integration framework in order to investigate the short-term and long-term 
dynamics  of  food  price  formation.  The  results  indicate  that  a  statistically  
significant long-run equilibrium relationship exists between the prices of food and  
those  of  the  main  variable  inputs  consumed  by  the  food  chain,  namely  
agricultural commodities, labour, and energy. When judged by the magnitude of  
long-run pass-through rates, farm prices represent the main determinant of food  
prices, followed by wages in food retail and the price of energy.  However, highly  
volatile energy prices are also important in explaining food price variability. The 
parsimonious VEC model suggests that the dynamics of food price formation is  
dominated  by  a  relatively  quick  process  of  adjustment  to  the  long-run  
equilibrium, the half life of the transitional dynamics being six to eight months 
following a shock.  
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Introduction
In recent years, food prices in Finland have received much attention from the media, policy 

makers and the general public. Perhaps the main concern relates to the potential consequences for 
Finnish consumers and Finnish living standards of the upward trend in and increasing variability of 
agricultural commodity prices, following the international food crisis of 2006-8. For instance, in the 
summer of 2010, speculations about the effect that a Russian grain export ban caused by forest fires 
might  have  on  the  price  of  Finnish  bread  made  the  news,  which  resulted  in  the  Minister  of 
Agriculture and Forestry issuing statements in order to reassure the public and market participants 
that  the inflationary effect  of the ban would,  in fact,  be limited.  At a more fundamental  level, 
however, legitimate concerns exist in relation to the growing scarcity and variability of supply of 
agricultural  commodities  in  the medium to  long term due  to  a  conjunction  of  factors.  Climate 
change is now expected to lower average yields and increase yield variability in many production 
areas of the world. The growing scarcity of fossil fuels and restrictions on greenhouse gas emissions 
will also raise the energy cost of agricultural production, while bio-energy production increasingly 
competes with food production for the use of scarce natural resources. Meanwhile, economic and 
population growth world-wide put constant pressure on the demand side of the global food balance 
equation.  There is therefore little  doubt that,  in the medium to long term,  prices of agricultural 
commodities  traded  on  international  markets  are  going  to  increase  at  a  rate  exceeding  that  of 
inflation. 

Anticipating the impact that this evolution might have on retail food prices and the economic 
well-being of the Finnish population is difficult, however, because agricultural commodities receive 
a large amount of processing before reaching retail stores. Yet the extent to which food markets are 
linked to other markets, including commodity markets, remains largely unknown in Finland as in 
most  other  countries.  This paper tackles  that  issue by investigating the dynamics  of food price 
formation  in  relation  to  the  prices  of  the  inputs  used  intensively  in  the  food  chain,  namely 
agricultural commodities, energy and labour. Put simply, we seek to establish to what extent and 
how quickly changes in input prices influence food prices. 

Surprisingly  perhaps  given  its  current  high  profile  in  policy  and  media  circles,  food  price 
inflation has not been the subject of much academic research in high-income countries such as 
Finland. A recent and largely descriptive report investigated Finnish food prices (Kotilainen et al., 
2009), but its focus was mainly on a comparison of price levels with other EU countries and the 
related issue of competition within the food chain. More generally, the only examples of aggregate 
analysis of food price inflation in high-income countries of which we are aware originate from the 
United States. Hence, Lambert & Miljkovic (2010) used time series econometrics to analyse factors 
affecting U.S. food prices to conclude that farm prices and manufacturing wages were the main 
determinants, rather than consumer incomes or the price of other food production inputs such as 
energy.  In a similar  vein, Baek and Koo (2010) applied a cointegration framework to the same 
problem and found that agricultural  commodity price and exchange rate played the key roles in 
determining the short and long-run movements of U.S. food prices, although in recent years there 
was also evidence of energy prices significantly affecting food prices in the long run. 

Against this background, we develop a cointegration analysis of Finnish food prices to make an 
empirical contribution to the existing literature on the determinants of food price inflation in high-
income countries. 

Conceptual Framework and Data
Although we do not attempt to build a fully structural model of food prices, economic theory 

guides the selection of explanatory variables. At a fundamental level, food prices reflect equilibrium 
between supply and demand forces, and the model should therefore include the main shifters of 
supply and demand. On the supply side, a cursory analysis of the cost structure of the food industry 
indicates that,  in addition to raw agricultural commodities, two other inputs are likely to have a 
major impact on retail food prices: labour, which is used in processing, wholesale and retail; and 
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energy,  which  is  required  for  both  the  transformation  of  the  raw  commodities,  and  the 
transportation of food to the final consumer. The state of the technology also influences the position 
of the industry supply curve, but the process of technological change is implicitly proxied by a time 
trend in the model. On the other side of the equilibrium relationship, demand is influenced by the 
average and distribution of disposable income as well as changes in the demographic composition 
of the population,  but the latter  are unlikely to be very large in a homogenous country such as 
Finland with little population growth and limited immigration.   Ultimately,  the empirical  model 
attempts to explain retail food prices by the unit costs of agricultural raw materials, energy, and 
labour,  while  income  is  ignored  due  to  the  unavailability  of  monthly  data  (see  below). 
Technological and preference changes are captured by trends in the model.

Monthly price indices from Statistics Finland are used to build a data set from the time Finland 
joined the EU (January 1995) to February 2010 (the latest month available when the study started), 
giving a total of 182 observations. The decision to ignore data preceding Finland’s entry into the 
EU is made for two reasons: first, EU entry was a major structural break for Finnish food markets, 
with the years preceding entry characterized by sharp price adjustments; and, second, Finland had to 
operate many changes in its collection and calculation of statistics so as to harmonise its system 
with that of the EU, which makes it difficult to merge pre- and post-entry data. 

Food prices are measured by the component of the Consumer Price Index (CPI) corresponding 
to food and non-alcoholic beverages. Farm prices are measured by the price index of agricultural 
goods output, including fruits and vegetables but excluding fur skins. Labour unit cost in food retail 
is measured by a seasonally-adjusted wage index for retail  sales in non-specialised stores,  with 
food, beverages and tobacco dominating. Finally,  energy prices are drawn from the database on 
prices  of  the  means  of  agricultural  production  for  the  input  category  labelled  ‘Energy  and 
lubricants’. Unfortunately, there are no monthly statistics on disposable income available in Finland 
and the variable is therefore ignored in subsequent analysis1. 

The data rescaled to a 1995 base year is presented in Figure 1, from which a few remarks are in 
order.  Overall  food  prices  in  Finland  have  increased  since  1995  at  the  economy-wide  rate  of 
inflation, but the period since mid-2007 has seen a particularly fast rise in food prices, followed by 
a significant decline. The recent food crisis has therefore had a visible impact on retail Finnish food 
markets. However, food prices are also much more stable than those of commodities, with energy 
prices in particular showing large volatility. By contrast, wages in food retail have grown almost 
linearly at a rate close to that of per capita income, with the exception of a brief break in trend 
around 2008. Finally, we note the clear seasonality of agricultural prices, which is addressed in the 
econometric model by including monthly dummies.

Overview of time-series analysis
The first step of the analysis focuses on the stochastic properties of the series by testing for the 

presence of unit roots. This allows for the identification of stationary and non-stationary time series, 
which  in  turn  permits  the  specification  of  a  model  that  should  not  produce  spurious  results. 
Provided that the variables are non-stationary as is usually the case with time-series of prices, the 
existence  of  a  long-run  equilibrium  among  variables  is  then  tested  by  applying  the  Johansen 
approach, which starts with the specification of a vector autoregression (VAR) model of order k: 

tktktt zAzAz εµ ++++= −− ...11 (1)
In equation (1), zt denotes the (4 x 1) vector of indices of food prices, farm prices, energy prices, 

and wages in food retail, while  εt denotes the white-noise error term. A key feature of the VAR 
model is that it does not impose any a priori restriction on the exogeneity of variables, which is 
attractive in the present context because of the possibility of bi-directional causality. For instance, 
given that labour is an important  input in food processing and retail,  the wage rate is likely to 
influence food prices. However, high food prices could also give food manufacturers and retailers 
more room when negotiating wages with employees.
1 The figure below plots the income series extrapolated from annual data.
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The idea behind the approach proposed by Johansen (1995) is to reformulate the VAR model so 
as to impose and test the validity of cointegrating constraints in the following equation:

tktktktt zzzz εµ +Π+Γ++∆Γ+=∆ −+−−− 1111 ... (2)
The (4 x 4) matrices Γi (i=1,…k-1) guide the short-run dynamics of the model, while any long-

run relationships are captured by the (4 x 4) matrix Π. The full dynamics of the system is better 
understood by re-writing model (2) in vector error-correction (VEC) form, which involves, when 
possible, decomposing matrix Π into the product αβ’. Each vector of the (4 x r) matrix β describes a 
stationary  co-integration  linear  relationship  that  holds  among  the  variables  in  the  long-run 
equilibrium, while the (4 x r) matrix α gathers the coefficients that dictate the speed of adjustment 
of zt to the long-run equilibrium. The method proposed by Johansen (1995) to establish whether this 
decomposition is possible relies on a test of the rank r ≤ 4 of matrix Π. If r = 0, no cointegration 
relationship exists, while if r = 4 all the variables in zt are stationary.  More usually, matrix Π has 
reduced rank r corresponding to the number of cointegration relationships. 

Empirical results
Unit Root tests
The empirical analysis starts with the presentation of unit root tests for the logarithm of all four 

time series included in the model. We report the results of the Augmented Dickey-Fuller (ADF) 
test, which remains popular because of its simplicity and generality, as well as the Phillips-Perron 
(PP) test, which has been proposed as an alternative. Both tests use the same null hypothesis of non-
stationarity, but it has been established in the literature that they also have low power (i.e., they 
under-reject the null hypothesis when the series are, in fact, stationary). For that reason, it is also 
interesting to report the results of the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test that 
relies on the opposite null hypothesis of stationarity of the series. 

The lag length in the auto-regression forming the basis of the ADF test is chosen by maximising 
the Akaike information criterion, with a maximum lag of 13. The results (Table 1) indicate that 
food prices, energy prices, and the wage rate are integrated of order one (e.g.,  I(1)),  whether a 
deterministic trend is included or not in the test equation. However, the null hypothesis of non-
stationarity of farm prices is strongly rejected, although this conclusion is not robust to the choice of 
test, with both the PP and KPSS tests suggesting, instead, that farm prices are I(1). This lack of 
consistency across tests is also observed for the energy price and wage series when a deterministic 
trend is allowed. Altogether, the weight of the evidence points to the non-stationarity of the series 
for farm, food, and energy prices. It is more difficult to conclude in the case of the wage series, 
which is not entirely surprising given its near linearity (Figure 1), and the finding in the literature 
that, in finite samples, any trend-stationary process can be approximated arbitrarily well by a unit 
root process and, conversely, that any unit root process can be approximated by a trend-stationary 
process (Harris and Sollis, 2003, p. 54). However, because the statistical consequences of treating a 
non-stationary variable as stationary are so severe, we opt on the side of caution by considering in 
subsequent analysis that the wage series is integrated of order one.

Cointegration test
Before  we  can  apply  the  Johansen  procedure  to  test  for  the  existence  of  co-integration 

relationships among the four variables, it is necessary to establish the length of the lag in equation 
(2),  which is achieved by optimising the value of an information criterion in the unrestricted VAR 
model (1). Table 2 reports the results for four such criteria, namely the Akaike (AIC), Schwarz 
(SC),  Hannan-Quinn (HQ) criteria as well as the final prediction error (FPE). A lag length of only 
two months  is  chosen on  the  basis  of  all  four  criteria,  and  this  conclusion  is  also  reached  by 
applying lag-exclusion Wald tests (not reported). 

Johansen  (1988)  has  established  that  testing  for  the  existence  of  r  ≤  3  co-integration 
relationships among the four variables of the model is equivalent to testing the hypothesis that the 
rank of matrix Π in equation (2) is at most r. Reduced-rank regression can then be used to form a 
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likelihood ratio test of that hypothesis on the basis of the so called trace statistic, or alternatively, 
the maximum eigenvalue statistic. Lutkepohl et al. (2001) investigated the small sample properties 
of both tests to conclude to the slight superiority of the trace test, which we therefore favour in our 
analysis.  The last issue to be resolved before the cointegration test can be performed is whether to 
include constants and trends in both the short-run and long-run parts of equation (2). Three models 
can realistically be considered (Harris & Sollis, 2003, p. 133):

• Model 1 introduces only constants in the long-run model (i.e., in the cointegration vectors β) 
to account for unit of measurement of the variables in zt. This is appropriate if there are no linear 
trends in the levels of the data.

• Model 2 allows for such linear trends by adding a constant to the first-difference short-run 
component of Model 1. However, the two constants are not uniquely identified and it is therefore 
assumed that the they add up to provide an overall intercept in the short-run model.

• Model 3 further adds a time trend to the cointegration vectors to allow for long-run linear 
growth  not accounted for in Model 2.     

Unfortunately, there is no easy way to determine a priori which model should be used to test for 
cointegration, which introduces a serious difficulty given that the result of the test depends on the 
chosen model. Johansen (1992) proposes a solution to that conundrum that involves applying the 
Pandula principle to the joint hypothesis of a maximum rank of Π and combination of deterministic 
variables (i.e., constant and trends) entering the model. This is applied to the problem at hand and 
Table  3  reports  the  results,  in  the  form of  the  p-values  of  the  different  hypotheses.  The  most 
stringent hypothesis of no cointegration relationship in Model 1 is strongly rejected, and giving 
more flexibility to the model by adding deterministic components (i.e. moving to models 2 and 3) 
also leads to rejection of the hypothesis of absence of cointegration. Moving from left to right, then 
top to bottom of the table, the first non-rejection of the null at the 5% level corresponds to the 
hypothesis of a single cointegration relationship in Model 2 (i.e.. constants in both short-run and 
long-run model), and this specification is therefore selected. 

The long-run cointegration relationship
The normalised long-run cointegration relationship among the four variables estimated by the 

Johansen technique is as follows:

(3)

In equation (3), Pfood,  Pag, Pen and Pw denote respectively the price indices of food, agricultural 
commodities  and energy as well  as the wage rate in food retail,  while  t-ratios of the estimated 
coefficients are reported in parentheses. Ignoring the constant which has no economic meaning and 
simply reflects units of measurement, the estimated coefficients have the expected positive sign, 
indicating  a  positive  long-run  relationship  between food prices  and the  three  major  production 
factors used in the food chain. Further, the long-run relationships between food and input prices are 
statistically significant, very strongly so in the case of agricultural commodities and wages, but only 
at  the 8% level  in  the  case of  energy.  Given the log-log nature  of  the estimated  equation,  the 
coefficients  can  be  interpreted  as  pseudo-elasticities  reflecting  the  relative  influence  of  each 
variable  on  food  prices.  On  that  basis,  the  estimation  results  indicate  that  agricultural  prices 
represent the main determinant of food prices, with any 10% increase in price at the farm gate 
eventually resulting in a more than 3% increase in food prices at retail level. Next comes the wage 
rate in food retail, with a pseudo-elasticity, or pass-through rate, of just over a quarter, and finally 
energy, with a relatively small coefficient equal to 0.06. 

Although the specification of the long-run relationship was selected on the basis of statistical 
tests, it is worth exploring the robustness of the results to the inclusion of deterministic variables in 
the cointegration equation. The following equation reports estimates of vector β when a linear trend 
is allowed to enter the long-run relationship: 
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(4)

While the coefficients associated with farm and energy prices remain close to those estimated in 
equation (3), the pseudo-elasticity associated with the wage rate in food retail is almost three times 
larger. Clearly, the model has difficulties separating the effects of the trend from those of wages, 
which seems intuitive given the high level of collinearity between the two variables already evident 
in Figure 1.  Equation (4) also reports a negative monthly trend in food prices which translates into 
a 2.4% annual decrease, possibly due to technological and deflationary structural changes within the 
food chain.

Weak exogeneity and Granger causality tests
In order to better understand the dynamic relationships among the four variables and refine the 

model, we present the results of weak exogeneity tests of the null hypothesis that all adjustment 
parameters  (i.e.,  rows  of  matrix  α)  associated  with  a  given  variable  zj are  equal  to  zero.  An 
exogenous variable, although it may enter the long-run equilibrium, is not itself caused by the other 
variables  of  the  VAR  (or  VEC)  model,  and  there  is  therefore  no  loss  of  information  in  not 
modelling its determinants (i.e., not including ∆ zjt as a left-handside variable of the model). Instead, 
the model can then more simply be conditioned on that variable by introducing it as a right-hand-
side variable (in first difference ∆ zjt). 

The results reported in Table 4 indicate that the prices of food and agricultural commodities 
should be treated as endogenous to the system at any reasonable level of significance, whereas the 
null of weak exogeneity of the price of energy and wages cannot be rejected. This suggests that the 
dynamics of the four variables is driven primarily by the wage rate in food retail as well as the price 
of energy, and that hypothesis can be analysed further through Granger causality tests, as reported 
in Table 5 for different lag lengths. Focusing first on the variable of primary interest, we can see 
that the price of food is Granger caused by the three remaining variables of the model, hence giving 
support to our broad logical framework2. Agricultural prices are themselves Granger caused by food 
and energy prices but not by the wage rate in food retail, which conforms to intuition. Turning to 
the two variables that have previously been characterised as weakly exogenous, the wage rate in 
food retail and the price of energy are not Granger caused by any of the variables in the model, and 
there is therefore here consistency between the two sets of tests (although the test results that food 
prices does not Granger cause energy prices change when the lag length is extended). 

Vector Error Correction Model
Based on the two sets of tests, we specify a conditional VEC that includes food and agricultural 

prices as endogenous variables, with energy prices and wages treated as exogenous variables that 
enter the short-run model (contemporaneously and in lagged form) as well as the long-run model. 
Further, in search of a more parsimonious specification, F-tests of nullity of the two coefficients 
associated with each variable are carried out and reported in Table 6. 

This  shows  that,  of  the  conditioning  variables,  only  one-month  lagged  energy  prices  are 
significant in the VEC model, while both endogenous variables (agricultural and food prices) are 
also only significant in the short-run model with a lag of one month. Most seasonal dummies are 
significant, although there are exceptions (e.g., February, May, June, and November). Altogether, 
this series of tests suggests that the short-run dynamics of the VEC model is captured by a very 
parsimonious specification that includes only energy prices and both endogenous variables with a 
single  lag.  However,  estimation  of  that  model  reveals  some  serious  problems  of  residual 
autocorrelation  and  heteroskedasticity,  and  trade-offs  therefore  exist  between  parsimony  and 
robustness  of  the  model.  Through  trial  and  error,  we  identified  a  preferred  specification  that 
includes  two  lags  of  the  endogenous  variables,  all  seasonal  dummies,  and  both  conditioning 

2 We note, however, that the hypothesis that energy prices Granger cause food prices is rejected when the lag length is 
extended to 12.
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variables with a single lag. The estimation results are presented in Table 7 for that model as well as 
more general specifications mentioned previously. 

Focusing on the preferred specification, we first note that the model, overall, has satisfactory 
explanatory power with a R-square equal to one half for the food price equation, and 0.58 for the 
agricultural price equation. The speed of adjustment coefficients associated with the error correction 
(EC) terms have the expected negative sign that is required for the model to return to its long run 
equilibrium following a shock. Further, the coefficients are highly statistically significant in both 
equations, and their magnitudes indicate a rather speedy process of adjustment back to equilibrium: 
the  half-lives  of  the  transitory  dynamics  describing  food prices  and agricultural  prices  are  3.8 
months and two months, respectively.

The short-run dynamics are more difficult to interpret but a clear pattern emerges regarding the 
seasonality of the first endogenous variable: as compared to their December level, food prices are 
higher from January to July, and lower from August to November, with a particularly noticeable 
monthly hike in January (more than 1%). The seasonality of agricultural  prices is less obvious, 
although there is evidence of relatively low prices in the first quarter of the year, and relatively high 
prices in July and August. 

The  short-run  impact  of  the  lagged  endogenous  variables  are  unclear  as  the  coefficients 
associated  with  the  one-month  and  two-month  lags  often  have  opposite  signs  and  similar 
magnitudes. For instance, rather counter-intuitively the short-run effect of a ten percent increase in 
agricultural prices is to lower food prices by 0.4% the following month, but half of that increase 
then disappears in month two. Similarly, the two coefficients associated with lagged food prices in 
the agricultural price equation almost offset each other. Meanwhile, the coefficients of the weakly 
exogenous  variables  (wages  in  food  retail  and  energy  prices)  are  not  very  significant  in  the 
agricultural price equation, and have a negative sign that is difficult to interpret in the food price 
equation.  Finally,  we note that  the constant is equal to zero (food price equation) or small  and 
insignificant (agricultural price equation), which indicates the absence of linear structural change 
affecting producer technology and/or consumer preferences. All in all, the dynamics of food price 
formation is dominated by the relatively speedy adjustment to a long-run equilibrium as well as 
seasonal effects. 

The statistical properties of the model are based on the assumption that the residuals in equation 
(2) are white noise, which was tested ex-post. Table 8 reports the result of autocorrelation tests for 
lag lengths of up to 12 months. The null hypothesis of absence of autocorrelation cannot be rejected 
for  any  lag  length,  except  in  the  case  of  the  LM-test  with  12  lags.  Note,  however,  that  the 
Portmanteau test produces a different conclusion, whether based on the Q statistic or its adjusted 
version. We therefore conclude that the model does not suffer seriously from autocorrelation. Next, 
heteroskedasticiy is tested through the extension of White’s (1980) test to systems of equations as 
discussed by Kelejian (1982) and Doornik (1995). The estimated LM chi-square statistics is 398.4 
with 369 degrees of freedom, leading to a p-value of 0.14 that indicates that the null of absence of 
heteroskedasticity cannot be rejected. Finally, normality is tested through the multivariate extension 
of the Jarque-Bera test that compares the third and fourth moments of the residuals to those of the 
normal distribution. Normality is unfortunately rejected at the 5% level on the basis of either the 
skewness or kurtosis of the residuals. Altogether, we conclude that the estimated model is consistent 
with the underlying assumption of homoskedasticity and absence of autocorrelation, but violates the 
normality assumption. That last result, while not entirely satisfactory, is however rather commonly 
encountered in empirical applications of long time series.

Finally, Figure 2 presents the impulse response functions describing how food prices react to 
shocks affecting the three other variables of the model, hence providing a better understanding of 
how long-run model, short-run model, and volatility of time-series all contribute to the formation of 
food prices. Somewhat surprisingly in light of the relatively large adjustment coefficients reported 
previously, but in line with much of the literature on the subject, the figure indicates that food prices 
only stabilise after a significant period of time following a shock, with some adjustment still visible 
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24 months  after  the perturbation.  Food prices respond the most  to shocks affecting agricultural 
prices,  which  we  explain  by  the  importance  of  that  variable  in  the  long-run  equilibrium  (3) 
combined with its  large variability evident in Figure 1. Next come energy prices,  the relatively 
small influence of that variable on the long-run equilibrium being somewhat offset by its extreme 
volatility. The opposite explanation applies to the wage rate in food retail: although wages have a 
large influence on food prices in the long-run, as shown in equation (3), their limited variability 
implies that food prices respond little to a typical shock affecting that variable. 

Discussion and Conclusion
This  paper  has  used  time-series  econometrics  to  investigate  the  dynamics  of  food  price 

formation  in Finland.  We have established  the existence  of  a long-run equilibrium relationship 
between the prices of food and those of the main elements  of the food marketing bill,  namely 
agricultural commodities, energy and labour. Further, a simple vector auto-correction model shows 
that,  after  controlling for seasonal effects,  those three variables  alone explain about half  of the 
variability in food prices since Finland joined the EU in 1995. Following a shock, convergence to 
the long-run equilibrium takes more than two years, although half of the adjustment typically occurs 
within 6-8 months (Figure 2). 

In modern food-chains, large quantities of non-agricultural inputs are added to raw commodities 
in order to produce the final products that consumers ultimately purchase from retail stores. Our 
results indicate, however, that agricultural prices remain, quantitatively,  the main determinant of 
food prices in Finland, with a long-run pass-through rate of nearly one third. Meanwhile, energy 
prices play a significant but quantitatively more limited role in determining the equilibrium level of 
food prices, although they are important in explaining food price variability.  These findings are 
consistent with those reported for the US by Baek & Koo (2010) as well as Lambert and Miljkovic 
(2010)3. Although they confirm the existence of strong linkages between agricultural and energy 
markets, they also suggest that the role of energy prices in driving food price inflation should not be 
exaggerated. 

Further, the analysis indicates that other economy-wide factors, which tend not to attract much 
attention  from policy-makers  and the media,  are  also very important  in determining  food price 
inflation (if  not volatility).  Hence,  it  follows from the estimated co-integration relationship that 
wages in food retail have a strong influence on Finnish food prices. The finding that those wages 
are themselves weakly exogenous to the model suggests that their determination lies largely outside 
of the food chain and results from an equilibrium on the Finnish labour market.

The analysis  presented above could be extended in many directions in order to increase the 
robustness of the results and improve our understanding of food price formation in Finland. At a 
methodological level, it is for instance possible that the price dynamics is fundamentally different in 
periods of price stability and periods of price instability, and it would therefore seem interesting to 
test for the presence of structural breaks and/or the existence of different regimes of food price 
formation4.  At an empirical level, it seems also likely that, as shown by Leibtag (2009) for the US, 
the dynamics of food price formation varies substantially for the different sub-sectors and links of 
the food chain. Hence, further insights would be gained from disaggregation of the analysis across 
food industries (e.g., meat, dairy) and the explicit investigation of price formation at the wholesale 
level. Finally, a comparative study of price formation in the different countries of the EU or the 
Baltic  region  would  help  in  deriving  general  conclusions  regarding  the  efficiency  with  which 
Finnish food markets operate. 
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Figure 1: Price indices of food and related variables (1995=100)
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Figure 2: Impulse response functions

Table 1: Results of unit root tests
  ADF PP KPSS

Variable Exogenous
Stat. 

(level) p-val. Lag
Stat. (1st 

dif.) p-val.
Stat. 

(level) p-val.
Stat. (1st 

dif.) p-val.
Stat. 

(level) CV 5%
Stat. 

(1st dif.)
Farm Price Cst -4.49 0.000 12 -2.61 0.092 -12.99 0.000 0.65 0.46 0.05

Cst & trend -4.54 0.002 12 -3.3 0.069 -12.95 0.000 0.20 0.15 0.04
Food Price Cst -0.42 0.901 2 -7.62 0.000 -0.29 0.920 -14.44 0.000 1.55 0.46 0.12

Cst & trend -3.25 0.077 2 -7.64 0.000 -3.11 0.106 -14.46 0.000 0.18 0.15 0.05
Energy Price Cst -1.11 0.708 0 -12.72 0.000 -1.18 0.683 -12.74 0.000 1.58 0.46 0.04

Cst & trend -2.7 0.239 0 -12.69 0.000 -3.1 0.109 -12.7 0.000 0.10 0.15
Wages Cst 0.29 0.977 1 -24.33 0.000 0.61 0.990 -30.34 0.000 1.74 0.46 0.22

Cst & trend -3.3 0.069 1 -24.29 0.000 -6.01 0.000 0.000 0.08 0.15

Table 2: Lag-length selection criteria in unrestricted VAR model

0 3.89E-10 -10.3 -9.4 -10.0
1 3.46E-15 -21.9 -20.8 -21.5
2   2.44e-15*  -22.3*  -20.8*  -21.7*  * indicates lag order selected by the criterion
3 2.61E-15 -22.2 -20.5 -21.5  FPE: Final prediction error
4 2.92E-15 -22.1 -20.0 -21.3  AIC: Akaike information criterion
5 3.04E-15 -22.1 -19.7 -21.1  SC: Schwarz information criterion
6 3.33E-15 -22.0 -19.3 -20.9  HQ: Hannan-Quinn information criterion
7 3.20E-15 -22.1 -19.1 -20.9
8 3.46E-15 -22.0 -18.7 -20.7
9 3.55E-15 -22.0 -18.4 -20.5
10 3.91E-15 -21.9 -18.0 -20.3
11 3.82E-15 -22.0 -17.8 -20.3
12 3.75E-15 -22.0 -17.5 -20.2

 Lag HQSCAICFPE
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Table 3: Results of cointegration tests

Number of 
cointegrating 
equations

Model 1 Model 2 Model 3

0 0.0000 0.0001 0.0000
At most 1 0.0000 0.0589 0.0032
At most 2 0.0458 0.2861 0.0025
At most 3 0.1769 0.9756 0.1373

Deterministic components

Table 4: Results of exogeneity tests
Ho: Weakly exogenous variable(s) Chi-squared P-value

Price of food 18.75 0.000
Price of ag commodities 11.25 0.001
Price of energy 0.00 0.997
Wages in food retail 0.68 0.411
Price of energy & wages in food retail 0.69 0.708

Table 5: Results of Granger causality tests
Lag length k=2 k=5 k=12

Hypothesis F-Statistic Prob. F-Statistic Prob. F-Statistic Prob. 

ln(Pag) does not Granger cause ln(Pf) 11.44 0.000 4.00 0.002 6.07 0.000
ln(Pf) does not Granger cause ln(Pag) 2.51 0.084 2.76 0.020 2.65 0.003

ln(Pen) does not Granger cause ln(Pf) 10.40 0.000 5.77 0.000 3.17 0.001
ln(Pf) does not Granger cause ln(Pen) 0.77 0.466 0.64 0.668 3.02 0.001

ln(Pw) does not Granger cause ln(Pf) 5.20 0.006 3.31 0.007 1.46 0.147
ln(Pf) does not Granger cause ln(Pw) 1.38 0.255 1.27 0.279 0.88 0.568

ln(Pen) does not Granger cause ln(Pag) 3.68 0.027 2.04 0.075 1.25 0.254
ln(Pag) does not Granger cause ln(Pen) 1.36 0.258 0.86 0.506 1.37 0.187

ln(Pw) does not Granger cause ln(Pag) 1.45 0.238 1.05 0.392 0.68 0.767
ln(Pag) does not Granger cause ln(Pw) 1.16 0.315 0.87 0.500 0.97 0.477

ln(Pw) does not Granger cause ln(Pen) 2.50 0.085 1.34 0.248 1.51 0.128
ln(Pen) does not Granger cause ln(Pw) 0.71 0.494 0.82 0.535 0.88 0.572
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Table 6: Results of F-test of Ho: coefficients of variable in left column are both equal to 
zero. In bold: rejections at 10% level of significance. 

Lag 0 1 2 0 1 2
EC 43.55 0.000 - -
Pe 0.39 4.78 2.28 0.822 0.092 0.320
Pw 0.87 2.49 0.49 0.648 0.288 0.782
Pf - 5.30 2.49 - 0.070 0.288
Pa - 12.05 4.23 - 0.002 0.121
SDJan 22.98 - - 0.000 - -
SDFeb 3.32 - - 0.190 - -
SDMar 23.90 - - 0.000 - -
SDApr 4.98 - - 0.083 - -
SDMay 4.46 - - 0.108 - -
SDJun 0.45 - - 0.798 - -
SDJul 27.97 - - 0.000 - -
SDAug 23.85 - - 0.000 - -
SDSep 5.24 - - 0.073 - -
SDOct 7.89 - - 0.019 - -
SDNov 3.45 - - 0.178 - -

Chi-Squared Statistics P-values

Table 8: Autocorrelation tests

Lags Q-Stat P-value Adj Q-Stat P-value LM-Stat P-value
1 0.275 NA* 0.276 NA* 3.436 0.488
2 0.470 NA* 0.474 NA* 2.073 0.722
3 2.508 0.643 2.547 0.636 2.761 0.599
4 8.021 0.431 8.187 0.415 5.590 0.232
5 9.820 0.632 10.039 0.613 1.804 0.772
6 12.452 0.712 12.763 0.690 2.899 0.575
7 14.844 0.785 15.253 0.762 3.173 0.529
8 20.511 0.667 21.189 0.628 7.488 0.112
9 24.356 0.663 25.240 0.615 4.798 0.309
10 26.508 0.741 27.520 0.693 2.627 0.622
11 28.430 0.812 29.570 0.767 2.308 0.679
12 36.813 0.615 38.562 0.535 11.067 0.026
*The test is valid only for lags larger than the VAR lag order.

Portmenteau test LM-test
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Table 7: Estimated VEC models
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