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Nonparametric vs parametric binary choice models:
An empirical investigation

1 Introduction

Recent advances in nonparametric kernel estimation have challenged conventional (paramet-
ric) approaches towards modelling empirical relationships. Historically, attention has mainly
focused on cases where the response and explanatory variables are continuous; see Pagan
(1999) The literature dealing with categorical response variables is relatively scarce. In this
application domain, e�orts have been mostly con�ned to semiparametric approaches. These
semiparametric methods relax rigid parametric speci�cations that are typically found in ap-
plied settings, an example being the single index model which allows for an unknown link
function while maintaining the assumption that the explanatory variables enter the proba-
bility through a linear parametric index; see Horowitz (1998). In other models, explanatory
variables enter through a general nonparametric additive structure, the link function being
speci�ed as the usual logistic or normal cumulative density function. As is the case with
their fully parametric counterparts, semiparametric models will be inconsistent unless one
has correctly speci�ed the underlying data generating process, which is a drawback. Fully
nonparametric methods, however, are immune to this drawback. However, few attempts
to introduce purely nonparametric estimation methods are to be found in the literature on
discrete choice; see Briesch et al. (2002). While these methods produce results that are
consistent with the economic foundations of choice theory, they are di�cult to implement in
practice.

The estimation of conditional PDFs in a nonparametric kernel framework has recently
been studied by Hall et al. (2004). The modelling of conditional PDFs may prove extremely
useful for a range of tasks including modelling and predicting consumer choice which is the
focus of this paper. The aim of this paper is threefold. First, we employ a fully nonparametric
model of a conditional PDF comprised of a binary response (choice) variable and continuous
and discrete explanatory variables. Second, we address the issue of the performance of this
nonparametric estimator relative to the parametric Probit speci�cation which is dominant
in applied settings and evaluate these estimators in a variety of ways. Third, we provide
a detailed discussion of the results focusing on environmental insights provided by the two
estimators, emphasizing how particular patterns detected using the nonparametric estimator
are masked by the parametric speci�cation.

The empirical application reported here concerns an environmental question that was
addressed in Bontemps and Nauges (2009). In France, despite access to safe public drinking
water, and in spite of its excessively high price compared to tap water, 42% of the popula-
tion still regularly drink bottled water. Using scanner data on French consumption combined
with raw water quality and other environmental data, and using a Probit model, Bontemps
and Nauges (2009) show that poor raw water quality seems to be the most important factor
driving the decision not to drink tap water. The estimated e�ect is found to be stronger for
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low-income households. Signi�cant direct impacts of socioeconomic and demographic house-
holds' characteristics, as well as the role of cultural/regional factors are revealed. Overall,
this study shows that pollution of raw water implies indirect costs for households who in-
stead of drinking water from the tap spend up to 100 times more for bottled water. We
revisit this question using the same dataset and using a nonparametric kernel estimator of
the conditional PDF in order to recover estimates of the probability to drink tap water.
We address the three issues mentioned above, and show that the nonparametric estimator
outperforms the parametric one based upon a variety of measures.

The nonparametric speci�cation we consider uses the identical information set as the
Probit speci�cation, while we use recent developments on generalized kernel estimation to
deal with the presence of both continuous and discrete variables; see Li and Racine (2007).
Moreover, the nonparametric framework allows us to assess the relevance of the explana-
tory variables through the data-driven bandwidth selection method. We �nd comparable in-
sample predictive performance as measured by the overall correct classi�cation ratio (70.04%
for the nonparametric speci�cation, 69.17% for the Probit). We then address the issue of
selecting a preferred model speci�cation for the data at hand. We take the view that �tted
statistical models are approximations, a perspective that di�ers from that of consistent mod-
els selection which posits a �nite dimensional `true model'. Recently, Racine and Parmeter
(2009) propose a test based on this idea that we implement here. The test results indicate
that the nonparametric speci�cation possesses an expected `true error' that is statistically
signi�cantly lower than that for the parametric speci�cation and is therefore to be preferred.
Finally, we contrast the parametric speci�cation with the nonparametric speci�cation via an
examination of some �interesting� cases.

The rest of the paper proceeds as follows. Section 2 outlines the nonparametric estimator
and the test procedure. Section 3 presents the empirical application of these methods to the
environmental question raised in Bontemps and Nauges (2009). Section 4 presents some
concluding remarks.

2 Nonparametric estimation and test procedures

2.1 Nonparametric PDF estimator

Let f(.) and m(.) denote the joint and marginal density of (X, Y ) and X, respectively, where
Y is a binary discrete variable and where we allow X to include both continuous, unordered,
and ordered variables. For what follows, we shall refer to Y as a dependent variable (i.e.,
Y is explained), and to X as covariates (i.e., X is the vector of the explanatory variables).
The density of Y conditional on X is then de�ned as

g(y|x) = f(x, y)

m(x)
(1)
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Consider the kernel estimators of the previous joint and marginal densities we denote by f̂
and m̂. We then estimate the conditional density by replacing the unknown densities in (1)
by their estimators, i.e.

ĝ(y|x) = f̂(x, y)

m̂(x)
(2)

As we are facing a mix of discrete (unordered and ordered) and continuous variables when
estimating the two unconditional densities, we use the �generalized product kernel� estimator
proposed by Li and Racine (2003). A least-squares cross validation approach proposed by
Hall et al. (2004) is used to select the bandwidths involved in the computation of the kernel
estimators.

2.2 Preferred model selection

We consider two non-nested model speci�cations, a parametric Probit speci�cation and a
nonparametric kernel conditional probability speci�cation. Both models use identical in-
formation sets and deliver estimates of the probability that Y = 0/1 conditional on the
covariates X.

We approach the issue of selecting a parametric versus nonparametric speci�cation from
the perspective that �tted statistical models are approximations. Clearly our perspective
is distinct from that of consistent model selection which posits a �nite-dimensional `true
model'. We consider selection of a parametric versus nonparametric speci�cation not from
the perspective of a test that posits that one model is the `true' one. Rather, both are at
best approximations, therefore we select that model that has lowest expected `true error'.

Our approach is therefore �rmly embedded in the statistics literature dealing with `appar-
ent' versus `true' error estimation; for a detailed overview of expected apparent and excess
error, we direct the reader to (Efron, 1982, Chapter 7). In e�ect, in-sample measures of
�t such as the standard error of the regression or R2 and so forth measure `apparent error'
which will be smaller than `true error' which is the expected error when the model is used
to predict new draws from the underlying data generating process. For example, for a con-
tinuous regression model Yi = g(Xi)+ εi, one might compute the Average Square Prediction
Error or ASPE given by ASPE = n−1

1

∑n1

i=1(Yi − ĝ(Xi))
2 which is a measure of apparent

error. But all such in-sample measures are fallible which is why they cannot be recommended
as guides for model selection. Our procedure can be thought of as a means of estimating a
model's true error and testing whether the true error is statistically smaller for one model
than another. We adopt the `revealed performance', or RP, test proposed by Racine and
Parmeter (2009).

Before introducing the RP test, let us recall how predictive performance is measured in
binary choice models. Di�erent indices can be used to measure this predictive performance.
Efron (1978) gives a detailed discussion of such indices. The most common index used is the
Correctly Classi�ed Ratio (CCR) or accuracy. This index measures the exact proportion of
correct predictions for the data at hand. That is, for each observation i, we compute the
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value of the loss function

Q(Yi, ηi, α) =

{
0 if Yi = 1 and ηi > α or if Yi = 0 and ηi ≤ α
1 otherwise

where ηi is the probability assigned by the binary choice model to the ith observation, and
α is the cut-o�-value used to map the classi�er, namely the probabilities ηi, to classes of
predicted 0 or 1. For a given cut-o�-value (usually, α = 0.5), the CCR is then computed as

CCR(α) = 1−
∑n

i=1 Q(Yi, ηi, α)

n
. (3)

This index can be also linked to the so-called confusion matrix we de�ne in Table 1 where
ON and OP are the total numbers of observed 0 and 1 respectively, TN stands for `true
negative', occurring when both the observed value and the prediction outcome (ηi ≤ α) are
0, and FN for `false negative', when the observed value is 0 and the prediction outcome is
1 (ηi > α), while FP and TP are the `false' and `true positive' respectively.

Table 1: Notation

Predicted
0 1 Total

Obs. 0 TN FP ON
1 FN TP OP

Total n

Accuracy (CCR) = TN+TP
n

Sensitivity (TPR) = TP
TP+FN

Speci�city (SPC) = TN
TN+FP

Confusion matrix Index

Though the CCR index depends upon the choice of the cut-o� probability, a related and
well-known classi�cation performance metric that does not depend on a cut-o� value is the
�Receiver Operating Characteristic� curve (ROC), described in Egan (1975). This curve is a
graphical plot of the sensitivity (percentage of predicted true positive) versus 1− speci�city

(percentage of predicted false positive) (see Table 1 for more precise de�nitions), letting the
classi�cation cut-o�-value vary between its extremes. The AUROC, i.e., the �Area Under
the Receiver Operating Characteristic� curve, can then be computed as a summary measure
of the classi�cation performance. AUROC lies between 0.5 (worthless classi�cation) and 1
(perfect classi�cation), thereby providing a more comprehensive evaluation ratio than the
CCR index alone since it is independent of any particular cut-o�-value.

Given the two previous measures (CCR and AUROC), we can de�ne two di�erent ways of
measuring the `apparent error' when estimating a binary choice model. For instance, the sec-
ond term in the de�nition of the CCR measure (3) can be viewed as the empirical realization
of En1,F̂

[Q(Y n1 , ηn1
n1
), 0.5)] where En1,F denotes the expectation over the n1 observed points

Zn1 = {Yi, Xi}n1
i=1 which are independently and identically distributed with empirical cumu-
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lative distribution function F̂ (we refer Zn1 as the training sample, terminology borrowed
from the literature on statistical discriminant analysis), Y n1 = {Yi}n1

i=1, and ηn1
n1

= {ηi}n1
i=1,

i.e. the vector of the assigned probabilities to the observations calibrated using the observed
sample. In order to implement the RP test, we are interested in estimating a quantity known
as `expected true error'. Following Efron (1982), we can de�ne the `true error' to be

En2,F [Q(Y n2 , ηn2
n1
, 0.5)]

where En2,F denotes the expectation over the n2 new points Zn2 = {Yi, Xi}ni=n1+1 which
are independently and identically distributed with cumulative distribution function F , and
are independent of the training sample Zn1 (we refer Zn2 as the evaluation sample), Y n2 =
{Yi}ni=n1+1, and ηn2

n1
= {ηi}ni=n1+1, i.e. the vector of the probabilities assigned to the new

points calibrated using the training sample. Next, we de�ne the `expected true error' as

E (En2,F [Q(.)])

where the expectation is taken over all potential classi�ers ηn2
n1
, for the selected loss function

Q(.). When comparing two approximate models, the model possessing the lower `expected
true error' will be preferred in applied settings.

A realization of the `true error' based upon the observed zn2 = {yi, xi}ni=n1+1 is given by

1

n2

n∑
i=n1+1

Q(yi, η
n2
n1,i

, 0.5) (4)

In the following, we consider the corresponding CCR for ease of interpretation. If we consider
S splits of the data into training and evaluation samples, we can then construct the empirical
distribution function of loss, or equivalently, of CCR. The algorithm is described in Racine
and Parmeter (2009). One can then use the empirical distributions to form a (paired) test for
assessing which speci�cation has lower expected true error. We then repeat this procedure
with AUROC replacing CCR.

3 Empirical application

3.1 Data

The data set used is based on two main sources. First, data on French households' purchases
are provided by TNS Worldpanel, for the year 2001. This database contains information
on French households' purchases of food items as well as households' socioeconomic and
demographic information.1 We de�ne each household as a �tap water drinker� or �tap water

1Purchases of 10,000 surveyed households are recorded all aver the year 2001.
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non-drinker� from observed purchases of non-alcoholic drinks.2 Second we use various sources
of environmental information at the municipality level to compute the index of poor raw

water quality (PRWQ hereafter) as in Bontemps and Nauges (2009). Data on price of tap
water (IFEN-SCEES-Agences de l'eau, 2001), data on raw water (Ministry of Health, 2001),
and data on manure spreading by the Ministry of Agriculture (2000) at the municipality level
were collected. Information on water supply management chosen at the municipality level
(public versus private) is also included via the dummy variable deleg. Finally, we compute
the index of poor raw water quality and merge it to the households' panel through the
residential address information of each household.

In addition to the poor raw water quality index, we observe the following socioeconomic
and demographic characteristics at the household level: (1) Head of household's education
level (diploma) (we distinguish four education levels: head without diploma (reference in
the Probit model), head with diploma less than the baccalauréat (diplo.L), head with the
baccalauréat or a higher diploma (diplo.Q), head for whom information is missing (diplo.C)),
(2) household's monthly income (before income taxes) (Income), (3) rural or urban location
(rural) (we build an indicator variable which takes the value of 1 if the household lives in
a �commune� of less than 2,000 inhabitants, and 0 otherwise), (4) retirement status (iret)
(we build an indicator variable which takes the value of 1 if household's head is retired and
0 otherwise3), and (5) household's geographic location (region). We follow the regional
division chosen by TNS where France is divided in 8 main zones: Paris, East, North, West,
Middle-West, Middle-East, South-East, and South-West.

The sample gathers 4,623 households from 1,282 distinct municipalities all over France.
A complete description of the sample is given in Bontemps and Nauges (2009). We brie�y
summarize the main features present in this sample. There are 68% of households in the
sample that are classi�ed as �tap water drinkers�. This percentage is close to what is usually
found in polls at the national level. Regional di�erence are also observed in our sample.
The highest percentage of tap water drinkers are in the Middle-East (82%), South-West
(80%), and South-East (77%). The lowest percentage of tap water drinkers is observed in
the North (56%). The average poor raw water quality index is of 0.93, varying from 0.87
in the North of France up to 0.97 in the Paris Region and in the west of France, these two
regions being particularly a�ected by nitrogen pollution. Household monthly income varies
from an average of 1,820 euros in Middle-West to an average of 2,490 euros in Paris and its
surroundings. The proportion of households living in rural areas varies from 1% (Paris and
surroundings) to 15% in the Western region where farming activity dominates. The share
of retired households is quite homogeneous across regions, except in the South-East which
attracts a high number of retirees due in part to its warmer climate.

2We follow the de�nition of Bontemps and Nauges (2009) by de�ning the household as �tap water drinker�
(resp. �tap water non-drinker�) if the average consumption of non-alcoholic drinks by person by day is lower
(resp. greater) than 0.5 liters. The set of non-alcoholic drinks includes: bottled water, tea drinks, sodas,
tonics, fruits and vegetables juices, etc.

3This variable was proven more signi�cant that age of household's head in Bontemps and Nauges (2009).
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3.2 In-sample performance

As mentioned in Section 2.2, we estimate two non-nested model speci�cations, a parametric
Probit speci�cation and a nonparametric kernel conditional probability speci�cation. Both
models use identical information sets and deliver estimates of the probability of drinking tap
water conditional on the covariates X = {PRWQ, Income, diploma, region, deleg, rural,
iret}. For the Probit speci�cation, we add the interactions PRWQ × Income and PRWQ ×
iret in order to use the �preferred� parametric speci�cation of Bontemps and Nauges (2009).

Table 2: Probit coe�cient estimates and signi�cance vs nonparametric bandwidth estimates
and associated scale factors:

Estimate Pr(| Z |> z) Bandwidth upper bound

(Intercept) 2.3296 0.0000 - -
PRWQ -1.8113 0.0021 0.1801905 ∞
Income -0.5492 0.0155 1.294752 ∞
diploma - - 0.8634835 1

diplo.L -0.1328 0.0464 - -
diplo.Q 0.0435 0.4433 - -
diplo.C -0.0229 0.5703 - -

Region - - 0.1208747 0.875
Region2 -0.0284 0.7376 - -
Region3 -0.5879 0.0000 - -
Region4 -0.0590 0.3836 - -
Region5 -0.0468 0.5887 - -
Region6 0.3706 0.0000 - -
Region7 0.1486 0.0576 - -
Region8 0.2974 0.0005 - -

deleg -0.0178 0.6966 0.5 0.5
rural 0.2397 0.0095 0.0721212 0.5
iret -1.3491 0.0089 3.253532e-13 0.5
PRWQ×Income 0.5789 0.0166 - -
PRWQ× iret 0.9461 0.0871 - -

irob - - 9.802058e-15 0.5

The bandwidths are chosen by minimizing a least-square cross-validation criterion.
The upper bound for a bandwidth, is equal to (cj − 1)/cj in the case of an unordered
discrete variable with cj categories, and 1 in the case of an ordered one.

Table 2 reports the estimates of the parameters of the Probit speci�cation and the band-
widths selected by least-squares cross-validation for the nonparametric speci�cation.4 Em-
pirical signi�cance levels allow us to test the signi�cance of the associated variables in the
parametric speci�cation while the magnitudes of the selected bandwidths reveal the predic-
tive relevance of the associated variables in the nonparametric speci�cation. We observe
that signi�cance tests and relevance assessments provide coherent results. All the continu-

4All the computations are made using the np package of R software; see Hay�eld and Racine (2008).
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ous variables have signi�cant e�ects on the probability to drink tap water in the parametric
speci�cation, and are relevant in the nonparametric speci�cation as they are far from being
�smoothed-out�. The discrete variables, rural and iret are also relevant as their bandwidths
are far from their upper bounds. This is not the case for the variable deleg, however. For
the ordered discrete variables, the two speci�cations show that some regional e�ects exist
while the diploma e�ects seem to be less clear.

Table 3: In-sample confusion matrices (n = 4623 and α = 0.5)

Probit speci�cation Nonparametric speci�cation

Predicted
0 1

Obs. 0 143 1324 1467
1 101 3055 3156

244 4379 4623

Predicted
0 1

Obs. 0 134 1333 1467
1 52 3104 3156

186 4437 4623

Table 3 reports the confusion matrices for the two speci�cations. As usually done when
evaluating binary choice models, we use a cut-o� value α = 0.5 to map the classi�ers,
namely the estimated probabilities, to classes of predicted 0 (�the household does not drink
tap water�) or 1 (�the household does�). The comparison of these confusion matrices reveals
that both speci�cations have a tendency to over-predict the fact drinking tap water, while
the two speci�cations produce similar values for the usual in-sample performance measures
as shown in Table 4.

Table 4: In-sample performance (n = 4, 623 and α = 0.5)

Model Sensitivity Speci�city CCR

Probit 96.79 % 9.74 % 69.17 %
Nonparametric 98.35 % 9.13 % 70.04 %

In Figure 1 we report two graphs representing the in-sample performance of the two
models when the cut-o�-value (α) is varying. The nonparametric speci�cation provides
better accuracy for a given range of the cut-o�-values, roughly α ∈ [0.45, 0.70], than the
parametric speci�cation, the di�erence between the CCR values being very small outside
this interval. In the same way, the ROC curve for the nonparametric speci�cation always
dominates the ROC curve for the parametric speci�cation but the di�erence between the
areas under these two curves is quite small (0.023).

3.3 Out-of-sample performance

We consider the RP test using S = 10, 000, where S is the number of splits of the data into
two independent samples of size n1 = n − n2 and n2. In our example we have n = 4, 623
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Figure 1: In-sample performance with varying cut-o�-values α

(a) Correct Classi�cation Ratio
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and we report results for n2 = 250.5 For each split into two independent samples, we �t
each model to the n1 observations, obtain predictions for the values of the covariates in
the independent sample of size n2, then compute the error associated with the response in
the independent sample. We repeat this S times, then test whether the expected error on
the independent data is equal nor not. The null is that the expected true error is equal
for both models, the alternative that is is smaller for the nonparametric model. We use
both a paired t-test and also a paired Mann-Whitney-Wilcoxon test. The P -values for each
test are 2.816224e− 12 and 1.397127e− 11, respectively, indicating that the nonparametric
speci�cation possesses expected true error that is statistically signi�cantly lower than that
for the parametric speci�cation, possesses in-sample performance that also dominates the
Probit speci�cation, and is therefore preferred.

Figure 2: Boxplots of the RP test statistics for the S = 10, 000 splits of the data

(a) Boxplots for CCR
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(b) Boxplots for AUROC
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5Results are qualitatively unchanged for other choices of n2 and are available from the authors upon
request.
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In Figure 2a, results are presented in the form of boxplots of out-of-sample ASPE for
each of the two speci�cations. It can be seen from this �gure that a stochastic dominance
relationship exists between the nonparametric speci�cation and the Probit one, con�rming
the previous RP test result and again indicating that the nonparametric model is to be
preferred on the basis on independent draws from the data. Does this dominance depend on
the choice of a cut-o� value α = 0.5? We address this question by computing the AUROC
value for each of the S replications involved in the RP test. These areas do not depend on
any chosen cut-o� value sand thus provide a more robust indicator of the performance of
the classi�cation than ASPE alone. In Figure 2b we compare the empirical distributions of
the AUROC for each speci�cation. The two boxplots overlap even less than the boxplots in
Figure 2a, indicating again that the nonparametric speci�cation is to be preferred.

3.4 Environmental issues

We now focus on the respective insights on tap water consumption a�orded by the two mod-
els. By way of example, a graphical comparison of the estimated probabilities of drinking tap
water expressed as functions of the two continuous variables PRWQ and Income is provided in
the 3-Dimensional surface plots (Figure 3 and 4) where we �x the variables diploma, Region,
deleg, and rural at chosen values (resp. for household with diploma lower than Baccalauréat,
in the North of France, no delegation for tap water distribution, not in a rural area) and
we let the iret variable change from retired to non-retired. This comparison allows us to
investigate how the variables iret and PRWQ interact given the manner in which this inter-
action is admitted in the two speci�cations. Both probabilities shift downwards for retired
people. We observe that changing from retired to non retired induces a �ip in the shape of
the Probit probability, being increasing with respect to Income and decreasing with respect
to PRWQ for non-retired consumers and being increasing with respect to both Income and
PRWQ for retired consumers. The nonparametric probability is more �at whatever the value
of Income and PRWQ for non retired people, but it exhibits a similar pattern to the Probit
one for retired people. This e�ect for retired people is surprising, and a closer look shows
that the probability is varying more in the PRWQ dimension than in the Income dimension,
capturing a reverse environmental e�ect. One still observes that the richer the household,
the higher the probability of drinking tap water, whatever the environmental quality, but to
a lower extent. The nonparametric probability is always bigger than the parametric one for
retired people, while the two surfaces cross for non retired people. Note that the surfaces
for the nonparametric speci�cation never cross the 0.5 cut-o� value, being always bigger for
retired people and smaller for non retired people. That is, for this example, the iret variable
fully discriminates between the tap water drinkers and non-drinkers when using the usual
0.5 cuto� value.
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Figure 3: Surface plots for the two models (retired=0)

(a) Probit model
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(b) Nonparametric model
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Figure 4: Surface plots for the two models (retired=1)

(a) Probit model
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(b) Nonparametric model
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4 Concluding remarks

The aim of this paper is threefold. First, we employ a fully nonparametric model of a con-
ditional PDF comprised of a binary response (choice) variable and continuous and discrete
explanatory variables. Second, we address the issue of the performance of this nonparamet-
ric estimator relative to the parametric Probit speci�cation which is dominant in applied
settings and evaluate these estimators in a variety of ways. Third, we provide a detailed
discussion of the results focusing on environmental insights provided by the two estimators,
emphasizing how particular patterns detected using the nonparametric estimator are masked
by the parametric speci�cation.

To sum up, we show using a real dataset that the nonparametric speci�cation weakly
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outperforms the Probit speci�cation when considering in-sample performance measures. The
Probit speci�cation with the chosen interactions between explanatory variables was selected
to �t the data best using these criteria in Bontemps and Nauges (2009). But, as emphasized
by Racine and Parmeter (2009), there is no guarantee that the nonparametric speci�ca-
tion will perform any better than the Probit speci�cation, even though the former may
indeed exhibit an apparent marked improvement in (in-sample) �t according to the chosen
performance measures. Out-of-sample predictive ability seems to be a promising tool for
discriminating among speci�cations.
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