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Abstract:  
Building on Kihlstrom and Mirman (1974)’s formulation of risk aversion in the case of 
multidimensional utility functions, we study the effect of risk aversion on optimal behavior 
in a general consumer’s maximization problem under uncertainty. We completely 
characterize the relationship between changes in risk aversion and classical demand 
theory. We show that the effect of risk aversion on optimal behavior is determined not by 
the riskiness of the risky good, but rather the riskiness of the utility gamble associated 
with each decision. We also discuss the appropriateness of an (alternative) approach to 
study risk aversion suggested by Selden (1978), which has been widely popularized in 
the field of macroeconomics through the parametric model of Epstein and Zin (1989) 
(henceforth, the Selden-EZ approach). We show that the Selden-EZ approach cannot 
disentangle risk aversion from tastes, and, thus, cannot be used to isolate the effect of 
risk aversion. 
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1 Introduction

One of the central questions in the field of economics of uncertainty is the

influence of attitudes toward risk (i.e., the effect of risk aversion) on opti-

mal decisions. Arrow (1965) and Pratt (1964) first looked at this question

in the early 1960s, in the context of a portfolio problem. Since then, the

analysis of the behavior of risk-averse individuals facing risk has been set in

the context of Arrow-Pratt theory, most notably in the fields of insurance

and finance. The analysis has also been extended by Kihlstrom and Mirman

(1974) (henceforth, KM) to multidimensional utility functions in situations

in which the goods are not perfect substitutes (e.g., a dynamic environment).

In particular, KM show that to generalize the Arrow-Pratt approach to the

multidimensional case, the issue of separating tastes from attitudes toward

risk must be dealt with. Specifically, the effect of risk aversion on behavior

in the multidimensional case must take account of the problem of disentan-

gling tastes and attitudes toward risk. To achieve this, KM consider utility

functions that differ by a concave transformation, and, thus, preserve ordi-

nal preferences over gambles. There is also another approach suggested by

Selden (1978), which has been widely popularized in the field of macroeco-

nomics through the parametric model of Epstein and Zin (1989) (henceforth,

the Selden-EZ approach).1 The basis for this approach is the certainty equiv-

alence of the one-dimensional Arrow-Pratt theory of risk aversion.

In this paper, we show that the Selden-EZ approach yields choices over

gambles that are inconsistent with ordinal preferences. This is due to the

fact that the ordinal preferences are distorted by the Selden-EZ approach.

In contrast, the KM approach using concave transformations of the utility

function alters the expected marginal rate of substitution in a way that is

consistent with ordinal preferences. This is a subtle point because Selden-

EZ preferences do represent the same deterministic preferences. However,

it does not follow that preferences over gambles remain the same. To show

this, we consider the case of two identical gambles (in terms of utility out-

comes). Under the KM approach, an individual is indifferent between the

1See also Kreps and Porteus (1978).
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two identical utility gambles. However, this is not the case under the Selden-

EZ approach. In particular, for some values of the certainty equivalent, an

individual chooses the gamble for which the distribution of the values of the

risky good first-order stochastically dominates. In other words, the effect of

risk aversion cannot be isolated since the choice for the particular gamble is

unrelated to the issue of riskiness. We then consider the case of two distinct

gambles, with one worse than the other (in terms of utility gambles). We

show that the Selden-EZ approach leads to a reversal of preference ordering

for some values of the certainty equivalent, i.e., the worst gamble can be

chosen. This is never the case under the KM approach.

We then proceed to study the effect of risk aversion on optimal decisions

using the KM approach. Specifically, we consider a general consumer’s max-

imization problem under uncertainty subject to a budget constraint. In the

stochastic environment, there is a sure good and a risky good. The good

is risky due to the presence of randomness in the budget constraint. The

sure good is chosen before the realization of the random variable is observed.

The risky good is a residual, i.e., the risky good depends on the outcome of

the random parameter through the budget constraint. The set up is thus a

generalization of Arrow-Pratt’s portfolio model in which the goods are per-

fect substitutes. We consider three cases of randomness: random income,

random price of the sure good, and random price of the risky good.2 In each

case, we study the effect of risk aversion on optimal decisions.

We show that in the random income case as well as the case of the random

price of the sure good, the effect of risk aversion is to decrease the amount of

the sure normal good. While if the price of the risky good is random, then the

effect of risk aversion on the amount of the sure good is ambiguous. These

results follow from the fact that a more risk-averse individual is not concerned

by the riskiness of the risky good, but rather by the riskiness of the utility

gamble associated with the consumption bundle of the sure and risky goods.

This is merely an implication of the expected utility maximization problem

2Note that the majority of the literature on risk aversion has been set in the context
of the static portfolio problem, which is equivalent to the price of the risky good being
random.
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faced by the consumer. In fact, when the holding of the risky good increases,

it decreases the riskiness of the utility gamble faced by the individual. In

other words, a concave transformation of the utility function implies that

the more risk-averse individual prefers gambles whose corresponding utility

gambles are less risky. This result pinpoints the rationale of the consumer’s

decisions not as choice on the amount of risky versus sure goods, but rather

as a choice on a set of utility gambles ordered in terms of their riskiness.3

Because the riskiness of the utility gambles yield the incentive for the con-

sumer to choose an optimal gamble, through the maximization of expected

utility, this leads to the counterintuitive result, which was originally observed

by Ross (1981). Indeed, Ross (1981) provides an example showing that the

Arrow-Pratt definition of risk aversion fails to deliver the right “intuitive”

results. In particular, Ross (1981) writes that “in the portfolio problem, as

wealth rises individuals whose risk aversion declines in the Arrow-Pratt sense

do not necessarily increase their holding of riskier assets.” Convinced of the

intuitive idea that more risk aversion implies a smaller amount of the riskier

asset (or good), Ross (1981) introduces a stronger measure of risk aversion

that is necessary to accommodate the phenomenon observed when there are

several independent sources of risk, i.e., that the more risk averse individual

actually chooses to consume more of the risky asset. In fact, in the example

provided by Ross (1981), the individual chooses more of the risky asset (or

good) because it reduces the riskiness of the utility gamble.

In our general approach to the consumer problem, we relate classical

demand theory to the theory of risk aversion. In particular, we show that the

influence of risk aversion can be separated into independent components, i.e.,

income effect and substitution effect, as in classical demand theory with the

outcome depending on their interplay. The interaction between the income

and substitution effects as a determinant of the effect of risk aversion on

optimal choice has also been noted in KM in the context of a consumer-saving

problem. KM show that the effect of changing risk aversion depends on on

3See Bommier et al. (2011) who extends the insight in Diamond and Stiglitz (1974) by
pointing out a direct relationship between increasing risk aversion and preferences ordering
over gambles, i.e., a more risk-averse individual prefers less risky utility gambles.
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the effect of the rate of return on savings in the classical (certainty) case, that

is, the impact of the interplay between the income and substitution effects.

We generalize the KM result by showing that in a two-dimensional setting

the effect of changing risk aversion depends on the source of randomness

as well as the influence of ordinal effects, i.e., the income and substitution

effects.

Our results on the effect of risk aversion are summarized in three Proposi-

tions, which are inserted between relevant examples and figures that illustrate

the Propositions. Proposition 3.1 studies the case in which income is ran-

dom. Here, the direction of the effect of risk aversion depends on the income

effect for the sure good. When the sure good is normal, the optimal decision

of a more risk-averse individual is always to consume more of the risky good,

which decreases the riskiness of the associated utility gamble. It is precisely

this case that contradicts the Ross intuition that more risk-averse individual

prefers more of the sure (or riskless) good. In Proposition 3.4, we show that,

if the price of the sure normal good is random, a more risk-averse individual

always chooses more of the risky good, since the income and substitution

effects pull in the same direction. Here, the pure substitution effect provides

an incentive to consume less of the sure good. In this case, the utility gam-

bles become less risky with more of the risky good, yielding an incentive for

the consumer to move in that direction. Proposition 3.7 shows that, if the

price of the risky normal good is random, as in the traditional portfolio prob-

lem, then the choice of the normal sure good becomes ambiguous. In this

case, there is an incentive through the pure substitution effect to increase the

amount of the sure good, i.e., increasing the sure good less a less risky utility

gamble. Hence, the income and substitution effects pull in opposite direc-

tions, and depending on the relative strengths of these effects, the individual

may be led to consume more or less of the normal good. Note that Proposi-

tion 3.7 encompasses the Arrow-Pratt’s result, namely a decreased in holding

of a risky good in the event of an increase in risk aversion, which is a special

case and is due to the fact that, in the one-dimensional case (i.e., perfect

substitutes), there is no income effect, which implies that the utility gamble

becomes less risky as the amount of the sure good is increased. However,
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when there is an income effect, this result holds only when the substitution

effect is stronger than the income effect.

The paper is organized as follows. In Section 2, we show that the Selden-

EZ approach cannot disentangle risk aversion from tastes, and, thus, cannot

be used to isolate the effect of risk aversion. In Section 3, we use the KM

approach to study the effect of risk aversion on optimal decisions. Section 4

concludes.

2 Risk Aversion and Concave Transformations

To study the effect of risk aversion on behavior in the multidimensional case,

tastes and attitudes toward risk must be disentangled. This issue does not

arise for the class of one-dimensional strictly increasing utility functions since

tastes are represented by the natural ordering on the real line, i.e., x > y

means that x � y. However, the relationship between the utility representa-

tion, risk aversion, and tastes is much more delicate in the multidimensional

case since there is no natural order. In other words, different utility func-

tions incorporate different tastes as well as different attitudes toward risk so

that the link between risk aversion and risk averse behavior is not clearly

identified. For instance, Kihlstrom and Mirman (1974) provide an example

in which the preference between a sure outcome and a gamble depend solely

on tastes and not on risk aversion. To see this, let U1(x, y) and U2(x, y)

be two distinct utility functions yielding indifference curves of the type IC1

and IC2, respectively, as depicted in Figure 1. Let (xA, yA) and (xB, yB)

be two distinct consumption bundles such that U1(xA, yA) > U1(xB, yB) and

U2(xA, yA) < U2(xB, yB). Consider choosing between the sure outcome yield-

ing (xA, yA) and a gamble yielding (xA, yA) with probability π ∈ (0, 1] and

(xB, yB) with probability 1−π. Consistent with Figure 1, an individual with

preferences U1(x, y) prefers the sure outcome, while an individual with prefer-

ences U2(x, y) prefers the gamble.4 The individual with preferences U2(x, y)

acts in a seemingly more risk-averse way than the individual with preferences

4In other words, U1(xA, yA) > πU1(xA, yA) + (1 − π)U1(xB , yB), while U2(xA, yA) <
πU2(xA, yA) + (1− π)U2(xB , yB).
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IC1

IC2

(xB, yB)

(xA, yA)

Figure 1: KM Example

U1(x, y), but is not more risk-averse. Rather, it is the composition of goods

in the gamble that is preferred.

Two approaches have been suggested to disentangle tastes from risk aver-

sion, and, thus, to analyze the effect of risk aversion on behavior. The first

established in Kihlstrom and Mirman (1974) (henceforth, KM) considers the

class of utilities that are concave transformations. Formally, let

U(x, y) = u1(x) + u2(y), (1)

u′
1, u

′
2 > 0, u′′

1, u
′′
2 ≤ 0, be the utility associated with the consumption profile

(x, y) ∈ R
2
+.

5 Given (1), for any gamble g on (x, ỹ) in which x is the sure

5We consider two-dimensional utility functions with additive functions only for clarity.
The discussion applies to any dimension as well as more general utility functions.
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good and ỹ is the risky good, the KM utility function is

WKM(x, ỹ) = EỹvKM (u1(x) + u2(ỹ)) , (2)

where Eỹ is the expectation operator with respect to ỹ, and vKM is a strictly

increasing and concave function, v′KM > 0, v′′KM ≤ 0.6

In the KM approach, a more concave vKM (and, thus, a more concave

WKM) means that the agent is more risk-averse. Hence, KM defines risk

aversion by using the concave transformation of the utility function. In

doing so, KM restricts attention to utility representations that differ by a

concave transformation. Note that, with the KM approach, the measure of

risk aversion (i.e., the concavity of vKM) is independent of any gamble.

The KM approach can be used to study the effect of risk aversion on

behavior because concave transformations of the utility function alter the

expected marginal rate of substitution in a way that is consistent with ordinal

preferences. To see this, consider the two gambles,

gA ≡
(
π ◦ (xA, yA), (1− π) ◦ (xA, yA)

)
, (3)

gB ≡
(
π ◦ (xB, yB), (1− π) ◦ (xB, yB)

)
, (4)

where, for i = A,B, y
i
< yi and π ∈ [0, 1] is the probability of receiving

(xi, yi) in gamble i. We make two further restrictions. First, the gambles are

not on the same vertical lines, i.e., xA < xB. Second, yA > y
B
and yA > yB,

i.e., ỹA first-order stochastically dominates ỹB.

Suppose that ordinal preferences over the bundles are as depicted in Fig-

ure 2, i.e.,

u1(xA) + u2(yA) = u1(xB) + u2(yB), (5)

u1(xA) + u2(yA) = u1(xB) + u2(yB). (6)

Proposition 2.1 states that a KM concave transformation does not alter the

ordering of these two gambles. Indeed, from (3), (4), (5), and (6), the KM

6Note that, in this formulation, WKM cannot be additive.
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y

x

(xB, y
B

)

(xB, yB)

(xA, yA)

(xA, y
A
)

Figure 2: Case 1

utilities for the two gambles are identical, i.e.,

πvKM

(
u1(xA) + u2(yA)

)
+ (1− π)vKM (u1(xA) + u2(yA))

= πvKM

(
u1(xB) + u2(yB)

)
+ (1− π)vKM (u1(xB) + u2(yB)) . (7)

Formally,

Proposition 2.1. Suppose (5) and (6) hold. Under KM preferences, for any

concave transformation vKM , an individual is indifferent between gamble A

and gamble B.

Suppose next that ordinal preferences over the bundles are as depicted in

Figure 3, i.e.,

u1(xA) + u2(yA) < u1(xB) + u2(yB), (8)

u1(xA) + u2(yA) = u1(xB) + u2(yB). (9)
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x

(xB, y
B

)

(xB, yB)

(xA, yA)

(xA, y
A
)

Figure 3: Case 2

That is, in terms of utility levels, gamble A is strictly worse than gamble B.

Proposition 2.2 states that, regardless of the concave transformation vKM ,

gamble B is always strictly preferred to gamble A. Indeed, for π ∈ [0, 1),

WKM(xA, ỹA) < WKM(xB, ỹB).
7 Formally,

Proposition 2.2. Suppose (8) and (9) hold, and π ∈ [0, 1). Under KM

preferences, for any concave transformation vKM , gB � gA.

The second approach suggested by Selden (1978), which has been widely

popularized in the field of macroeconomics through the parametric model

of Epstein and Zin (1989) (henceforth, the Selden-EZ approach) uses the

7From (3), (4), (8), and (9), for π ∈ [0, 1),

πvKM

(
u1(xA) + u2(yA)

)
+ (1− π)vKM (u1(xA) + u2(yA))

< πvKM

(
u1(xB) + u2(yB)

)
+ (1 − π)vKM (u1(xB) + u2(yB)) . (10)
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certainty equivalent as a measure of risk aversion. Formally, given (1), for

any gamble g on (x, ỹ), the Selden-EZ utility function is

WS(x, ỹ) = u1(x) + u2(μ(ỹ, vS)), (11)

where

μ(ỹ, vS) = v−1
S (EỹvS(ỹ)) (12)

is the certainty equivalent. Here, Eỹ is the expectation operator with respect

to ỹ and vS is a strictly increasing and concave function, v′S > 0, v′′S ≤ 0.

In the Selden-EZ approach, a decrease in μ(ỹ, vS) due to a more concave

vS is used to mean that the agent is more risk averse. The basis for this

approach is the certainty equivalence of the one dimensional Arrow-Pratt

theory of risk-aversion. However, while there is an equivalence between a

positive risk premium (or a certainty equivalent) and a concave transforma-

tion of the utility function in the one-dimensional case, this is not true in the

multidimensional case.

In fact, unlike KM preferences, Selden-EZ preferences distort the expected

marginal rate of substitution in a way that yields choices that are inconsistent

with ordinal preferences. Selden-EZ preferences do not fall into the same

category as the KM preferences because Selden-EZ preferences do not follow

from a concave transformation. Indeed, a change in the concavity of vS is

equivalent to a concave transformation on the second utility function u2.

This partial concave transformation in Selden-EZ preferences is the reason

that the Selden-EZ utility representation conflates tastes with risk aversion.

Moreover, unlike the KM measure of risk aversion, the Selden-EZ measure

of risk aversion can only be studied when there is a specific gamble. Indeed,

without a gamble, preferences revert to the original deterministic preferences,

so that vS is only relevant with respect to a specific gamble.

The problems with the choice of gambles in the Selden-EZ approach is

subtler than in the KM example of Figure 1. The KM example does not

apply to Selden-EZ preferences because Selden-EZ preferences represent the

same deterministic preferences, i.e., the same indifference curves. However,

Selden-EZ preferences do not represent consistent preferences over gambles
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since changes in the concavity of vS also changes tastes for gambles. In order

to show this inconsistency, we need a more subtle example using the fact

that deterministic preferences are the same. In fact, we can use the gambles

defined by (3) and (4) to show that an inconsistency arises. Suppose that the

ordinal preferences over the bundles are as depicted in Figure 2. In contrast

to Proposition 2.1, Proposition 2.3 states that the Selden-EZ approach alters

the ordering of these two gambles. In fact, gamble A can be preferred to

gamble B because the expected return on the risky good ỹA is strictly greater

than the expected return on the risky good ỹB. This is important because

it shows that Selden-EZ preferences disregard tastes in favor of first-order

stochastic dominance on the value of outcomes in the risky good. Moreover,

the fact that Selden-EZ preferences chooses gamble A is unrelated to the

riskiness of the values of the risky good. In fact, from Figure 2, even though

gamble A is preferred, yA − y
A
> yB − y

B
.

Proposition 2.3. Suppose (5) and (6) hold. Under Selden-EZ preferences,

gamble A can be strictly preferred to gamble B.

Proof. Let

fA(π) = u1(xA) + u2

(
v−1
S

(
πvS(yA) + (1− π)vS(yA)

))
, (13)

fB(π) = u1(xB) + u2

(
v−1
S

(
πvS(yB) + (1− π)vS(yB)

))
, (14)

be the Selden-EZ utilities as a function of π. From (5), (6), (13), and (14),

fA(0) = fB(0) and fA(1) = fB(1). Moreover,

f ′
A(π) =

u′
2

(
v−1
S

(
πvS(yA) + (1− π)vS(yA)

))(
vS(yA)− vS(yA)

)
v′S
(
v−1
S

(
πvS(yA) + (1− π)vS(yA)

)) < 0,

(15)

f ′
B(π) =

u′
2

(
v−1
S

(
πvS(yB) + (1− π)vS(yB)

))(
vS(yB)− vS(yB)

)
v′S
(
v−1
S

(
πvS(yB) + (1− π)vS(yB)

)) < 0.

(16)

13



Evaluating (15) and (16) at π = 1 yields

f ′
A(π)|π=1 =

u′
2(yA)

(
vS(yA)− vS(yA)

)
v′S(yA)

< 0, (17)

f ′
B(π)|π=1 =

u′
2(yB)

(
vS(yB)− vS(yB)

)
v′S(yB)

< 0. (18)

When y
A
is close to y

B
,

f ′
A(π)|π=1 < f ′

B(π)|π=1 < 0, (19)

so that for some π ∈ (0, 1) close to π = 1, fA(π)|π≈1 > fB(π)|π≈1, i.e., gamble

A is strictly preferred to gamble B.

Suppose next that the ordinal preferences over the bundles are as depicted

in Figure 3. In contrast to Proposition 2.2, Proposition 2.4 states that the

ordering over the two gambles can be inconsistent with ordinal preferences.

That is, gamble A which is strictly worse (in terms of utility outcomes) than

gamble B can be chosen under the Selden-EZ approach. Moreover, the fact

that Selden-EZ preferences chooses gamble A is unrelated to the riskiness

of the utilities corresponding to the values of the risky good. In fact, from

Figure 3, even though u2(yA) − u2(yA) > u2(yB) − u2(yB), gamble A is

preferred. It should also be noted that, for given π ∈ (0, 1) for which gamble

A is strictly preferred to gamble B, increasing the concavity of vS eventually

leads to a reversal of the ordering of the gambles, i.e., for very concave vS,

gamble B is preferred to gamble A. Indeed, as vS becomes more concave,

the certainty equivalent tends toward the lowest utility, and, from (8), the

individual no longer neglects the issue of tastes and jumps back to gamble

B.

Proposition 2.4. Suppose (8) and (9) hold. Under Selden-EZ preferences,

gamble A can be preferred to gamble B.

Proof. From (8), (9), (13), and (14), fA(0) = fB(0) and fA(1) < fB(1).

14



Moreover, evaluating (15) and (16) at π = 0 yields

f ′
A(π)|π=0 =

u′
2(yA)

(
vS(yA)− vS(yA)

)
v′S(yA)

< 0, (20)

f ′
B(π)|π=0 =

u′
2(yB)

(
vS(yB)− vS(yB)

)
v′S(yB)

< 0. (21)

When u and vS are such that both8

u′
2(yA)

v′S(yA)
<

u′
2(yB)

v′S(yB)
(23)

and

vS(yA)− vS(yA) < vS(yB)− vS(yB), (24)

then

0 > f ′
A(π)|π=0 > f ′

B(π)|π=0, (25)

so that for some π ∈ (0, 1) close to π = 0, fA(π)|π≈0 > fB(π)|π≈0, i.e., gamble

A is strictly preferred to gamble B.

Propositions 2.3 and 2.4 show that the certainty equivalent in the multi-

dimensional case cannot be compared in a meaningful way when considering

gambles that are on different vertical lines, i.e., gi ≡ (π ◦ (xi, yi), (1 − π) ◦
(x′

i, y
′
i)), xi �= x′

i, yi �= y′i).
9 In fact, implicit in the comparison across differ-

ent vertical lines are the tastes or preferences corresponding to the points on

these two different vertical lines. Changing the concavity of vS in Selden-EZ

preferences thus conflate risk aversion and tastes.

As noted, the inconsistency regarding ordinal preferences occurs because

8This occurs when, for all z,
u′′
2(z)

u′
2(z)

<
v′′S(z)
v′S(z)

. (22)

9Only gambles that have their same first argument (i.e., gambles on the same vertical
line) can be compared, e.g., gi ≡ (π ◦ (x, yi), (1 − π) ◦ (x, y′i)), yi �= y′i using the certainty
equivalent approach. That is, it is only when restricting attention to gambles on a vertical
line that an increase in the concavity of vS (yielding a decrease in the certainty equivalent)
is related to risk aversion.
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the expected marginal rate of substitution is distorted by the Selden-EZ

approach. To see this, we now present the expected marginal rate of substi-

tution under both KM and Selden-EZ preferences. Consider the gamble

g ≡ (π ◦ (x, y + ε), (1− π) ◦ (x, y − ε)) (26)

for π ∈ (0, 1) and y > ε ≥ 0.

Using (2), the KM utility function is

WKM(x, ỹ) = πvKM(u1(x)+u2(y+ε))+(1−π)vKM(u1(x)+u2(y−ε)), (27)

where v′KM > 0, v′′KM ≤ 0. Here, the expected marginal rate of substitution

is
∂y

∂x
= − u′

1(x)

ρ(vKM)u′
2(y + ε) + (1− ρ(vKM))u′

2(y − ε)
, (28)

where

ρ(vKM) ≡ πv′KM(u1(x) + u2(y + ε))

πv′KM(u1(x) + u2(y + ε)) + (1− π)v′KM(u1(x) + u2(y − ε))
.

(29)

Note that, for a given gamble, since the two values of ỹ occur on separate

indifference curves, the expected marginal rate of substitution is a convex

combination of the marginal rates of substitution under certainty. Using (11),

the Selden-EZ utility function is rewritten as

WS (x, y + ε̃) = u1(x) + u2 (μ(y + ε̃, vS)) , (30)

where

μ(y + ε̃, vS) = v−1
S (πvS(y + ε) + (1− π)vS(y − ε)) (31)

is the certainty equivalent. Here, the expected marginal rate of substitution

is
∂y

∂x
= − u′

1(x)

u′
2(μ(y + ε̃, vS))

∂μ(y+ε̃,vS)
∂y

< 0. (32)

On the one hand, from (28), the KM approach affects the weights on the

marginal utilities of the second argument, without affecting the values on
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the marginal utilities themselves. On the other hand, On the other hand,

from (32), with the Selden-EZ approach, the marginal utility of the sec-

ond argument is evaluated at the certainty equivalent and is distorted by

the derivative of the certainty equivalent with respect to the outcome of y.

This distortion has the effect of changing the ordering preferences over the

gambles.

3 The Effect of Risk Aversion

In this section, we study the effect of risk aversion on the optimal choice of

the consumption profile (x, ỹ) ∈ R
2
+ with utility function U(x, ỹ), U1, U2 >

0, U11, U22 < 0. In the stochastic environment, x is the sure good, while ỹ is

the risky good due to the presence of randomness in the budget constraint.

Using the KM utility representation, the consumer’s maximization problem

under uncertainty is

max
x

WKM(x, ỹ(x)) = max
x

Eỹ(x)vKM (U(x, ỹ(x))) , (33)

where Eỹ(x) is the expectation operator over ỹ(x), and vKM is a strictly

increasing and concave function, v′KM > 0, v′′KM ≤ 0. Note that the risky

good depends on x through the budget constraint, i.e., y(x) = (I −Pxx)/Py,

where I is income, and Px and Py are the prices of goods x and y, respectively.

The effect of risk aversion is studied in three different cases: random income,

random price for the sure good, and random price for the risky good.10

10As noted, the Selden-EZ approach cannot be used to study the effect of risk aversion
because it does not disentangle risk aversion and tastes. Specifically, by choosing the
optimal gamble (x, ỹ(x)) on a particular vertical line, the consumer must compare gambles
on different vertical lines, thereby conflating tastes and attitudes toward risk, in which case
Selden-EZ preferences does not measure the pure effect of risk aversion on decisions.
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3.1 Random Income

When income is random, (33) is rewritten as

max
x

EĨvKM

(
U

(
x,

Ĩ − Pxx

Py

))
, (34)

where EĨ is the expectation operator for Ĩ. Proposition 3.1 states that the

effect of risk aversion depends on the income effect when only income is

random. The change in consumption due to a change in risk aversion does

not result from a change in income as in the usual income effect. Instead

Proposition 3.1 deals with the distribution of utilities associated with random

income and the effect of that distribution of utilities on the choice of the

consumption bundle as the consumer becomes more risk averse. In particular,

when the sure good is normal, a more risk-averse individual always consumes

more of the risky good.

Proposition 3.1. Given (34), a more risk-averse individual

1. decreases the amount of a normal good x,

2. increases the amount of an inferior good x, and

3. does not change the amount of good x if there is no income effect.

Proof. See Appendix A.

This counter-intuitive result is explained by the fact that the individual

faces a utility gamble with each possible choice of the sure good x. The

riskiness of the utility gamble is implicit in the optimal trade-off between

the sure good and the risky good and is crucial to the choice of the individ-

ual, overshadowing the relevance of the riskiness of the good ỹ. In fact, a

more risk-averse individual chooses a level of consumption that reduces the

riskiness of the utility levels associated with random income. To see this,

we proceed in two steps. We first establish a relationship between the in-

come effect and the types of utility gambles an individual faces. We then

explain how optimal behavior is changed when risk-aversion increases. To
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that end, it is convenient to adopt a simple distribution for income, i.e.,

Ĩ ∼ (π ◦ I, (1− π) ◦ I), π ∈ [0, 1].

Income Effect and Utility Gambles. The income effect is key in

explaining how changes in x affect the riskiness of the utility gambles. To

see this, let xI and xI be the optimal consumption for the sure good when

π = 1 and π = 0, respectively. For nondegenerate distributions of income,

x ∈ [min{xI , xI},max{xI , xI}] is the range of possible choices. We consider

two cases.

Suppose that the sure good is normal, i.e., xI < xI , and let MU(x, I) ≡
U1

(
x, I−Pxx

Py

)
−U2

(
x, I−Pxx

Py

)
Px

Py
be the marginal utility of consumption under

income I ∈ {I, I}. Then, for any choice of x, the marginal utility under low

income at the corresponding point of the lower budget constraint is smaller

than the marginal utility under high income at the corresponding point of

the upper budget constraint. Moreover, when the marginal utility under low

income is tangent to the corresponding budget constraint, (i.e., x = xI),

then the marginal utility under high income is strictly positive. Hence, for

x ∈ [xI , xI ], the difference between utility levels U
(
x, I−Pxx

Py

)
−U

(
x, I−Pxx

Py

)
is positive and strictly increasing in x ∈ [xI , xI ]. In other words, a decrease

in x brings the two utility levels closer together. In terms of gambles, this

means that a decrease in x results in a less risky utility gamble.

The relationship between x and the riskiness of the utility gamble is

clearly shown in Figure 4 when the sure good is normal, i.e., xI < xI . The

straight lines represent the budget constraints under low income and high

income, while the convex lines are indifference curves. Note that the bundles

(xI , yI(xI)) and (xI , yI(xI)) are the optimal bundles under certain low income

and certain high income, respectively.11 When income is random, choosing

x implies choosing the utility gamble

g(x) ≡
(
π ◦ U

(
x,

I − Pxx

Py

)
, (1− π) ◦ U

(
x,

I − Pxx

Py

))
(35)

for x ∈ [xI , xI ]. From Figure 4, the choice xI has a utility gamble corre-

11For I, I ′ ∈ {I, I}, let yI(xI′) ≡ (I − PxxI′)/Py.
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Figure 4: Utility Gambles with Normal Good x
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sponding to the solid circles, while the choice xI has a utility gamble cor-

responding to the empty circles. Hence, the gamble g(xI) is less risky than

the gamble g(xI). In general, as shown in Figure 4 this implies that, for

x, x′ ∈ [xI , xI ], x < x′,

U

(
x′,

I − Pxx
′

Py

)
< U

(
x,

I − Pxx

Py

)
< U

(
x,

I − Pxx

Py

)
< U

(
x′,

I − Pxx
′

Py

)
.

(36)

Suppose next that the good is inferior, i.e., xI > xI , so that the marginal

utility under high income is smaller than the marginal utility under low

income at the corresponding point on the budget constraint. Hence, for

x ∈ [xI , xI ], the difference between utility levels U
(
x, I−Pxx

Py

)
−U

(
x, I−Pxx

Py

)
is positive and strictly decreasing in x ∈ [xI , xI ]. In other words, an increase

in x brings the two utility levels closer together. In terms of gambles, this

means that an increase in x results in a less risky utility gamble, as depicted

in Figure 5, where the utility gamble associated with x∗ is less risky than

the utility gamble corresponding to x. In general, this implies that, for

x, x′ ∈ [xI , xI ], x < x′,

U

(
x,

I − Pxx

Py

)
< U

(
x′,

I − Pxx
′

Py

)
< U

(
x′,

I − Pxx
′

Py

)
< U

(
x,

I − Pxx

Py

)
.

(37)

Optimal Utility Gamble. Having shown that the income effect deter-

mines the direction of a reduction in the riskiness of a gamble, we next turn

to the optimal behavior. Without loss of generality, we define two different

KM utility representations, W 1
KM(x, ỹ(x)) = U (x, ỹ(x)) andW 2

KM(x, ỹ(x)) =

ϕ (U (x, ỹ(x))), ϕ′ > 0, ϕ′′ < 0, so that W 2
KM is strictly more risk-averse than

W 1
KM .

Recall that MU(x, I) ≡ U1

(
x, I−Pxx

Py

)
−U2

(
x, I−Pxx

Py

)
Px

Py
is the marginal

utility of consumption for I ∈ {I, I}. Then, the first-order conditions corre-

sponding to preferences W 1
KM and W 2

KM are

πMU(x, I) + (1− π)MU(x, I) = 0, (38)
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Figure 5: Utility Gambles with Inferior Good x
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and

πρ(x, I, ϕ′)MU(x, I) + (1− π)ρ(x, I, ϕ′)MU(x, I) = 0, (39)

respectively. Here,

ρ (x, I, ϕ′) =
ϕ′
(
U
(
x, I−Pxx

Py

))
ϕ′
(
U
(
x, I−Pxx

Py

))
+ ϕ′

(
U
(
x, I−Pxx

Py

)) , (40)

is a weighting function that depends on the risk aversion of the individual,

ρ(x, I, ϕ′) = 1 − ρ(x, I, ϕ′) ∈ [0, 1]. Note that risk-aversion measured by

the function ϕ enters the first-order condition only through the weighting

function ρ. Remark 3.2 states the effect of risk-aversion on the weighting

function.

Remark 3.2. When income is random, the more risk-averse individual adds

more weight to the low value of income, i.e., ρ(x, I, ϕ′) > 1/2.

Given Remark 3.2, the effect of risk aversion is determined by the income

effect, which orders the marginal utilities.

Remark 3.3. When the good is normal, MU(x, I) < MU(x, I), while, an

inferior good yields MU(x, I) > MU(x, I).

Combining Remarks 3.2 and 3.3 implies that a more risk-averse individual

puts more weight on the lower marginal utility, which corresponds to the low

income when the good is normal and the high income when the good is

inferior. Hence, a more risk-averse agent decreases the amount of the sure

good if and only if it is normal.

It is worth noting that before imposing the more risk averse transforma-

tion ϕ, expected utility maximization yields a trade-off between the sure good

and the risky good. However, the introduction of ϕ changes that trade-off by

giving the more risk-averse individual an incentive to choose a less risky util-

ity gamble. In the random income case, this is done by reducing the amount

of the sure good x. From this vantage point, it appears that the cardinality

of the utility function determines the consumer’s choice. However, it is clear

from Figure 4, that, for any normal good x, it is the ordinal preference that
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Figure 6: Optimal Utility Gamble with Normal Good x

dictates a decrease in the amount of the sure good x, which results in a less

risky utility gamble.

Figure 6 further illustrates the effect of risk aversion on optimal behav-

ior when preferences are Cobb-Douglas, i.e., U(x, y) = xαy1−α, α ∈ (0, 1).12

Here, the sure good x is normal. The solid lines represent the utility func-

tions, while the dotted decreasing lines represent the marginal utility func-

tions. The points x1 and x2 are the optimal bundles corresponding to pref-

erences W 1
KM and W 2

KM , respectively. From Figure 6, an increase in risk-

aversion adds more weight to the marginal utility under low income, which

decreases the amount of the sure good, i.e., x1 > x2, so as to reduce the

riskiness of the utility gamble, i.e., u1 < u2 < u2 < u1.

12To generate the graph, we set Px = Py = 1 and I ∈ {2, 5}.
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3.2 Random Prices

Having shown that the effect of risk aversion depends on the income effect

when income is random, we next study the cases of random prices. Here, the

relative strength of the income and substitution effects determine the effect

of risk aversion on the optimal choice of x.

Random Price of the Sure Good. When the price of the sure good

is random, (33) is rewritten as

max
x

EP̃x
vKM

(
U

(
x,

I − P̃xx

Py

))
, (41)

where EP̃x
is the expectation operator for P̃x. Proposition 3.4 states that

the effect of risk aversion is determined by the interplay of the income and

substitution effects.

Proposition 3.4. Given (41), a more risk-averse individual

1. decreases the amount of a normal good x, and

2. increases the amount of an inferior good x if and only if the income

effect is stronger than the substitution effect.

Proof. See Appendix A.

To explain the results in Proposition 3.4, it is convenient to adopt a simple

distribution for the price of the sure good, i.e., P̃x ∼ (π ◦ P x, (1− π) ◦ P x

)
,

π ∈ [0, 1]. Without loss of generality, we define two different KM utility repre-

sentations, W 1
KM(x, ỹ(x)) = U (x, ỹ(x)) and W 2

KM(x, ỹ(x)) = ϕ (U (x, ỹ(x))),

ϕ′ > 0, ϕ′′ < 0, so that W 2
KM is strictly more risk-averse than W 1

KM .

Letting MU(x, Px) ≡ U1

(
x, I−Pxx

Py

)
− U2

(
x, I−Pxx

Py

)
Px

Py
be the marginal

utility of consumption for Px ∈ {P x, P x}, the first-order conditions corre-

sponding to preferences W 1
KM and W 2

KM are

πMU(x, P x) + (1− π)MU(x, P x) = 0, (42)
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and

πρ(x, P x, ϕ
′)MU(x, P x) + (1− π)ρ(x, P x, ϕ

′)MU(x, P x) = 0, (43)

respectively. Here,

ρ (x, P x, ϕ
′) =

ϕ′
(
U
(
x,

I−Pxx

Py

))
ϕ′
(
U
(
x,

I−Pxx

Py

))
+ ϕ′

(
U
(
x, I−Pxx

Py

)) , (44)

is a weighting function that depends on the risk aversion of the individual,

ρ(x, P x, ϕ
′) = 1 − ρ(x, P x, ϕ

′) ∈ [0, 1]. Note that risk-aversion measured by

the function ϕ enters the first-order condition only through the weighting

function ρ, as in the case of random income. Remark 3.5 states the effect of

risk-aversion on the weighting function when Px is random.

Remark 3.5. When the price of the sure good is random, the more risk-

averse individual adds less weight to the low value of Px, i.e., ρ(x, P x, ϕ
′) <

1/2.

The effect of risk aversion is determined by the income and substitution

effects, which orders the marginal utilities. Abstracting for a moment that

we are dealing with only two values for Px, the sign of the derivative of

MU(x, Px) with respect to Px is useful in ordering the marginal utilities.

Formally,
∂MU(x, Px)

∂Px
= −

(
U12 − U22

Px

Py

)
x

Py︸ ︷︷ ︸
=IEPx

−U2

Py︸︷︷︸
=SEPx

, (45)

where IEPx and SEPx < 0 are proportional to and of the same sign as the

income effect and the substitution effect, respectively, related to a change in

Px.

Remark 3.6. When the good is normal, both the income and substitution

effects are negative, so that MU(x, P x) > MU(x, P x). When the good is

inferior, i.e., IEPx > 0, the relative strengths of the income and substitution

effects determine the ordering of the marginal utilities. For instance, if the
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Figure 7: Utility Gambles with Normal Good x and Random Px

(positive) income effect is stronger than the (negative) substitution effect,

then, from (45), MU(x, P x) < MU(x, P x).

Remarks 3.5 and 3.6 explain the result in Proposition 3.4. In particular,

when the good is normal, a more risk-averse individual individual puts less

weight to the marginal utility corresponding to the high price of x. Propo-

sition 3.4 is illustrated in Figure 7 for the case of a normal good x. Due to

the randomness of Px, the slope of the budget constraint makes the utility

gamble less risky as consumption decreases. Specifically, when Px is random,

the pure substitution effect induces a squeeze in the utility gamble in the

direction of less quantity of the sure good, from x to x∗, which increases the

amount of the risky good y.

Random Price of the Risky Good. When the price of the risky good

27



Figure 8: Utility Gambles with Normal Good x and Random Py

is random, (33) is rewritten as

max
x

EP̃y
vKM

(
U

(
x,

I − Pxx

P̃ỹ

))
, (46)

where EP̃y
is the expectation operator for P̃y. Proposition 3.7 states that the

effect of risk aversion is again determined by the interplay of the income and

substitution effects.

Proposition 3.7. Given (46), a more risk-averse individual

1. decreases the amount of a normal good x if and only if the income effect

is stronger than the substitution effect, and

2. increases the amount of an inferior good x.
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Proof. See Appendix A.

Proposition 3.7 is illustrated in Figure 8, which shows that, when the

price of the risky good is random, the substitution effect induces a squeeze

in the utility gamble by increasing the amount of the sure good from x to x∗.

3.3 Examples

Propositions 3.1, 3.4, and 3.7 establish the connection between risk aversion

and classical demand theory implicit in KM, and explain, in that context,

the limits of the intuition of the Ross (1981) critique on risk aversion. In

particular, increasing the amount of the risky good when risk aversion in-

creases, is natural and not counterintuitive, as thought by Ross (1981) and

his followers. We now illustrate our results by considering specific classes of

preferences: Cobb-Douglas, Leontief, and quasi-linear utility functions.

Suppose that preferences are Cobb-Douglas, i.e., U(x, y) = xαyβ, α, β >

0, so that x is a normal good. Note that the results in Propositions 3.1, 3.4,

and 3.7 continue to hold, even when the utility function is concave or convex,

as long as there is an interior solution to the constrained optimization prob-

lem. For random income, more risk aversion has the effect of decreasing the

amount of x. This result is even stronger when the price of x is random, since

the income and the substitution effects go in the same direction. However,

when the price of y is random, the income and the substitution effects not

only go in opposite directions, but cancel each other out with Cobb-Douglas

preferences. This is exactly the consumption-saving problem discussed in

KM, in which the rate of return (the price of y) is random.

Suppose next that preferences are Leontief, i.e., U(x, y) = u (min{x, y}),
u′ > 0, u′′ < 0, so that x is a normal good. Then, there is no substitution

effect and the income effect determines the direction of the change along

with an increase in risk aversion. In particular, regardless of the source of

risk, an increase in risk aversion always decreases the amount of the sure

good in favor of the risky good. To see this, consider the income distribution

Ĩ ∼ (1− π ◦ I, π ◦ I), I < I. For simplicity assume Px = Py = 1, so that the
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individual faces

max
x

Eu
(
min

{
x, Ĩ − x

})
. (47)

The optimal solution lies in I
2
≤ x ≤ I

2
.13 Hence, the problem faced by the

individual is Eu
(
min

{
x, Ĩ − x

})
= πu (x) + (1− π) u (I − x), so that the

first-order condition is

πu′(x)− (1− π)u′(I − x) = 0 =⇒ u′(x)
u′(I − x)

=
1− π

π
. (48)

Consider next a more risk-averse individual, i.e., the maximization problem

is

max
x

πϕ(u(x)) + (1− π)ϕ(u(I − x)), (49)

ϕ′ > 0, ϕ′′ < 0. The first-order condition is

πϕ′(u(x∗))u′(x∗)− (1− π)ϕ′(u(I − x∗))u′(I − x∗) = 0, (50)

so that
u′(x∗)

u′(I − x∗)
=

1− π

π

ϕ′(u(I − x∗))
ϕ′(u(x∗))

(51)

since ϕ is strictly concave and I
2
≤ x ≤ I

2
. Then,

ϕ′(u(I − x∗))
ϕ′(u(x∗))

> 1

therefore,
u′(x∗)

u′(I − x∗)
=

1− π

π

ϕ′(u(I − x∗))
ϕ′(u(x∗))

>
u′(x)

u′(I − x)

u′(x∗) > u′(x) ⇒ x∗ < x,

as shown in Figure 9.

13Note that if x < I
2 , then the outcome is strictly worse than choosing x = I

2 , while,

if x > I
2 , then the outcome is strictly worse than choosing x = Ī

2 . Note also that in this
case, the optimal solution has both x and y positive, i.e., there is no corner solution, in
which either x = 0 or y = 0. However, on the interval I

2 ≤ x ≤ Ī
2 , there can be “corner

solutions”, when x = I
2 or x = I

2 , which correspond to the most risk-averse and the most
risk-loving choices respectively.
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Figure 9: Leontief Preferences
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In other words, the more risk-averse individual consumes even more of

the risky good due to the presence of only income effects.14 This decrease in

the amount of the sure good x yields a less risky utility gamble as depicted

in Figure 9. Note that, with Leontief preferences, the amount of x always

decreases because there is only a pure income effect, i.e., without substitution.

That is why Leontief preferences yield results opposite to the Arrow-Pratt’s

portfolio problem, in which there is no income effect and only substitution

effect.

Suppose finally that preferences are quasi-linear, where x is a normal

good. These preferences shed light on the Arrow-Pratt result, i.e., an increase

in risk aversion increases the amount of income invested in the safe asset (i.e.,

allocated to the sure good in our context). We now demonstrate that Arrow-

Pratt’s result holds due to the absence of the income effect, and that the

source of uncertainty lies in the rate of return of the risky asset. Specifically,

we consider two cases and show stark difference in results between the two.

First, consider the case in which there is no income effect for the sure good

x, i.e., U(x, y) = u1(x) + y, u′
1 > 0, u′′

1 < 0. Hence, when income is random,

since there is no income effect, risk aversion has no effect on the amount of x.

When the price of x is random, increased risk aversion cause the amount of x

to decrease solely due to the substitution effect. However, for random price

of the risky good, the substitution effect dominates (since there is no income

effect), which implies that the amount of x increases along with an increase in

risk aversion. This result generalizes the result in the Arrow-Pratt portfolio

problem. In fact, it is only in this case that increasing risk aversion increases

the amount of the sure good without reference to income and substitution

effects. However, the result is not robust to a slight modification in the

utility function. To see this, consider the quasi-linear utility function, i.e.,

U(x, y) = x + u2(y), u
′
2 > 0, u′′

2 < 0. In this case, the good x is normal,

so that if either income or the price of x is random, risk aversion decreases

the amount of the sure good x. On the other hand, for random price of the

14Note that if the initial choice is x = I
2 , then the consumer is making the most risk-

averse choice. Therefore a more risk-averse transformation cannot reduce the level of
x.
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risky good, the income and substitution effects pull in opposite directions.

If the income effect is dominant, then an increase in risk aversion leads to a

decrease in the amount of the sure good x. This last result illustrates that

the Arrow-Pratt result is solely due to the absence of an income effect on

x. Finally, note that another version of the Arrow-Pratt theorem is that, if

income increases, then an individual with decreasing risk aversion reduces

the amount of the sure good. This result is not general and is due only to

the fact that, in the portfolio problem, there is no income effect for the sure

good.

4 Final Remarks

In this paper, we completely characterize the relationship between changes

in risk aversion and classical demand theory in the case of a single source of

uncertainty. We show that a more risk averse consumer generally decreases

the amount placed in the sure good. In addition, we show that it is the util-

ity gambles that determine the choice of a more risk-averse agent between

the sure good and the risky good. This provides an explanation for certain

paradoxical behaviors of an individual who becomes more risk-averse. The

paper also paves a path for some immediate interesting questions. In partic-

ular, one could ask what the relationship between risk aversion and classical

demand theory implies for changes in income in which the consumer is de-

creasingly risk-averse. This is especially interesting in light of Arrow-Pratt’s

result that in the portfolio case increasing income results in an increase in

the risky assert if and only if the consumer is decreasingly risk averse with

income.
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A Proofs

We recall Theorem 236 in Hardy et al. (1964), which we appeal in the proofs

of the propositions.

Lemma A.1. If λ′
1(t), λ

′
2(t) > 0 or λ′

1(t), λ
′
2(t) < 0, then Et̃λ1(t̃)λ2(t̃) >

Et̃λ1(t̃) · Et̃λ2(t̃). If λ′
1(t) > 0, λ′

2(t) < 0 or λ′
1(t) < 0, λ′

2(t) > 0, then

Et̃λ1(t̃)λ2(t̃) < Et̃λ1(t̃) · Et̃λ2(t̃).

Proof of Proposition 3.1. Without loss of generality, consider two dif-

ferent KM utility representations, W 1
KM(x, ỹ(x)) = EĨU

(
x, (Ĩ − Pxx)/Py

)
and W 2

KM(x, ỹ(x)) = ϕ
(
U
(
x, (Ĩ − Pxx)/Py

))
, ϕ′ > 0, ϕ′′ < 0. Here, W 2

KM

is strictly more risk-averse than W 1
KM .

From (34), the first-order condition corresponding to preferences W 1
KM is

EĨ

[
U1

(
x,

Ĩ − Pxx

Py

)
− U2

(
x,

Ĩ − Pxx

Py

)
Px

Py

]
︸ ︷︷ ︸

≡h(x,Ĩ,Px,Py)

= 0, (52)

while the first-order condition corresponding to preferences W 2
KM is

EĨϕ
′
(
U
(
x, (Ĩ − Pxx)/Py

))
︸ ︷︷ ︸

≡f(x,Ĩ,Px,Py)

·
[
U1

(
x,

Ĩ − Pxx

Py

)
− U2

(
x,

Ĩ − Pxx

Py

)
Px

Py

]
︸ ︷︷ ︸

≡h(x,Ĩ,Px,Py)

= 0.

(53)

Let x1 and x2 be the optimal choice of the sure good satisfying (52) and (53),

respectively.

Given the definition of f(x, I, Px, Py) in (53), ϕ′′ < 0, U2 > 0 imply that

∂f/∂I < 0. We now consider three cases.

1. Suppose first that x is a normal good. Then, given the definition of

h(x, I, Px, Py) in (52) or (53),

∂h

∂I
= U12 · x

Py

− U22 · Pxx

P 2
y︸ ︷︷ ︸

=IEI

> 0, (54)

34



where IEI is proportional and of the same sign as the income effect

related to a change in income.

Since ∂f/∂I < 0, ∂h/∂I > 0, Lemma A.1 and (52) imply that

EĨf(x, Ĩ, Px, Py)h(x, Ĩ, Px, Py) < EĨf(x, Ĩ, Px, Py)·EĨh(x, Ĩ, Px, Py) = 0.

(55)

Since x1, x2 are unique interior solutions, x1 > x2, i.e., a more risk-

averse individual decreases the consumption of a normal sure good.

2. Suppose next that x is an inferior good. Then, from (54), ∂h/∂I < 0.

Since ∂f/∂I < 0, ∂h/∂I < 0, Lemma A.1 and (52) imply that

EĨf(x, Ĩ, Px, Py)h(x, Ĩ, Px, Py) > EĨf(x, Ĩ, Px, Py)·EĨh(x, Ĩ, Px, Py) = 0.

(56)

Since x1, x2 are unique interior solutions, x1 < x2, i.e., a more risk-

averse individual increases the consumption of an inferior sure good.

3. Suppose finally that there is no income effect. Then, x1 = x2.

Proof of Proposition 3.4. Without loss of generality, consider two dif-

ferent KM utility representations, W 1
KM(x, ỹ(x)) = EP̃x

U
(
x, (I − P̃xx)/Py

)
and W 2

KM(x, ỹ(x)) = EP̃x
ϕ
(
U
(
x, (I − P̃xx)/Py

))
, ϕ′ > 0, ϕ′′ < 0. Here,

W 2
KM is strictly more risk-averse than W 1

KM .

From (41), the first-order condition corresponding to preferences W 1
KM is

EP̃x

[
U1

(
x,

I − P̃xx

Py

)
− U2

(
x,

I − P̃xx

Py

)
P̃x

Py

]
︸ ︷︷ ︸

≡h(x,I,P̃x,Py)

= 0, (57)

while the first-order condition corresponding to preferences W 2
KM is

EP̃x
ϕ′
(
U
(
x, (I − P̃xx)/Py

))
︸ ︷︷ ︸

≡f(x,I,P̃x,Py)

·
[
U1

(
x,

I − P̃xx

Py

)
− U2

(
x,

I − P̃xx

Py

)
P̃x

Py

]
︸ ︷︷ ︸

≡h(x,I,P̃x,Py)

= 0.

(58)
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Let x1 and x2 be the optimal choice of the sure good satisfying (57) and (58),

respectively.

Given the definition of f(x, I, Px, Py) in (53), ϕ′′ < 0, U2 > 0 imply that

∂f/∂Px > 0. We now consider two cases.

1. Suppose first that x is a normal good. Then, given the definition of

h(x, I, Px, Py) in (57) or (58),

∂h

∂Px
= −

[
U12 · x

Py
− U22 · Pxx

P 2
y

]
︸ ︷︷ ︸

=IEPx

−U2

Py︸︷︷︸
=SEPx

< 0, (59)

as both the income and the substitution effects pull in the same direc-

tion, IEPx < 0, SEPx < 0. Here, IEPx and SEPx are proportional and

of the same sign as the income and substitution effects, respectively,

related to a change in Px.

Since ∂f/∂Px > 0, ∂h/∂Px < 0, Lemma A.1 and (57) imply that

EP̃x
f(x, I, P̃x, Py)h(x, I, Px, Py) < EP̃x

f(x, I, P̃x, Py)·EP̃x
h(x, I, Px, Py) = 0.

(60)

Since x1, x2 are unique interior solutions, x1 > x2, i.e., a more risk-

averse individual decreases the consumption of a normal sure good.

2. Suppose next that x is an inferior good, i.e., IEPx > 0. Then, from (59),

if the income effect is stronger than the substitution effect, ∂h/∂Px > 0.

Since ∂f/∂Px, ∂h/∂Px > 0, Lemma A.1 and (52) imply that

EP̃x
f(x, I, P̃x, Py)h(x, I, P̃x, Py) > EP̃x

f(x, I, P̃x, Py)·EP̃x
h(x, I, P̃x, Py) = 0.

(61)

Since x1, x2 are unique interior solutions, x1 < x2, i.e., a more risk-

averse individual increases the consumption of an inferior sure good. If

the income effect is weaker than the substitution effect, then, by the

same argument, x1 > x2. Finally, if the income and substitution effects

cancel each other, then x1 = x2.

36



Proof of Proposition 3.7. Without loss of generality, consider two dif-

ferent KM utility representations, W 1
KM(x, ỹ(x)) = EP̃ỹ

U
(
x, (I − Pxx)/P̃ỹ

)
and W 2

KM(x, ỹ(x)) = EP̃ỹ
ϕ
(
U
(
x, (I − Pxx)/P̃ỹ

))
, ϕ′ > 0, ϕ′′ < 0. Here,

W 2
KM is strictly more risk-averse than W 1

KM .

From (46), the first-order condition corresponding to preferences W 1
KM is

EP̃y

[
U1

(
x,

I − Pxx

P̃ỹ

)
− U2

(
x,

I − Pxx

P̃ỹ

)
Px

P̃ỹ

]
︸ ︷︷ ︸

≡h(x,I,Px,P̃ỹ)

= 0, (62)

while the first-order condition corresponding to preferences W 2
KM is

EP̃y
ϕ′
(
U
(
x, (I − Pxx)/P̃ỹ

))
︸ ︷︷ ︸

≡f(x,I,Px,P̃ỹ)

·
[
U1

(
x,

I − Pxx

P̃ỹ

)
− U2

(
x,

I − Pxx

P̃ỹ

)
Px

P̃ỹ

]
︸ ︷︷ ︸

≡h(x,I,Px,P̃ỹ)

= 0.

(63)

Let x1 and x2 be the optimal choice of the sure good satisfying (62) and (63),

respectively.

Given the definition of f(x, I, Px, Py) in (53), ϕ′′ < 0, U2 > 0 imply that

∂f/∂Py > 0. We now consider two cases.

1. Suppose first that x is an inferior good. Then, given the definition of

h(x, I, Px, Py) in (62) or (63),

∂h

∂Py

= −
[
U12 · x

Py

− U22 · Px

Py

]
I − Pxx

P 2
y︸ ︷︷ ︸

IEPy

+
U2Px

P 2
y︸ ︷︷ ︸

SEPy

< 0, (64)

as both the income and the substitution effects pull in the same direc-

tion, IEPy > 0, SEPy > 0. Here, IEPy and SEPy are proportional and

of the same sign as the income and substitution effects, respectively,

related to a change in the price of ỹ.
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Since ∂f/∂Px, ∂h/∂Px > 0, Lemma A.1 and (52) imply that

EP̃ỹ
f(x, I, Px, P̃ỹ)h(x, I, Px, P̃ỹ) > EP̃ỹ

f(x, I, Px, P̃ỹ)·EP̃ỹ
h(x, I, Px, P̃ỹ) = 0.

(65)

Since x1, x2 are unique interior solutions, x1 < x2, i.e., a more risk-

averse individual increases the consumption of an inferior sure good.

2. Suppose next that x is a normal good, i.e., IEPy < 0. Then, from (64),

if the income effect is stronger than the substitution effect, then ∂h/∂Py <

0. Since ∂f/∂Py > 0, ∂h/∂Py < 0, Lemma A.1 and (62) imply that

EP̃ỹ
f(x, I, Px, P̃ỹ)h(x, I, Px, P̃ỹ) < EP̃ỹ

f(x, I, Px, P̃ỹ)·EP̃ỹ
h(x, I, Px, P̃ỹ) = 0.

(66)

Since x1, x2 are unique interior solutions, x1 > x2, i.e., a more risk-

averse individual decreases the consumption of a normal sure good. If

the substitution effect is stronger than the substitution effect, then, by

the same argument, x1 > x2. Finally, if the income and substitution

effects cancel each other, then x1 = x2.
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