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Abstract

A bargaining solution balances fairness and efficiency if each player’s

payoff lies between the minimum and maximum of the payoffs assigned

to him by the egalitarian and utilitarian solutions. In the 2-person

bargaining problem, the Nash solution is the unique scale-invariant so-

lution satisfying this property. Additionally, a similar result, relating

the weighted egalitarian and utilitarian solutions to a weighted Nash

solution, is obtained. These results are related to a theorem of Shap-

ley, which I generalize. For n ≥ 3, there does not exist any n-person

scale-invariant bargaining solution that balances fairness and efficiency.
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1 Introduction

Consider a set of players (bargainers) who are facing a bargaining problem.

Fairness and efficiency are natural objectives that they (or an arbitrator) may

have in mind, but taking both of them into account simultaneously is non-

trivial, because promoting the one typically involves compromising on the

other. Moreover, this task involves an additional difficulty: both fairness and

efficiency rely on the idea of interpersonal utility comparisons. The former

involves considerations in the spirit of “if you gain this much I should gain

at least this much,” the latter involves considerations in the spirit of “do me

a favor, it would only cost you a little, but would help me a lot.” How do

we know that the utility functions in terms of which the bargaining problem

is defined capture those interpersonal comparisons appropriately? One may

argue that we need to have the “right” utilities before any further analysis of

fairness and efficiency is to be carried out.

Let us say that a 2-person bargaining problem is harmonic if its egalitarian

and utilitarian solutions agree. Given a bargaining problem, we can rescale its

utilities such that the resulting problem is harmonic. Defining these new utili-

ties to be the “right” ones resolves both of the issues described in the previous

paragraph. First, we obtain a utility scale to work with; second, the tension

between fairness and efficiency is trivially resolved, because the bargaining

problem which is defined by this utility scale is harmonic. Shapley (1969)

showed that the egalitarian/utilitarian solution of the rescaled problem, when

scaled back, is the Nash solution of the original problem. Therefore, Shap-

ley’s Theorem can be thought of as describing a sense in which fairness and
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efficiency are reconciled, and showing that only the Nash solution satisfies it.1

This sense implicitly assumes that the bargaining solution is invariant to in-

dependent (linear) rescalings of the players’ utilities.

I provide a simpler sense in which the Nash solution reconciles fairness and

efficiency. Simpler—since it does not refer to the utility scales. I demand that

the solution lies “between” the egalitarian and utilitarian solutions; namely,

that for every bargaining problem and every player the following is true: the

player’s solution payoff lies between the minimum and the maximum of the

payoffs assigned to him by the egalitarian and utilitarian solutions.2 I call

this balancing fairness and efficiency. I prove that the Nash solution balances

fairness and efficiency. It follows from Shapley’s Theorem that it is the unique

scale-invariant solution with this property.

The utilitarian and egalitarian solutions have straightforward generaliza-

tions to nonsymmetric bargaining: that of the former is obtained by maximiz-

ing a weighted sum of utilities, and that of the latter—by assigning payoffs

according to fixed (not necessarily identical) proportions. These solutions can

be thought of in terms of a two-step procedure: first, utilities are rescaled—

player 1’s payoff is scaled by p ∈ (0, 1) and player 2’s payoff is scaled by 1− p;

next, either egalitarianism or utilitarianism is applied. Given the weights

(p, 1−p), a bargaining solution balances fairness and efficiency with respect to

1Harsanyi (1959) has a lemma that states that the Nash solution is the only utility

allocation that coincides simultaneously with both the egalitarian and utilitarian solutions

for some rescaling of the utilities; it follows from the scale-invariance of the Nash solution

that the egalitarian/utilitarian solution of the scaled problem, when scaled back, is the Nash

solution of the original problem. Shapley (1969) was the first to state the result in this way.
2More precisely, the requirement is that there is a selection from the utilitarian solution

(which, in general, is multi valued), such that the above condition is satisfied. See Section

3 below for the precise definition.
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p if each player’s solution payoff lies between the minimum and the maximum

of the payoffs assigned to him by the corresponding weighted egalitarian and

utilitarian solutions. I show that there exists a function h : (0, 1)→ (0, 1) that

satisfies h(1
2
) = 1

2
, such that the following is true: given p ∈ (0, 1), the weighted

Nash solution with weights (h(p), 1−h(p)) is the unique scale-invariant solution

that balances fairness and efficiency with respect to p. Based on this result,

I obtain the following generalization of Shapley’s Theorem: any problem can

be rescaled such that the p-weighted egalitarian and utilitarian solutions of

the resulting problem agree, and scaling the agreed-upon point back results

in the h(p)-weighted Nash solution of the original problem. It is worth noting

that the function h satisfies (p− 1
2
)(h(p)− p) > 0 for all p 6= 1

2
, which means

that in order to balance fairness and efficiency with respect to p, the strong

player—the one whose payoff gets more weight—needs to be favored, in the

sense of being assigned to an augmented weight in the Nash product.

The relationship between egalitarianism and utilitarianism has for quite

some time been the subject of a vibrant discourse, especially since the publi-

cation of Rawls’ A Theory of Justice, back in 1971 (see Arrow (1973), Harsanyi

(1975), Lyons (1972), Sen (1974), and Yaari (1981), among others). A par-

ticularly heated debate sprouted up between Rawls and Harsanyi (see Rawls

(1974), which was replayed to by Harsanyi (1975)), the former advocating the

maxmin rule as the “right” principle for governing society’s decisions, the lat-

ter advocating the sum-of-utilities criterion. Within the confines of 2-person

bargaining theory, my paper proposes a compromise between these competing

positions;3 moreover, subject to scale-invariance, this compromise—the Nash

3Of course, the theory of distributive justice concerns itself also with issues outside

the bargaining model, such as freedom, needs, and more (see Roemer (1986)). I do not

claim that the current paper proposes a general reconciliation between egalitarianism and
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solution—is unique. To put it in a catchy phrase: only Nash can bridge the

gap between Harsanyi and Rawls.

Whether this compromise is a decent compromise will be discussed at the

end of the paper. As already seen above, the answer to this question is far

from obvious, since without symmetry balancing fairness and efficiency implies

a bias in favor of the strong and against the weak, which, to say the least, is

not the first thing that comes to mind when thinking about distributive justice.

The aforementioned results do not extend to multi-person bargaining: given

any n ≥ 3, there does not exist a scale-invariant n-person bargaining solution

that lies “between” the egalitarian and utilitarian solutions.

The rest of the paper is organized as follows. Section 2 describes the for-

mal model. Section 3 presents the main concept of interest—balancing fairness

and efficiency. It also introduces a related concept—guarantee of minimal fair-

ness—and discusses the relation between the two. Section 4 considers symmet-

ric 2-person bargaining, Section 5 introduces asymmetry, Section 6 considers

multiperson bargaining, Section 7 concludes, and the Appendix collects proofs

which are omitted from the text.

2 Model

An n-person bargaining problem is a pair (S, d) such that S ⊂ Rn is closed

and convex, and d ∈ S is such that Sd ≡ {x ∈ S|x > d} is nonempty and

bounded.4 The points of S, the feasible set, are the (v.N-M) utility vectors

that the players can achieve via cooperation (if they agree on (x1, · · · , xn) ∈ S,

utilitarianism—it does so only in the context of a particular model. It is, however, an

important model.
4Vector inequalities in Rn: xRy if and only if xiRyi for all i, for both R ∈ {>,≥}.
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player i receives the utility payoff xi), and d specifies their utilities in case they

do not agree unanimously on some point of S; it is called the disagreement

point. Let Bn denote the collection of all such pairs.

A solution on Bn is any function µ : Bn → Rn that satisfies µ(S, d) ∈ S

for all (S, d) ∈ Bn. The Nash solution (due to Nash (1950)), N , is the unique

maximizer of Πn
i=1(xi − di) over x ∈ Sd. The egalitarian solution (due to

Kalai (1977)), E, is given by E(S, d) = d + ε · 1,5 where ε is the maxi-

mal number such that the right hand side is in S. Given a problem (S, d),

let U(S, d) ≡ argmaxx∈Sd

∑
xi. A bargaining solution, µ, is utilitarian, if

µ(S, d) ∈ U(S, d) for every problem (S, d). A generic utilitarian solution is

denoted by U . I will sometimes abuse terminology a little, and refer to U as

the utilitarian solution.

A solution, µ, is weakly Pareto optimal if µ(S, d) ∈ WP (S) ≡ {x ∈ S|y >

x⇒ y /∈ S} for every (S, d) ∈ Bn; it is strongly Pareto optimal if the analogous

condition holds when WP (S) is replaced by P (S) ≡ {x ∈ S|y 6= x&y ≥ x ⇒

y /∈ S}; it is scale-invariant if λ ◦ µ(S, d) = µ(λ ◦ S, λ ◦ d) for every positive

linear transformation λ : Rn → Rn and every (S, d) ∈ Bn;6 I will sometime call

a positive linear transformation a rescaling.

Let B+
n ⊂ Bn consist of those (S, d) ∈ Bn such that (i) S ⊂ Rn

+ and (ii)

d = 0. In the sequel, the domain of analysis will be B+
n . With the dis-

agreement point normalized to the origin, I will abuse notation a little and

denote a problem solely by its feasible set, S. Accordingly, I use the notation

U(S) ≡ argmaxx∈S
∑
xi. Let BUn = {S ∈ B+

n |U(S) is a singleton}. Let B∗2 be

the collection of those problems in B+
2 which are smooth: those S ∈ B+

2 for

51 = (1, · · · , 1). Similarly, 0 = (0, · · · , 0).
6A function λ : Rn → Rn is a positive linear transformation if λ ◦ (x1, · · · , xn) ≡

(λ1x1, · · · , λnxn) for some numbers λi > 0
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which WP (S) = P (S) = {(a, f(a))|a ∈ [0, A]}, where A > 0 is some number

and f : [0, A] → R+ is a twice differentiable strictly concave function. The

family B∗2 is dense in B+
2 : for every S ∈ B+

2 there exists a sequence {Sn} ⊂ B∗2,

such that Sn converges to S in the Hausdorff metric. Moreover, B∗2 ⊂ BU2 , and

if {Sn} ⊂ B∗2 is a sequence that converges to S in the Huasdorff metric, then

limnU(Sn) ∈ U(S), independent of whether S ∈ BU2 .

A solution, µ, is continuous, if for every sequence of problems in its domain

{Sn} and every problem in its domain S, µ(Sn) converges to µ(S) if Sn con-

verges to S in the Hausdorff metric. The solutions N and E are continuous

on B+
n , and U is continuous on the restricted domain BUn .

3 Balancing fairness and efficiency

The main concept of interest in this paper is this:

Definition 1. A solution on B+
n , µ, balances fairness and efficiency if

for every S ∈ B+
n there exists a U(S) ∈ U(S) such that the following is true

for every i:

min{Ei(S), Ui(S)} ≤ µi(S) ≤ max{Ei(S), Ui(S)}.

Definition 1 intends to express a form of compromise between fairness and

efficiency. Implicitly, it identifies “betweenness,” in the simple sense of ordering

numbers on the real line, as the appropriate notion for such a compromise. It

is logically stronger than the following:

Definition 2. A solution on B+
n , µ, guarantees minimal fairness if for

every S ∈ B+
n there exists a U(S) ∈ U(S) such that the following is true for

every i:

µi(S) ≥ min{Ei(S), Ui(S)}.
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Underlying this definition is not a notion of compromise (or betweenness), but

a one of insurance: a solution that adheres to it guarantees that payoffs will

never fall short of a certain bound, this bound incorporating both fairness and

efficiency. In the special case of two players, the two definitions are equivalent;

with more than two players, the former is strictly stronger.

Proposition 1. Let n = 2. Then, a solution balances fairness and efficiency

if and only if it guarantees minimal fairness.

Proposition 2. Let n ≥ 3. Then, there exists a solution that guarantees

minimal fairness, but that does not balance fairness and efficiency.

4 Symmetric 2-person bargaining

As the following proposition shows, the 2-person Nash solution adheres to

Definition 1.

Proposition 3. The Nash solution balances fairness and efficiency on B+
2 .

Proof. We need to prove that µ = N satisfies the requirement of Definition

1. By the continuity properties of the bargaining solutions, it is enough to

establish this fact on the restricted domain B∗2.

Assume by contradiction that there exists a problem S ∈ B∗2 for which this

is not true. Let f be the smooth function describing P (S) = WP (S). Since

U(S) ∈ P (S), we can assume, wlog, that U1(S) ≥ E1(S). If N(S) is not

between E(S) and U(S), then either N1(S) > U1(S) or N1(S) < E1(S).

Suppose first that N1(S) > U1(S). Note that N(S) is the solution to

the maximization of af(a) and U(S) is the solution to the maximization of

a + f(a), both over a ∈ [0, A]. The first order condition for N is f(N1(S)) +
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N1(S)f ′(N1(S)) = 0 ⇒ f ′(N1(S)) = −f(N1(S))
N1(S)

. The derivative of the objec-

tive that U maximizes is 1 + f ′(a), and at the optimum (i.e., at a = U1(S))

it is nonpositive, because, by assumption, U1(S) < N1(S) < A. Therefore,

f ′(U1(S)) ≤ −1. Since f is concave, N1(S) > U1(S) implies f ′(N1(S)) ≤

f ′(U1(S)). Therefore −f(N1(S))
N1(S)

≤ −1, or f(N1(S)) ≥ N1(S). Therefore,

N(S) = (N1(S), f(N1(S))) ≥ (N1(S), N1(S)) > (U1(S), U1(S)), in contra-

diction to U(S) ∈ P (S).

Suppose, on the other hand, that N1(S) < E1(S) ≡ e. This implies that

N(S) = (e− x, e+ y) for some x, y > 0, because N(S) ∈ P (S). Next, I argue

that x ≥ y. To see this, assume by contradiction that x < y, so N1(S) +

N2(S) > E1(S) + E2(S). Also, recall that U1(S) ≥ E1(S) = e. If U1(S) > e

then there exists an α ∈ (0, 1) such that αU(S)+(1−α)N(S) > (e, e) = E(S).

Therefore U1(S) = e, so U(S) = (e, e), because E(S) ∈ WP (S) = P (S). By

definition of U , 2e ≥ 2e − x + y. Therefore x ≥ y, in contradiction to the

initial assumption x < y. Thus, it must be that x ≥ y. Finally, note that

by definition of N , (e − x)(e + y) > e2, hence ey > ex + xy. Combining this

inequality with x ≥ y gives ex ≥ ex+ xy, a contradiction.

Next, one would like to know whether there are other solutions on B+
2 that

balance fairness and efficiency. The trivial answer to this question is that

there are infinitely many such solutions, as any selection between E and U will

do. This question becomes more interesting if one introduces the additional

restriction of scale-invariance. Under this restriction, it turns out, only N

balances fairness and efficiency. To prove this uniqueness, the following result,

which is due to Shapley (henceforth, Shapley’s Theorem), is useful.

Theorem 1. (Shapley (1969)) Let S ∈ B+
2 and x ∈ S. Then x = N(S) if and
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only if the following statement is true:

• There exists a rescaling of S, T = λ◦S, such that λ◦x = E(T ) ∈ U(T ).

In particular, it follows that one can always rescale a given problem as to

obtain a harmonic one—a one whose egalitarian and utilitarian solutions agree

(because N(S) exists for every S).

Corollary 1. N is the unique scale-invariant solution on B+
2 that balances

fairness and efficiency.

Proof. Let µ be a solution that balances fairness and efficiency and let S ∈ B+
2 .

By Shapley’s Theorem, there exists a rescaling of S such that the rescaled

problem, call it T , satisfies E(T ) = (x, x) ∈ U(T ). Suppose first that U(T )

is a singleton; then its unique element is U(T ) = (x, x). In this case µi(T ) ≥

min{Ei(T ), Ui(T )} = x, and it follows from the strong Pareto optimality of U

that µ(T ) = (x, x). By Proposition 3, N(T ) = (x, x). Since both µ and N are

scale-invariant solutions, µ(S) = N(S).

Consider now the case where U(T ) is not a singleton. Let U(T ) be the

selection from U(T ) such that the requirement of Definition 1 holds. If U(T ) =

(x, x), then the proof is completed by the same argument as above. Suppose,

on the other hand that U(T ) 6= (x, x). By Shapley’s Theorem (x, x) = E(T ) ∈

P (T ), and therefore Ui(T ) < x and Uj(T ) > x for some (i, j). Wlog, suppose

that (i, j) = (1, 2). That is, the utilitarian selection U is to the left of (x, x)

and the segment connecting the two has a slope −1. Moreover, the solution

point µ(T ) belongs to this segment. I argue that it must be that µ(T ) = (x, x).

To see this, assume by contradiction that it is to the left of (x, x). Now, rescale

player 1’s utility by some λ > 1 close to 1. By scale-invariance the solution

point changes only slightly, but the utilitarian solution of the scaled problem
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jumps to the right of the 45◦ line—a contradiction. Finally, the latter argument

also applies to the Nash solution, and therefore N(T ) = µ(T ) = (x, x).

5 2-person bargaining without symmetry

Given the weights (p, 1 − p) > 0, the corresponding weighted solutions to

the problem S ∈ B+
2 are defined as follows: a weighted utilitarian solution

maximizes the sum px1 + (1 − p)x2 over x ∈ S, the weighted egalitarian

solution is given by (pε, (1−p)ε), where ε is the maximal number such that the

latter expression belongs to S, and the weighted Nash solution maximizes the

product xp1x
(1−p)
2 over x ∈ S. I will denote the weighted egalitarian and Nash

solutions by Ep and Np, respectively. Let Up(S) ≡ argmaxx∈Spx1 + (1− p)x2
and let θ ≡ p

1−p . Note that given S ∈ B+
2 , Ep(S) takes the form (θy, y), Np

maximizes the product xθ1x2 over x ∈ S, and every solution that picks points

in Up(S) maximizes θx1 + x2 over x ∈ S.

The following is an adaptation of Definition 1 to the symmetry-free 2-

person setting.

Definition 3. Let p ∈ (0, 1). A solution on B+
2 , µ, balances fairness

and efficiency with respect to p if for every S ∈ B+
2 there exists an

Up(S) ∈ Up(S), such that the following is true for every i:

min{Ep
i (S), Up

i (S)} ≤ µi(S) ≤ max{Ep
i (S), Up

i (S)}.

Let:

h(p) =
p2

2p2 − 2p+ 1
.

Theorem 2. Let p ∈ (0, 1) and let µ be a scale-invariant solution. Then µ

balances fairness and efficiency with respect to p if and only if µ = Nh(p).
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Since h(1
2
) = 1

2
, Theorem 2 implies both Proposition 3 and Corollary 1; its

proof (which appears in the Appendix) is based on the following lemma:

Lemma 1. Let p ∈ (0, 1) and S ∈ B+
2 . Then there is a rescaling of S,

T = λ ◦ S, such that Ep(T ) ∈ Up(T ).

Moreover, when this lemma is combined with the other ideas that are utilized

in Theorem 2’s proof, the following result obtains:

Theorem 3. (A generalized Shapley Theorem) Let S ∈ B+
2 , x ∈ S, and

p ∈ (0, 1). Then x = Nh(p)(S) if and only if the following statement is true:

• There exists a rescaling of S, T = λ◦S, such that λ◦x = Ep(T ) ∈ Up(T ).

Proof. Let p ∈ (0, 1). Fix S and x ∈ S. Suppose first that x = Nh(p)(S).

Let λ be the rescaling from Lemma 1. I will prove that λ ◦ x = Ep(T ),

where T = λ ◦ S. That is, I will prove that Nh(p)(T ) = Ep(T ). Assume by

contradiction that Nh(p)(T ) 6= Ep(T ); wlog, since both of these points are

strongly Pareto optimal in T , suppose that Nh(p) is to the left and above

Ep(T ). Let β = h(p)
1−h(p) . Note that β = θ2, where θ = p

1−p . Let Nh(p) = (x, y).

Note that Ep(T ) = (θz, z) for some z. This means that y
x
> 1

θ
, and since

the tangency condition associated with Nh(p)(T ) is β y
x

= θ, it follows that the

negative of the slope of the hyperbola associated with Nh(p) at the point (x, y)

is greater than θ. This, however, is incompatible with the fact that Ep(T ) is

down and to the right of (x, y), and the slope there is only θ.

Conversely, suppose that there exists a rescaling λ such that T = λ ◦ S

satisfies λ◦x = Ep(T ) ∈ Up(T ). We need to prove that x = Nh(p)(S). Assume

by contradiction that x 6= Nh(p)(S). Applying the linear transformation λ

to both sides gives λ ◦ x 6= Nh(p)(λ ◦ S). That is, Ep(T ) 6= Nh(p)(T ). Wlog,

suppose that Nh(p)(T ) is to the left of Ep(T ). The arguments from the previous

paragraph complete the proof.
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6 Multiperson bargaining

The following result shows that, under the restriction to scale-invariant solu-

tions, one cannot balance fairness and efficiency, in the sense of Definition 1,

when there are more than two players. It is straightforward to modify the

proof in order to show that one cannot balance fairness and efficiency, in a

sense analogous to that of Definition 3, with respect to any (p1, · · · , pn) > 0.

Proposition 4. There does not exist a scale-invariant solution on B+
n that

balances fairness and efficiency, for any n ≥ 3.

Proof. Assume by contradiction that there exists a scale-invariant solution on

B+
n , for some n ≥ 3, that balances fairness and efficiency. Given a, b > 0, let:

Sab ≡ {(ax1, bx2, x3, · · · , xn)|(x1, · · · , xn) ∈ Rn
+,

∑
x2i ≤ 1}.

It is straightforward that Ei(Sab) =
√

1
1
a2

+ 1
b2

+n−2 for all i. In particular, this

is true for i = 3. Additionally, it is clear that Ui(Sab) → 0 as a → ∞, for all

i 6= 1. Since E3(Sab) ≈
√

1
1
b2

+n−2 for all sufficiently large a’s, it follows that

E3(Sab) > U3(Sab) for all sufficiently large a’s. Therefore, since µ balances

fairness and efficiency, the following must hold for all sufficiently large a’s:

µ3(Sab) ≤ E3(Sab). (1)

Since µ is scale-invariant, µ3(Sab) = µ3(S11), and since it balances fairness and

efficiency, µ3(S11) =
√

1
n
. Plugging the expressions for µ3(Sab) and E3(Sab)

into (1) gives that the following must hold for all sufficiently large a’s:√
1

n
≤

√
1

1
a2

+ 1
b2

+ n− 2
.

Taking a→∞ gives:
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√
1

n
≤

√
1

1
b2

+ n− 2
. (2)

Note, however, that (2) is violated for all b ∈ (0,
√

1
2
).

Proposition 4 reinforces a well-known pattern: there is a difference between

2-person and multi-person bargaining, in the sense that there are results which

are true (false) in the former setting, but false (true) in the latter.7

7 Conclusion

In this paper I have introduced the notion of balancing fairness and efficiency

in bargaining. This concept is generally stronger than the related guarantee

of minimal fairness, though in the 2-person case they coincide. Restricting

attention to scale-invariant solutions, I have shown that this balancing is im-

possible in multi-person bargaining, and that there is a unique way to achieve

it in 2-person bargaining: by applying Nash’s solution. The balancing con-

cept assumes symmetric players, but it is generalized straightforwardly to a

concept that relates “weighted egalitarianism” and “weighted utilitarianism.”

7Here is an example of a possibility result for the 2-person case that cannot be generalized

to more players: Perles and Maschler (1981) derived the existence (and uniqueness) of a

2-person bargaining solution which, in addition to satisfying other standard axioms, is super

additive (see their paper for the definition of this axiom); subsequently, Perles (1982) proved

that no such solution exists in the 3-person case. Here is an example for a possibility result

for more than two players that does not hold for two players: in the paper cited earlier in the

Introduction, Shapley proved that there does not exist an ordinal, efficient, and symmetric

2-person bargaining solution, but he constructed a 3-person solution with these properties;

Samet and Safra (2005) generalized the construction to n players.
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Similarly to the symmetric case, it has been shown that a certain weighted

Nash solution is the only scale-invariant solution that adheres to this concept.

In the existing literature, the result which is closest in spirit to the analysis

carried out here is that of Moulin (1983), who characterized the Nash solution

by two axioms only: Nash’s IIA and midpoint domination—an axiom that re-

quires each player’s solution payoff to lie above the average of his disagreement

and ideal payoffs (the latter being his maximal payoff in the individually ratio-

nal part of the feasible set).8 In other words, it says that the solution should

Pareto dominate “randomized dictatorship”: by letting each player be a dicta-

tor with equal probability—an event in which he obtains his ideal payoff—one

cannot improve on the solution. The fair lottery in the randomized dictator-

ship process is a starting point that guarantees a minimal degree of fairness;

from there on, efficiency enters the picture.

So, is the compromise that the Nash solution proposes between fairness

and efficiency an acceptable one? One may very well argue that the answer

is negative. As was already noted by Luce and Raiffa (1958, p.129-130), the

Nash solution tends to favor players with utility functions closer to linearity,

and this, in the words of Menahem Yaari, “can be regarded as a bias in favor

of the rich and against the poor.”9 A similar bias has presented itself in the

current paper: when the weight on player 1’s utility is p ∈ (0, 1), the only way

to balance egalitarianism and utilitarianism (in a way consistent with scale-

invariance) is by applying the nonsymmetric Nash solution that puts weight

8Anbarci (1998) improved Moulin’s result by weakening midpoint domination; his char-

acterization replaces it by an axiom that expresses the same requirement, but applies only

to triangular feasible sets. de Clippel (2007) also derives a two-axiom characterization of

the Nash solution, one of the axioms being midpoint domination (the other is disagreement

convexity ; see his paper for the definition).
9Yaari (1981), p.38.
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h(p) on player 1’s utility. Since (p− 1
2
)(h(p)− p) > 0 for all p 6= 1

2
, the strong

player’s weight is augmented in the Nash product and the weak player’s weight

is discounted.

There is an additional, and even simpler sense, in which the Nash solution

is “more utilitarian than egalitarian”. Whenever the Nash solution coincides

with the egalitarian solution it also coincides with the utilitarian solution.

This is a simple geometric feature of the Nash solution: note that the slope

of the parabola x2 = c
x1

is − c
x21

, hence equals −1 at x2 = x1, and therefore,

whenever the Nash and the egalitarian solutions agree, the agreed-upon point

maximizes the sum of the players’ utilities. The “converse” is, of course, not

true, as can be seen, for example, in rectangular feasible sets.

To summarize, in bridging the gap between egalitarianism and utilitarian-

ism, the Nash solution constitutes a biased compromise. This may lead one

to reject it. A person holding such a view may argue that in order to pro-

mote fairness—with or without regard for efficiency—scale-invariance should

be excluded: a joint utility scale, with respect to which all bargaining prob-

lems are to be solved, must be specified in advance. On the other hand, a

person who insists on the v.N-M axioms of utility theory will consequently

insist on scale-invariance. In this case, the aforementioned compromise can be

viewed either as an unfortunate “second-best,” or, alternatively, as an ethical

conclusion. A person holding this view may argue that favoring the rich is

(in some circumstances, at least) the ethical thing to do. Both views are a

matter of interpretation, and it is left for the reader to decide where she stands.
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8 Appendix

Proof of Proposition 1 : Let µ be a 2-person solution that guarantees mini-

mal fairness. I will prove that the requirement of Definition 1 is satisfied for

any selection U out of U. Let U be such a selection. Assume by contra-

diction that there is an S and an i such that µi(S) > max{Ui(S), Ei(S)}.

Wlog, suppose that i = 1. Since U(S) ∈ P (S), µ2(S) < U2(S). There-

fore, µ2(S) = E2(S) ≡ y. Since µ1(S) > y, E(S) = (y, y) /∈ P (S). I

argue that (a, b) ∈ S implies b ≤ y. To see this, assume by contradiction

that there is an (a, b) ∈ S with b > y. Note that µ(S) = (x, y) for some

x > y. Therefore, we can find an α ∈ (0, 1) sufficiently close to one, such that

αµ(S) + (1−α)(a, b) > (y, y), in contradiction to E(S) ∈ WP (S). Now, since

U(S) 6= (x, y) and since U(S) maximizes the sum of utilities in S, U1(S) < x

implies that U2(S) > y—a contradiction.

Proof of Proposition 2 : Let n ≥ 3. Let S∗n = conv hull{0, iei|i = 1, · · · , n},

where {ei|i = 1, · · · , n} is the standard basis for Rn. Note that U(S∗n) = nen

and E(S∗n) =
∑
αiiei, where {αi} are convex weights that satisfy lαl = mαm

for all 1 ≤ l,m ≤ n. Define the solution µ∗n as follows:

µ∗n(S) =

 1
n

∑
iei if S = S∗n

E(S) otherwise

I will prove that (i) this solution guarantees minimal fairness, and (ii) that

it does not balance fairness and efficiency. For both (i) and (ii), clearly, only

the problem S∗n needs to be considered. Requirement (i) is obviously satisfied

for players i < n, because the utilitarian payoff for each of then is zero. Thus,

what needs a proof here is that player n’s payoff is at least as large as his
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egalitarian payoff (because the latter is obviously smaller than his utilitarian

payoff, which equals n). Assume by contradiction that this is not the case; i.e.,

that 1 < αnn. Since lαl = mαm for all 1 ≤ l,m ≤ n, it follows that α1 > 1, in

contradiction to the fact that (α1, · · · , αn) are convex weights.

Next, consider (ii). I will prove that the n − 1-th player receives more

than the maximum of his egalitarian and utilitarian payoffs. That is, that

n−1
n
> (n− 1)αn−1. To see this, assume by contradiction that αn−1 ≥ 1

n
. Now,

since iαi = (n− 1)αn−1 ≥ n−1
n

for every i, we have that

n∑
i=1

αi ≥
n− 1

n

n∑
i=1

1

i
≡ F (n).

To obtain the contradiction, I will show that F (n) > 1 for all n ≥ 3. This

is certainly the case, since F (3) = 2
3
(1 + 1

2
+ 1

3
) = 2

3
· 11

6
= 22

18
> 1, and F is

strictly increasing (it is a product of two strictly increasing functions of n).

Proof of Theorem 2 : I start with the “if” part. By the continuity arguments

invoked in Proposition 3, we can restrict attention to B∗2. Let S ∈ B∗2. Let f

be the smooth function describing S’s boundary. Let θ = p
1−p and β = h(p)

1−h(p) .

Note that β = θ2. Assume by contradiction that Nh(p)(S) is not in between

Up(S) and Ep(S).

Case 1: Up
1 (S) ≤ Ep

1(S).

There are two possibilities: either N
h(p)
1 (S) < Up

1 (S) or N
h(p)
1 (S) > Ep

1(S).

Start by assuming the former. Letting a denote the payoff for player 1, we see

that the tangency condition associated with Nh(p) is β f(a)
a

= −f ′(a). Since

Nh(p) is, by assumption, to the left of Up, −f ′(a) < θ; combining this with

β = θ2 we obtain a > θf(a), which contradicts N
h(p)
1 (S) < Ep

1(S). Next, con-

sider N
h(p)
1 (S) > Ep

1(S). Again, denoting by a player 1’s payoff under Nh(p)

we have a > θf(a), and therefore −f ′(a) = β f(a)
a

< β 1
θ

= θ, in contradiction
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to N
h(p)
1 (S) > Up

1 (S).

Case 2: Up
1 (S) > Ep

1(S).

There are two possibilities: either N
h(p)
1 (S) > Up

1 (S) or N
h(p)
1 (S) < Ep

1(S).

Start by assuming the former. Since Nh(p) is to the right of Up, −f ′(a) > θ,

hence β f(a)
a

= θ2 f(a)
a
> θ. Therefore, θf(a) > a, in contradiction to N

h(p)
1 (S) >

Ep
1(S). Next, consider N

h(p)
1 (S) < Ep

1(S). This means that a < θf(a) and

therefore −f ′(a) = β f(a)
a

= θ2 f(a)
a
> θ. This means that Nh(p) must lie to the

right of Up, in contradiction to N
h(p)
1 (S) < Ep

1(S) < Up
1 (S).

I now turn to uniqueness. Let µ be an arbitrary solution with the aforemen-

tioned properties, and let p ∈ (0, 1) be the parameter with respect to which µ

balances fairness and efficiency. Let S ∈ B+
2 . By Lemma 1, S can be rescaled

such that the resulting problem, call it T , satisfies Ep(T ) ≡ (θy, y) = Up(T ) for

some Up(T ) ∈ Up(T ), where θ = p
1−p . Suppose first that Up(T ) is a singleton,

containing only (θy, y). In this case Up(T ) = Ep(T ) = µ(T ) = Nh(p)(T ),10

and by scale-invariance, µ(S) = Nh(p)(S).

Suppose that Up(T ) is not a singleton, and let Up(T ) be the selection out

of it that satisfies the requirement of Definition 3. If Up(T ) = (θy, y), then

the proof is completed by the same argument as above. Suppose, on the other

hand that Up(T ) 6= (θy, y). By Lemma 1, (θy, y) = Ep(T ) ∈ P (T ), and there-

fore Up
i (T ) < Ep

i (T ) and Uj(T ) > Ep
j (T ) for some (i, j). Wlog, suppose that

(i, j) = (1, 2). That is, the selection Up is to the left of Ep(T ) and the segment

connecting the two has a slope −θ. Moreover, the solution point µ(T ) belongs

to this segment. I argue that it must be that µ(T ) = Ep(T ). To see this,

assume by contradiction that it is to its left. Now, rescale player 1’s utility

by some λ > 1 close to 1. By scale-invariance the solution point changes only

10The last equality here is due to the fact that we just proved that Nh(p) balances fairness

and efficiency with respect to p.
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slightly, but the weighted utilitarian solution of the scaled problem jumps to

the right of the Ep—a contradiction. Finally, the latter argument also applies

to the weighted Nash solution, and therefore Nh(p)(T ) = µ(T ). By scale-

invariance Nh(p)(S) = µ(S).

Proof of Lemma 1 : Let p ∈ (0, 1) and θ = p
1−p . It is easy to see that it suffices

to prove the lemma for problems in B∗2. Let then S be such a problem and

let f be the smooth function, defined on [0, A], which describes its boundary.

Since both Up and Ep are homogeneous—namely, µ(cS) = cµ(S) for every

S, c > 0, and µ ∈ {Up, Ep}—it suffices to consider rescalings of one player’s

utility. Wlog, I will consider rescalings of player 2’s utility by λ > 0. With

Ep(T ) = (a, λf(a)) for some a ∈ [0, A], the required equalities are θλf(a) = a

and λf ′(a) = −θ. That is, it is sufficient (and necessary) to find an a ∈ [0, A]

such that a
f(a)θ

= −θ
f ′(a)

, or ψ(a) ≡ −af ′(a)
f(a)

= θ2. There exists a unique such a

because, by the assumptions on f , the function ψ is strictly increasing, and

satisfies ψ(0) = 0 and ψ(a)→∞ as a→ A.
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