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Abstract 
 

Since the seminal speech of Friedman (1977), the causes and consequences of inflation 
uncertainty are subject to a lively debate. Apparently, inflation uncertainty is an unobserved 
variable. Hence, various measures have been proposed in the previous literature. However, 
each measure of inflation uncertainty is derived from different assumptions and it is 
unclear whether an individual measure delivers a reliable signal. To reduce idiosyncratic 
measurement error, we propose to use common information contained in different 
measures. In particular, we show that all series are driven by a common component that 
constitutes an indicator for inflation uncertainty. Moreover, it appears that systematic 
measurement error may occur during economic downturns. Finally, we use the indicator 
to study the Friedman-Ball hypothesis. It turns out that higher inflation is followed by 
higher uncertainty. However, after an inflationary shock, uncertainty shortly decreases 
which seems to be traceable to the energy component in CPI inflation. 
 
JEL Code: C53, E31, E37. 
Keywords: Inflation uncertainty, inflation, survey data, stochastic volatility, GARCH, 
principal component analysis. 

 
Christian Grimme 

Ifo Institute – Leibniz Institute for 
Economic Research 

at the University of Munich 
Poschingerstr. 5 

81679 Munich, Germany 
Phone: +49(0)89/9224-1285 

grimme@ifo.de 

Steffen Henzel 
Ifo Institute – Leibniz Institute for 

Economic Research 
at the University of Munich 

Poschingerstr. 5 
81679 Munich, Germany 

Phone: +49(0)89/9224-1652 
henzel@ifo.de  

 
Elisabeth Wieland 

Ifo Institute – Leibniz Institute for 
Economic Research 

at the University of Munich 
and University of Munich 

Poschingerstr. 5 
81679 Munich, Germany 

Phone: +49(0)89/2180-3917 
wieland@ifo.de 

 
* We would like to thank Kai Carstensen, Helmut Herwartz, Teresa Buchen, Christian Conrad, Steffen Elstner 
and participants at the 16th IEA World Congress, Beijing, the 2011 Meeting of the SSES, Lucerne, and various 
research seminars at the University of Munich and at the Ifo Institute for valuable comments. Financial support 
from the German Research Foundation (Grant No. CA 833/2) is gratefully acknowledged. 



1 Introduction

In the follow-up of the seminal speech of Friedman (1977), there has originated a still

ongoing debate about the link between inflation and inflation uncertainty (Ball, 1992;

Cukierman and Meltzer, 1986). However, empirical testing of the causes and consequences of

increased inflation uncertainty necessitates a valid measure. Given that inflation uncertainty

is an unobserved variable, many different measures have been proposed in the literature.

Some studies rely on survey-based measures, others depend on volatility derived from time

series models, and some use realized forecast errors. Each measure is derived from different as-

sumptions and it is unclear whether an individual measure delivers the correct signal. That is,

any individual measure most likely suffers from idiosyncratic measurement error. Hence, the

relationship between uncertainty and macroeconomic variables is subject of a lively debate.1

In this study, we propose an approach to mitigate the idiosyncratic measurement error prob-

lem. To this end, we derive the most commonly used measures of inflation uncertainty such as,

for instance, disagreement, conditional as well as realized forecast error variance. Moreover,

we put forward a forecast-based approach which complements the survey-based measures.

We use these measures to construct an indicator of inflation uncertainty that condenses the

information contained in all measures and, hence, provides a reliable signal. Furthermore, the

approach helps us to analyze to which extent individual measure delivers misleading signals.

In particular, we discuss whether disagreement of survey expectations is a good proxy for

uncertainty.2

It turns out that all measures are driven by a common component. Notably, each individual

measure contributes to the common component, and the indicator remains largely unaffected

if we discard one of the measures. It appears that also disagreement from surveys co-moves

with the other measures. However, some caution is warranted because it turns out that re-

spondents tend to cluster their forecasts around the “consensus” forecast in more turbulent

times. Moreover, we find that individual measures have the tendency to drift apart if uncer-

tainty rises. That is, the measurement error problem seems to be larger during “uncertain

1A number of studies for the U.S. find that inflation causes inflation uncertainty. Davis and Kanago (2000)
provide an overview. Others find evidence of the opposite hypothesis. See, for instance, Bhar and Hamori
(2004) and Fountas and Karanasos (2007). Mixed results with respect to the direction of causality are obtained
inter alia by Grier and Perry (1998) and Berument and Dincer (2005).

2The relation between disagreement and uncertainty is subject to an ongoing debate.
Bomberger and Frazer (1981), Bomberger (1996, 1999) and Giordani and Söderlind (2003) find sup-
portive results, other studies report only a weak relationship or reject disagreement as a proxy
(Zarnowitz and Lambros, 1987; Lahiri et al., 1988; Rich and Butler, 1998; Döpke and Fritsche, 2006;
Rich and Tracy, 2010). Lahiri and Sheng (2010) find that disagreement is a reliable proxy whenever
consensus uncertainty (forecast error variance associated with the mean of individual forecasts) is low.
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times”. This is unfortunate if we want to analyze the relation between uncertainty and other

economic variables. Similar to previous studies, we obtain contradictory results if we use in-

dividual measures to test the link between inflation uncertainty and inflation. Overall, these

findings further emphasize the benefits of the indicator approach.

In a next step, we make use of the advantages of our approach and study the relationship

between inflation and inflation uncertainty. This topic has recently regained relevance because

there are claims to increase the inflation target of central bank to mitigate, for instance, the

problem of excessive government debt.3 However, the Friedman-Ball hypothesis suggests that

high inflation rates may lead to increased inflation uncertainty which brings about economic

cost. The reason is that increased uncertainty would adversely affect investment decisions

and bond prices. It turns out that the link is from inflation to higher uncertainty. If we

consider an inflationary shock, however, it appears that uncertainty decreases temporarily.

Such a behavior seems to be traceable to the energy component in CPI. In particular, we

do not obtain a decrease if we consider a shock to core inflation. In either case, uncertainty

increases swiftly after a couple of months. Overall, our results are in favor of the Friedman-

Ball hypothesis. That is, there appears to be an additional cost of maintaining high inflation

rates.

A few studies compare different approaches to measure uncertainty. For instance,

Batchelor and Dua (1993, 1996), and Giordani and Söderlind (2003) contrast uncertainty de-

rived from subjective forecast densities contained in the U.S. Survey of Professional Fore-

casters (SPF) with different types of model-based measures. It appears that both categories

do not have much in common. Chua et al. (2011) identify a particular GARCH model that

matches the SPF measure closest. These studies consider subjective densities as a benchmark

because this measure is theoretically appealing. Such a procedure is valid if the benchmark

measure is not severely contaminated by measurement error. However, we may doubt that

this is the case. First, quite a few assumptions have to be made to calculate a measure of

uncertainty from SPF forecast densities (see, for instance, D’Amico and Orphanides, 2008;

Rich and Tracy, 2010). Second, the survey may itself be subject to measurement error, for

instance, if participants put little effort in correctly answering the questionnaire. In contrast

to our indicator, the SPF measures are rather noisy which suggests that measurement error

is present (see Batchelor and Dua, 1993, 1996; Diebold et al., 1999; Giordani and Söderlind,

3See, for instance, the IMF Staff Position Note by Olivier Blanchard et al. (SPN/10/03), the address by
Charles L. Evans at the Outlook Luncheon on Dec 5, 2011, the NY Times Blog on May 28, 2011 by Paul
Krugman, and the comment by Ken Rogoff in the Financial Times on Aug 8, 2011.
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2003; Söderlind, 2011). Therefore, we take a different stand and assume that a priori each

individual measure of uncertainty is equally informative.

The remainder of the paper is organized as follows. In section 2, we introduce the measures

of inflation uncertainty. The relation between the different measures is analyzed in section 3.

In section 4, we test the Friedman-Ball hypothesis. Section 5 concludes.

2 Calculating measures of inflation uncertainty

In the following, we introduce the empirical measures for inflation uncertainty. They are

derived from different approaches put forward in previous studies and rely on distinct concepts

and assumptions. Hence, they are potentially exposed to different types of measurement

error. We introduce survey-based measures, as well as model-based measures. Moreover,

we propose a forecast-based approach. Common information contained in these individual

measures builds the basis for the indicator in section 3.

2.1 Survey-based measures

In a first step, we focus on uncertainty measures which are derived from survey data. Our

data source is provided by Consensus Economics Inc. (CE). CE is advantageous because

it polls professional forecasters who should be well informed about the current state of the

economy. Besides, individual data is provided and the names of the forecasters are given

aside the numbers. Hence, there is a strong incentive to make a well-informed prediction in

order not to damage the reputation.4 Against this background, Dovern and Weisser (2011)

find that individual forecasts for U.S. inflation are largely unbiased. Moreover, it has the

advantage that it runs on a monthly frequency. As uncertainty may move abruptly, many of

the effects we want to measure would be washed out in low frequency data. We use data from

1990:M1 to 2009:M12.5

Bomberger and Frazer (1981), Cukierman and Wachtel (1982), and Batchelor and Dua (1993,

1996) propose the root mean squared error (rmsest) as a measure of uncertainty. It is calcu-

4A more detailed description of the data is found in appendix A.1.
5Owing to the survey design, studies using probabilistic expectations from SPF are restricted to a yearly

frequency. Hence, we cannot use SPF data for the main analysis in this paper. However, as SPF is a common
benchmark we compare both approaches in appendix B.4.
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lated by averaging the individual squared forecast errors in each period t:

rmsest =

√

√

√

√

1

N

N
∑

i=1

(

πt+12 − πe
i,t

)2

, (1)

where πt+12 denotes realized 12-month ahead CPI inflation and πe
i,t denotes the individ-

ual point forecast from CE made at time t. As far as the timing is concerned, we follow

Batchelor and Dua (1993, 1996). That is, an observation for uncertainty at time t is available

only when realized inflation is observed at time t+ 12.

Bomberger and Frazer (1981), Bomberger (1996, 1999), and Giordani and Söderlind (2003)

propose the cross-sectional dispersion of point forecasts (disagreement) as a measure of un-

certainty. Instead of using the cross-sectional standard deviation of forecasts, we follow

Mankiw et al. (2003) and rely on the interquartile range (iqrs) since it is more robust to

outliers. iqrs is defined as the difference between the 25th and the 75th percentile.6

Mankiw et al. (2003) point out that the distribution of point forecasts may become multi-

modal if model uncertainty is high, for instance, around structural breaks. Hence, the form

of the distribution of individual forecasts may contain information about uncertainty beyond

a dispersion measure. Hence, Rich and Tracy (for instance, 2010) suggest using a histogram-

based entropy (ents) which is computed as:

entst = −
(

n
∑

k=1

p(k)t[ln(p(k)t)]
)

, (2)

where p(k) denotes the relative frequency of individual forecasts falling in a certain interval k.

The concept of entropy provides additional information in comparison to the measure of iqrs

in two ways. First, given a certain cross-sectional standard deviation of forecasts, entropy

changes with the shape of the histogram of forecasts. In particular, the normal distribution

exhibits a higher entropy than any other distribution of the same variance (Vasicek, 1976).

Second, given a fixed number of bins and a constant bin width, the histogram-based entropy

is maximized if the forecasts are distributed equally among all bins.

6We also computed the standard deviation and the quasi-standard deviation of forecasts. The quasi-
standard deviation is defined as half the difference between the 16th and 84th percentile. With normally
distributed data, this measure coincides with the standard deviation. These alternative measures are highly
correlated with iqrs with correlation coefficient ρ = 0.86 and 0.90, respectively.
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2.2 Forecast-based measures

As a complement to the survey-based measures, we put forward a forecast-based approach that

is based on multiple forecast models. We rely on VAR models which are a popular forecast

device because of their ability to generate multi-step predictions. To obtain a time-varying

uncertainty measure, Giordani and Söderlind (2003) recursively estimate a single VAR model

and calculate a standard deviation of the forecast error of inflation for each period. Chua et al.

(2011) follow this idea by deriving error bands from the recursive bootstrapped VAR approach

proposed by Peng and Yang (2008). However, this approach comes at the cost of being

conditional on a specific forecast model which is assumed to provide the correct description

of the data. Moreover, the model is assumed to be the same for all forecasters. Hence, model

uncertainty is virtually absent and forecaster diversity is neglected. Finally, uncertainty

is derived from VAR residuals which are assumed to be homoscedastic. In effect, this is

not consistent with the presumption that uncertainty changes systematically over time. To

overcome these possible drawbacks, we propose a forecast-based approach which relies on a

variety of forecast models.7 That is, we do not use information contained in residuals but

rather resort to the point forecasts of different VAR models.

To obtain multiple forecast models, we first select a number of activity variables proposed

by Stock and Watson (1999) to forecast U.S. inflation. Stock and Watson (1999) identify

different sub-groups of variables. To keep the analysis tractable, we choose one representative

from each of these sub-groups. We end up with 15 variables which are described in table A.1

in the appendix. Note that the estimation period contains the disinflation period during the

1980ies. Hence, inflation enters in first differences (Stock and Watson, 1999, 2007). To derive

twelve-months ahead forecasts for inflation, we build a number of different VAR models.

Each VAR model is limited in size to avoid over-fitting problems. It comprises the target

variable and up to four additional activity variables. Finally, we construct all VAR models

that fulfil this criterion, i.e. we consider all possibilities to choose up to four variables out

of the 15 activity variables. The lag length of each VAR model is determined by BIC, and

we end up with a total number of 1.941 different inflation forecasts for each month. Note

that the estimation proceeds recursively. That is, we use data from 1970:M1 up to the period

in which the forecast is made. Hence, we calculate forecasts for inflation one year ahead for

each month between 1991:M1 and 2010:M12. By design, the forecast-based approach mimics

a survey of professional forecasters such as the CE survey. Calculating RMSE as defined in

equation (1) yields a forecast-based measure of inflation uncertainty (rmsef ). Forecast-based

7Hartmann and Herwartz (2009) use an approach similar to ours to derive a measure of uncertainty from
five different structural models.
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disagreement (iqrf ) is given by the dispersion among the point forecasts measured by the

interquartile range. As in equation (2), we also calculate an entropy-based measure (entf ).

2.3 Model-based measures

2.3.1 Conditional forecast error variance

ARCH models of many different shapes have been extensively used to model inflation uncer-

tainty in the U.S.8 A number of studies highlight that there may be many structural breaks in

the inflation process.9 To account for such events like changes in the monetary regime or the

level of steady-state inflation, we follow these studies and opt for a time-varying parameter

GARCH (TVP-GARCH) model. This has the advantage of being flexible enough to allow

for a non-stationary inflation rate. In terms of Ball and Cecchetti (1990), time variation also

adds a second long-term dimension to uncertainty. The TVP-GARCH model provides a co-

herent framework for the analysis of uncertainty in the sense that it combines conditional

error variance as well as model uncertainty into forecast error variance (Evans, 1991). The

model is given by a signal equation (3), a state equation (4) and equation (5) describing the

evolvement of conditional error variance.

πt = [1 πt−1 πt−2] αt + et et ∼ N(0, ht) (3)

αt+1 = αt + ηt ηt ∼ N(0, Q) (4)

ht = d+
m
∑

i=1

φie
2
t−i +

n
∑

i=1

γiht−i (5)

Here, αt is a vector of time-varying coefficients. We model inflation as an AR(2) process which

meets the needs to reproduce the cyclical behavior. ht describes conditional error variance and

Q is a homoscedastic covariance matrix of shocks ηt. The coefficient vector follows a random

walk. Estimations are based on monthly data running from 1990:M1 through 2009:M12.10

Finally, the Kalman filter provides an estimate for the variance of forecast errors. We use the

square root of this variance to measure uncertainty which is labeled garch. Note that the

measure summarizes model uncertainty emerging from time-variation of the coefficients and

8See, for instance, Engle (1983), Cosimano and Jansen (1988), Brunner and Hess (1993), Grier and Perry
(1996), Grier and Perry (2000), Elder (2004), Grier et al. (2004) and Chang and He (2010).

9See, for instance, Evans (1991), Evans and Wachtel (1993), Berument et al. (2005),
Caporale and Kontonikas (2009), and Caporale et al. (2010).

10Parameter estimates are given in table A.2 in the appendix. Specification tests do not indicate either
autocorrelation or remaining ARCH effects in the model innovations.
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uncertainty emerging from the shock process ηt (see Evans, 1991; Caporale et al., 2010, for

a detailed explanation).

2.3.2 Stochastic volatility

Stochastic volatility (SV) models have been used in financial econometrics to model error vari-

ance as a latent stochastic process (see, among others, Harvey et al., 1994; Kim et al., 1998).

Moreover, they have been proposed as a forecast model for U.S. inflation (Stock and Watson,

2007). In contrast to ARCH models where error variance is fully described by its own past,

here, the variance of first moment shocks is assumed to be driven by an exogenous stochastic

process. Albeit their ability to model shocks to second moments, so far, stochastic volatility

models are rarely used to analyze inflation uncertainty. In the following, we adopt the model

proposed by Stock and Watson (2007) whose state-space representation is given by equations

(6) to (10).

πt = µt + et et ∼ N(0, σ2
e,t) (6)

µt+1 = µt + ηt ηt ∼ N(0, σ2
η,t) (7)

log σ2
e,t+1 = log σ2

e,t + ν1,t (8)

log σ2
η,t+1 = log σ2

η,t + ν2,t (9)
(

ν1,t

ν2,t

)

= N(0, γI2) (10)

Here, et is a short-term shock in the measurement equation (6) with variance σ2
e,t. Moreover,

the permanent component of inflation µt follows a random walk which is driven by a permanent

(level) shock ηt with variance σ2
η,t.

11 We follow the arguments of Ball and Cecchetti (1990)

and use the square root of the variance of permanent shocks σ2
η,t as the measure of inflation

uncertainty. In the following, it is denoted by ucsv.

11The model is estimated with the Gibbs sampler. See also Dovern et al. (2009) for an application of the
stochastic volatility model to different macroeconomic variables.
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3 Characteristics of uncertainty measures

3.1 Descriptive analysis

We generate eight individual uncertainty measures: three survey-based measures (iqrs, ents,

rmses), three forecast-based measures (iqrf , entf , rmsef ), and two model-based measures

(garch, ucsv).12 All eight measures require a number of assumptions to work as good proxies

for uncertainty. In general, deriving valid measures from survey-based approaches assumes

that the survey is conducted such that bias and measurement error is small. Moreover,

disagreement and entropy are valid proxies only if there is a positive correlation between the

dispersion of forecasts of respondents and uncertainty of the participants. However, it might

be the case that individual forecasters are highly uncertain and, therefore, are reluctant to

deviate from the other forecasters. rmse assumes that high forecast errors in the past increase

an individual forecaster’s uncertainty about his current point estimate. Measures inferred

from the forecast-based approach work as indicators for uncertainty if linear time series models

are a good approximation of the model used by individual forecasters. Finally, model-based

measures are conditional on a specific forecast model. Moreover, this particular model is

assumed to be the same for all forecasters. In addition, garch provides the conditional variance

which is dependent on past forecast errors. By contrast, ucsv seems to be more appealing

from a theoretical point of view because the approach delivers a forecast error variance which

is driven by exogenous second moment shocks. Overall, the respective assumptions are most

likely not fulfilled completely. Hence, each measure proposed in the literature is probably

contaminated by some sort of measurement error suggesting that it is difficult to identify a

benchmark approach from these measures. By contrast, it should be beneficial to base the

analysis on information contained in all measures jointly.

In the following, we present some descriptive statistics to characterize the individual measures.

Figure 1 displays the autocorrelation of the eight uncertainty measures on the main diagonal.

It turns out that the autocorrelation is positive and significant at the 5% level for each

measure. The lowest degree of autocorrelation is found for survey disagreement, whereas, by

construction, the most sluggish measure is ucsv. In general, inflation uncertainty seems to be

a persistent phenomenon.

Considering cross-correlations on the off-diagonal elements of figure 1, we find that they are

high and significantly positive among all series and throughout all leads and lags. We take

12Individual measures are depicted in figure B.1 in the appendix.
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row i variable and yj,t+k is given in the column j. k varies between −12 and +12. The 5% significance level
is indicated by the horizontal line.

Figure 1: Cross-correlation of uncertainty measures

this as a first indication that all measures contain an important common component. Also

note that rmses and rmsef tend to lead the other measures.

We also present contemporaneous correlations of the individual uncertainty measures with

other variables in table B.1 in appendix B.1. It turns out that each individual measure has

significant correlations with many economic and financial variables. Moreover, the sign of

the correlations seems to be unambiguous. For instance, there is a strong positive correlation

with indicators of financial market risk. Moreover, the variability of commodity prices and

interest rates seem to be positively related. Furthermore, all measures seem to move counter-

cyclically, and they are negatively related to house prices, stock returns, and commodity
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prices. Overall, correlations are roughly in line with what we would expect from a measure of

inflation uncertainty, and each measure seems to carry information about underlying inflation

uncertainty. However, there appear to be differences with respect to the strength of the

correlation. Hence, we may obtain more robust results if we use information from all measures

jointly.

The extent of co-movement over time is revealed in figure 2. Here, we depict the evolution

of the cross-sectional standard deviation between measures at each point in time. We ob-

serve that the standard deviation fluctuates in a rather narrow band during the first half

of the sample, whereas the measures start to diverge beginning in 2005. The co-movement

between all eight measures further decreases during the recent crisis. It turns out that the

cross-sectional mean of all eight measures and the associated standard deviation are strongly

correlated (ρ = 0.66). Thus, during more turbulent times, individual measures have the

tendency to drift apart and measuring uncertainty is more challenging. It appears that a

method attenuating the measurement error problem is beneficial particularly in times of high

uncertainty.

90 92 94 96 98 00 02 04 06 08
0.1

0.44

0.78

1.12

1.46

1.8

 

 

std between uncertainty measures

Note: Individual uncertainty measures have been standardized to have mean zero and standard deviation one
before calculating the cross-sectional standard deviation.

Figure 2: Standard deviation of uncertainty measures

3.2 Common characteristics

To eliminate the idiosyncratic components (i.e. idiosyncratic measurement error) from the

data, we can exploit the commonalities among individual measures documented in the pre-

vious section. That is, we use the cross-sectional dimension of the data to alleviate the

10



measurement error problem. For this purpose, we conduct a Principal Component Analy-

sis. As mentioned above, the two variables rmses and rmsef seem to lead the rest of the

indicators. We obtain a maximum average cross correlation if we consider 8 and 5 lags, re-

spectively. Note that rmse measures seem to move early because of the timing we impose

(compare equation (1)). When estimating the common factors, we follow Stock and Watson

(2002) and account for the lead characteristics of these variables. Table 1 shows the loading

coefficients of the first three principal components and the individual and cumulative variance

proportions of those components.

PC 1 PC 2 PC 3

Eigenvalues 5.30 0.85 0.70

Variance Proportion 0.66 0.11 0.09

Cumulative Proportion 0.66 0.77 0.86

Eigenvectors

iqrs 0.34 0.44 −0.33

ents 0.31 0.58 −0.36

rmses 0.35 −0.17 0.33

iqrf 0.37 −0.41 −0.30

entf 0.33 −0.53 −0.45

rmsef 0.37 0.00 0.17

garch 0.38 0.05 0.35

ucsv 0.38 0.08 0.46

Table 1: Loadings of first three principal components

The first principal component (PC1) accounts for the major part of the dynamics as it already

explains 66% of the total variation of the underlying series. Notably, all eight loading coeffi-

cients are clearly positive and lie between 0.31 and 0.38. That is, the loadings are all similar in

magnitude and there is no single series driving the component. Moreover, the indicator does

not hinge on one of the individual measures as it remains virtually unaffected if we discard

one of the measures.13 In other words, it appears that there is a common driving force that

impacts each individual measure in a similar way. PC1 is shown in figure 3.14 The continuing

increase in uncertainty starting in 2006 stands out. This behavior is also apparent in each of

13We recalculate the indicator leaving out one of the individual measures in turn. Results are presented in
figure B.3 in appendix B.3.

14As a robustness check, we compare PC1 to uncertainty measures derived from SPF data in appendix B.4.
It appears that PC1 broadly retraces the movements of SPF. However, it turns out that the SPF measure is
much more volatile than PC1. Such a finding may occur because, by construction, survey data is probably
influenced by some kind of measurement error.
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the individual uncertainty measures. A maximum in uncertainty is found in December 2008

and January 2009 which coincides roughly with the peak of the recent economic crisis.15

90 92 94 96 98 00 02 04 06 08
−3

−0.18

2.64

5.46

8.28

11.1

 

 

First Principal Component

Figure 3: Uncertainty indicator (PC1)

To analyze the information content of PC1, we study the co-movement of PC1 with variables

that should be related to inflation uncertainty. Contemporaneous correlations of PC1 and a

collection of key variables are presented in table 2. It turns out that PC1 is closely linked to the

variability of nominal variables such as commodity prices, interest rates, and money. Similarly,

variables representing financial market risk (vix, ted spreads, corporate bond spreads, and

squared returns) seem to rise with PC1. Moreover, PC1 appears to be positively linked to the

variability of production growth. Finally, all variables representing the business cycle indicate

that inflation uncertainty is associated with economic contraction. We also observe a negative

association with short-term interest rates which are, in general, pro-cyclical over the business

cycle. Notably, the correlation obtained for long-term rates is somewhat lower compared to

short-term rates. This is probably due to the fact that the long-term interest rates is partly

driven by the inflation risk premium which tends to increase along with inflation uncertainty.

15Generally speaking, uncertainty is a bounded variable. However, the underlying series might be observa-
tionally equivalent to a non-stationary process. We analyze this issue in appendix B.2. Common unit-root
tests deliver rather mixed results. However, assuming non-stationarity of all series, we apply a parametric
approach to extract one common trend from the data. It turns out that such a proceeding produces results
that are similar to the results from the non-parametric PCA approach.
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PC1 PC2 PC3 PC1 PC2 PC3

(∆π)2 0.37 0.14 wti

(∆πcore)2 0.15 ppicomm −0.14 0.14

∆M2 0.20 ppiind −0.16

(∆M2)2 0.36 crb −0.28 0.23

ffr −0.48 (∆wti)2 0.22 −0.14

r3M −0.53 (∆ppicomm)2 0.47

r10Y −0.28 −0.17 −0.18 (∆ppiind)2 0.43

∆ffr −0.29 0.27 (∆crbreturn)2 0.42

∆r3M −0.19 0.22 ism −0.47 0.15

∆r10Y ismprod −0.43 0.15

abs(∆ffr) 0.13 −0.16 −0.18 pmi −0.53 0.17

abs(∆r3M) −0.14 −0.18 pmiprod −0.56 0.14

abs(∆r10Y ) 0.35 mhs −0.79 0.14

vix 0.53 confidence −0.59 0.21

ted 0.32 cu −0.69 −0.16

risk 0.39 −0.35 cuman −0.72 −0.16

sp500 −0.16 cuexIT −0.76 −0.17

dj −0.16 ∆y −0.81

dj5000 −0.14 ∆yman −0.82

sp5002 0.27 (∆y)2 0.53 −0.19

dj2 0.24 (∆yman)2 0.58 −0.17

dj50002 0.27 ∆empl −0.77

house −0.61 0.20 ∆jobless 0.67 −0.20

∆house −0.16 ∆u 0.78 −0.17

(∆house)2 0.46 0.31 ur 0.50 −0.17

recession 0.61 −0.16 ∆ur 0.79 −0.15

Note: Positive correlations are printed in bold and negative correlations are in lightface. Correlations that

are insignificant at the 5% level do not appear in the table. A detailed description of economic variables is

given in table B.2 in appendix B.1.

Table 2: Correlations of principal components with economic and financial variables

3.3 Group-specific characteristics

We now shed some light on characteristics that are specific to (groups of) individual measures.

That is, we analyze the movements that are not explained by the common component. To

this end, we analyze the second principal component (PC2) which accounts for 11% of the

total variance of the data. Notably, PC2 provides some insight into the dynamic interrelation

of individual uncertainty measures. We obtain high negative loadings for the two forecast-

based measures iqrf and entf (−0.41 and −0.53) and, in contrast, high positive loadings are

found for the two survey-based variables iqrs and ents (0.44 and 0.58). From the signs of

the loadings, we infer that PC2 is driven by factors that separate movements of survey-based
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and forecast-based measures. The other variables do not contribute to this component in a

significant way.
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Figure 4: Second and third principal component (PC2, PC3)

The left panel of figure 4 depicts PC2. It appears that PC2 is far from being white noise. That

is, deviations between survey-based and forecast-based measures are systematic. To identify

situations where both groups of measures move less synchronized, we analyze correlations of

PC2 to economic variables in table 2. It turns out that there are fewer significant correlations

than for PC1. In opposition to PC1, PC2 co-moves with the business cycle. Hence, the wedge

between forecast-based and survey-based measures tends to increase in recessions or during

economic downturns. That is, iqrs and ents tend to decrease during recessions while forecast-

based measures tend to rise. Similarly, the wedge between both groups of measures increases

when the corporate bond risk premium is high or output variability increases. Moreover, a

rise in commodity prices is associated with an increase in PC2, probably reflecting the fact

that these prices tend to co-move with the business cycle. Hence, disagreement appears to be

subject to systematic measurement error in more turbulent times such as economic downturns.

For an economic interpretation, note that, by design, the forecast-based approach mimics a

survey of professional forecasters such as the CE survey. However, a conceptual discrepancy

to survey-based measures should be highlighted. The forecast-based approach provides a

purely mechanistic way to deal with heterogeneous information. As a consequence, VAR

model forecasts almost inevitably diverge when indicators provide heterogeneous signals. By

contrast, in a survey, the way information is combined into a forecast is to a non-negligible

extent governed by subjective elements. For instance, the choice of a particular forecast

model, the weights attached to different pieces of information, or judgmental adjustments may

influence the forecast reported. Notably, if forecasters are risk-averse, they may choose to stick
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to the consensus if uncertainty is high, and forecast dispersion may decline. Such a behavior

appears to occur here during economically turbulent times such as recessions. Overall, results

suggest that using only survey disagreement as a measure of inflation uncertainty may deliver

misleading results.

The third principal component (PC3) is depicted in the right panel of figure 4. It features

highly negative loadings for all disagreement measures (iqrs, ents, iqrf , entf ), whereas the

other measures (rmses, rmsef , garch, ucsv) load positively. That is, PC3 appears to capture

some of the observed divergence of individual measures (see also figure 2). Note that PC3 is

relatively unsystematic and, hence, the correlation to other variables is weak (see table 2).

However, there appears to be a positive correlation with the variability of house prices and

the first difference of short-term interest rates.

4 Test of the Friedman-Ball hypothesis

In the following, we use PC1 to test the relationship between inflation and inflation uncer-

tainty. Friedman (1977) argues that high inflation rates are less predictable than lower rates.

Ball (1992) formalizes the idea stating that inflation uncertainty increases in the event of

higher inflation because the policy response is harder to predict. In particular, it is harder

for economic agents to forecast when there will be a shift to a tougher monetary policy. In

contrast, Cukierman and Meltzer (1986) argue that the link is from inflation uncertainty to

inflation. In a Barro-Gordon framework, they claim that, with highly uncertain agents, the

central bank has an incentive to create surprise inflation to lower unemployment. The in-

flation - inflation uncertainty link has recently gained relevance with the call for a higher

inflation target for central banks.

To test the Friedman-Ball hypothesis, we conduct a Granger causality test. To this end,

we estimate bivariate VAR models containing inflation and one uncertainty measure. As

we deal with monthly data, the lag length is set to 12. Results are presented in table 3.

Although contemporaneous correlations are rather similar across individual measures, results

of a Granger causality test are rather mixed (see table B.1). rmses and iqrf seem to be

Granger caused by inflation but not vice versa whereas for iqrs and garch Granger causality

appears to hold for both directions. For ents and entf , we find no dynamic relation to

inflation. In the case of rmsef and ucsv, it turns out that uncertainty is Granger causal for

inflation. When the same test is conducted for the change of inflation, we get almost the

same results. Overall, results appear to be inconclusive, and the choice of the measure seems
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to drive the results. Thus, using individual measures entails the risk that results are driven

by idiosyncratic movements that are unrelated to inflation uncertainty.

PC1 irqs ents rmses iqrf entf rmsef garch ucsv

H0: π does not Granger cause IU 0.00 0.00 0.08 0.02 0.01 0.79 0.08 0.00 0.16

H0: IU does not Granger cause π 0.27 0.01 0.31 0.27 0.48 0.82 0.03 0.03 0.00

H0: ∆π does not Granger cause IU 0.00 0.00 0.02 0.01 0.01 0.85 0.10 0.00 0.14

H0: IU does not Granger cause ∆π 0.21 0.19 0.01 0.51 0.51 0.30 0.00 0.01 0.00

Note: Granger causality tests are performed for inflation π as well as the monthly change of inflation ∆π and

inflation uncertainty (IU). Numbers are p-values for a Granger causality test.

Table 3: Granger causality test for inflation uncertainty and inflation

Using PC1 to measure inflation uncertainty, we find strong support for the Friedman-Ball

hypothesis, i.e., inflation Granger causes inflation uncertainty but not vice versa. The same

result is obtained if we consider the change in inflation. Most notably, results in table 3

suggest that the indicator provides an insurance against idiosyncratic movements of individual

measures.16 To further substantiate this result, we reestimate each bivariate VAR by three-

stage least squares. We employ PC1 as instrument for the individual uncertainty measure

and test whether we can recover the result from above. That is, instead of using PC1 directly,

we take the variation of each individual measure explained by the common component to

identify the effect. We then use the three-stage least squares estimates to perform a Granger

causality test. It turns out that we obtain no case where uncertainty seems to Granger cause

inflation. Overall, it appears that idiosyncratic movements of individual measures may mask

the underlying relationships of interest.

According to the Friedman-Ball hypothesis, there is a positive relationship between inflation

and inflation uncertainty. To assess the sign of the effect of an exogenous increase in infla-

tion on uncertainty, we take a dynamic perspective and calculate impulse response functions

from the bivariate VAR models introduced above. Orthogonal shocks are identified using

a Cholesky ordering such that uncertainty reacts to a shock to inflation instantaneously.17

This is motivated by the fact that uncertainty may move quickly when agents encounter new

macroeconomic information whereas inflation is comparatively slow-moving.18

16In appendix C.1, we exclude the recent crisis from the sample and end the analysis in 2007:M8 which is
roughly when the U.S. sub-prime crisis started to take over to other sectors of the economy. We find that the
results derived from the indicator still hold. Also note that the results obtained for individual measures are
not robust in the shorter sample.

17We also checked the reverse ordering of variables which does not affect the results in a significant way.
18Impulse responses of individual measures are presented in appendix C.2. It turns out that responses

of individual uncertainty measures to a one standard deviation shock to inflation are rather heterogenous.
Again, the link from inflation to inflation uncertainty is not revealed in a conclusive way.
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The left panel of figure 5 presents the response of the uncertainty indicator PC1 to a one

standard deviation shock to inflation. We observe that uncertainty experiences an initial

decline following an inflation shock. In other words, directly after the shock, a forecast for

subsequent periods seems to be less uncertain. This may be due to the fact that – given

the sluggishness of inflation – a forecast is relatively easy in the period directly following

the inflation shock. Let’s consider an inflation shock that is the result of a sudden increase

in oil prices. Having observed the shock, this very likely decreases uncertainty associated

with future inflation. The reason is that forecasters may be relatively sure to observe an

instantaneous hike in inflation rates during the first few months after the shock. In the

following periods, inflation uncertainty displays a hump-shaped pattern. It quickly increases

and becomes positive five months after the shock occurred. Thus, the more time has elapsed

since the shock, the more uncertainty is attached to the future course of inflation. Let’s

consider again a sudden increase in oil prices. In this case, more and more uncertainty

develops over time because the long-term effects of such an inflation shock – e.g. via second

round effects – are less clear-cut. The response of uncertainty to a shock to the oil price (wti)

is depicted in the right panel of figure 5. The pattern of the impulse response function very

much resembles the response of PC1 to an innovation in inflation. Hence, the plot confirms the

hypothesis that the short-term impact of increasing oil prices seems to be relatively clear-cut,

whereas longer lasting effects on the inflation rate are uncertain.
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Note: Confidence intervals are obtained from a bias adjusted bootstrap procedure (Kilian, 1998).

Figure 5: Response of inflation uncertainty to different inflation related shocks

In addition to the growing uncertainty about the transmission of a shock, there may be rising

uncertainty about the reaction of the central bank. Note that the latter scenario is very much

in the spirit of Friedman (1977) who recognizes that, given rising rates of inflation, economic
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agents become more and more uncertain about the timing and pace at which inflation will

return to lower levels again. Overall, the Friedman-Ball hypothesis is confirmed.19

Turning to the left panel of figure 6, we observe that a shock to core inflation (πcore) also

induces a rise in uncertainty. Here, it takes about four months until uncertainty increases. In

contrast to CPI inflation, a shock to core inflation does not induce a fall in uncertainty in the

first periods. We take this as further evidence that the initial decrease in uncertainty after a

shock to CPI inflation is traceable to the energy component in CPI. That is, once an energy

price shock has materialized, the short-run impact of this shock on inflation seems to be well

known and, thus, reduces forecast uncertainty. In the long run, however, the rise in uncertainty

is even more pronounced after a shock to CPI inflation than after a core inflation shock.

Notably, following a one-time increase in core inflation, uncertainty persistently remains on a

higher level.

Finally, we consider a shock to inflation expectations (πe) as measured by the CE mean

forecast (see right panel of figure 6). Here, an increase in inflation expectations is followed

by an instantaneous decline in uncertainty. As in the case of inflation and oil price shocks,

agents become more and more uncertain about the future path of inflation only in the longer

run, given their expectations. Again, this seems to be reasonable if we assume that shifts in

inflation expectations are to a considerable extent driven by energy price movements.
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Figure 6: Response of inflation uncertainty to different inflation related shocks (contd.)

19See appendix C.3 for result obtained from standard VARs containing output, inflation, a short-term
interest rate, and uncertainty. It turns out that results remain unaffected when a larger VAR is employed. In
appendix C.1, we leave out the most recent economic crisis. We find that the response of uncertainty to an
inflation shock is largely robust to a change in the sample. However, the reaction is significant only at the
10% level.
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In the following, we analyze whether the contribution of inflationary shocks to uncertainty is

meaningful in an economic sense. To this end, we present in table 4 the forecast error variance

decomposition associated with the bivariate VAR models from the preceding two sections. We

find that an inflation shock explains roughly 30% after 15 months. Likewise, core inflation

(πcore) shows a peak in the longer run. However, with a value of 14%, it contributes less

than headline inflation. It takes 15 months until the oil price (wti) contributes substantially.

In contrast, shocks to inflation expectations (πe) explain 10% of the variance of inflation

uncertainty on impact, and values increase further with the forecast horizon.

horizon 1 5 10 15 20 25

π 0.5 6.0 19.7 30.6 29.2 22.9

πcore 0.0 1.8 7.4 11.8 13.6 14.7

wti 0.1 4.1 10.9 20.2 22.3 19.6

πe 10.5 13.0 15.6 19.0 15.1 12.1

Note: Numbers (as % of total variance) give the part of the variance of inflation uncertainty explained by

a shock to the respective economic variable. The respective values are derived from bivariate VAR models.

Variance decompositions are presented for a horizon of 1, 5, 10, 15, 20, and 25 months.

Table 4: Forecast error variance decomposition

5 Conclusion

Analyzing various measures of inflation uncertainty, we find that inflation uncertainty has risen

significantly in the aftermath of the recent financial crisis. This highlights the importance

of understanding the causes and consequences of inflation uncertainty. However, empirical

results derived from different measures are not so clear-cut. One reason may be that the

assumptions that need to hold for any individual measure to be a valid proxy for uncertainty

differ substantially. Hence, individual measures are likely contaminated with idiosyncratic

measurement error.

We use common information contained in different measures to eliminate the measurement

error. To this end, we calculate survey-based measures as well as measures derived from time

series models, and we put forward a forecast-based approach. We find that each individual

measure – including disagreement – contains valuable information about inflation uncertainty.

It turns out that all measures are driven by a common component which we interpret as an

indicator for inflation uncertainty. Note that the indicator mitigates the measurement error

problem and the underlying signal should be revealed with greater precision.
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However, the indicator does not completely explain the variation in the data. We find that

individual measures tend to differ more during turbulent times, i.e. when uncertainty is high.

Moreover, it appears that using only survey disagreement as a measure of uncertainty, a

researcher may be confronted with respondents sticking to the consensus during recessions.

Hence, using only survey disagreement as a measure of inflation uncertainty may deliver

misleading results.

Subsequently, we use the proposed indicator to test the Friedman-Ball hypothesis. It ap-

pears that Granger causality tests cannot reject the Friedman-Ball hypothesis. Hence, when

the central bank implements a higher inflation rate, it is likely followed by increased uncer-

tainty. Eventually, misallocations arising from increased inflation uncertainty may give rise

to additional economic cost.

We also study the dynamic response of uncertainty to an inflation shock. It appears that

uncertainty initially tends to decrease. However, uncertainty swiftly increases in subsequent

periods. This behavior is traceable to the energy component in CPI inflation. Sudden oil

price increases, for instance, are followed by an initial decrease in inflation uncertainty. In the

longer run, uncertainty eventually rises because long-term effects of these oil price increases

appear to be harder to predict. Overall, we conclude that higher inflation is followed by

higher uncertainty. However, it is difficult to establish causal relationships by empirical

testing only. Hence, in future research we need to obtain a deeper understanding of the

dynamic transmission from inflation to uncertainty. We also need to establish causal economic

relationships from theoretical reasoning which would facilitate to find ways to prevent inflation

uncertainty.

Appendix

A.1 Description of survey data

We use individual forecasts on CPI inflation from professional forecasters polled by Consensus

Economics (CE). CE reports average annual growth rates of expected inflation for the current

and the next calendar year. However, since the forecast horizon varies for each month, the

cross-sectional dispersion of forecasts is strongly seasonal and converges towards zero at the

end of each year (Lahiri and Sheng, 2010). To obtain twelve-month-ahead inflation forecasts,

we follow Dovern et al. (2009) and calculate a weighted moving average of the annual forecasts.

For each month m, the fixed horizon forecast is obtained by weighting the two available point
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estimates according to their respective share in the forecasting horizon, i.e., 12−m+1
12

for the

current year’s forecast and m−1
12

for the next year’s forecast. The average number of fixed

horizon forecasts ranges between 16 and 32 per period, with a mean value of 25 observations.

A.2 Variables used to forecast inflation

Variable Transformation

Average hourly earnings (nonfarm payroll) change of growth rate

Building permits for new private housing units growth rate

Capacity utilization (manufacturing) growth rate

Crude oil index change of growth rate

Employment (nonagricultural industries) gap measure

Federal funds effective rate growth rate

Interest rate spread –

M3 change of growth rate

New orders (manufacturing) growth rate

Nominal narrow effective exchange rate growth rate

OECD composite leading indicators growth rate

Personal income growth rate

Retail sales growth rate

Total production gap measure

Unemployment rate gap measure

Note: “gap measure” denotes series that have been detrended with the HP-filter; “interest rate spread”

is defined as the difference between interest rate on government bonds and federal funds rate.

Table A.1: Variables used to forecast inflation

A.3 TVP-GARCH

σ2
α0

σ2
α1

σ2
α2

d φ1 γ1

0.00
[0.99]

0.00
[0.98]

0.00
[0.76]

0.00
[0.20]

0.12
[0.02]

0.87
[0.00]

p(Q(1)) p(Q(3)) p(Q(6)) p(Q(9))

0.15 0.15 0.45 0.64

p(LM(1)) p(LM(3)) p(LM(6)) p(LM(9))

0.45 0.41 0.55 0.65

Note: Parameter p-values are given in brackets. p-values for a Q-test as well as an ARCH LM-test are given below.

Table A.2: Parameters and specification tests for the TVP-GARCH model for U.S. inflation
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B.1 Individual uncertainty measures
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Figure B.1: Survey-based (iqrs, ents, rmses), forecast-based (iqrf , entf , rmsef ), and model-
based (garch, ucsv) measures of inflation uncertainty
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iqrs ents rmses iqrf entf rmsef garch ucsv iqrs ents rmses iqrf entf rmsef garch ucsv

(∆π)2 0.33 0.31 0.30 0.21 0.22 0.37 0.26 0.42 wti −0.14 −0.15

(∆πcore)2 0.16 0.18 0.18 0.14 ppicomm −0.21 −0.20 −0.15 −0.20

∆M2 0.24 0.18 0.15 0.25 0.13 0.15 ppiind −0.20 −0.21 −0.16 −0.20

(∆M2)2 0.44 0.19 0.25 0.33 0.26 0.38 0.27 0.24 crb −0.16 −0.30 −0.34 −0.23 −0.31 −0.32 −0.14

ffr −0.40 −0.39 −0.41 −0.34 −0.32 −0.45 −0.35 −0.48 (∆wti)2 0.19 0.15 0.27 0.20 0.14 0.28

r3M −0.43 −0.43 −0.45 −0.38 −0.37 −0.48 −0.37 −0.52 (∆ppicomm)2 0.37 0.36 0.36 0.29 0.31 0.47 0.35 0.52

r10Y −0.23 −0.24 −0.19 −0.22 −0.24 −0.48 (∆ppiind)2 0.33 0.35 0.33 0.26 0.28 0.42 0.32 0.49

∆ffr −0.26 −0.25 −0.15 −0.32 −0.36 −0.24 −0.14 −0.16 (∆crbreturn)2 0.34 0.33 0.32 0.29 0.29 0.41 0.27 0.47

∆r3M −0.16 −0.16 −0.25 −0.30 ism −0.40 −0.30 −0.32 −0.50 −0.42 −0.40 −0.40 −0.30

∆r10Y ismprod −0.39 −0.29 −0.31 −0.45 −0.38 −0.37 −0.36 −0.27

abs(∆ffr) 0.22 0.25 pmi −0.40 −0.28 −0.39 −0.55 −0.50 −0.46 −0.46 −0.38

abs(∆r3M) 0.19 0.23 pmiprod −0.44 −0.29 −0.42 −0.56 −0.48 −0.49 −0.49 −0.42

abs(∆r10Y ) 0.26 0.29 0.24 0.23 0.25 0.29 0.29 0.43 mhs −0.62 −0.61 −0.60 −0.72 −0.68 −0.66 −0.64 −0.65

vix 0.43 0.28 0.53 0.50 0.44 0.52 0.40 0.37 confidence −0.51 −0.53 −0.40 −0.52 −0.51 −0.44 −0.48 −0.44

ted 0.26 0.16 0.36 0.35 0.22 0.31 0.16 0.24 cu −0.47 −0.42 −0.55 −0.54 −0.53 −0.62 −0.64 −0.70

risk 0.22 0.38 0.46 0.43 0.40 0.27 0.31 cuman −0.50 −0.43 −0.58 −0.57 −0.54 −0.65 −0.66 −0.74

sp500 −0.15 −0.19 −0.20 −0.17 −0.15 cuexIT −0.51 −0.44 −0.62 −0.62 −0.59 −0.69 −0.70 −0.77

dj −0.15 −0.14 −0.18 −0.19 −0.16 −0.14 ∆y −0.57 −0.47 −0.66 −0.73 −0.65 −0.74 −0.72 −0.74

dj5000 −0.18 −0.16 −0.15 −0.17 ∆yman −0.59 −0.48 −0.66 −0.74 −0.66 −0.75 −0.73 −0.74

sp5002 0.20 0.15 0.22 0.28 0.23 0.31 0.22 (∆y)2 0.35 0.23 0.60 0.57 0.36 0.47 0.48 0.36

dj2 0.17 0.13 0.20 0.26 0.22 0.28 0.19 (∆yman)2 0.40 0.27 0.63 0.61 0.38 0.52 0.52 0.39

dj50002 0.23 0.14 0.24 0.29 0.27 0.28 0.19 ∆empl −0.54 −0.50 −0.61 −0.65 −0.63 −0.67 −0.68 −0.69

house −0.49 −0.47 −0.48 −0.65 −0.51 −0.53 −0.47 −0.38 ∆jobless 0.49 0.36 0.54 0.70 0.59 0.60 0.56 0.51

∆house ∆u 0.54 0.48 0.66 0.74 0.68 0.70 0.65 0.64

(∆house)2 0.23 0.36 0.33 0.22 0.25 0.40 0.53 0.63 ur 0.40 0.43 0.38 0.45 0.46 0.40 0.42 0.32

recession 0.46 0.37 0.46 0.63 0.57 0.57 0.46 0.46 ∆ur 0.54 0.49 0.66 0.72 0.67 0.70 0.68 0.66

Note: Numbers represent correlations significant at the 5% level. We do not provide a number for insignificant correlations. Positive correlations

are given in bold figures. A detailed description of economic variables is presented in table B.2.

Table B.1: Correlations of uncertainty measures with economic and financial variables
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Variable Description Variable Description

π Consumer Price Inflation brent Oil price inflation - Brent spot price for crude oil

πcore Core Inflation (Consumer Price Index less energy) wti Oil price inflation - West Texas Intermediate spot price for crude oil

∆π MoM change of inflation opec Oil price inflation - OPEC reference basket price for crude oil

∆πcore MoM change of core inflation ppicomm Producer price inflation - Commodities

(∆π)2 Squared change of inflation ppiind Producer price inflation - Industrial commodities

(∆πcore)2 Squared change of core inflation crb Commodity price inflation - Reuters/CRB total return index

πe Expected inflation from Consensus Economics (∆brent)2 Squared change of brent oil price

∆M2 MoM change of M2 money supply (∆wti)2 Squared change of WTI oil price

(∆M2)2 Squared change of M2 money supply (∆opec)2 Squared change of OPEC oil price

ffr Federal funds rate (∆ppicomm)2 Squared change of producer price inflation (commodities)

r3M 3-month treasury bill rate (∆ppiind)2 Squared change of producer price inflation (industrial commodities)

r10Y 10-year government benchmark, average yield (∆crbreturn)2 Squared returns Reuters/CRB total return index

∆ffr MoM change of federal funds rate ism ISM manufacturing total index

∆r3M MoM change of 3-month treasury bill rate ismprod ISM manufacturing production index

∆r10Y MoM Change of 10-year government benchmark rate pmi Chicago PMI total index of business activity

abs(∆ffr) Absolute change of federal funds rate pmiprod Chicago PMI production index of business activity

abs(∆r3M) Absolute change of 3-month T-Bill mhs Consumer survey index - Michigan Household Survey

abs(∆r10Y ) Absolute change of 10-year government benchmark rate confidence Consumer confidence index - Conference board

vix CBOE Market volatility index cu Capacity utilization rate, total industry

ted Difference between interest rates on interbank loans and treasury bill rate cuman Capacity utilization rate, manufacturing

risk Difference between interest rates on corporate bonds and government benchmarks cuexIT Capacity utilization rate, manufacturing excluding IT

sp500 Standard & Poor’s 500 Index returns ∆y Change of monthly index of industrial production

dj Dow Jones Index returns ∆yman Change of monthly index of manufacturing production

dj5000 Dow Jones 5000 Index returns (∆y)2 Squared change of industrial production

sp5002 Squared returns Standard & Poor’s 500 Index (∆yman)2 Squared change of manufacturing production

dj2 Squared returns Dow Jones Index ∆empl Change of nonfarm-payroll employment

dj50002 Squared returns Dow Jones 5000 Index ∆emplfull Change of full-time employment

house House price inflation by S&P/Case-Shiller ∆jobless Change of initial jobless claims

∆house MoM change of house price inflation ∆u Change of unemployment

(∆house)2 Squared change of house price inflation ur Unemployment rate

recession NBER recession dummy (recession: 1, no recession: 0) ∆ur Change of unemployment rate

Table B.2: Description of economic variables
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B.2 Cointegration analysis

In section 3.1, we note that the underlying uncertainty measures are rather persistent. From

a theoretical point of view, uncertainty is clearly bounded and cannot rise infinitely. However,

from a statistical point of view – depending on the observed time-span – the measures may

be observationally equivalent to an integrated process. Consequently, we test each of the

variables for stationarity using the DF-GLS test and KPSS test. Test results are presented

in table B.3. According to the DF-GLS test, the null of a unit root is rejected for half of the

eight uncertainty measures. However, the KPSS test suggests that six uncertainty measures

are non-stationary at least at the 5% level. Altogether, we obtain rather mixed results.

ERS DF-GLS KPSS Lag Order

Test Stat. Test Stat. BIC

iqrs −1.51 0.70∗∗ 2

ents −0.30 0.78∗∗∗ 2

rmses −3.21∗∗∗ 0.74∗∗∗ 2

iqrf −2.57∗∗ 0.36∗ 1

entf −1.61 0.26 2

rmsef −2.74∗∗∗ 0.90∗∗∗ 2

garch −2.35∗∗ 0.95∗∗∗ 0

ucsv 0.80 1.47∗∗∗ 14

Note: Intercept, no trend, lag length chosen according to BIC. Null for DF-GLS test: Time series has a unit

root. Null for KPSS test: Time series is stationary. Critical values for DF-GLS test statistic: -2.57 (1%),

-1.94 (5%), -1.62 (10%). Critical values for KPSS test statistic: 0.74 (1%), 0.46 (5%), 0.35 (10%).

Table B.3: DF-GLS and KPSS test

In table B.4, we also apply panel unit root tests in order to detect an individual or common

unit root in the series. Due to their cross-sectional dimension, these tests overcome the

drawback of standard unit root tests which have little power to distinguish highly persistent

stationary time series from non-stationary processes. It turns out that results are mixed

as well. While the respective tests unanimously confirm the presence of a common unit root

process in the data, tests for individual unit roots indicate that a fraction of the eight measures

is stationary. However, since the null of no common trends among the series can be rejected

according to the Nyblom-Harvey test statistic, for the moment we may consider uncertainty

being observationally equivalent to an I(1) process. Note that we impose the assumption that

there is no mean reversion of individual uncertainty measures.
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Method Statistic Prob.

H0: Unit root (assumes common unit root process)

Levin, Lin and Chu t* 2.85 0.998

H0: No unit root (assumes common unit root process)

Hadri Z-stat 11.88 0.000

H0: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat −4.87 0.000

Pesaran’s CADF test −4.44 0.000

H0: 0 common trends among the 8 series in the panel

Nyblom-Harvey statistic 7.88∗∗∗ -

Note: Individual intercept, no trend. 2 lags used for Pesaran’s CADF test. Nyblom-Harvey (NH) test statistic

calculated by assuming serially correlated errors with nonparametric adjustment for long-run variance. Critical

values for NH test statistic: 2.52 (1%), 2.07 (5%), 1.87 (10%).

Table B.4: Panel unit root tests

We proceed by testing for cointegration among the variables. Table B.5 displays the results

from the Johansen cointegration test. Both the Trace and the Maximum Eigenvalue test

statistic indicate seven cointegration relations in the data. Hence, we conclude that there is

one common trend in the data.

λ-Trace λ-Max

Null Test Stat. Test Stat.

r = 0 457.62∗∗∗ 128.90∗∗∗

r ≤ 1 328.73∗∗∗ 92.00∗∗∗

r ≤ 2 236.73∗∗∗ 68.94∗∗∗

r ≤ 3 167.78∗∗∗ 67.50∗∗∗

r ≤ 4 100.28∗∗∗ 44.78∗∗∗

r ≤ 5 55.49∗∗∗ 37.30∗∗∗

r ≤ 6 18.20∗ 16.35∗∗∗

r ≤ 7 1.85 1.85

Note: Intercept, no trend. 2 lags were chosen according to BIC and HQIC.

Table B.5: Johansen cointegration test

We extract the common (permanent) component by means of a multivariate Beveridge-Nelson

decomposition. For this purpose, a Vector Error Correction Model (VECM) of the following

form is estimated:

∆yt = α(δ0 + β′yt−1) +
J
∑

j=1

Γj∆yt−j + ut, (11)

where yt is a (k× 1) vector of uncertainty measures, α denotes the (k× r) matrix of loadings,

β denotes the (k × r) matrix of parameters in the r = 7 cointegration relations and Γj is the

short-run coefficient matrix. 2 lags where chosen according to BIC and HQIC. To obtain the
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Beveridge-Nelson decomposition consider the MA representation of the VECM:

yt = Ξ
t
∑

i=1

ui +
∞
∑

j=0

Ξ∗

jut−j + y∗0, (12)

where Ξ
∑t

i=1 ui denotes the common trend term and y∗0 represents initial values of the vari-

ables. The matrix Ξ has rank 1. The resulting common trend is displayed in figure B.2. It

appears that it closely mimics the uncertainty indicator introduced in section 3.2.
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Uncertainty Indicator
Common Trend

Note: The bold black line represents the indicator for inflation uncertainty (PC1), the thin red line depicts
the common trend derived from a Beveridge-Nelson decomposition. For comparability, both time series have
been normalized to have mean zero and standard deviation one.

Figure B.2: Uncertainty indicator and common trend
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B.3 Robustness of the uncertainty indicator
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Note: The bold (red) line represents PC1. The thin line and the dashed line represent an uncertainty measure
calculated from a subsample of individual measures discarding one of the measures.

Figure B.3: Different uncertainty indicators constructed from a subsample of individual un-
certainty measures
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B.4 Comparison to SPF measures

Some papers propose subjective probability distributions obtained from the Survey of Profes-

sional Forecasters (SPF) as a measure of inflation uncertainty (Zarnowitz and Lambros, 1987;

Lahiri et al., 1988). These studies distinguish between individual uncertainty, cross-sectional

dispersion, and aggregate uncertainty. First, the survey design allows for a deduction of

individual uncertainty E(σ2
i ) because each respondent provides a histogram of future infla-

tion. Second, it is also possible to calculate disagreement var(µi) among different forecasters

from the mean of individual distributions. Third, a measure of aggregate uncertainty varA(π)

can be calculated if single histograms are aggregated to obtain a finite mixture distribution

(Wallis, 2005). As shown by Giordani and Söderlind (2003), these three measures are related

by construction:

varA(π) = E(σ2
i ) + var(µi). (13)

In the following, we compare the uncertainty indicator from section 3.2 to the measures

derived from SPF subjective probability distributions. However, some limitations to such a

comparison should be noted. First, SPF forecasts are referring to the GDP deflator since

probability forecasts on the CPI inflation rate have only been included in the questionnaire

from 2007 onwards. Second, a number of technical assumptions needed to calculate SPF un-

certainty measures and changes in the survey design may give rise to measurement error. To

calculate SPF uncertainty, we follow D’Amico and Orphanides (2008), and Lahiri and Sheng

(2010) by using a non-parametric approach. We obtain E(σ2
i ) as the average of individual

standard deviations adding a Sheppard correction. To be comparable to most other studies,

disagreement, here, is simply the cross-sectional standard deviation of the respective mean of

individual probability distributions represented by std(µi). Aggregate uncertainty is given by

calculating the standard deviation of the aggregate distribution stdA(π). We use measures

based on a fixed forecast horizon of one year usually published at the end of the first quarter.

That is, SPF data is available on a yearly frequency. To compare the monthly uncertainty

indicator with SPF measures, we take the value obtained for March of the respective year.

In figure B.4, we depict the resulting time series which have both been normalized to have

mean zero and standard deviation one.

It turns out that individual uncertainty as well as aggregate uncertainty from SPF are rather

volatile with a spike in the year 1991 and an upward movement since 2000. The uncertainty

indicator tracks E(σ2
i ) quite well and both series co-move with correlation coefficient 0.42. It

appears that our uncertainty indicator (PC1) is less volatile. Moreover, the recent hike in
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Note: The bold black line shows the uncertainty indicator transformed into yearly data. The thin red line
represents the respective uncertainty measure derived from SPF data.

Figure B.4: Yearly uncertainty indicator (PC1) and inflation uncertainty derived from SPF

inflation uncertainty is more pronounced. The movements of SPF disagreement are, however,

not so closely tracked by the indicator. This probably reflects the fact that PC1 relies on

various measures of uncertainty whereas SPF disagreement covers only a single aspect, i.e. the

cross-sectional dispersion. The largest correlation is observed for aggregate uncertainty (ρ =

0.48) which covers both, the concept of individual uncertainty and cross-sectional dispersion.

Generally speaking, the indicator broadly retraces the movements of uncertainty measures

derived from SPF.

C.1 Excluding the crisis from the sample

Figure C.1 shows the uncertainty indicator PC1 and an indicator derived from a sample that

excludes the crisis, PC12007. Differences between the measures are relatively small, in some

time periods even non-existent.

Table C.1 presents Granger causalities among different uncertainty measures and inflation π

and the change in inflation ∆π, respectively. It appears that the effects are more pronounced

once we include the recent financial crisis into the data set. That is, Granger causality running

from inflation to the uncertainty indicator PC12007 is estimated with less precision, though it

is significant at the 10% level. Considering the change in inflation, results remain significant

at the 5% level. Apart from ents, the results presented in table 3 are reproduced.
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Note: The bold black line represents the indicator for inflation uncertainty (PC1) based on the whole sample.
The thin red line labeled PC12007 represents the uncertainty indicator calculated based on a sample ending
in 2007 M8.

Figure C.1: Uncertainty indicator excluding the crisis

PC12007 irqs ents rmses iqrf entf rmsef garch ucsv

H0: π does not Granger cause IU 0.07 0.00 0.01 0.44 0.56 0.82 0.95 0.02 0.11

H0: IU does not Granger cause π 0.93 0.71 0.90 0.07 0.90 0.68 0.37 0.19 0.96

H0: ∆π does not Granger cause IU 0.05 0.00 0.02 0.40 0.62 0.91 0.95 0.02 0.20

H0: IU does not Granger cause ∆π 0.86 0.98 0.85 0.02 0.41 0.13 0.03 0.17 0.51

Note: Granger causality tests are performed for inflation π as well as the change of inflation ∆π and inflation

uncertainty (IU). Numbers are p-values for a Granger causality test.

Table C.1: Granger causality test for inflation uncertainty and inflation (1991-2007)

Figure C.2 shows impulse responses of PC12007 to a shock to inflation. When compared to

figure 5, the pattern does not change. However, the reaction of uncertainty is significant only

at the 10% level. Hence, robustness checks suggest that our results are not driven by the

financial crisis only. However, the years 2008 to 2010 seem to be useful to better identify the

connection between inflation and uncertainty.
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Figure C.2: Response of inflation uncertainty to an inflation shock (1991-2007)

32



C.2 Impulse responses of individual uncertainty measures
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Note: Confidence intervals are obtained from a bias adjusted bootstrap procedure (Kilian, 1998).

Figure C.3: Response of individual uncertainty measures
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Figure C.4: Response of individual uncertainty measures (contd.)

C.3 Robustness of impulse response functions

In the following, we analyze whether the response of uncertainty to an inflation shock is robust

to alternative VAR specifications. To this end, we specify a larger VAR which is standard

for monetary policy analysis. It includes monthly data on industrial production, consumer

prices, the federal funds rate, and inflation uncertainty. Note that inflation uncertainty is

ordered last. We consider two alternatives. First, all variables except the interest rate enter

in log-levels. Second, we include production growth and inflation instead of production and

the price level. The resulting impulse response functions are presented in figure C.5. It turns

out that our results remain unaffected by the inclusion of additional variables.
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Figure C.5: Response of inflation uncertainty to an inflation shock in a 4-variable VAR
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