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Abstract 
 
This paper develops a model in which supply of a non-renewable resource can adjust through 
two margins: the rate of depletion and the rate of field opening. Faster depletion of existing 
fields means that less of the resource can ultimately be extracted, and optimal depletion of 
open fields follows a (modified) Hotelling rule. Opening a new field involves sinking a 
capital cost, and the timing of field opening is chosen to maximize the present value of the 
field. Output dynamics depend on both depletion and field opening, and supply responses to 
price changes are studied. In contrast to Hotelling, the long run equilibrium rate of growth of 
prices is independent of the rate of interest, depending instead on characteristics of demand 
and geologically determined supply. 
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1.  Introduction: 

 

How does the supply of a non-renewable resource respond to price changes, and how does 

the market for such a resource respond to shifts in demand?  These questions are important 

for understanding long-run issues such as the effects of climate policy on the use of fossil 

fuels, and short-run issues such as the behaviour of commodity prices.  At one extreme, the 

Hotelling (1931) approach treats non-renewable resources as assets which can be depleted at 

any date, so that prices are linked by inter-temporal arbitrage (the rent increasing at the rate 

of interest).  At the other, some industry experts use extremely low supply elasticities (the US 

Energy Information Administration uses short-run supply elasticity of 0.02 and long run 0.1, 

see Smith 2009), implying that opportunities for inter-temporal arbitrage are negligible.1 

The objective of this paper is to provide a model in which the supply of an exhaustible 

resource is captured in a richer manner than in the conventional Hotelling approach.  The 

central idea is that supply can adjust through two margins, intensive and extensive. The 

intensive margin is the rate of depletion of existing open fields (or mines).  We posit a 

relationship between extraction costs and the rate of depletion that can vary between zero and 

perfect flexibility (the latter being the pure Hotelling case); this endogeneity of extraction 

costs breaks the rigid link between price growth and the rate of interest.  The extensive 

margin is the development of new fields.  Central to our approach is the fact that capital has 

to be sunk before a new field is opened, a feature that accords with reality, and is a 

quantitatively important feature of major mining developments and oil investments in 

offshore and deep fields.  Fields differ in capital cost per unit reserve, and it is this that 

produces, in equilibrium, a sequence of field openings through time. 

 The supply of the resource depends on choices of how fast to deplete existing fields 

(the intensive margin) and when to open new fields (the extensive margin).  In sharp contrast 

to the standard approach, the long-run equilibrium of the model has price increasing at a rate 

that is completely independent of the rate of interest.  Extensive margin choices about field 

opening mean that the rate of price increase depends on characteristics of demand (price 

elasticity and growth), and characteristics of the geology and technology of supply.  This is 

perfectly consistent with intensive margin choices that are ‘Hotelling-like’, with depletion 

rates on individual fields adjusting according to price growth and the rate of interest.  The 

combination of intensive and extensive margin effects also gives different supply responses 
                                                           
1
  Empirical tests have failed to find support for the Hotelling approach.  See Chermak and Patrick (2002). 
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to shocks.  For example, demand reduction policies motivated by climate change may bring 

forward depletion of existing fields (the ‘green paradox’ noted by Sinn 2008) but will also 

cause postponement of the development of new fields, so that overall supply and emissions 

are reduced.   

The next section of the paper outlines the model and characterises producers’ choices 

of depletion rates and field opening.  In order to model depletion (the intensive margin) in a 

flexible yet tractable way we assume that extraction costs increase with the rate of depletion.2  

Furthermore, these costs are ‘iceberg’, using up the resource itself.  Both these assumptions 

seem to be supported in the technical literature on oil extraction (discussed in section 2.2) 

which suggests that faster depletion means that less of the resource is ultimately recoverable.  

They are also convenient modelling simplifications which make for a tractable 

characterisation of the intensive margin and, by allowing aggregation over fields, facilitate 

analysis of aggregate resource supply.   

The extensive margin decision turns on when to sink capital in order to open a new 

field.  This modelling approach is in contrast with much of the literature, where additions to 

stock are typically modelled as the outcome of a continuous variable (exploration) that adds 

to the capacity and reduces extraction costs of the existing field (as in Pindyck 1978, 

Dasgupta and Heal 1979).3   Existing literature in which there are field set-up costs includes 

Hartwick et al (1986), Holland (2003), and Livernois and Uhler (1987).  Hartwick et al 

assume zero extraction costs, in which case only one field is operated at any time, and 

Holland (2003) looks at cases where marginal extraction costs are either constant or infinite.  

Livernois and Uhler (1987) look at the rate of discovery of new fields with field-specific 

extraction costs, characterising first order conditions for the problem but doing little 

subsequent analysis of the equilibrium.  We are able to go beyond these models, fully 

integrating intensive and extensive margin choices. 

Section 3 places the intensive and extensive margin choices in the context of a 

continuum of potential fields and derives aggregate supply.  Supply depends on both the rate 

of change of price (relative to the interest rate), as in the Hotelling model, and on the level of 

price, operating through the extensive margin and the timing of field openings.  Thus, a 

                                                           
2
  This is more restrictive than much of the literature, in which costs are modelled as a function of extraction and 

the stock of resource remaining. For example, Pindyck (1978) assumes that costs are proportional to extraction 
and decreasing in remaining stock.  The rate of extraction is the ratio of these variables. 
3
  See Krautkraemer (1998) for a survey. Swierzbinski and Mendelsohn (1989) aggregate separate fields, but 

assuming no fixed costs and constant returns to scale in exploration and extraction.   
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permanent proportional price reduction postpones field opening, reducing the quantity 

produced in the short run, raising it in the long run, and reducing the cumulative quantity 

produced at all future dates.  A permanent reduction in the rate of growth of price increases 

production in the short run (bringing forward depletion of existing fields and, temporarily, 

field opening), but has a long run negative effect on cumulative quantity supplied. 

Section 4 proceeds from analysing the response of supply to a given price path, to the 

full market equilibrium with price endogenous.  The long run rate of change of price is 

determined by the rate of growth of demand, the price elasticity of demand, and a parameter 

summarising the geology of supply; it is completely independent of the rate of interest.  

Reductions in the level or the rate of growth of demand have the effect of reducing the 

cumulative quantity supplied, even though they may increase the rate of extraction on 

existing fields.  This has implications for our understanding of climate change policy.   

 

2.  Field depletion and development: 

 

There is a continuum of fields all of which are known at date 0, and are owned by price-

taking profit maximizing agents.  Each field contains one unit of the resource, but cannot 

produce until a field specific fixed cost Ke-θT, θ ≥ 0, has been paid, where e-θT captures 

technical progress in field development that has taken place by date t = T, when the cost is 

paid.   K varies across fields, and we will use K as the index of field types, with K running to 

plus infinity.  The number (measure) of fields of type K is S(K). 4 

 

2.1  Depletion and development 

 

Focusing on a particular field (i.e. taking a particular value of K), output at date t is xq(z), 

where x is the stock remaining and z is the rate of depletion, defined as the proportionate rate 

of decline of remaining stock, so xzx −=& .  While z is the rate of depletion of the field and xz 

is the reduction in the stock, xq(z) is the recovered output.  The expression q(z) / z  ≤  1 is the 

yield curve, giving the fraction of the reduction in stock that is marketable output.  All current 

extraction costs are subsumed in this yield curve.  The function q(z) is increasing and concave 

in z and, if strictly concave, increases in the rate of depletion yield less than proportionate 

                                                           
4   Assuming each field contains one unit of resource is without loss of generality as K can be interpreted as 
capital cost per unit capacity.  The total stock of resource in fields with capital cost K is S(K). 
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increases in output, perhaps as too rapid pumping from an oil-field reduces the capacity of the 

field.   We give some examples and further discussion of this relationship in section 2.2. 

Profit maximization in a field with fixed cost K requires that the opening date, T, and 

subsequent time paths of z and x are chosen to maximize the present value of profits 

(evaluated at date t = 0 with interest rate r), 

 

TrrrT KedezqxTpePV )(
0

))(()()( +−−∞− −+≡ ∫
θτ ττττ    (1) 

subject to  

zxx −=/& ,    and x(0) = 1,  x ≥ 0.      (2) 

 

The integral in (1) runs over dates τ measured from when the field is opened, so t = T + τ, 

and p(t) is the (exogenous) price at date t.  We assume that, as t →∞,  p(t) converges to 

constant exponential growth at rate less than or equal to r, as is necessary for the objective to 

be bounded.  We denote this limiting rate of change of price ∞p̂ . 

The profit maximizing depletion path once the field has been opened is given by the 

Euler equation  
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This depends on the difference between the rate of interest and rate of price increase, and also 

on the curvature of q(z), indicating the cost penalty from increasing the rate of depletion.5   

                                                           
5
 The intuition behind Euler equation (3) for optimal depletion is as follows.  Suppose that the price is 

growing at constant rate p̂ , so z = z*, and consider a perturbation at some date (say date 0)which is 
an instantaneous increase in extraction δ, offset by a reduction in the next instant which puts the 
resource stock back on its previous path.  If δ is small, the value of the perturbation is  
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The first term is the value of increasing extraction by δ.  Stock carried through into the next instant 
changes from (1 – z*)x0 to (1 - z* - δ)x0  and its value is discounted by the interest rate minus the rate 
of price growth.  To undo the perturbation, the rate of extraction must fall to z* - δ.  Differentiating 

with respect to δ and evaluating at δ = 0, this expression is 



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perturbation has zero value if the term in square brackets is zero, this being equation (5).  
 



5 

 

Notice that z can jump, while the stock variable x cannot.  The stock remaining in a field that 

has been open for τ periods is 

 





−= ∫

τ
χχτ

0
)(exp)( dzx .        (4) 

 

Concavity of q(z) ensures that differential equation (3) is locally stable (since z - q(z)/q’(z) is 

decreasing in z), so z converges to stationary value z*  implicitly defined by  

         

*)('/*)(*ˆ zqzqzrp −=−∞ ,   or )ˆ(* ∞−= prz ς ,  0'>ς ,   (5) 

 

where the function )ˆ( ∞− prς  summarizes the long-run relationship.  We discuss this further 

in section 2.2. 

The profit maximizing date, T, at which to spend Ke-θT and open the field is given by 

first order condition 

 

    0)()()(
00

=




 +++−=

∂
∂ −∞−−∞−

∫∫ τθτ τθτ dezxqpKerdezpxqre
T

PV rTrrT
& .  (6) 

 

The intuition is that if the profile of production and costs is shifted back by dT, then the first 

term is the cost of pushing revenues further away, the second the benefit of moving costs, and 

the final term  is the change in revenue from the fact that output )(zxq  is now valued at 

prices dT later. Rearranging, the date of opening T is given by first order condition 

 

( ) 0)()(
0

=++− −−∞

∫
Tr Kerdezxqrpp θτ θτ& .     (7) 

 

To see the implications of this it is easiest to look at (1) and (7) with the assumptions that 

price is growing at constant ratep̂  (taking value p0 at t = 0) and z is at its stationary value z*. 

The integral in (1) can then be evaluated as 
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The first and second order conditions for choice of T are  

 

    
0)ˆ()ˆ( )( =++−=

∂
∂ +− TrKepPVrp

T

PV θθ ,
      

0))(ˆ( )(
2

2

<++−=
∂

∂ +− TrKerp
T

PV θθθ .   (9) 

 

If  θ + r  > 0, the second order condition requires that θ+p̂ > 0, and we assume this to be 

satisfied.  From the first order condition, an interior solution requires pr ˆ> , as already 

assumed; if not it would pay to postpone entry indefinitely getting the dual benefit of later 

capital cost and higher present value of revenue flow.6  These conditions imply that the 

higher is K the later is the field opened, since  
22

2

/

/

TPV

KTPV

dK

dT

∂∂
∂∂∂−=   and  

0)ˆ()(
2

>+=
∂∂

∂ +− pe
KT

PV Tr θθ  so .0>
dK

dT
 The implication is that, with a continuum of fields 

differing only in capital cost per unit reserve, low K fields will be opened first. 

 

2.2  The rate of depletion: discussion 

 

The modeling of extraction costs is drawn from the technical literature on resource depletion, 

particularly in the oil sector.  In this literature the benchmark assumption is that output from a 

field follows an exponential rate of decline (Adelman 1990, 1993); in our framework this 

would mean constant z.7  Varying the rate of depletion has a cost primarily by its impact on 

total recoverable reserves.  This variation is typically achieved by altering the rate of water or 

gas injection which pressurizes the well, and its effects are geology dependent; Nystad (1985, 

1987) categorises fields as ‘Hotelling’, ‘intermediate’, and ‘geosensitive’, in increasing order 

according to loss of recoverable reserves from faster depletion. We capture this in 

relationships q(z) and zxx −=& . Concavity means that an increase in output, q, involves a 

greater than proportionate decrease in remaining (recoverable) reserves, x.  

 Understanding these relationships is facilitated by working with a particular 

                                                           
6  And, with prices endogenous, competitive equilibrium would not exist, see Holland (2003). 
7
 A constant rate of depletion means exponential decline in remaining stock x, and hence in output 

q(z)x. 
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functional form that will be used in simulations later in the paper.  We suppose that q(z) takes 

the form 

 
( ) λλ −−= 1)( bzazq , with parameters a > 0, b  ≥  0, and λ ≤ 1.  (10) 

 
 

With this specification the Euler condition (3) and long-run value of the rate of depletion are, 
 
 

( )









−
−+−







 −=
λ

λ
λ

λ
1

bz
r

p

pbz
z

&
&  ,  

λ
λ )ˆ)(1(

* ∞−−
+=

pr
bz .  (11)

 
 

Examples are given in figure 1.  Parameter b gives the minimum rate of extraction below 

which marketable output is zero.  The key parameter is λ which captures the extent to which 

faster depletion leads to loss of reserves, and hence also the extent to which optimal depletion 

is sensitive to price.  The pure Hotelling case is λ = 0, (solid line in figure 1) in which the rate 

of depletion is infinitely sensitive to the gap between the rate of price increase and the rate of 

interest, so continuing extraction over an interval of time is possible only if these are equal.    

At the other extreme, as λ → 1 with b > 0, the optimal rate of depletion is equal to b, and 

completely independent of the rate of price increase or rate of interest (the long-dashed line 

has λ = 0.95).  This is consistent with the work of Adelman (1990), who argues that the rate 

of depletion from a particular reservoir is quite insensitive to price, and well approximated by 

a constant exponential rate of decline (at rate b in this specification).  For cases with 

intermediate degrees of ‘geosensitivity’ the extraction path is more tilted towards the present 

the larger is pr ˆ− . 
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Figure 1: Examples of extraction costs,   q(z)  

 

 

 

 While this paper deals with supply coming from many fields, it is worth briefly 

connecting with the standard model of market equilibrium with a single field.  If demand for 

the resource is iso-elastic, gt
D eDpQ η−=  where D is a constant, η is the price elasticity of 

demand, and g the exogenous rate of growth of demand, then along the equilibrium path 

output, q(z)x, must changeat rate pg ˆη− .  The rate of change of supply is simply */ zxx −=& , 

so, using (11), the equilibrium rate of growth of price is 
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 .      (12) 

 
 

This is a simple generalization of the Hotelling model, in which the role of the interest rate 

depends on parameter λ.  λ = 0 this gives the pure Hotelling case, and when λ > 0 the rate of 

price increase is greater the faster the growth of demand, g, the smaller the price elasticity, η, 

and the larger the base rate of depletion, b.  

 

q(z)=z 
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)(zq
 

05.0,05.0,95.0 === baλ  

.1,0 == aλ  
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2.3  Field development: discussion 

 

The field owner’s objective, equation (1), was written in terms of a field of size one (x(0) = 1) 

developed at cost K.  Setting the size of each field at unity is a normalization, and the key 

measure is size per unit capital cost.  Uncertainty about recoverable reserves in a new field 

can be incorporated, providing owners are risk neutral and there are a large number of fields 

of each type, simply by letting unity be the expected field size.  K, the capital cost of a unit of 

reserve, has empirical counterpart in the oil sector of ‘finding and development’ (F&D) costs 

per barrel, and data indicates that these are now the largest part of the sector’s costs.  F&D 

costs have risen sharply in recent years, with global average of $21 per barrel over the period 

2006-09 (EIA 2011); they are of course field specific and in some cases go much higher (e.g. 

US F&D costs on offshore projects were $64 per barrel in 2006-08).   These costs are several 

times greater than other production costs (‘lifting’ costs), running at global average of $11 

per barrel (EIA 2011).8  Furthermore, from an economic standpoint some elements of lifting 

cost should probably be classified as F&D; for example, some capital equipment may be 

highly specific to a field but is rented by the firm and counted as ‘lifting’ not F&D costs. 

 

3.  Resource supply 

 

We now move from the decisions taken on a single field to analysis of total supply from all 

fields. Throughout this section we look at the supply response to an exogenous price path, 

endogenising price in section 4.  

 There is a continuum of fields indexed by their capital cost, K, and the measure of 

fields of type K is S(K).  The date of opening a field of type K is given in equation (7), and 

this gives the type of field opened at date T, i.e. relationship K(T),  

 

   ( ) dteTtxzqprp
r

e
TK Ttr

T

T
)(),()(

)(
)( −−∞

∫ −
+

= &

θ

θ

.     (13) 

  

Notice that the rate of depletion, z, is a function of time, but is the same for all fields 

(equation (3)).  All open fields are identical apart from the scale factor x giving the remaining 

stock, and x(t,T) denotes the stock remaining at date t in a field opened at date T , 

                                                           
8
  Reported lifting and F&D costs both include some tax element, EIA 2011. 
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



−= ∫

t

T
dzTtx χχ)(exp),(  ,   x(t,t) = 1.    (14) 

 

At any instant of time the total capacity that is ‘opened’ is )(KSK&  and total costs 

incurred are KKSK )(& .  In order to model the evolution of total supply the relationship S(K) 

needs to be specified.  In some of what follows we assume that it is iso-elastic, with 

1)( −= σKKS .  Parameter σ may be positive or negative, but we shall generally interpret 

results taking σ < 0, meaning that the remaining resource stock is finite, while σ > 0 means it 

is infinite.9   This relationship can easily be given a micro-foundation.  The size distribution 

of oil fields is well approximated by a power law (see the discussion in Laherrere 2000).  If 

the elasticity of capital costs with respect to field size is less than unity and greater than the 

absolute value of the exponent in the power law, then the relationship 1)( −= σKKS   with σ < 

0 follows (see appendix for derivation).   

We define open reserves at date t, R(t),  as the stock remaining in fields that have been 

opened by that date, i.e. 

    ( ) ( )dTTtxTKSTKtR
t

,)()()( &∫ ∞−
≡ .     (15) 

This is the integral over all previous dates of the set of field types that opened at each 

date, )(TK& , times the number of fields of type K, ( ))(TKS , times stock remaining, ( )Ttx , .  R 

moves according to differential equation 

    zRKSKR −= )(&& ,                 (16) 

 

derived by differentiating (15) with respect to t and using x(t,t) = 1 and zxx −=&  (noting that z 

is the same on all open fields). The interpretation is straightforward; open reserves change as 

new fields are opened at rate )(KSK&  and existing ones are depleted at rate z.   

Total output at each date is the sum of current extraction from all open fields.  Once 

again, the fact that all open fields are identical, except for the scalar difference in the size of 

stock remaining, makes this aggregation over open fields straightforward.  Total supply, QS, 
                                                           
9
 K runs to plus infinity; the stock remaining is finite iff  σ < 0, since 

[ ]∞−∞∞
== ∫∫ KKK

KdKKdKKS σσσ /)( 1
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is simply the yield from depletion of the stock of open reserves,  

 

RzqQS )(= ,                  (17) 

 

and its rate of growth is 

 

z
R

KSK

zq

zzq
QS −+= )(
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)('ˆ
&&

.
       

(18) 

 

This completes characterization of the supply side of the model, given a price path   

p(t).  To summarize, the supply side is characterized by three variables.  The first is z, the rate 

of depletion, this inducing values of x(t,T) in each field.  The second is K(T), the time path of 

field openings, and the third is R(t), the stock left in open fields this, together with the rate of 

depletion, determining supply,  QS.   z and K are forward looking decision variables that can 

jump in response to a shock, although K can only jump upwards (capital costs in field 

openings are sunk).  R is a state variable, depending on both new field openings and past 

history. 

 

3.1  Long run supply 

 

To analyse the model we suppose first that price grows at a constant exponential rate p̂  for 

all future dates.  The rate of depletion is then constant with value )ˆ(* prz −= ς , and stocks 

decline exponentially, )(*),( TtzeTtx −−=  (from (5) and (12)).  The path of field openings 

through time is (from equation (13) with constant growth to evaluate the integral)   
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 (19)

 

 

This equation gives K(0) proportional to initial price p0, and the rate of growth of K equal to 

the constant, θ+= pK ˆˆ .   

 While constant future growth of prices implies that z = z* is constant and K grows at a 

constant rate, the behaviour of R depends on the history of past field opening and the total 
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capacity of fields of  each type, S(K), as given by equation (15).  If  S(K) is iso-elastic, 

1)( −= σKKS , as discussed above, then the differential equation for open reserves, (16) 

becomes 

 

RzKKR *1 −= −σ&& ,                 (20) 

which, with z* and K̂  constant, has explicit solution, 

  












+
−+

+
= −

Kz

KK
Re

Kz

KK
R tz

ˆ*

ˆ

ˆ*

ˆ
0

0
*

σσ

σσ

                (21) 

 

where K0 and R0 are the values of K and R at date zero. The effect of these initial values goes 

to zero with tze *− , so R converges asymptotically to value given by ( )KzKKR ˆ*/ˆ/ σσ += . 

The long run rate of change open reserves is therefore )ˆ(ˆˆ θσσ +== pKR  so, with σ < 0, 

open reserves decline exponentially.  Furthermore, since RzqQS )( *= , output is declining at 

the same rate.  We summarize these properties as follows. 

 

Proposition 1:  

If price is growing at constant ratep̂ at all future dates and prp ˆ,0ˆ >>+ θ , then: 

i) z, the rate of depletion of each field is constant, and is faster the larger is pr ˆ−  

(equation 5). 
ii)  K, the sunk cost per unit reserve incurred on fields opened at each date, is 

proportional to p0 and increasing at rate θ+= pK ˆˆ (equation 19). 

If, additionally, the number of fields of type K is S(K) = Kσ-1, with σ < 0 (corresponding to 

a finite stock of the resource) then: 

iii)  The rate of growth of open reserves and of supply converge asymptotically to                                          

 )ˆ(ˆˆ θσ +== pRQS  < 0.  

iv)  On the long run (asymptotic) growth path values of R and Q are given by 
 

)ˆ(*

)ˆ(

θσ
θσ

++
+=
pz

pK
R ,  RzqQS *)(= .    (22)
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Proposition 1 makes clear the different behaviour of the intensive and extensive margin.  The 

intensive margin (the rate of depletion) depends on the rate of change of the price, not the 

price level, in the usual Hotelling manner.  The extensive margin, the date at which new 

fields are opened, depends on the level of the price, as well as its rate of change.  So too do 

open reserves and the level of output at each date. Comparative dynamics across asymptotic 

growth paths indicates that a higher initial price, p0, is associated with more fields having 

been opened at each date (higher K, equation 19) and, if σ < 0, lower open reserves and 

supply of output at each date (equation 22).  The intuition is that a higher level of prices 

means that more fields have been opened and (partially) depleted so current output is lower.  

More interesting – and more insightful – than the asymptotic behaviour of supply is 

the response of supply to unanticipated permanent changes in p0 and inp̂ to which we now 

turn.  To investigate this we suppose that the economy is initially on the long run path 

described above, this determining values of z, K, R and QS as given in proposition 1.  How 

does supply respond to unanticipated change in p0 and inp̂ occurring at date t = 0?  z and K 

are choice variables which can jump (the latter, upwards only). The motion of R, the stock of 

open reserves, is given by (20); it cannot jump independently, although a jump in K at date 

zero will cause a discrete change in the stock of open reserves. 

 

3.2  Price level changes. 

 

Suppose that an unanticipated upwards jump in p occurs at date 0 and lifts the price path by 

the same proportion at all future dates.  Since this is a price level (not growth) effect it his has 

no effect on the rate of depletion (intensive margin, equations (3), (5)), in which price enters 

only in the form of future price growth; in a pure Hotelling model this change would have no 

effect whatsoever on supply.  However, an increase in p0 affects the extensive margin through 

the timing of field openings, causing an equi-proportionate increase in K as given by equation 

(19).  This is illustrated in the top left panel of figure 2a below, for a jump of 20% in the price 

level (parameter values are in the appendix).  The horizontal axis is time and the vertical is 

ln(K).  The solid line is the path without the price change, and the dashed is with the change.  

There is an upwards shift but no change in the subsequent rate of growth of K.   

An upwards jump in K means that a discrete number of new fields are opened as the 

shock occurs but, if σ < 0, fewer fields are opened at every date thereafter. (The number of 
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fields opened is σKKKSK ˆ)( =& , and while K̂  is constant Kσ has fallen).  This jump and 

subsequently lower rate of field opening works through into the stock of open reserves and 

hence output through equations (20) and (21). R jumps and then converges asymptotically to 

( )KzKKR ˆ*/ˆ/ σσ += ; the right hand side of this expression is unchanged, but since Kσ is 

lower, so too is R, giving the path illustrated on the top right panel of figure 2a.  

The corresponding path of output is in the lower left panel, proportional to the path of 

open reserves since the rate of depletion is constant.  A permanent proportional price increase 

therefore elicits a positive short to medium run supply response which turns negative as fewer 

new fields are being opened.  The elasticity of asymptotic supply with respect to the price 

level is σ, as can be seen by noting that K is proportional to the price level (equation (19)), 

while asymptotic R and QS are proportional to Kσ (equation (22)).  While the short run price 

elasticity of supply is positive, the long run supply elasticity is therefore negative (if σ < 0).  

The short and long run supply responses can be combined by looking at the change in supply 

cumulated from the date of the shock; this is illustrated in the final panel of figure 2a, 

expressed as a proportion of cumulated output on the initial path.  An increase in price causes 

a permanent increase in cumulative output, although the proportionate increase goes 

asymptotically to zero.  

A downwards price jump (-20% all dates) is illustrated on figure 2b, and is not 

completely symmetric to a price increase because there is no possibility of field closure.  The 

shift in K (top left panel) is therefore a horizontal shift, and there is a period in which no new 

fields are opened.  During this period open reserves fall, as does output.  Once field openings 

resume output and open reserves recover, coming to lie above what they otherwise would 

have been, mirroring the long run effects of a price increase.  The price decrease reduces 

cumulative output at all dates. We summarize these effects in proposition 2.  

 

Proposition 2:  

A permanent proportionate change in the price (p̂ constant and unchanged) has no effect 

on the rate of depletion or the long run rate of growth of supply.  A price increase brings 

forward the opening of fields.  Supply increases before eventually falling below what it 

otherwise would have been (with long run price elasticity of supply of σ).  Cumulative 

supply is increased at all dates.  A price decrease has reverse effects, leading to a reduction 

in cumulative supply at all dates. 
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Figure 2a: Price increase  

 

 

Figure 2b: Price decrease 

 

Solid line: original path.  Dashed line: new path. 
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3.3 Price growth: 

 

We now turn from a change in the level of price to a change in its rate of growth.  At the 

intensive margin, a permanent increase in price growth causes an immediate and permanent 

fall in the rate of depletion, z (equation (5)).  Intensive margin effects on other variables are 

illustrated by the short-dashes in figure 3a, constructed with the decrease in z but holding the 

time path of K unchanged; solid lines are the original paths.  Slower depletion means less 

supply from a given quantity of open reserves but more open reserves at all future dates, so a 

short run reduction in supply is followed by higher supply in future, the Hotelling-like 

response that would be expected.  Cumulative output is reduced for a period but then 

becomes larger than it otherwise would have been.10 

The extensive margin now operates in a similar manner to the intensive as higher 

future prices creates an incentive to postpone field opening.  Field opening is reduced (or 

ceases altogether) for a period, and then resumes at a faster rate, since θ+= pK ˆˆ .  The 

tension between these forces can be seen by using equation (5), *)('/*)(ˆ* zqzqprz =−+ , in 

equation (19) to give 
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and differentiating with respect to T giving 
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
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 .  (24) 

 

This expression is negative for small T (since q’’< 0 and pddz ˆ/*  < 0) and positive for large 

T, when the first term in the square brackets comes to dominate.  There is therefore a period 

in which field openings are reduced (or cease altogether), following which more fields are 

opened at each date and the new path overtakes the old.     

                                                           
10

  This long run increase is because slower depletion uses up less of the resource in extraction costs. 
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This is illustrated in the top left panel of figure 3a.  Faster price growth increases the 

value of opening fields in the future, causing opening to pause for a period but then to 

continue more rapidly giving the crossing identified in equation (24).  The long-dashes in the 

top right and bottom left hand panels give paths of R and QS when both intensive and 

extensive margin effects operate. The pause in field opening causes a decline in open reserves 

and larger initial fall in output.  But following the pause, faster field opening eventually leads 

to higher open reserves, higher output, and a positive effect on cumulative supply.   The 

effect of the extensive margin change is therefore to amplify intensive margin changes, as 

seen most clearly for the bottom right hand panel, giving the cumulative supply response.    

Figure 3b gives the effects of a permanent reduction in the rate of growth of price.  

This increases the rate of depletion and brings forward field opening, giving the K crossing 

that we noted above (top left hand panel).  The top right and bottom left panels give the paths 

of R and QS, once again giving initial path (solid), intensive margin only (K constant, short 

dash) and full adjustment (long dash).  Faster depletion alone (short dash) gives a fall in open 

reserves at all dates, associated with higher output in the short run and lower output in the 

long run.  Combining this with the change in field openings (long dash), the effect is 

magnified with a larger output increase in the short run, but a sharper fall in the long run. 

Cumulative output is raised for a short period, but then permanently reduced as lower prices 

have a major impact in reducing field openings (bottom left panel).  We summarize results in 

proposition 3: 

 

Proposition 3:  

A permanent increase in the rate of growth of price tilts production to the future.  

Depletion of existing fields is slowed down, and opening of new fields postponed.  Supply 

is reduced for a period, after which it overtakes its previous level.  The converse holds for 

a permanent decrease in the rate of price growth. 
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Figure 3a: Faster price growth  

 

 
Figure 3b.  Slower price growth  

 

Short dash:  Intensive margin, K constant, z adjusts. 
Long dash: Intensive and extensive margin, K and z adjust. 
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4.  Market equilibrium: 

 

We now go from looking at the response of supply to price, to the full market equilibrium 

with price endogenous.  The demand curve is assumed to have constant price elasticity η ≥ 0, 

exogenous rate of growth g, and level parameter D, 

 

gt
D eDpQ η−=  , so pgQD ˆˆ η−= .      (25)  

 

The equilibrium price path comes from equating QD to QS. 

 

4.1  Constant growth. 

 

Section 3 established that if price is growing at a constant rate the long run rate of growth of 

supply is constant at )ˆ(ˆ θσ += pQS  (proposition 1).  Equating this with the rate of growth of 

demand, the equilibrium rate of growth of price is 

 

  
ση
σθ

+
−= g

p̂ .        (26) 

 

Recalling that σ is the (asymptotic) price elasticity of supply, this expression links a demand 

shift (demand growth g) to price change via elasticities of supply and demand in the usual 

way.  In the present context, a number of points are noteworthy. 

 First, in contrast to the standard Hotelling approach, the equilibrium rate of price 

increase is independent of the rate of interest.  The model gives a Hotelling-like result 

(equation (12)) if the extensive margin is completely fixed (no new fields open, and supply 

response comes only from altering depletion of existing fields).  However, once the extensive 

margin is included in the supply response the long run rate of growth of price depends on 

demand and supply elasticities in a familiar way, and not at all on the interest rate. 

 Second, the necessary condition for our characterization of the date of field opening to 

be a profit maximum is that 0ˆ >+θp  (section 2.1).  With p̂ given endogenously by (26), 

this condition could fail for two distinct reasons.  One is that g is substantially negative (with 
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denominator of (26) positive) in which case demand is falling too fast to support the positive 

price growth necessary to induce delay in field opening.11  The other is that ση + < 0 (with 

numerator of (26) positive).  This could arise if σ < 0 in which case, as already noted, the 

long run price elasticity of supply is negative.  We impose the condition that ση + > 0, 

failing which the second order condition for field opening is not satisfied. 

 Equilibrium values of other variables in the system follow directly from the price 

growth given by (26) together with proposition 1.  The long run rates of growth of open 

fields, open reserves, and output are  

 

ση
ηθ

+
+= g

K̂ ,  
ση
ηθσ

+
+== )(ˆˆ g

RQ .      (27) 

 

The initial price equates supply and demand so, using (19) and (22) in (25), satisfies 
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The following proposition summarizes these properties of the long run equilibrium. 

 

Proposition 4:  

On the long run (asymptotic) path the rate of growth of price is independent of the rate of 

interest, and given by ( ) ( )σησθ +−= /ˆ gp .  The elasticity of the equilibrium price with 

respect to the level of demand is ( )ση +/1 .  On this path the rate of depletion is constant, 

and output is declining at rate ( ) ( )σηηθσ ++ /g . 

 

 

This describes the long run equilibrium path but, as before, it is more interesting to 

investigate responses to exogenous changes.  We look first at shocks to the level of demand, 

and then to its rate of growth. 

 
  

                                                           
11  A high value of θ, the rate of technical change on K, supports postponement of field opening. 
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4.2  Proportional change in demand: 

 

Consider a change in the level of demand at all dates, i.e. a shift in D.  We know from the 

preceding sub-section that there is no effect on long rate rates of growth of p, QS, R, or on z, 

although there is a change in the price level. If there were no extensive margin effects (the 

path of K held constant) then there would be no short-run effects either; all quantities would 

be unaffected and the demand change would be shifted wholly to the price level.  However, 

the extensive margin is sensitive to the level of prices, as well as their rate of change; a 

change in the price level changes the timing of field opening, this changing supply and 

inducing a transitional dynamic response. 

Figure 4 illustrates the effect of a permanent decrease in demand (D falling to 75% of 

its previous value), with all variables now expressed relative to the initial constant growth 

path.  The top right hand panel gives the price path.  The short dashed line gives the price 

path in the absence of extensive margin effects: a one-off drop to 0.866 = 0.751/η  of its 

previous value.  Including extensive margin effects, the long dashed line indicates a larger 

ultimate price drop, asymptoting to 0.68= ( )ση +/175.0
 
of its previous value.  The dynamics 

associated with this take the following form.  There is an immediate cessation of field 

opening (top left), so a period in which supply is less than it otherwise would have been 

(below unity, bottom left).  This mitigates the price fall (top right).  Postponement of field 

openings means that, beyond some date, supply becomes greater than it otherwise would 

have been and price correspondingly lower.  However, combining effects, cumulative supply 

is lower at all dates. 

The main message concerns the equilibrium path of supply, particularly cumulative 

supply.  Without the extensive margin, a demand change would have no effect whatsoever on 

output.  With the extensive margin operating, a reduction in demand cuts supply in the short 

run, raises it in the long run, and has a negative impact on cumulative quantity supplied at all 

dates. 
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4.3  Change in rate of growth of demand: 

 

A permanent change in demand growth affects both the long run growth of variables and 

transitional dynamics.  Long run growth rates can be found explicitly (appendix table 1) and 

the full dynamic story is illustrated in figure 5, for a reduction in demand growth.   

 Inter-temporal substitution creates an incentive to shift both depletion and field 

opening from the future to the present, but this is combined with a price level effect that 

deters field opening.    If adjustment were to take place only at the intensive margin, then the 

path of supply would be unambiguously tilted towards the present (short dashes).  Price 

growth is slower, and the increase in present supply leads to an immediate fall in price. The 

extensive margin of field opening responds both to this fall in the price level, and to the slow 

future growth of prices.  There is unambiguously slower growth of K, but the impact effect is 

ambiguous: lower price induces postponement (as in figure 2b) and lower price growth 

induces opening (as in figure 3b).  These effects net out to close to zero in our example 

(figure 5, top left panel).   

Combining these elements gives the U-shaped path of output (bottom left).  In the 

short run, the faster extraction of open fields dominates, this giving the supply increase.  In 

the medium run supply is lower because open fields have been depleted faster and because 

fewer new fields have been opened.  In the long run supply turns up, because the high S(K) 

field types, opening of which was postponed, are coming on stream.   Looking at cumulative 

supply, we see that adding the extensive margin effect mitigates the shift in supply towards 

the present; cumulative supply is raised for a shorter period, beyond which it is associated 

with larger reductions in cumulative output and cumulative stock of resource extracted. 
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Figure 4: Decrease in demand: relative to constant growth path 

 

 

Figure 5:   Slower growth of demand: relative to constant growth path   

 
Short dash:  Intensive margin, K constant, z adjusts:     
Long dash: Intensive and extensive margin, K and z adjust. 
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5.  Carbon taxation with endogenous field opening: 

 

The equilibrium impact of climate change measures such as a carbon tax depend on both the 

demand and supply responses of fossil fuel.  Much of the climate change literature has 

concentrated on demand reduction, while Sinn (2008) has used a simple model of resource 

depletion to argue that supply conditions may create a ‘green paradox’; carbon taxes or other 

measures to reduce demand might be ineffective or, if they are expected to become more 

severe in future, have perverse effects, bringing forwards extraction from the far future to the 

nearer future. How does this work when both extensive and intensive margin effects are 

present?   

Policy measures that lead to permanent proportionate demand reduction cause an 

immediate  and continuing reduction in the cumulative quantity of the resource supplied 

(section 4.2), as the lower price delays field opening and postpones production.  This is in 

contrast to the case when the extensive margin effect is absent, in which policy has no effect 

on quantities produced.  Policy measures that reduce the rate of growth of demand (section 

4.3) bring forward extraction from existing fields, this raising current output.  This is offset 

by the price level effect which postpones field opening.  Output therefore falls faster, and the 

cumulative output increase is smaller, and positive for a shorter period of time, when the 

extensive margin effect is present.   

Demand shifts could be implemented by a tax on resource use, such as an emissions 

tax.  For a proportionate decrease in demand this would require a constant ad valorem tax 

(demand  iso-elastic) while, if the rate of growth of demand is to be reduced, the tax rate 

would need to increase exponentially.  Figure 6 looks at an alternative case in which an  

emissions tax is imposed at date 0 and then held constant in perpetuity, (therefore declining 

relative to the resource price).  As before, short-dashed lines give the effect when only the 

intensive margin operates. The producer price falls on impact, but then converges back to its 

previous level (as the relative value of the tax diminishes).  This reduces the rate of 

extraction, giving the short run fall in supply followed by long run increase.  However, when 

the extensive margin operates (long dashes) the producer price fall leads to a period in which 

no new fields are opened, and hence a much larger fall in supply.  As usual, this is a 

postponement of field opening, so supply rises in future.  Once again, the key point is that the 

price level effect of demand reduction policy postpones field openings and thereby has a 

negative impact on supply in the near future. 
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Figure 6:   Constant specific resource tax: relative to constant growth path  

 

Short dash:  Intensive margin, K constant, z adjusts:     
Long dash: Intensive and extensive margin, K and z adjust. 
 

 

 

6.   Concluding comments 

 

The paper has developed a model of the supply of a non-renewable resource in which the 

empirically compelling fact that large sunk costs are associated with the development of new 

mines or fields is put centre stage.  The model encompasses both depletion of existing fields 

and the development of new fields, thereby providing a modest step towards greater reality.  

New insights come from the approach.  The most fundamental is that while the rate of 

interest may matter for depletion rates and short run transitional dynamics, it has no impact 

on the long run behaviour of resource prices; long run price growth depends on demand and 

underlying supply considerations (the geology of available fields).   The approach also 

provides perspective on some ‘paradoxes’ that have gained recent attention.  For example, 

emissions taxes may tend to bring forward depletion of existing resources, but they also 

discourage the development of new fields, so are likely to have to the desired effect of 
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pushing production into the future, reducing cumulative output and any associated stock of 

emissions.  

 The approach suggests a number of extensions and applications.  For example, we 

have assumed throughout that future price paths are known with certainty and that owners of 

fields will postpone opening until the date at which the present value of the field is 

maximized.  Allowing price uncertainty and placing the field opening decision in a stochastic 

context is clearly important.  Lags in opening fields will introduce a more complex dynamic 

response to shocks.  The development of substitutes provides a further supply margin.  On the 

applied side, the model provides a relatively tractable framework for thinking about a number 

of practical and policy issues.  The paper discusses some of the issues to do with fossil fuel 

supply and climate change.  The model also provides a framework for analysis of rent taxes 

(royalties, production sharing arrangements and corporate income taxes) which have to 

balance the need to capture rent with incentives for field development  
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Appendix: 

In the text field size is normalized at unity, fields vary in capital cost K, with the number of 

fields of type K denoted S(K).  This can be derived from the following alternative set up.   

Suppose that fields are ordered by size, s, with m(s) fields of size s, m’ < 0.  m(s) is follows a 

power law, so m(s) = sα, α < 0. The total capacity of fields of size s is sm(s) = s1+α.  The 

capital cost of a field of size s is k(s), and we suppose k(s) = sκ, 0 < κ < 1, so costs are 

increasing and strictly concave in field size; the capital cost of one unit of capacity on a field 

of size s is sκ-1, i.e. K = sκ-1.   Since the capacity associated with fields of size s is S = s1+α, we 

have, eliminating s, S(K) = K (1+α)/(κ-1) .  Thus, σ - 1 = (1+α)/(κ-1) and hence σ =  (κ +α)/(κ-1), 

which is negative if κ < 1 and κ +α > 0. 

 

Appendix: 

Parameter values, figures 2, 3, and 4: 

r = 0.02; g = 0.005; η = 2;  σ = -1.25;  a = 0.1; b = 0.005;  λ= 0.5. 

Long run equilibrium 067.0ˆ =p  (exogenous in figures 2 and 3). 

Figure 2: initial price p0 raised by 20%, reduced by 20%. 

Figure 3: p̂doubled to 0.01, halved to 0.0025  

Figure 4:  demand, D, cut by 25% 

Figure 5: growth rate g halved to 0.0025 

Figure 6:  Constant specific tax at 30% of initial price (eg carbon price $50, oil price $70, 

0.43 tonnes of CO2 per barrel of oil). 

 

Table 1:Asymptotic growth rates for a reduction in the rate of growth of demand gN < gI 
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