View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

MAXIMUM LIKELIHOOD ESTIMATION AND UNIFORM INFERENCE
WITH SPORADIC IDENTIFICATION FAILURE

By

Donald W. K. Andrews and Xu Cheng

October 2011

COWLESFOUNDATION DISCUSSION PAPER NO. 1824

56
o' b
ey

—

COWLESFOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

http://cowles.econ.yale.edu/



https://core.ac.uk/display/6594031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maximum Likelihood
Estimation and Uniform Inference

with Sporadic Identification Failure

Donald W. K. Andrews"
Cowles Foundation

Yale University

Xu Cheng
Department of Economics

University of Pennsylvania

First Draft: August, 2007
Revised: October 17, 2011

*The first author gratefully acknowledges the research support of the
National Science Foundation via grant numbers SES-0751517 and
SES-1058376. The authors thank Xiaohong Chen, Sukjin Han, Yuichi
Kitamura, Peter Phillips, Eric Renault, Frank Schorfheide, and Ed
Vytlacil for helpful comments.



Abstract

This paper analyzes the properties of a class of estimators, tests, and confidence
sets (CS’s) when the parameters are not identified in parts of the parameter space.
Specifically, we consider estimator criterion functions that are sample averages and are
smooth functions of a parameter 6. This includes log likelihood, quasi-log likelihood,
and least squares criterion functions.

We determine the asymptotic distributions of estimators under lack of identification
and under weak, semi-strong, and strong identification. We determine the asymptotic
size (in a uniform sense) of standard ¢ and quasi-likelihood ratio (QLR) tests and CS’s.
We provide methods of constructing QLR tests and CS’s that are robust to the strength
of identification.

The results are applied to two examples: a nonlinear binary choice model and the

smooth transition threshold autoregressive (STAR) model.

Keywords: Asymptotic size, binary choice, confidence set, estimator, identification, like-
lihood, nonlinear models, test, smooth transition threshold autoregression, weak identi-
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1. Introduction

This paper provides a set of maximum likelihood (ML) regularity conditions under
which the asymptotic properties of ML estimators and corresponding ¢ and QLR tests
and confidence sets (CS’s) are obtained. The novel feature of the conditions is that
they allow the information matrix to be singular in parts of the parameter space. In
consequence, the parameter vector is unidentified and weakly identified in some parts
of the parameter space, while semi-strongly and strongly identified in other parts. The
conditions maintain the usual assumption that the log-likelihood satisfies a stochastic
quadratic expansion. The results also apply to quasi-log likelihood and nonlinear least
squares procedures.

Compared to standard asymptotic results in the literature for ML estimators, tests,
and CS’s, the results given here cover both fixed and drifting sequences of true para-
meters. The latter are necessary to treat cases of weak identification and semi-strong
identification. In particular, they are necessary to determine the asymptotic sizes of
tests and CS’s (in a uniform sense).

This paper is a sequel to Andrews and Cheng (2007a) (AC1). The method of estab-
lishing the results outlined above and in the Abstract is to provide a set of sufficient
conditions for the high-level conditions of AC1 for estimators, tests, and CS’s that are
based on smooth sample-average criterion functions. The high-level conditions in AC1
involve the behavior of the estimator criterion function under certain drifting sequences
of distributions. In contrast, the assumptions given here are much more primitive. They
only involve mixing, smoothness, and moment conditions, plus conditions on the para-
meter space.

The paper considers models in which the parameter 6 of interest is of the form
0 = (8, ¢, m), where 7 is identified if and only if 5 # 0,  is not related to the identification
of m, and ¢» = (5,() is always identified. For examples, the nonlinear binary choice
model is of the form: Y; = 1(Y;* > 0) and Y;* = - h(X;, 7) + Z/¢( — U;, where (Y;, X;, Z;)
is observed and Af(-,-) is a known function. The STAR model is of the form: Y; =
¢+ Y1+ 8- m(Yio1, ) + Uz, where Y; is observed and m(-, ) is a known function.

In general, the parameters 5, (, and m may be scalars or vectors. We determine
the asymptotic properties of ML estimators, tests, and CS’s under drifting sequences of
parameters/distributions. Suppose the true value of the parameter is 0,, = (3,,,(,,, ™)

for n > 1, where n indexes the sample size. The behavior of ML estimators and test



statistics depends on the magnitude of ||3,,||. The asymptotic behavior of these statistics
varies across three categories of sequences {f3,, : n > 1}: Category I(a): 8, =0 Vn > 1,
7 is unidentified; Category I(b): 3,, # 0 and n'/23, — b € R% & is weakly identified;

1218l — oo, 7 is semi-strongly identified; and Category

Category II: 5, — 0 and n
III: 8, — B, # 0, 7 is strongly identified.

For Category I sequences, we obtain the following results: the estimator of 7 is incon-
sistent, the estimator of ¢ = (3, () and the ¢ and QLR test statistics have non-standard
asymptotic distributions, and the standard tests and CS’s (that employ standard normal
or x? critical values) have asymptotic null rejection probabilities and coverage probabil-
ities that may or may not be correct depending on the modelE] (In many cases, they
are not correct). For Category II sequences, estimators and standard tests and CS’s are
found to have standard asymptotic properties, but the rate of convergence of the estima-

1/2_ Specifically, the estimators are asymptotically normal and the

tor of 7 is less than n
test statistics have asymptotic chi-squared distributions. For Category III sequences,
the estimators and standard tests and CS’s have standard asymptotic properties and
the estimators converge at rate n'/2.

We also consider ¢t and QLR tests and CS’s that are robust to the strength of iden-
tification. These procedures use different critical values from the standard ones. First,
we consider critical values based on asymptotically least-favorable sequences of distrib-
utions. Next, we consider data-dependent critical values that employ an identification-
category selection procedure that determines whether /3 is near the value 0 that yields
lack of identification of 7, and if it is, the critical value is adjusted (in a smooth way) to
take account of the lack of identification or weak identification. We show that the ro-
bust procedures have correct asymptotic size (in a uniform sense). The data-dependent
robust critical values yield more powerful tests than the least favorable critical values.

The numerical results for the STAR and nonlinear binary choice models are summa-
rized as follows. The asymptotic distributions of the estimators of 5 and 7 are far from
the normal distribution under weak identification and lack of identification. The as-
ymptotic distributions range from being strongly bimodal, to being close to uniform, to
being extremely peaked. The asymptotics provide remarkably accurate approximations
to the finite-sample distributions.

In the STAR model, the standard ¢ and QLR confidence intervals (CI’s) for 5 have

'Here, by “correct” we mean « or less for tests and 1 — o or greater for CS’s, where o and 1 — o are
the nominal sizes of the tests or CS’s.



substantial asymptotic size distortions with asymptotic sizes equaling .56 and .72, re-
spectively, for nominal .95 CI’s. This is also true for the ¢ and QLR CI’s for 7, where
the asymptotic sizes are .40 and .84, respectively. Note that the size distortions are
noticeably larger for the standard ¢ than QLR CI. In the binary choice model, the stan-
dard ¢t and QLR CI’s for § have incorrect asymptotic sizes: .68 versus .92, respectively,
for nominal .95 CI’s. However, the standard ¢ and QLR CI’s for 7 have small and no
size distortion, respectively. In both models, the asymptotic sizes provide very good
approximations to the finite-sample sizes for the cases considered.

In both models, the robust CI’s have correct asymptotic sizes and finite-sample sizes
that are quite close to the asymptotic size for the QLR CI’s and fairly close for the ¢
CI’s.

In sum, the numerical results indicate that the asymptotic results of the paper are
quite useful in determining the finite-sample behavior of estimators and standard tests
and CI’s under weak identification and lack of identification. They are also quite useful
in designing robust tests and CI’s whose finite-sample size is close to their nominal size.

The results of this paper apply when the criterion function satisfies a stochastic
quadratic expansion in the parameter 6. This rules out a number of interesting models
that exhibit lack of identification in parts of the parameter space, including regime
switching models, mixture models, abrupt transition structural change models, and
abrupt transition threshold autoregressive models|

Now, we briefly discuss the literature related to this paper. See AC1 for a more
detailed discussion. The following are companion papers to this one: ACI1, Andrews
and Cheng (2007c) (AC1-SM), and Andrews and Cheng (2008) (AC3). These papers
provide related, complementary results to the present paper. AC1 provides results under
high-level conditions and analyzes the ARMA(1, 1) model in detail. AC1-SM provides
proofs for AC1 and related results. AC3 provides results for estimators and tests based
on generalized method of moments (GMM) criterion functions. It provides applications
to an endogenous nonlinear regression model and an endogenous binary choice model.

Cheng (2008) provides results for a nonlinear regression model with multiple sources
of weak identification, whereas the present paper only considers a single source. However,
the present paper applies to a much broader range of models.

Tests of Hy : B = 0 versus H; : § # 0 are tests in which a nuisance parameter 7

only appears under the alternative. Such tests have been considered in the literature

2See AC1 for references concerning results for these models.



starting from Davies (1977). The results of this paper cover tests of this sort, as well
as tests for a whole range of linear and nonlinear hypotheses that involve (3, (, ) and
corresponding CS’s.

The weak instrument (IV) literature is closely related to this paper. However, papers
in that literature focus on criterion functions that are indexed by parameters that do
not determine the strength of identification. In contrast, in this paper, the parameter
B, which determines the strength of identification of 7, appears as one of parameters
in the criterion function. Selected papers from the weak IV literature include Nelson
and Startz (1990), Dufour (1997), Staiger and Stock (1997), Stock and Wright (2000),
Kleibergen (2002, 2005), Moreira (2003), and Kleibergen and Mavroeidis (2009).

Andrews and Mikusheva (2010) and Qu (2011) consider Lagrange multiplier (LM)
tests in a maximum likelihood context where identification may fail, with emphasis on
dynamic stochastic general equilibrium models. The results of the present paper apply
to t and QLR statistics, but not to LM statistics. The consideration of LM statistics is
in progress.

Antoine and Renault (2009, 2010) and Caner (2010) consider GMM estimation with
IV’s that lie in the semi-strong category, using our terminology. Nelson and Startz
(2007) and Ma and Nelson (2008) analyze models like those considered in this paper.
However, they do not provide asymptotic results or robust tests and CS’s of the type
given in this paper. Sargan (1983), Phillips (1989), and Choi and Phillips (1992) provide
finite-sample and asymptotic results for linear simultaneous equations models when some
parameters are not identified. Phillips and Shi (2011) provide results for a nonlinear
regression model with non-stationary regressors in which identification may fail.

The remainder of the paper is organized as follows. Section [2|introduces the smooth
sample average extremum estimators, criterion functions, tests, CS’s, and drifting se-
quences of distributions considered in the paper. Section [3] states the assumptions em-
ployed. Section (4] provides the asymptotic results for the extremum estimators. Section
establishes the asymptotic distributions of QLR statistics, determines the asymptotic
size of standard QLR CS’s, and introduces robust QLR tests and CS’s, whose asymp-
totic size is equal to their nominal size. Section [0] considers ¢-based CS’s. The nonlinear
binary choice model is used as a running example in the previous sections. Section [7] pro-
vides results for the smooth transition threshold autoregressive model (STAR) model.
Section |8 provides numerical results for the STAR and binary choice models. Appendix

A provides proofs of the results given in the paper. Appendix B provides some mis-



cellaneous results. Three Supplemental Appendices to this paper are given in Andrews
and Cheng (2007b). Supplemental Appendix C provides additional numerical results
for the nonlinear binary choice and STAR models. Supplemental Appendices D and
E verify the assumptions for the nonlinear binary choice model and the STAR model,
respectively.

All limits below are taken “as n — 00.” Let Ayin(A) and Apax(A) denote the smallest
and largest eigenvalues, respectively, of a matrix A. All vectors are column vectors. For
notational simplicity, we often write (a,b) instead of (a’,b’)" for vectors a and b. Also,
for a function f(c) with ¢ = (a,b) (= (a/,V')"), we often write f(a,b) instead of f(c). Let
04 denote a d-vector of zeros. Because it arises frequently, we let 0 denote a dg-vector
of zeros, where dg is the dimension of a parameter 3. Let Rjioq) = R U {Zoo}. Let
Rf hoo] = Rito0) X ... X Rp1o0) With p copies. Let = denote weak convergence of a sequence

of stochastic processes indexed by 7 € II for some space I1J]

2. Estimator and Criterion Function

2.1. Smooth Sample Average Estimators

We consider an extremum estimator En that is defined by minimizing a sample cri-

terion function of the form
i=1

where {W; : i < n} are the observations and p(w, §) is a known function that is twice
continuously differentiable in 6. This includes ML and LS estimators. The observations
{W; 1 i < n} may be i.i.d. or strictly stationary. Formal assumptions are provided in
Section B below.

The paper considers the case where 6 is not identified (by the criterion function
Q.(0)) at some points in the parameter space. Lack of identification occurs when the

Q. (0) is flat wrt some sub-vector of 6. To model this identification problem, € is parti-

31n the definition of weak convergence, we employ the uniform metric d on the space &, of R¥-valued
functions on II. See the Outline of the Supplemental Appendix of AC1 for more details.



tioned into three sub-vectors:

6= (8,(,m) = (,m), where ¥ = (8,(). (2.2)

The parameter 7 € R% is unidentified when 3 = 0 (€ R%). The parameter ¢ = (3,() €
R is always identified. The parameter ¢ € R% does not effect the identification of
7. These conditions allow for a wide range of cases, including cases in which reparame-

trization is used to convert a model into the framework considered here.

Example 1. This example is the nonlinear binary choice model
Y;=1Y>0)and Y;* =5 h(X;,7) + Z.( — U, (2.3)

where h(X;,7) € R is known up to the finite-dimensional parameter 7 € R¢. Suppose
h(z,7) is twice continuously differentiable wrt 7 for any x in the support of X; and
the first- and second-order partial derivatives are denoted by h,(z, ) and h,.(z,7),
respectively.

The observed variables are {W; = (Y;, X;,Z;) : i = 1,...,n}. The random variables
{(X:,Z;,U;) :i=1,...,n} are i.i.d. The distribution of (X;, Z;) is ¢, which is an infinite-
dimensional nuisance parameter. The parameter of interest is § = (3, (, 7). Conditional
on (X;, Z;), the distribution function (df) of U; is L(u). The df L(u) is known and does
not depend on (X;, Z;). For example, L(u) is the standard normal distribution df in
a probit model and the logistic df in a logit model. We assume that L(u) is twice
continuously differentiable and its first- and second-order derivatives are denoted by
L'(u) and L"(u), respectively. Suppose L'(u) >0 and 0 < L(u) <1 Vu € R.

In this model,

9i(0) = Bh(X;, ) + Z{(. (2.4)

We estimate 6 = (3, (, 7) by the ML estimator. The sample criterion function is

Qu(0) = —n~" ) _[¥;log L(g:(6)) + (1 — Yi) log(1 — L(g(6))] (2.5)

=1

and the ML estimator minimizes @, (6) over § € ©. (Here we use the negative of the



standard log-likelihood function so that the estimator minimizes the sample criterion

function as in the general set-up of the paper.)
When 5 =0, ¢;(0) and @, () do not depend on 7, and 7 is not identified. [J

The true distribution of the observations {W; : ¢ < n} is denoted F, for some
parameter v € I'. We let P, and £, denote probability and expectation under F,. The
parameter space I' for the true parameter, referred to as the “true parameter space,” is

compact and is of the form:

D={y=(0,0):0cO,¢cd ), (2.6)

where ©* is a compact subset of R% and ®*(#) C ®* V# € ©* for some compact metric
space * with a metric that induces weak convergence of the bivariate distributions
(Wi, Witm) for all i,m > 1E] In unconditional likelihood scenarios, no parameter ¢
appears. In conditional likelihood scenarios, with conditioning variables {X; : i > 1},
¢ indexes the distribution of {X; : ¢ > 1}. In nonlinear regression models estimated
by least squares, ¢ indexes the regression functions and possibly a finite-dimensional
feature of the distribution of the errors, such as its variance, and ¢ indexes the remaining
characteristics of the distribution of the errors, which may be infinite dimensional.

By definition, the estimator 0, (approximately) minimizes @, () over an “optimiza-

tion parameter space” @:E]
0, € © and Q,(6,) = inf Q(6) +o(n™"). (2.7)

We assume that the interior of © includes the true parameter space ©* (see Assump-
tion B1 below). This ensures that the asymptotic distribution of 571 is not affected by
boundary constraints for any sequence of true parameters in ©*. The focus of this paper
is not on boundary effects.

Without loss of generality (wlog), the optimization parameter space © can be written

4Thus, the metric satisfies: if v — =, then (W;, Wi,,,) under v converges in distribution to
(Wi, Witm) under 7,. Note that T' is a metric space with metric dr(vy,7vs) = ||01 — 02|| + do ($1, P2),
where v, = (0;,¢;) € I' for j = 1,2 and dg~ is the metric on ®*.

°The o(n™!) term in , and in and below, is a fixed sequence of constants that does
not depend on the true parameter v € I' and does not depend on 7 in (4.1). The o(n~!) term allows for
some numerical inaccuracy in practice and circumvents the issue of the existence of parameter values
that achieve the infima.



as

©={0=,7m):9 e ¥(n),n ell}, where
II={r: (7)€ O for some ¥} and
U(r) ={¢: (¢,7) € ©} for 7 € 1L (2.8)

We allow ¥(7) to depend on 7 and, hence, © need not be a product space between 1)
and 7. For example, this is needed in the STAR model and in the ARMA(1, 1) example
in AC1.

Example 1 (cont.). The true parameter space for 6 is
©" = B* x Z* x II*, where B* = [-b},b}] C R, (2.9)

b; >0, by > 0, b} and b} are not both equal to 0, Z* (C R%) is compact, and IT* (C R4~)
is compact.
The ML estimator of § minimizes @, (f) over § € O. The optimization parameter
space O is
© = B x Z x II, where B = [—by,bo] C R, (2.10)

by > b}, by > b3, Z (C R%) is compact, I (C R%) is compact, Z* € int(Z), and
B* € int(B).
2.2. Confidence Sets and Tests

We are interested in the effect of lack of identification or weak identification on the
extremum estimator 6,,, on CS’s for various functions r(0) of 0, and on tests of null
hypotheses of the form Hy : r(0) = v.

CS’s are obtained by inverting tests. A nominal 1 — a CS for r(0) is

CS, ={v:7,(v) <cni-a(v)}, (2.11)

where 7,, (v) is a test statistic, such as the QLR statistic, and ¢, 1_, (v) is a critical value
for testing Hy : r(#) = v. Critical values considered in this paper may depend on the

null value v of 7(#) as well as on the data. The coverage probability of a CS for r(#) is

Py(r(0) € OSn) = P(Tu(r(0)) < cnn-a(r(9))), (2.12)

8



where P, (-) denotes probability when + is the true value.
We are interested in the finite-sample size of a CS, which is the smallest finite-
sample coverage probability of the CS over the parameter space. It is approximated by

the asymptotic size, which is defined as follows:

AsySz =liminf inf P, (r(d) € CS,) = liminf inf P,(7,(r(0)) < cpi1-a(r(d))). (2.13)

n—oo ~el n—oo el

For a test, we are interested in the maximum null rejection probability, which is the
finite-sample size of the test. A test’s asymptotic size is an approximation to the latter.

The asymptotic size of a test of Hy : r(f) = v is

AsySz =limsup sup  Py(7,(v) > cpi—a(v)). (2.14)

n—oo  ~elr(f)=v

2.3. Drifting Sequences of Distributions

The uniformity over v € T' for any given sample size n in (2.13)) and (2.14)) is crucial

for the asymptotic size to be a good approximation to the finite-sample size. The value
of v at which the finite-sample size of a CS or test is attained may vary with the
sample size. Thus, to determine the asymptotic size we need to derive the asymptotic
distribution of the test statistic 7, (v,) under sequences of true parameters v, = (0,, ¢,,)
and v, = r(#,) that may depend on n.

As shown in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggen-
berger (2009), the asymptotic size of CS’s and tests are determined by certain drifting

sequences of distributions. The following sequences {v,} are key:

L(v) ={{1m €l in>1} iy, 57, €TY, (2.15)
F(WOJ 07 b) - {{Vn} € F(VO) : BO - O a’nd 77,1/2571 - b S R([i:ioo}} 9 and
T(70,00,60) = {{a} € D(30) : n/2|B,]| — 0o and B,/|6,]| — wo € R},

where Yo = (ﬁm COu T, ¢0) and Tn = (ﬁn? C’m T, ¢n)
The sequences in I'(7,,0,b) are in Categories I and II and are sequences for which

{B,} is close to 0: 3, — 0. When |[b|]| < oo, {B,} is within O(n~'/?) of 0 and the
sequence is in Category I. The sequences in I'(7y,, 00, wp) are in Categories II and IIT and
V211B,]] — oo

Throughout the paper we use the terminology: “under {~, } € I'(y,)” to mean “when

are more distant from g =0: n



the true parameters are {v,,} € I'(y,) for any v, € I';” “under {v,} € I'(7,,0,b)” to
mean “when the true parameters are {v, } € I'(7,,0,b) for any v, € I with 5, = 0 and
any b € Rflfoo];” and “under {v,} € I'(vy,00,wp)” to mean “when the true parameters

are {7, } € T'(y,00,wp) for any v, € I and any wy € R% with ||wo|| = 1.7

3. Assumptions

3.1. Smooth Sample Average Assumptions

This section provides primitive sufficient conditions for many of the high-level as-
sumptions given in AC1 for the class of sample average criterion functions that are
smooth in 6. Note that the high-level assumptions in AC1 concern limit behavior under
drifting sequences of true distributions. In contrast, the assumptions given here concern
behavior under fixed true distributions and do not involve the sample size n [

In Assumptions S1-S4 below, the true distribution of {W; : ¢« > 1} is F, . The
conditions in Assumptions S1-S4 are assumed to hold for all v, = (5, (o, 70, @) € I
Let C' be a generic finite positive constant that does not necessarily take the same
value when it appears in two different places. None of the constants that appear in

Assumptions S1-S4 depend on v, € I'.

3.1.1. Assumption S1

The first assumption is the following.

Assumption S1. Under any 7, € I', {W; : ¢ > 1} is a strictly stationary and strong
mixing sequence with mixing coefficients «,,, < Cm~4 for some A > dpq/(q — dy) and
some q > dy > 2, or {W; :i > 1} is an i.i.d. sequence and the constant ¢ (that appears
in Assumption S3 below) equals 2 + ¢ for some 6 > 0.

In Assumption S1, the decay rate of the strong mixing coefficients is used to ob-
tain the stochastic equicontinuity of certain empirical processes using results in Hansen
(1996). The WLLN and CLT for strong mixing arrays also hold under this decay rate,
see Andrews (1988) and de Jong (1997). In the i.i.d. case, the constant ¢ is smaller than
in the strong mixing case, which yields weaker moment restrictions in Assumption S3

below.

6The sufficient conditions given here imply Assumptions A, B3, C1-C8, and D1-D3 of AC1.

10



Example 1 (cont.). In this example, Assumption S1 holds with ¢ = 2 + § for some
d > 0 because {W; : i > 1} are i.i.d. for each v, € T'. O

3.1.2. Assumption S2

The second assumption is as follows.

Assumption S2. (i) For some function p (w,0) € R, Q,(0) =n~* Y1, p(W;,0), where
p(w, @) is twice continuously differentiable in # on an open set containing ©* Yw € W.
(ii) p (w,0) does not depend on 7 when 5 =0 Vw € W.

(iii) Vv, € I' with 8y = 0, E, p(W;, 1, 7) is uniquely minimized by v, Vr € IL

(iv) Vv, € T with 8, # 0, EA, p(W;, 0) is uniquely minimized by 6.

(v) ¥(m) is compact Vrr € II, and II and © are compact.

(vi) Ve > 0, 3§ > 0 such that dy (VU (1), ¥ (m3)) < € Vry, 9 € II with |7 — ma|| < 0,

where dp (+) is the Hausdorff metric.

For i.i.d. observations with density f(w,#), the ML estimator is obtained by tak-
ing p(W;,0) = log f(W;,8). For a stationary p-th order Markov process {W;* : —p +
1 < < n}, owelet Wy = (W7,...,W ). If the conditional density of W} given
(Wi, W) s f(w Wiy, ..., W 0), then the ML estimator is obtained by tak-

ing p (W, 0) =log f(W7 Wiy, ..., W ;0).

Example 1 (cont.). Assumption S2(i) holds in this example with
p(Wi,0) = Yilog L(gi(9)) + (1 — i) log(1 — L(g:(0)) (3.16)

by and the smoothness conditions on h(X;, 7) and L(u). Assumption S2(ii) holds
because g;(#) does not depend on h(X;,7) when S = 0. For brevity, Assumptions S2(iii)
and S2(iv) are verified in Supplemental Appendix D. The argument for Assumption
S2(iv) is a standard argument for ML estimators in well-identified scenarios. Assumption
S2(v) holds because ¥(7) = B x Z, which does not depend on 7, © = B x Z x I, and
B, Z, and II are all compact. Assumption S2(vi) holds because ¥(7) does not depend

on m. [

A class of examples of p(w, #) functions that satisfy Assumption S2(ii) are functions

of the form

p(w,0) = p*(w,a(z, B)h(x,7), (), where a(z,0) =0, Yw € W, (3.17)

11



x is a sub-vector of w, and a(z, 8) and h(z, ) are known functions. In ([3.17)), p(w, )
does not depend on m when = 0 because a(z, ) = 0. Examples of a(x, ) include
(i) a(z,B) = B, (ii) a(x,B) = exp(B) — 1, and (iii) a(x,B) = 2’F. Example (i) covers
the nonlinear regression example, where 3 is the coefficient of the nonlinear regressor.
Example (ii) demonstrates that a(z,3) can be nonlinear in 3 provided a(z,3) = 0 at
f = 0. Example (iii) covers the weak IV example and the case in which  enters the
model through a single index. The form in does not require a regression model
and it allows for complicated structural models by allowing different functional forms
for a(z, ), h(x,m), and p(w,0).

Returning now to the general p(w, #) case, Assumption S2(vi) holds immediately in
cases where ¥ (7) does not depend on 7. When ¥ () depends on 7, the boundary of ¥(7)
is often a continuous linear function of 7, as in the STAR model and the ARMA(1,1)

model considered in AC1. In such cases, it is simple to verify Assumption S2(vi).

3.1.3. Assumption S3

Let py(w,0) and pyy(w,d) denote the first-order and second-order partial derivatives
of p(w,0) wrt 0, respectively. Let p,(w,0) and p,,(w,0) denote the first-order and
second-order partial derivatives of p(w, ) wrt 1.

We define a matrix B(/) that is used to normalize the second-derivative matrix

poo(w, ) so that its sample average has a nonsingular probability limit. Let

g if §is a scalar

. (3.18
16]| if B is a vector (3.18)

B Ia,  Oqyxd,
B = [ Odoxa,  t(B)1a,

€ R%*%  where 1(8) = {

We use a different definition of B(f) in the scalar and vector § cases because in the
scalar case the use of (3, rather than ||/3]|, produces noticeably simpler (but equivalent)
formulae, but in the vector case ||3|| is required.

For 8 # 0, let

B_l(ﬁ)Pa(wﬁ) = pg(w>0) and
Bil(ﬁ)p%(wa H)Bil(ﬁ> = Pge(wa 9) + 571(5)5(1% 9)7 (3'19)

where pf,(w, ) is symmetric and p}(w, #), ph,(w, #), and e(w, ) satisfy Assumption S3
below. The re-scaling matrix B~*(3) in (3.19)) is used to deal with the singularity issue
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that arises when § = 0. In particular, the covariance matrix of p,(W;, 6) is singular when
£ = 0 and close to singular when [ is close to 0. In contrast, the re-scaled quantity
pg(Wi, 0) has a covariance matrix that is not close to being singular even when /3 is close
to 0. Similarly, £, pgy(W;, 0) is singular when 3 = 0 and close to singular when £ is close
to 0. Re-scaling of pge(W;,0) yields a quantity ph,(W;, 8) whose expectation is not close
to singular even when /3 is close to 0 plus another term (W, 0) that is asymptotically
negligible.

Below we illustrate the form of p(w,8), phy(w, ), and &(w, §) in Example 1 and for

p(w, 0) functions as in ([3.17)), see Section [3.1.4]

Next, define

VI(01,04;7) = Z COU’Y()(;O;(VVi;91)apg(Wi+m792))a (3.20)

m=—0oQ

which does not depend on 7 because the observations are stationary under Assumption
S1. Under Assumptions S1 and S3(iii) below, VT(6y,64;7,) exists by a standard strong
mixing inequality.

The form of Assumption S3 differs depending on whether /3 is a scalar or vector. We

state Assumption S3 for the scalar [ case first because it is simpler.

Assumption S3 (scalar 3). (i) E, c(W;,0p) = 0 and |B,| || E,,e(W;, g, m)|| <
Cl|lm — mol|| Vv, € T with 0 < |5,| < § for some § > 0.
(ii) For all 6 > 0 and some functions M;(w) : W — R, and My(w) : W — R,
10010, 81)— o (10,62 1+l by 10, 61)— phy, B2)]| < My ()8 and | o0, 01)—p}(w, 82)]
+|le(w, 01) — e(w, O3)|| < Ma(w)d, V01,0, € O with ||0; — bs]| < 0, Vw € W.
(1) Ey s1ppee {100 8)[775+11p, (W )15y (W, )] 145405 (Wi (Wi, B) I
+ ||e(W5, 0)]|7 + My (W;)1} < C for some 6 > 0 Vv, € T, where ¢ is as in Assumption SI.
(iv) Amin(Ery Py (Wis 100, ™)) > 0 ¥ € I1 when By = 0 and E, phy (W, 6p) is positive
definite Vv, € I
(v) VT(Bo,00;7,) is positive definite Vv, € T

In Assumption S3(iii), the last three terms have bounded gth moments in order to
establish the stochastic equicontinuity of empirical processes based on pg(I/VZ-,G) and
e(W;,0) using Lemma [9.4] in Appendix A.

In Assumptions S1-S3, Assumptions S2(ii), S2(iii), S3(i), S3(iii), S3(iv) and S3(v) are

related to the weak identification problem. Assumption S2(ii) implies that the sample
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criterion function is flat in 7 when § = 0, as in Assumption A of AC1. Assumption S2(iii)
differs from a standard condition in the sense that the population criterion function
is not uniquely minimized by the true value when 3, = 0. The Lipschitz condition
in Assumption S3(i) typically holds because the partial derivative of E, e(W;, g, )
wrt 7 is approximately proportional to ||5,|| when ||| is close to 0. Because parts of
B~1(B) diverge as 3 converges to 0, the moment conditions for p}(W;, 8) and pl,(W;, ) in
Assumption S3(iii) are stronger than standard moment conditions on the first-order and
second-order derivatives. These conditions hold in typical examples, see below, because
the partial derivative of p(w,#) wrt 7 is small when f is close to 0 under Assumption
S2(ii). Hence, the rhs moments are uniformly bounded even after the scaling by B~*(3).
In Assumptions S3(iv) and S3(v), E,, pho (Wi, 80) and V(8, 00: 7,) typically are positive
definite due to the re-scaling in (3.19).

Under Assumptions S1-S3, the criterion function @,,(f) has probability limit Q(6;v) =

E,p(W;,0) under any sequence of parameters v, — 7.

Example 1 (cont.). In this example, p}(W;,8), phy(W;, ), and e(w, ) are defined
as follows. For notational simplicity, let L;(#), L.(0), and L"(0) abbreviate L(g;(#)),
L'(g;(0)), and L"(g;(0)), respectively. Let

dyi(m) = (WX, 7), Z), di(w) = (h(Xi,7), Z], ho(X;, 7)), and
0 O1xd.  ha(Xi,7)
D;(0) = Odcx1 Odexae Od x : (3.21)
ha(Xi,7) Odpxd,  an(Xi,m)B

The first-and second-order partial derivatives of p(W;, ) wrt to ¢ and 0 are

Py(Wi, 0) = wi;(0)(Yi — Li(6))dy.i(m),
po(Wi, 0) = w1,;(0)(Yi — Li(0)) B(B)di(),
Pu(Wi, 0) = [wi (0)(Y; — Li(0))* + wa,i(0) (Y; — Li(9))]dy,i(7)dys()
poo(Wi, 0) = [wi (0)(Y; — Li(0))* + w2,(0)(Y; — Li(0))]B(B)d;(m)di(m) B(B)
+wi ;(0)(Y; — L;(0))D;i(0), where
) = T 1Ll—(9L)1(9)> and w2,(6) = 7 (1L_<9£ ol (3.22)

See Section [13.10 for the calculation of these derivatives.
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The re-scaled partial derivatives in (3.19)) take the form

py(Wi, 0) = wi(0)(Yi — Li(0))d; (),
(Wi, 0) = [w? ,(0)(Y; — Li(0))” + wai(0)(Yi — Li(0))]d;(w)di(m)', and
0 O1xd,  ha(Xi, )
e(w,0) = wi;(0)(Y; — Li(0)) Odcx1 Odexde  Odexds, : (3.23)
ha(Xi,7) Odpxd,  ar(Xi, )

To verify Assumption S3(i), note that £, (Y;|X;, Z;) = P, (Y = 1|1X;, Z;) = Li(6o)
by . Hence, E, (Y; — Li(09)|X;, Z;) = 0 implies E, e(W;,6p) = 0 by the law of
iterated expectations (LIE).

Let E,i = Supgeo | L;(0)| and z;/ = supgeo | L7 (0)]-

A mean-value expansion of L;(1¢,, 7) wrt = around 7 yields

L, ) — LulOo) = Loy, 1) 200D
= L{i(@bov %)hW(X’w ¢0’ %),BO(W - 7T0)7 (324)

where 7 is between 7 and 7. To verify the second part of Assumption S3(i), we have

|1 Esq (Wi (o, M) [Yi = Li(g, m)]hae(Xi, 7))
= [[Eyo (wri(tho, M)[Li(00) — Li(o, m)]ha (X5, 7)) |

—/=2

< |Bol - [l = 7ol [Eyy (WriLihy ;) < ClBo| - || — ol (3.25)

)

for some C' < oo, where the equality holds by LIE, the first inequality holds using ((3.24)),
and the second inequality holds by the Cauchy-Schwarz inequality and the moment

conditions in (3.32)).

Similarly, we have
1By (w1,i(4g, T)[Yi = Li($g, m)]har (X, m))|] < C|Bo] - || — ol (3.26)

for some C' < oo. By (3.23), , and ({3.26)), the second part of Assumption S3(i)
holds.

The rest of Assumption S3 is verified in Supplemental Appendix D for this example.
O
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When 5 is a vector, ie., dg > 1, we reparameterize § as (||5]||,w), where w =
B/118]] if B # 0 and by definition w = 14,/[|14,|| with 14, = (1,...,1) € R% if 3 = 0.
Correspondingly, 6 is reparameterized as 07 = (||8||,w,(, 7). Let ©F = {0* : 67 =
(1811, B/11511,¢, m), 6 € ©}.

This new parameterization is needed when [ is a vector because pg(w, 0), pge (w,0),
and e(w, 0) typically involve 3/||3|| due to the re-scaling in and (3/||3]| is not
continuous in J for # € O. In consequence, the Lipschitz conditions in Assumptions S3(ii)
and S3(iii) (scalar ) can not be verified when ( is a vector. The new parameterization
treats ||| and w = 3/||B|| as separate variables. In Assumption S3 (vector /3) below,
some Lipschitz conditions are specified in terms of 6* = (||5]],w, ¢, 7).

In Assumption S3 (vector ), both the original parameterization with ¢ and the
alternative parameterization with 0% are employed for convenience. Note that only con-
ditions related to p}(w, 8), ph,(w, ), and e(w, #) require the alternative parameterization
with 6.

Assumption S3 (vector 3). (i) E, c(W;,0) = 0 and ||By|| 7 |E,,e(W;,07)|] <
C(llm = mol| + llw — woll) YO = (||Boll,w, Co,m) and ¥y € T with 0 < [|B,l| < 0
for some ¢ > 0.

(ii) For all 6 > 0 and some functions M;(w) : W — Ry and My(w) : W — Ry,
1Puow0.02) = pygw.82)ll + llplo(w,67) — phylw. 6| < My(w)d and [|oy(w.61) —
po(w, 0)|| + llph(w, 07) = ph(w, 05)] + [le(w, 07) — e(w, 63)|| < My(w)d, V61,0, € ©
with ||0; — 0s]| < 6, V0T, 05 € ©F with ||0] — 05| <6, Yw € W.

(ili) Assumptions S3(iii)-(iv) (scalar /) hold with the definitions of M;(w) and Ms(w)

replaced by those given above.

Assumption S3(i) (vector /3) typically holds because the partial derivatives of E, (W,

6") wrt m and w are approximately proportional to ||3,||.

3.1.4. Forms of p}(w,8), pl,(w,0), and e(w, 0)

Now, we illustrate the forms of pf(w,8), ph,(w,8), and e(w,d) when p(w,d) be-
longs to the class specified in and show that Assumption S3(i) holds in this
case. For simplicity, we assume a(x,3) and h(x, ) are both scalars and no parame-
ter ¢ appears. Let p/(-) and p”(-) abbreviate the first- and second-order derivatives of
p*(w,a(z, B)h(z, 7)) wrt a(z, B)h(x, 7). Let ag(x, 5), ags(z, ), hr(z,7), hp(z,7) de-
note the first- and second-order partial derivatives of a(z, $) and h(z,7) wrt § and .
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The first and second order partial derivatives of p(w, ) wrt to 8 and 7 are

'(ag(x, B)h(x, ), pr(w,0)

(w,0) = p p'(Da(z, B)hx(z, ),

pas(w,0) = p"()as(x, B)ag(x, B)'h*(x,7) + p'(-)ags(z, B)h(x, 7),
(w,0) = p"(-)alz, B)h(z, m)ag(z, B)hx(z,7)" + p/(-)as(z, B)hx(x, ), and
(w,0) = pf

'()a* (@, B)ha(z, m) e, 7) + 0 ()@, B) har (w0, 7). (3.27)

)

Y

In this case, we have

p;(w,@) = p'(-)aT(x,Q), p;e(wvg) = p”(')aT(x70)aT(x70)lv where

af(2,0) = (as(x, B)h(z, ), a(bf—é)ﬁ)hw(my)’ and
ags(x, B)M(x,m)  ag(z, B)hx(z, )

ol mas(a, B D ()

e(w,0) = p'(-) (3.28)

Note that S 'a(x,3) is continuous at 3 = 0 in the scalar 3 case. In particular,
limg_ 8~ 'a(z, B) = as(r,0) by a mean-value expansion because a(z,0) = 0 and a(z, 3)
is continuously differentiable in 3. In the vector § case, limg_q g/(15—wo |81 a(z, 8) =
ag(z,0)wo.

When e(w, 6) takes the form in , Assumption S3* below implies Assumption
S3(i). In Assumption S3*(i), X; is a sub-vector of W; that takes the place of x in w.

Assumption S3*. (i) X; is a vector of weakly exogenous variables such that
E (0 (Wi, a(Xi, Bo)h(Xi, m0))|Xi) = 0 as. Yy, €T

(i1) B supyjg)i<s rem 10" (Wi, a(Xi, B)(Xs, )] - ([[A(Xs, m) || + [[ha (X, m)I]) - (|A(XG
[ (X )] A e (X, ) - S0Py g1 <5 s (X B - (g (X B + [ags(Xi, B)]
for some C' < oo and 6 > 0 Vv, € I'.

™)l +

)< o

Several of the derivatives in Assumption S3*(ii) are constants in many examples,
which makes the moment condition in Assumption S3*(ii) less restrictive than it may
appear. For example, when a(X;, 8) = (3, ag(X;, 8) = 1 and agp(X;,8) =0

Lemma 3.1. Suppose p(w,0) belongs to the class in (3.17)), where a(xz,B) € R and
hz,m) € R are twice differentiable wrt B and 7, respectively, and no parameter (
appears. Then, e(w,0) takes the form in (3.28) and Assumption S3(i) is implied by

Assumption S3* in both the scalar and vector 5 cases.
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Comment. When p(w, ) belongs to the class in and a parameter ( appears,
the form of £(w, ) is the same as in but with zeros in the rows and columns
that correspond to (. In this case, Assumption S3(i) is still implied by Assumption S3*
provided p'(-) and p”(-) in Assumption S3* are adjusted to include ¢, evaluated at (.
See Appendix B for details.

3.1.5. Assumption S4

Next, we state an assumption that controls how the mean E, p, ;(0) changes as
the true 3, changes, where v, = (8, (o, 70, ¢y). Define the dy x dg-matrix of partial

derivatives of the average population moment function wrt the true 8 value, 3, to be
0
K(0;7) = 5@55%@P¢(W579) (3:29)

The domain of the function K(6;7,) is ©s x I'g, where ©5 = {0 € © : ||| < J} and
Lo={y,=(aB,(,m, ) €l :v=(5,(,m ¢) € with ||5|| < and a € [0, 1]} for some
5 >0

Assumption S4. (i) K(0;~,) exists V(0,7,) € ©s x Tg.
(ii) K(0;~*) is continuous in (6,7*) at (0,7*) = ((¢y,7),7,) uniformly over 7 € II
Vv, € I with 3, = 0, where v, is a sub-vector of ~,.

Assumption S4 is not restrictive in most applications.ﬁ

For simplicity, K (¢, 7;,) is abbreviated as K (7;7,) .

Example 1 (cont.). It is shown in Supplemental Appendix D that Assumption S4
holds with

L0
K(n570) = KWy 30) = Bry gt o0

0 T (00)(1 — Li(eo))h(Xi,Wo)dzp,i(W) (3.30)

for vq = (6o, m0). O

"The constant § > 0 is as in Assumption B2(iii) stated below. The set I'¢ is not empty by Assumption
B2(ii).

8 Assumptions S1 and S4 imply Assumption C5 of AC1. A set of primitive sufficient conditions for
Assumption C5 of ACI is given in Appendix A of AC1-SM. These conditions also are sufficient for
Assumption S4.
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3.2. Parameter Space Assumptions

Next, we specify conditions on the parameter spaces © and I'.
Define O = {0 € ©* : ||f|| < §}, where ©* is the true parameter space for 0, see
(2.6). The optimization parameter space O satisfies:

Assumption B1. (i) int(©) D ©*.
(ii) For some § > 0, © D {3 € R% :||B]| < §} x Z° x II D O} for some non-empty open
set Z°CR% and II as in (2.8)).

(iii) IT is compact.

Because the optimization parameter space is user selected, Assumptions B1(ii)-(iii) can
be made to hold by the choice of ©.

The true parameter space I' satisfies:

Assumption B2. (i) I' is compact and holds.

(i) Vo > 0, 3y = (B,(, 7, ¢) € T with 0 < ||5]] < 6.

(iii) Vy = (6,(,m,¢) € T' with 0 < ||5|| < ¢ for some § > 0, v, = (af,(, 7, ¢) € T
Va € [0, 1].

Assumption B2(ii) guarantees that I' is not empty and that there are elements v of I'
whose [ values are non-zero but are arbitrarily close to 0, which is the region of the true
parameter space where near lack of identification occurs. Assumption B2(iii) ensures
that I' is compatible with the existence of partial derivatives of certain expectations wrt
the true parameter 5 around § = 0, which arise in and Assumption S4.

Example 1 (cont.). Let v = (0, ¢), where ¢ is the distribution of (X, Z;), and ¢ € ®*,

where ®* is a compact metric space with some metric that induces weak convergence.

The parameter space for the true value of v is
I'={y=(0,9):0€0",¢c®(0)} (3.31)

where ®*(0) C ®* V0 € O*.

The parameter space ®*(6), which must be specified precisely to obtain the uni-
form asymptotic results, is defined as follows. For notational simplicity, let h; =
SUPrery [(Xi, )], Bri = Suprent [ (Xi, M|, hrm i = SUDery [|hrn (Xi, )], W1 = supgee
lwy;(6)], and Wa; = supyeg |we,i(0)]. Let ¢ = 2+ ¢ for some § > 0.
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For any 6y € ©*, the true parameter space for ¢ is

O*(00) = {0y € D1 By (B + Tty + ot s + |1 Z]|" + @it + w3H) < ©
|[w1,i(61) — w1,(02)]] < Mi( z’)||7Tl — Tal[, [|wa,i(61) — wa,i(62)]]
< My(Wi)llmy — |y [ rr (X3, m1) = P (X5, m2) || < My (W5)||m1 — 72|,
Yy, mo € 11 for some functions My (W;), Ms(W;), Mu(W,),
B, (M (Wi)* 3 + My(Wi)*3 + M, (Wi)*/%) < ©,
T sup (Iog Li(0)["*° + | log(1 — Ly(6))|'**) < C,

e

P, (a'(M(X;,m1), (X, m2), Z;) = 0) < 1, Vmy, o € II with 7y # ma, Va € R%H?
with a # 0, E, d;(m)d;(7)") is positive definite Vr € IT} (3.32)

for some C' < 0o, where d;(7) = (h(X;,7), Z!, ho(X;, 7)) ﬂ O

3.3. Key Quantities

Now, we define some of the key quantities that arise in the asymptotic distribution
of the estimator @L and the test statistics considered. Let S, = [I4 s ¢ Oa wxdw] denote the

dy x dy selector matrix that selects 1) out of 0. Define

(1, m2370) = VT((woﬂrl) (7/10,72);70)5;7
H(m;v0) = Eyypyy(Wis o, 7),
J(Yo) = By phy (Wi, 0o), and
V(70) = V(60,00 70)- (3.33)

Example 1 (cont.). The key quantities that determine the asymptotic behavior of the
ML estimator in the binary choice model are as follows. The probability limit of the

criterion function @, (f) when the true value is v, € T" is

Q(0;70) = Eyyp(Wi,0) = E, B, (p(Wi,0)| X5, Z5)
= —E, [Li(60) log Li(0) + (1 — Li(60)) log(1 — Li(0))]. (3.34)

%In (3.32), the expectation E, () only depends on ¢,. Because 6y shows up in some other expecta-
tions, we use £, (-) throughout the example for notational consistency.
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By calculations given in Section of Supplemental Appendix D, we have

Y — L?(6o) ,
Q(W1>7T2a70) - Eﬁ’o Li(eo)(l _ Li(eo))ddﬂvi(ﬂ-l)d%i(W?) )
L2 (6o)

H(m;v) = By, L;i(6)(1 — L;(6p))

L*(6,)
J(vo) = V(7o) = E,, Li(00)(1 — L;(6))

dd%i (’iT)dd,’i (7?)/, and

di(ﬂ'o)di(’ﬂ'g),. (335)

i

3.4. Quadratic Approximations

Here we specify certain quadratic approximations to @, (6) and related results that
hold under Assumptions S1-S4, B1, and B2. These results help to explain the form of
the asymptotic distributions that arise in the results stated below.

(i) Under {v,} € I'(7,,0,b) (defined in above), the sample criterion function
Qn(0) (= Qn(¢¥, 7)) has a quadratic expansion in ¢ around the point v, = (0,(,) for

given 7 for the form:

Qult6,7) = Qultr ™) + Dyt ) (6 — i) +
(0 i) D Qa6 — ) + Bul ), (3:36)

where DyQn(1g,,, ) and DyyQn (1, ™) denote the vector and matrix of first and
second partial derivatives of @, (1, 7) with respect to v, respectively, evaluated at 1) =

Vo, and R, (1, ) is a remainder term that is small uniformly in 7 € II for 1 close to

¢U,nm

(ii) Under {v,,} € I'(7y, 00, wp), the sample criterion function @, () has a quadratic

expansion in # around the true value 6,, of the form:

Qul6) = QulBu) + D)0 — 6,) + 50— 6,)D°Qu(6,)(0 — 6,) + Bi(0),  (337)

where DQ,,(0,,) and D*Q,,(0,,) denote the vector and matrix of first and second partial
derivatives of @, (#) with respect to 6, respectively, evaluated at 0 = 6,,, and R () is a

10The precise conditions that the remainder R, (¢, ) satisfies are specified in Assumption C1 of AC1.
The quadratic approximation result (i) and results (ii)-(iv) that follow are established in the proof of
Theorem Fi;fl given in Appendix A.
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remainder term that is small for 6 close to 6, "]
(iii) Under {v,,} € I'(7y,0,b), the recentered and rescaled first derivative of @, ()

wrt ) satisfies an empirical process CLT:

G.(*) = G(+;7y), where

n

Gn(m) = n'/? Z (Pw,i(wo,m ) — E%Pw,i(z%,m W)) (3.38)

i=1

and G(+;7,) is a mean zero Gaussian process indexed by 7 € IT with bounded continuous
sample paths and covariance kernel Q(my, ma;7,) for my, mo € 11

(iv) Under {~v,} € T'(vy, 00,wp), the rescaled first and second derivatives of Q,, ()
satisfy

n'?B71(8,) DQu(0x) —a G*(70) ~ N(0ay, V(7o) (3.39)

and
Jn = B71(8,)D*Qu(0n) B (8,) —p J(70) € RY*% ¥y, €T. (3.40)

3.5. Assumptions C6 and C7

In this section, we state assumptions that concern the minimum of the limit of the
normalized criterion function after ¢/ has been concentrated out[”]
Define a “weighted non-central chi-square” process {£(7;7,,b) : 7 € II} and a non-

stochastic function {n(m; vy, wo) : 7 € 11} by

£(m37,b) = —% (G(m;70) + K (m570) b) H (5 7) (G(m37) + K (7;7,)b) and
(75 Y0, Wo) = —%%K(W;%)’HI(W;WO)K(W;%)WO- (3.41)

The process £(m;7y,b) is the limit under {v,,} € I'(~,,0,b) for ||b|]| < oo, defined in
([2.17), and the function 7(m; v, wo) is the limit under {7, } € I'(7,,0,b) for ||b]| = co.
Under Assumptions S1-S4, {&(7;7,,b) : m € I} has bounded continuous sample paths
a.s.

To obtain the asymptotic distribution of 7,, when 3,, = O(n~/2) via the continuous

mapping theorem, we use the following assumption.

The precise conditions that the remainder R} (6) satisfies are specified in Assumption D2 of AC1.
12 Assumptions C6 and C7 are the same as in AC1, which is why the numbering starts at C6, rather
than C1.
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Assumption C6. Each sample path of the stochastic process {&(m;7,,b) : m € II} in
some set A(7,,b) with P, (A(vy,b)) = 1 is minimized over II at a unique point (which
may depend on the sample path), denoted 7*(v,,b), ¥y, € I' with g, = 0, Vb with
[[b]| < oo.

In Assumption C6, 7*(~,, b) is random.

Next, we give a primitive sufficient condition for Assumption C6 for the case where
# is a scalar parameter. Let p,(w,0) = (pg(w,0)’, p.(w,0)")". When 8 = 0, p.(w, ) does
not depend on 7 by Assumption S2(ii) and is denoted by p.(w,1’). When dg = 1 and
By = 0, define

PZ(W:¢07W17W2) = (pg(VViaw077rl)7pﬁ(M7¢077r2)7p{(1/Vi7¢0)/), and

QG(WLWQ;’YO) = Z Covvo(pjp(Wiadjoaﬂ-l’WQ)’pZ(VVi-&-ma@Z)O’Wl’W?))' (342)

m=—00

Assumption C6'. (i) ds =1 (i.e., 3 is a scalar).
(ii) Qg (1, m2;7,) is positive definite Vi, mo € 11 with w1 # 7o, V7, € I with 8, = 0.

Lemma 3.2. Assumptions S1-S3 and C6' imply Assumption C6.

Example 1 (cont.). For this example, Assumption C6' is verified in Supplemental

Appendix D with the covariance matrix in Assumption C67(ii) equal to

o 12246
Salmmine) = Bz 0 - Lizic,)
hZ,i<7T177T2> - (h(Xi77T1)7 h<Xi77T2>7 Zz,)/

hZ7i(7T1, Wz)hzﬂ‘(’ﬂ'l, 7T2)/, where

(3.43)

g

The following assumption is used in the proof of consistency of 7, for the case where

the true parameter 3, satisfies 3, — 0 and n'/?||3,|| — oo.

Assumption C7. The non-stochastic function 7(m;v,,wp) is uniquely minimized over
m eIl at my Vy, € I' with 3, = 0.

In Assumption C7, 7 is non-random. Assumption C7 can be verified using the
Cauchy-Schwarz inequality or a matrix version of it, see Tripathi (1999), when K (7;7,)

and H (m;7,) take proper forms, as in our examples.
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Example 1 (cont.). Assumption C7 is verified in this example as follows. By (2.4)
and (3.35)), when 5, =0,

L"(ZCo)

H(T‘-?W/O) = E’Yo L(Z{CO)(l _ L(Zl(go))dd’:i(ﬂ-)dw:i(ﬂ-)l' (344)
By and , when 8, =0,
) L?(Zi¢o)
K(m;v,) = E’%L(ZZ(CO)(1 — L(Zl{co))h(Xi,Wo)dw’i(’/T). (3.45)
Hence, when 3, = 0,
K (m;70) H (m370) K (m590) < E L(Zico) h*(Xi, o) (3.46)

T L(ZICo) (1 — L(ZICy))

by the matrix Cauchy-Schwarz inequality in Tripathi (1999). The “<” holds as an
equality if and only if h(X;, mg)a + dy ;(7)'b = 0 with probability 1 for some a € R and
b € R&H! with (a,b') # 0. The “<” holds as an equality uniquely at 7 = 7, because for
any 7 # mo, Py, (' (M X5, m0), M(X;,m), Z]) = 0) <1 for any c # 0 by . O

4. Estimation Results

This section provides the asymptotic results of the paper for the extremum estimator
En. The results are given under the drifting sequences of distributions defined in Section
Define a concentrated extremum estimator i, (r) (€ ¥(w)) of ¢ for given 7 € II by

Qulty(m),m) = inf Qu(w,m) + o(n ™). (41)

Let Q¢ (m) denote the concentrated sample criterion function Q, (i, (), 7). Define

an extremum estimator 7, (€ II) by
Qn(Fn) = inf Q5(7) +o(n). (4.2)
We assume that the extremum estimator /O\n in |) can be written as gn =

(1, (7), 7). Note that if and hold and 6, = (¢, (7,),7,), then au-

tomatically holds.
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For 7, = (B, Cp» Ty @) € T, let Qo = Qu(thg,, m), where ¥, = (0,¢,). Note that
Q0. does not depend on 7 by Assumption S2(ii).
Define the Gaussian process {7(m;7,,b) : m € I} by

(570, b) = —H 1 (370) (G (3 70) + K (5 70)b) — (b, 04,), (4.3)

where (b,04,) € R%. Note that, by (3.41) and , E(m;7v,0) = —(1/2)(7(m;79,b) +
(b, 0a, )" H (75 70) (7 (75 70, b) + (b, 0q, ). Let

T (70, 0) = argmin {(m; 7, b). (4.4)

mwell

Theorem 4.1. Suppose Assumptions S1-S4, B1, B2, and C6 hold. Under {~,} €
12/, * b): b
(a) n Wn wn) —y T(ﬂ- (ZO? )7707 ) ,cmd
™ (707b)
(b) 1 (@n(Br) = Qo) —a infren €(5 70, b).

Tn

Comments. 1. The results of Theorem [4.1] and Theorem [4.2 below are like those of
Theorems 5.1 and 5.2 of AC1. However, Theorems [4.1] and Theorem [4.2] are obtained
under assumptions that are much more primitive and easier to verify, though less general,
than the results in AC1. In particular, Assumptions S1-S4 impose conditions for fixed
parameters, not conditions on the behavior of random variables under sequences of
parameters. In addition, explicit formulae for the components of the asymptotic results
are provided here based on the sample average form of @, () that is considered.

2. Define the Gaussian process {73(m;7,,b) : m € I} by
Tﬁ(ﬂ-;’y[hb) = 857—(71-;707()) + ba (45)

where Sz = [Ids : Odﬁxdg] is the dg x d selector matrix that selects 5 out of ). The
asymptotic distribution of n'/23, (without centering at 3,,) under I'(v,,0,b) with ||b]| <
oo is given by 75(7* (7, b); Yo, b)-
3. Assumption C6 is not needed for Theorem [4.1{(b).
Let
G"(70) ~ N(0ay, V(70))- (4.6)
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Theorem 4.2. Suppose Assumptions S1-S3, B1, B2, and CT7 hold. Under {v,} €

F(VO’ 0, W0)7
(a) nl/QB(Aﬁn)@n = 0n) —a —J 7 (%6)G*(70) ~ N(04,, T~ (70)V (70) T (7)), and
(b) n(Qn(02) = Qu(0n)) —a —5G*(70)' T (70)G* (70)-

5. QLR Confidence Sets

In this section, we consider CS’s based on the quasi-likelihood ratio (QLR) statistic.
We establish (i) the asymptotic distribution of the QLR statistic under the drifting
sequences of distributions defined in Section (ii) the asymptotic size of standard
QLR CS’s, which often are size-distorted, and (iii) the correct asymptotic size of robust
QLR CS’s, which are designed to be robust to the strength of identification. The proofs
of the results given here rely on results given in Appendix A and ACI.

5.1. Definition of the QLR Test Statistic

We consider CS’s for a function r(6) (€ R%) of § obtained by inverting QLR tests.

The function 7(6) is assumed to be smooth and to be of the form

r(6) = [ (V) ] , (5.7

T2(7T)

where r1(¢)) € R, d,, > 0 is the number of restrictions on v, ro(7) € R%2, d,, > 0 is
the number of restrictions on 7, and d, = d,, + d,,.

For v € r(0), we define a restricted estimator 6,(v) of 6 subject to the restriction
that r(0) = v. By definition,

0,(v) €O, r(0,(v) =0, and Qu(0,(v)) = inf  Qu(0) +o(nY).  (58)

0cO:r(0)=v

The QLR test statistic for testing Hy : 7(6) = v is

QLR,(v) = 2n(Qn(00(v)) — Qu(0,)) /30, (5.9)

where s, is a random real-valued scaling factor that is employed in some cases to yield

a QLR statistic that has an asymptotic X?zT null distribution under strong identification.
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See Assumptions RQ2 and RQ3 below.

Let ¢p1-4(v) denote a nominal level 1 — « critical value to be used with the QLR
test statistic. It may be stochastic or non-stochastic. The usual choice, based on the
asymptotic distribution of the QLR statistic under standard regularity conditions, is the
1 — a quantile of the x7 distribution, which we denote by x3 ;-

Given a critical value ¢, 1, (v), the nominal level 1 —a QLR CS for r(0) is

C’SS%JR ={ver(®): QLR,(v) < cpi1-a(v)}. (5.10)

5.2. QLR Assumptions

If () includes restrictions on 7, i.e., d,, > 0, then not all values 7 € II are consistent
with the restriction ro(7m) = vy. For vy € r5(0), the set of 7 values that are consistent

with 79(7) = vy is denoted by
I, (vy) = {m € I : my(7) = vy for some 6 = (¢, 7) € OF. (5.11)

If d,, = 0, then by definition II,(vy) = II Vv, € 15(0).

We assume r(0) satisfies:

Assumption RQ1. (i) () is continuously differentiable on ©.

(ii) r¢(0) (= (9/00")r(#)) is full row rank d, V6 € ©.

(i) r(6) satisfies (5.7).

(iv) dg (11, (ve), 1L, (vg2)) — 0 as vy — wvoa Yvga € r2(OF).

(v) Q(3, m;7,) is continuous in ¢ at 1, uniformly over 7 € II (i.e., sup,p |Q(¢, m;7v,) —

Q(Yo, 5 70)| — 0 as P — 1) Vv, € I' with S, = 0.
(vi) Q(0;7,) is continuous in 0 at Oy Vv, € I' with 5, # 0.

In Assumption RQ1(iv), dy denotes the Hausdorff distance. In Assumptions RQ1(iv)
and (v), Q(0;70) = Ey,p(Wi,0).

Assumptions RQ1(i) and RQ1(ii) are standard and are not restrictive. Assumption
RQ1(iii) rules out the case where any single restriction depends on both ¢ and 7. This
is restrictive. But, in some cases, a reparametrization can be used to obtain results for
such restrictions, see AC1 for details. Assumption RQ1(iv) is not very restrictive and is

easy to verify in most cases. Assumptions RQ1(v) and RQ1(vi) are not restrictive.
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Even under strong identification, it is known that the QLR statistic has an asymp-
totic X?lr null distribution only under additional assumptions to those used for Wald and

Lagrange multiplier (LM) statistics. The following two assumptions are needed.

Assumption RQ2. (i) V(v,) = s(vy)J(7,) for some non-random scalar constant
s(7o) Vo € T, or (ii) V(y,) and J(7,) are block diagonal (possibly after reordering
their rows and columns), the restrictions r(6) only involve parameters that correspond
to one block of V(v,) and J(v,), call them Vi;(v,) and Jy1(7,), and for this block

Vi1 (7)) = s(70)J11(7) for some non-random scalar constant s(vy,) Vv, € I.

Assumption RQ3. The scalar statistic s,, satisfies s,, —, s(7,) under {7,,} € I'(7,,0,0)
and under {7, } € I'(v,, 00, wp).

For example, Assumptions RQ2(i) and RQ3 hold with s(vy,) = 5,, = 1 for a correctly
specified log-likelihood criterion function. For a homoskedastic nonlinear regression
model, Assumptions RQ2(i) and RQ3 hold with s(v,) equal to the error variance o2
and 5, equal to a consistent estimator of o2, such as the sample variance based on the

residuals.

5.3. QLR Asymptotic Distributions

To obtain the asymptotic size of QLR CS’s, we need to determine the limits of
the coverage probabilities of the QLR CS’s under all sequences {v,,} € I'(7,,0,b) and
{7.} € T(vy,00,wp) when the null hypotheses are true. That is, we need to know
these limits when v = v, = r(6,,) for 7v,, = (0., ¢,,) Yn > 1. To obtain these coverage
probabilities, we first determine the asymptotic null distributions of the QLR statistic
under these sequences.

In the results below, we use the following notational simplifications:

QLR, = QLR,(v,) and 6,, = 0,,(v,), where v, = r(0,,) and ~,, = (0n, ¢,,) (5.12)

For notational simplicity, let II, o = II,(vg 2), where vy o = 72(mg) and vy, = (Ao, ¢y) €
I'. That is, II,.¢ is the set of values 7 that are compatible with the restrictions on 7 when

Vo is the true parameter value.

B 13 As a consequence of these definitions, the asymptotic results given below for the statistics QLR,, and
60, under {v,,} € I'(74,0,b) and under {v,,} € I'(y, 00,wp) are results that hold when the restrictions
are true.
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Next, we introduce the limit under {v,,} € T'(v,,0,b) with ||b]| < oo of the re-

stricted concentrated criterion function after suitable normalization. Define the process
{67“(71-;707[)) ST E H} by

& (m570,0) = &(7370,0) + %T(ﬂ';%)ab)/Pz/;(WVo),H(W;Vo)Pw(W;70)T<7T3707b)7 where
Py(mv0) = H™M(m570)r1.0(W0) (i (o) H ™ (m90)r10(g)) ' 71 (). (5.13)

r1y (W) = (8/00)ri(v) € R¥1*% and 7(m;v,, b) is defined in (4.3). The dy, X dy-matrix
Py(m;7,) is an oblique projection matrix that projects onto the space spanned by the

rows of 1 4 (1g).
The following Theorem shows that the QLR statistic converges in distribution to

Aorr(70)/5(7) under {v,,} € I'(7yq, 00, wp), where AgrLr(7,) is defined by

Aorr(70) = G*(70)' T (Vo) Ba(70)' T (0) Po(v0) T~ (76) G* (7)),
Po(v0) = I (v0)70(B0)' (ra(80) T (v0)r0(60)") " 4(60), (5.14)

r9(00) = (0/00)r(6y), and J(7y,) and G*(v,) are defined in (3.33)) and (3.39)), respec-

tively. The dy x dp-matrix Py(7,) is an oblique projection matrix that projects onto the

space spanned by the rows of ry(6p).

Theorem 5.1. Suppose Assumptions S1-S4, B1, B2, RQ1, and RQ3 hold.

(a) Under {7,} € I'(7,,0,b) with [[b]| < oo,

QLR, —q Q(infweﬂr,o &, (7390, 0) — infren £(7; 790, 0)) /5(70)-

(b) Under{v,} € I'(yy, 00,wo), QLR,, —a Aorr(Vo)/s(7) provided Assumption CT also
holds.

Comment. By Theorem [5.1(b) and some calculations, when Assumptions RQ2 also
holds,

QLR —a Arr(70)/5(Y0) ~ X3.- (5.15)

5.4. Asymptotic Size of Standard QLR Confidence Sets

Here we establish the asymptotic size of a standard nominal 1 —a CS for () € R
obtained by inverting the QLR statistic, defined in (5.10)), using the x3 critical value.
The asymptotic size is determined using Theorem [5.1] combined with Lemma 2.1 in AC1.
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Let

h=(b,7,), H={h=(by) :||b|| < 00,7, € I with 5, = 0}, and
QLR(W) =2 inf €,(r70:8) — inf €(mi70,6) /(1) (5.16)

for ||b]| < co. Note that QLR(h) is the asymptotic distribution of QLR,, under {~,} €
I'(70,0,b) for ||b|| < co by Theorem [5.1(a). Let corp,1-a(h) denote the 1 — o quantile
of QLR(h) for h € H.

The asymptotic size results given below use the following df continuity assumption,

which typically is not restrictive.

Assumption RQ4. The df of QLR(h) is continuous at (i) x7 ;_, and (ii) sup,cy
CQLR’lfa(h), Yh € H.

Theorem 5.2. Suppose Assumptions S1-S4, B1, B2, C7, RQ1-RQ3, and RQ4(i) hold.
Then, the asymptotic size of the standard nominal 1 — o QLR CS is

AsySz = min{gnIgP(QLR(h) < X?lr 1—a), 1—a}.
e :

Comment. Depending on the distribution of {QLR(h) : h € H}, the standard QLR
CS has asymptotic size equal to 1 — « or less than 1 — . Often, it is less than 1 — a and

the standard QLR CS is size distorted.

5.5. Robust QLR Confidence Sets

In this section, we construct two QLR CS’s that have correct asymptotic size. These
CS’s are robust to the strength of identification. We construct CS’s for (6) by inverting
a robust QLR test that combines the QLR test statistic with a robust critical value that
differs from the standard strong-identification critical value, which is a Xi quantile.
The first robust CS uses the least favorable (LF) critical value. The second robust
CS is introduced in AC1. It is more sophisticated and uses a data-dependent critical
value. It is called a type 2 robust CS. It is smaller than the LF robust CS under strong

identification.
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5.5.1. Least Favorable Critical Value

The LF critical value is

cng’lﬂ = max{sup corr.1-a(h), Xi,ka}- (5.17)
heH

The LF critical value can be improved (i.e., made smaller) by exploiting the knowl-
edge of the null hypothesis value of r(). For instance, if the null hypothesis specifies
the value of m to be 3, then the supremum in does not need to be taken over
all h € H, only over the h values for which m = 3. We call such a critical value a null-
imposed (NI) LF critical value. Using a NI-LF critical value increases the computational
burden because a different critical value is employed for each null hypothesis value[[”]
When part of v is unknown under Hy but can be consistently estimated, then a plug-

in LF (or plug-in NI-LF) critical value can be used that has correct size asymptotically
and is smaller than the LF (or NI-LF) critical value. The plug-in critical value replaces
elements of v with consistent estimators in the formulae in and the supremum
over H is reduced to a supremum over the resulting subset of H, denoted ﬁn, for which

the consistent estimators appear in each vector 7.[1;6]

5.5.2. Type 2 Robust Critical Value

Next, we improve on the LF critical value by employing an identification category
selection (ICS) procedure that uses the data to determine whether b is finite]]
By Theorem , the asymptotic covariance matrix of @L under strong identification

-~

is (v0) = T (7)) V(o) I (7). Let S = J-1(0,)V,(6,,) 1 (6,,) denote an estimator

n

"To be precise, let H(v) = {h = (b,79) € H : ||b]| < 00,7(6y) = v}, where v, = (0o, ¢y). By
definition, H(v) is the subset is H that is consistent with the null hypothesis Hy : r(6g) = v, where 6,
denotes the true value. The NI-LF critical value, denoted célz R,ka(“)v is defined by replacing H by
H(v) in when the null hypothesis value is r(6y) = v. Note that v takes values in the set V,. = {vg :
r(0o) = vo for some h = (b,v,) € H}.

15When r(0) = B and the null hypothesis imposes that 3 = v, the parameter b can be imposed to
equal n'/2v. In this case, H(v) = H,(v) = {h = (b,7,) € H : b = n'/?v}. The asymptotic size results
given below for NI-LF CI’s and NI robust CI’s hold in this case.

16For example, if ¢ is consistently estimated by Zn, then H is replaced by ﬁn ={h=(0,y)€eH:v=
(B,Zn, 7,¢)}. If a plug-in NI-LF critical value is employed, H(v) is replaced by H(v) N H,, where H(v)
is defined in a footnote above. Note that the parameter b is not consistently estimable, so it cannot be
replaced by a consistent estimator.

1"When the null hypothesis specifies the value of /3, it is not necesary to use an ICS procedure.
Instead, we recommend using a (possibly plug-in) NI-LF critical value, see the footnote above.
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of X(7,), where J,(6) and YA/n(H) are estimators with probability limits J(6;~,) and
V(0;7,), respectively, under v, — v, and J(7,) = J(00;7,) and V (v,) = V(0o; ). For
brevity, we state the formal consistency Assumptions V1 and V2 concerning :];(9) and
V,(6) in Appendix B.

~

Example 1 (cont.) In this example, we estimate J(vy,) = V(7,) by Jn@n) = YA/n(@n),

where
I N L20)
hO=Va0) =273 o — L)

d;(m)d;(m)". (5.18)

g

The ICS procedure chooses between the identification categories ZCy : ||b]| < oo and

ZCy : ||b]| = oo. The statistic used for identification-category selection is

o~ o~ ~ 1/2

where 2357,1 is the upper left dg x ds block of S,. We use A, to assess the strength of
identification.

Now, we define the type 2 robust critical value, which provides a continuous transition
from a weak-identification critical value to a strong-identification critical value using a
transition function s(x). Let s(z) be a continuous function on [0, c0) that satisfies: (i)
0 < s(z) <1, (ii) s(z) is non-increasing in x, (iii) s(0) = 1, and (iv) s(z) — 0 as x — oo.
Examples of transition functions include (i) s(z) = exp(—c - x) for some ¢ > 0 and (ii)
s(x) = (14 c-2)~! for some ¢ > 0| For example, in the binary choice example, we use
the function s(z) = exp(—x/2).

The type 2 robust critical value is

~ Cp if An S K
C —an —
ore cs + [cg —cs] - s(A, — k) if A, > K, where
B = Céfij,l—a + Ay, cs = X?lr,l—a + Ay, (5.20)

and A; > 0 and Ay > 0 are asymptotic size-correction factors that are defined below.
Here, “B” denotes Big, and “S” denotes Small. When A,, < k, ¢orr1-an equals the

LF critical value célsza plus a size-correction factor Ay. When A, > K, Corri-an

18Tf céng’l_a = 00, one should take s(z) to equal 0 for z sufficiently large and define co x 0 in 1l
to equal 0. Then, the critical value ¢QrRr 1—qa,n is infinite if A, is small and is finite if A,, is sufficiently
large.
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is a convex combination of ¢5rp,_, + Ay and X3 ;_, + Ay, where A is another size-
correction factor and the weight given to the standard critical value x3 ,_, increases
with the strength of identification, as measured by A, — k.

The ICS statistic A, satisfies A,, —4 A(h) under {~, } € I'(v,,0,b) with ||b|| < oo,
where A(h) is defined by

1/2

A(h) = (76(m"; 70, 0) S 55(T"570) 76 ("5 70, 0) /ds) ™, (5.21)

where 7* abbreviates 7% (7, b), T5(m; 70, b) is defined in (4.5)), and X 5(7; 7,) is the upper

left (1,1) element of X (v, ;) for ¥(0;v,) = J_1(9§’Vo)Vw;’Yo)J_l(eWo)HEHﬂ
Under v,, € I'(v,,0,b) with ||b|]| < oo, the asymptotic null rejection probability of a

test based on the statistic ()LR,, and the robust critical value corr 1-an is equal to

NRP(Ay, Ag; h) = P(QLR(R) > cp & A(h) < k) + P(QLR(h) > ca(h) & A(R) > )
= P(QLR(h) > cg) + P(QLR(h) € (ca(h),cp] & A(h) > k), where
ca(h) =cs+ (cg —cs) - s(A(h) — k). (5.22)

The constants Ay and Ay are chosen such that NRP(A, Ay;h) < a VYh € H. In par-
ticular, we define A; = sup,cpy, Ai(h), where A;(h) > 0 solves NRP(Ay(h),0;h) = «
(or Ay(h) =0if NRP(0,0;h) < «), H;y = {(b,7o) : (b,7y) € H & ||b]| < ||bmax|| + D},
bmax is defined such that corr 1« (h) is maximized over h € H at hpax = (Dmaxs Vmax) € H
for some v,,.. € I', and D is a non-negative constant, such as 1. We define A, =
suppey Az2(h), where Ag(h) solves NRP(Ay, Ay(h); h) = o (or Ay(h) = 0if NRP(Aq,0;
h) < a)@ﬁ As defined, A; and Ay can be computed sequentially, which is computa-

19The convergence in distribution follows from Theorem a) and Assumption V1.

20Tn the vector 3 case, ZE& (m*; ) is replaced in by a slightly different expresssion, see footnote
51 of AC1. When the type 2 robust critical value is considered in the vector 3 case, h is defined to
include wy = lim,, . B,,/||8,]| € R% as an element, i.e., h = (b,7y,wo) and H = {h = (b, vy, wo) :
[16]] < 00,7 €T with 8y =0, ||wo|| = 1} because the true value wq affects the asymptotic distribution
of A,.

2L Alternatively to the ICS statistic A,,, one can use a NI-ICS statistic A, (v), which employs the
restricted estimator Bn(v) of B in place of En and a different weight matrix. See AC1 for details.

2When NRP(0,0;h) > a, a unique solution A (h) typically exists because N RP(Ay,0; k) is always
non-increasing in A; and is typically strictly decreasing and continuous in Aj. If no exact solution to
NRP(A1(h),0;h) = o exists, then Ay (h) is taken to be any value for which NRP(A;(h),0;h) < o and
Aj(h) > 0 is as small as possible. Analogous comments apply to the equation NRP(A, Aq(h);h) = «
and the definition of Ag(h).

**When the LF critical value is achieved at [[b]| = oo, i.e., X7 1_ o = SUDPpepy cQLRr1-alh), the
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tionally convenient.

Given the definitions of A; and A,, the asymptotic rejection probability is always
less than or equal to the nominal level a and it is close to & when h is close to hpyax (due
to the adjustment by A;) and when ||b]| is large (due to the adjustment by A).

The type 2 robust critical value can be improved by employing NI and/or plug-in
versions of it, denoted by €orr 1-a.n(v). These are defined by replacing c(fﬁ Rl_o D
by the NI-LF or plug-in NI-LF critical value and making A; and A, depend on the null
value v. We recommend employing these versions whenever possible because they lead
to smaller CS’s.

The asymptotic sizes of QLR CS’s based on LF and type 2 robust critical values
(possibly with NI and/or plug-in features) are always 1 — « or greater and are exactly
1 — o under some mild df continuity conditions. For brevity, these results are stated
formally in Theorem in Appendix B.

For any given value of k, the type 2 robust CS has correct asymptotic size due to the
choice of A; and A,. In consequence, a good choice of k depends on the false coverage
probabilities (FCP’s) of the robust CS. (An FCP of a CS for r(0) is the probability that
the CS includes a value different from the true value r(¢).) The numerical work in this
paper and in AC1 shows that if a reasonable value of x is chosen, such as k = 1.5 or 2.0,
the FCP’s of type 2 robust CS’s are not sensitive to deviations from this value of k. The
reason is that the size-correction constants A; and A, have to adjust as x is changed
in order to maintain correct asymptotic size. The adjustments of A; and A, offset the
effect of changing k.

One can select k in a simple way, i.e., by taking x = 1.5 or 2.0, or one can select x
in a more sophisticated way that explicitly depends on FCP’s. (See Appendix B for a
description of the more sophisticated method.) Both methods yield quite similar results

for the cases that we have considered.

6. t Confidence Intervals

In this section, we introduce confidence intervals (CI’s) based on ¢ statistics. The-

oretical results for the ¢ CI’s are obtained using the asymptotic distributions of the

standard asymptotic critical value Xi,.,lfa yields a test or CI with correct asymptotic size and constants
A; and Ay are not needed. Hence, here we consider the case where ||bmax|| < 00. If sup,cp corr,1-a(h)
is not attained at any point hmax, then byax can be taken to be any point such that corr,1—a(Pmax) is
arbitrarily close to sup,cy cQrr,1—a(h) for some Amax = (bmax; Ymax) € H-

34



unrestricted estimator @, in Theorems and Details are given in ACl In this
section, the number of restrictions, d,., equals one.
The t statistic takes the form
n'2(r(8,) — v)

Tyv) = —— 2 (6.1)
(Te(‘gn)B 1(571)2713 1(6n)r6(0n),)1/2

where ro(d) = (8/00')r(8) € R*% and 3, is defined as in Section . Although this
definition of the ¢ statistic involves B‘l(Bn), it is the same as the standard definition
used in practice, see AC1.

For testing Hy : 7(0) = v against two-sided, upper-one-sided, and lower-one-sided
alternatives, the ¢ statistic is |7, (v)|, T,,(v), and —T,,(v), respectively.

Let ¢,1-4(v) denote a nominal level 1 — « critical value to be used with the ¢ test
statistic. It may be stochastic or non-stochastic. The usual choice, based on the asymp-
totic distribution of the ¢ statistic under standard regularity conditions, is the 1 — «/2
or 1 — a quantile of the N(0,1) distribution: Z1—a/2 O 21—, depending on whether a
two-sided or one-sided CI is desired.

Critical values that deliver robust ¢ CS’s for r() that have correct asymptotic size
can be constructed using the same approaches as in Section [5.5

Given a critical value ¢, ;4 (v), the two-sided nominal level 1 — a ¢ CI for r(0) is
C’Sﬁ’n ={ver®): T, (v)] <cri-av)} (6.2)

For one-sided ¢ CI’s, |T,,(v)| is replaced by T),(v) or —T,(v) depending on whether one

desires an upper or lower CI, respectively.

7. Smooth Transition Autoregressive (STAR) Model

7.1. STAR Model and Criterion Function

In this section, we apply the results above to the STAR model. This model and its
applications are considered in Luukkonen, Saikkonen, and Terésvirta (1988), Terésvirta
and Anderson (1992), and Terisvirta (1994) among others. To fit the STAR model into

24See Theorems 4.1, 4.4(a), and 5.1(a) in Sections 4.1, 4.7, and 5, respectively, in AC1. Lemma
of Appendix A shows that Assumptions B1, B2, and S1-S3 imply the high-level conditions B3, C1-C4,
C8, and D1-D3 employed in the results just stated in AC1.
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our identification set-up, we write the model as

Y, = X/(+ X8 - m(Z, w) + Uy, where
Xt - (]-7 }/t—l? ceey }/;f—p)/7 Zt - )/t—du (73)

{Y; : t = 1,...,n} are observed random variables, {U; : t = 1,...,n} are unobserved
innovations, and m(-,-) is a known transition function. We assume p and d are known
and 1 <d <p.

As in the literature, two different forms of the transition function m(Z;, w) are con-

sidered. The first one is the logistic function
m(Zy,7) = (1 +exp[—m1(Z, — m)]) ! (7.4)
and the second one is the exponential function
m(Z;,m) =1 — exp[—m1(Z; — m2)?], (7.5)

where m = (71, m3)" € R% 71 > 0 measures the slope of the transition, and 7, measures
the location of the transition. For both the logistic function and the exponential function,
m(Zt, 7T) € [O, 1]

We consider the LS estimator of § = (3, (, 7). The LS sample criterion function is

Qn(0) =n~"! Zn: U2(6)/2, where Uy(0) =Y, — X/¢ — X|B-m(Z;, ). (7.6)

t=1

The LS estimator of § minimizes @Q,,(f) over § € ©. The optimization parameter space
© takes the form

0={(B,(,n):eB, (€ Z(p), mell}. (7.7)

We show in Supplemental Appendix E that under the assumptions given below As-
sumptions S1-S4, B1, B2, C6, C7, V1, and V2 hold. Hence, all of the asymptotic results
given above apply to the STAR model considered here.

The distribution of {U; : t = ..., —1,0,1,...} is ¢ € ®, where ® is a compact metric
space with some metric dg that induces weak convergence of the bivariate distributions

(Y:, Y1) for all t,m > 1.@ In this model, ¢ is an infinite-dimensional nuisance para-

2For example, the metric dg can be defined as follows. Let {u;}; and {u;}» denote two in-
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meter. The true value of v = (6, ¢), denoted by ~,, belongs to a compact set I'. Let F;
denote some increasing set of sigma-fields to which U, and Y; are adapted. The data

generating process (DGP) is assumed to satisfy Assumption STARI below.

Assumption STARL. (i) E, (U|F—1) =0 as., E, (U?|F-1) = 0% as. with 0® > 0,
and supys; By |U[*T < C < 00 Yy, €T
(ii) Under 7, {Y; : t = 1,...,n} is a strictly stationary and strong mixing sequence with

mixing coefficients o, < Cm~4 for some A > dpq/(q—dg) and q > dg = 2p+4, Vv, € T.

By Bhattacharya and Lee (1995), a set of sufficient conditions for Assumption
STAR1(ii) is (i) {U; : t = ...,—1,0,1,...} is a sequence of i.i.d. real-valued random
variables, (ii) the distribution of U, is absolutely continuous wrt the Lebesgue measure
and has a density function that is positive almost everywhere, (iii) E, |U;| < oo, and
(iv) 220 (1G] + [B]) < 1, where ¢ = (Cings C1s -, Gp) s B = (Bint, B1, -+ B), and (jy and
Bine are the intercepts when m (-,-) = 0 and 1, respectively.

Let my(Zy, w) = (ma1(Z, ), mro(Zy, 7)) € R? and my,(Z;, 7) € R**? denote the
first- and second-order partial derivatives of m(Z;, ) wrt 7. Suppose ||mqr(Z;, m1) —
Mo (Zy, o) || < Mrr(Zy)0 for any w1, m9 € 11 and ||m — mo|| < 6 and M,.(Z;) satisfies
Assumption STAR2(iii) below. In Assumption STAR2, the constants ¢ > 0 and 0 <
C < oo do not depend on 7.

Assumption STAR2. (i) P, ([X/, X;m(Z;,7), X\m(Z;,T)]a = 0) < 1Va # 0 € R¥»,
vV, e Il with m # 7.

(ii) Py, ([X], Xim(Zy, 7)), X{mp1(Zy, ), X[mr2(Zy,m)]a = 0) < 1 Va # 0 € R* and
Vr e 1L

(1) By, supren (Yo' + [[m(Z,, m)[1* + |[man(Ze, )[4+ || Mrr (Z0)|[*7) < C, where g is
as in Assumption STARI.

Let G(-;7,) be a mean zero Gaussian process indexed by 7 € II with bounded

finite {u; : t = ..,—1,0,1,...} sequences. The distribution of {u;}; is denoted by L({us};)
for ¢ = 1,2. Let Yi({ut};,0) denote Y; generated with the innovation sequence {u:}; and 0,
for i = 1,2. Let L(Y:({ut}i,0), Yerm({ut}i,0)) denote the bivariate distribution of (Yi({u:}i,0),
Yiem({ut}i,0)) for @ = 1,2. The metric dp can be defined as do(L({ut}1), LH{utt2)) =
Sy SUDpeo da(LYe({t}1r0), Yim ({tte 1, 0)), £V ({te}2, 0), Yism({ta}2,0))), where O is the
true parameter space for # and do is some metric on the space of bivariate distributions that induces
weak convergence.
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continuous sample paths and covariance kernel (7, 7w9;7,) for w1, w5 € II, where

Q1,25 70) = By Ufdy (1) dy ()" and
dys(m) = (Xim(Z, ), X7)'. (7.8)

Define a "weighted non-central chi-square" process {£(+;7,b) : 7 € I} and a Gaussian

process {75(:;7¢,b) : ™ € I} by

€70, b) = — 3 (Gm30) + K (m370) b H (1 730) (G 30) + K (i 70)8) and
75(m70,0) = —SpH " (m370) (G(m;70) + K (m3799)b) , where

K(m;79) = —Eyydy(m)dyi(m0) - Sh, Sp = [La, : 0] € R**%  and

H(m90) = Bryluu(m)dya(). (7.9

Assumption STAR3. (i) Each sample path of the stochastic process {&(m;7,,b) : 7 €
IT} in some set A(yy,b) with P, (A(vy,b)) = 1 is minimized over II at a unique point
(which may depend on the sample path), denoted 7*(v,,b), Vv, € T" with 5, = 0, Vb
with [|b]| < co.

(ii) Py, (75(7* (79, 0); 79, b) = 0) = 0 Vryy € T" with 8, = 0 and Vb with ||b]| < oco.

Lemma 7.1. When X, = Y, for some k > 1 or X; = 1, Assumption STAR2(i)
implies Assumption STAR3(i).

7.2. Parameter Space

The true parameter space for 0 = (3,(, ) is

= {(B.¢,m): BEB, (€ Z(P), me T} (7.10)

In (7.10), ©* is not a product space. For any 8 € B*, ¢* belongs to Z*() which is
defined such that {Y; : 1 <t < n} is a strictly stationary and strong mixing sequence
as in Assumption STARI.

For any 6, € ©*, let ®(fy) C ® denote the true parameter space for the nuisance

parameter ¢. The true parameter spaces ©* and ®(f) are assumed to satisfy Assumption
STARA.
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Assumption STARA4. (i) ©* is compact.

(ii) 04, € int(B*).

(iii) IT* = II3 x II3, where m; > ¢ for some ¢ > 0 Vm; € II3.
(iv) For some set Z§ and some 6 > 0, Z*(3) = Z; V||B]| < 4.

The parameter space I' is defined to be such that for any 6y € ©* and ¢, € ®(6,),
Yo = (0o, @) € T satisfies Assumptions STARI-STAR4. We also assume I is compact.

Assumption STARA(ii) guarantees that the region of non-identification (5 = 0) and
near lack of identification (||/3]| close to 0) is in the true parameter space. Assumption
STARA(iii) bounds the true parameter space of m; away from 0 because our focus is on
the weak identification of 7w that occurs when  is close to 0, rather than a different
sort of weak identification that occurs when 7; is close to 0. Assumption STARA(iv) is
employed in the verification of Assumption B2(iii).

The optimization parameter space © defined in is assumed to satisfy Assump-
tion STARS below. Let ¥ = {(5,() : 5 € Band ¢ € Z(f)}.

Assumption STARS5. (i) int(©) D ©*.

(ii) ©, B,11, and ¥ are compact, Z(/3) is compact V5 € B.

(iii) For some set Z, and some 6 > 0, Z(8) = 2, V||5|| < § and int(Zy) D 2§, where
Z} is as in Assumption STARA(iv).

7.3. Key Quantities

The quantities G(+;7,), K(m;7,), H(m; ), and £(+;7,) in (7.9) appear in Theorem
4.1
In the STAR model, W; = (Y, X/, Z;)". The criterion function in (7.6) takes the form

1

Qn(0) =n~" Y p(W;,6), where p(W;,0) = 5Uf(e). (7.11)
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The first- and second-order partial derivatives of p(W;, 0) wrt ¢ and 6 are

Py (Wi, 0) = =U(0)dy (), pg(We,0) = —Uy(0)do+(0),
Py (Wi, 0) = dy o (1) dy (7)),
Poo(We,0) = dg¢(0)dg(0) — Up(0)Dy(0), where
dy(m) = (X{m(Zy,7), X7)', dot(0) = (X{m(Zy,m), X{, B’ Xymr(Zy,7)')" and
Odsxdg Odgxd,  Xemg(Zg, )
Dy(0) = Od, xds Od xd, Od, x . (7.12)
mw(Zta W)Xt/ Odﬂxdg BIXt ’ m7r7r(Zt77T)
Define

di(m,w) = (X;m(Z,m), X}, w' Xymy(Zy, w)'). (7.13)

The re-scaled partial derivatives in (3.19)) take the form

P (W, 0F) = —U(0F)dy(m,w), ph,(Wy,0%) = dy(m,w)dy(m,w)’, and

Od/; Xd/@ 0d5Xd< Xtmﬂ'(Zta 7T)/
e(Wy, 07) = U (67) Od, xds Od xdg Od; xdyr , where
mﬂ-(Zt, 7T)Xt/ Oderdg w’Xt . mﬂ-ﬂ(Zt, 7T)
UL(6%) = Y, — XIC — X(w|lBl] - m(Ze, ). (7.14)

Let

VT(Q(T’ ‘93; Yo) = V(7o) = EvoUtht(Wo,Wo)dt(WO,WO), and
J(v0) = Ewodt(ﬂo,wo)dt(ﬂo,wo)- (7.15)

The quantities in ((7.12), (7.14]), and (7.15|) appear in Assumptions S1-S4. The matrices
J (7o) and V(7,) appear in Theorem [4.2]
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7.4. Variance Matrix Estimators

t tests and CI’s employ estimators of J(7,) and V(v,). We estimate these matrices
by

~

J= 1T, (@*) and ¥, = V,(0, ), where (7.16)

Tn(0) = _IZdt m.w)dy(m,w) and V,(6F) = _1ZU2 (07)dy (7, w)dy (m, w)'.

These variance matrix estimators also are used to construct the identification-category-

selection statistic A,,.

8. Numerical Results

In this section, we provide asymptotic and finite-sample simulation results for the
STAR model and the binary choice model.

8.1. Numerical Results for the STAR Model

The STAR model considered is
Y, =+ GYia+8-m(Yq,m) + Uy, (8.1)

with m(z,7) = z(1 +exp(—10(z — 7)), {U; : t = 1,...,n} are i.i.d., and U; ~ N(0,1).
The true values of (; and (, are —1 and 0.5, respectively. The true parameter space for
7 is [—3.5, —1.5] and the optimization space for 7 is [—4, —1|. The number of simulation
repetitions is 20,000@

Figures 1 and 2 provide the asymptotic and finite-sample densities of the ML es-
timators of 8 and m in the STAR model when the true 7 value is 7 = —1.5. Each
Figure gives the densities for b = 0, 2, 4, and 10, where b indexes the magnitude of [.
Specifically, for the finite-sample results, b = n'/2/3. In these Figures, the finite-sample
size considered is n = 500. Figures S-1 and S-2 in Supplemental Appendix C provide

analogous results for 7y = —3.0.

26For the STAR model, the discrete values of b for which computations are made run from 0 to 12,
with a grid of 0.2 for b between 0 and 5, a grid of 0.5 for b between 5 and 8, and a grid of 1 for b between
8 and 12.
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Figure 1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of /3 in
the STAR Model when 19 = —1.5.
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Figure 2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of 7 in
the STAR Model when 79 = —1.5.

Figure 1 shows that the ML estimator of 5 has a bi-modal distribution that is very
far from a normal distribution in the unidentified and weakly-identified cases. Figure
2 shows that there is a build-up of mass at the boundaries of the optimization space
for the estimator of 7 in the unidentified and weakly-identified cases. Figures 1 and 2
indicate that the asymptotic approximations developed here work very well.

Figures S-3 to S-6 in Supplemental Appendix C provide the asymptotic and finite-
sample (n = 500) densities of the ¢ and QLR statistics for 5 and 7 in the STAR model
when 7y = —1.5. These Figures show that in the case of weak identification the ¢ and
QLR statistics are not well approximated by standard normal and x? distributions.
However, the asymptotic approximations developed here work very well.

Figure 3 provides graphs of the 0.95 asymptotic quantiles of the |¢| and QLR statistics
concerning [ and 7 in the STAR model as a function of b for 7y = —1.5, —2.0, —3.0, and
—3.5. For the [t| statistic concerning (3, for small to medium b values, the graphs exceed

the 0.95 quantiles under strong identification (given by the horizontal black lines). This
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Figure 3. Asymptotic 0.95 Quantiles of the |¢| and QLR Statistics for Tests Concerning
£ and 7 in the STAR Model.
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Figure 4. Coverage Probabilities of Standard |t| and QLR Cl's for 8 and 7 in the STAR
Model when 79 = —1.5.
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implies that tests and CI’s that employ the |¢| statistic for § and the standard critical
value (based on the normal distribution) have incorrect size. The same pattern emerges
for the QLR statistic for § (although the quantile graphs are slightly below the black
line for a range of b around 4 when 7y = —3.0 and 79 = —3.5). The graphs in Figure 3(b)
imply that tests and CI’s that employ the QLR statistic for 8 and the standard critical
value (based on the x? distribution) have incorrect size due to the under-coverage for b
values around 0. Given the heights of the graphs in Figure 3(c) and 3(d), tests and CI’s
that employ the |t| and QLR statistic for 7 and the standard critical value also have
incorrect asymptotic size.

Figure 4 reports the asymptotic and finite-sample CP’s of nominal 0.95 standard
|t| and QLR CI’s for 5 and 7 in the STAR model when 7y = —1.5. For example, the
smallest asymptotic and finite-sample CP’s (over b) are around 0.67 for the |¢| CI for /3
and 0.40 for the [t| CI for 7. The corresponding values for the QLR CI’s are 0.72 for
[ and 0.84 for 7. Hence, the size distortions for the standard |t| and QLR CI’s for g
are similar. But, for the CI’s for 7, the size distortion of the standard QLR CI (both
asymptotic and finite sample) is noticeably smaller than that of the standard |¢| CI.
Note that the asymptotic CP’s provide a very good approximation to the finite-sample
CP’s. Figure S-7 in Supplemental Appendix C provides analogous results for 7y = —3.0.

Next, we consider CI’s that are robust to weak identification. For the robust CI for
3, we impose the null value of b = n'/?3,, where /3, is the true value of 3 under the null.
With the knowledge of b under the null, no identification category selection procedure
is needed. Furthermore, the NI-LF critical value for the robust QLR CI for 3 is as in
, but with A and H replaced by 7 and II, respectively, resulting in a smaller LF
critical value. The same simplification applies to the NI-LF critical value for the robust
t| CI for 3.

As indicated in Figures 3(a) and 3(b), the NI-LF critical values for both |¢{| and QLR
CI’s for (3 are attained at my = —1.5 for all b values. In consequence, the robust |t| and
QLR CT’s for 8 are asymptotically similar when 7o = —1.5, as shown in Figures 5(a) and
5(b). Figures 5(a) and 5(b) also report the finite-sample (n = 500) CP’s of the robust
|t] and QLR CT’s for 3. For the former, the finite-sample CP is around 0.91 in the worst
case, as opposed to 0.67 for the standard |t| CI. For the latter, the finite-sample CP
is around 0.95 for all b values, showing that the robust QLR for S has excellent finite-
sample performance. Figures S-8(a) and S-8(b) in Supplemental Appendix C provide

analogous results for my = —3.0. The robust CI’s for 3 are not asymptotically similar
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Figure 5. Coverage Probabilities of Robust |t| and QLR CI's for 5 and 7 in the STAR
Model when mg = —1.5, Kk = 2.5, D =1, and s(x) = exp(—xz).

when my = —3.0, but they have correct asymptotic size and the asymptotic and finite-
sample CP’s are close for all b values.

The robust CI’s for 7 are constructed with the null value 7y imposed. Because b
is unknown, we apply the smooth transition in to obtain critical values for the
robust CI’s for 7. Figures 5(c) and 5(d) report the asymptotic and finite-sample CP’s
of the robust |t| and QLR CIs for 7 in the STAR model when my = —1.5. To construct
these robust CI’s, we employ the transition function s(z) = exp(—x) and the constants
k = 2.5and D = 1. The choices of s(z) and D were determined via some experimentation
to be good choices in terms of yielding CP’s that are relatively close to the nominal size
0.95 across different values of b. Given s(x) and D, the choice of k was determined based
on minimizing average FCP’s. However, a wide range of x values yield similar results
(because the constants A; and A, adjust to maintain correct asymptotic size as k is
changed).

Figures 5(c) and 5(d) show that the robust CI's for m have correct asymptotic size
and the finite-sample sizes are reasonably close to 0.95 for both the |¢| and QLR CI’s.
Analogous results for the robust CI's for 7 when my = —3.0 are reported in Figures
S-8(c) and S-8(d) in Supplemental Appendix C.
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Besides b and 7, the construction of a robust CI also requires the ¢ value in order
to obtain the LF (or NI-LF) critical value through simulation. In the STAR model,
¢ = ((y,(y)". Because ¢ can be consistently estimated, we recommend plugging in the
estimator Zn in place of (, in practice. To ease the computational burden required to
simulate the CP’s, the finite-sample CP’s of the robust CI’s reported in Figures 5 and
S-8 are constructed using the true value (,, rather than the estimated value /C\n. To
see how much these robust CI’s may differ from their counterparts constructed with
/C\n, which is what one would use in practice, Table S-1 in Supplemental Appendix C
compares their CP’s in different identification scenarios in a small-scale simulation. The
comparison suggests that the robust CI's obtained with (, and those obtained with En
are fairly close |

8.2. Numerical Results for the Binary Choice Model

The binary choice model considered is
V,=1Y">0)and V" =, + (4 Z + 5 - h(X;,7) — U, (8.2)

with h(z,7) = (2™ —1)/7, ZF ~ N(0,1), X; = | X/| with X ~ N(3,1), Corr(Z;, X}) =
0.5, and U; ~ N(0,1). The true values of (, and (; are —2 and 2, respectively. The true
parameter space for 7 is [1.5, 3.5] and the optimization space for 7 is [1,4]. The number
of simulation repetitions is 20, OOOF_Q-]

Figures 6-10 provide results analogous to those in Figures 1-5. Figures S-9 to S-16

in Supplemental Appendix C report results analogous to those in Figures S-1 to S-8.

2TWith a single sample, the computational burden is the same whether the true value (, or the
estimated value En is employed. However, in a simulation study, it is much faster to simulate the
critical values for a range of true values of b and 7y and the single true value of (, one time and then
use them in each of the simulation repetitions, rather than to simulate a new critical value for each
simulation repetition, which is required if ¢,, is employed.

28The comparison is made based on a simulation with 1,000 samples of size 500 to obtain the finite-
sample CP’s and 5,000 simulation repetitions to determine the two LF critical values for each sample.
The CI’s considered are robust ¢ and QLR CI’s for 5. The estimator (,, employed is the null-imposed
estimator. For CI’s with nomial CP .950, the differences in finite sample CP’s for ¢ CI's between using
the true ¢ and using ¢ are .003 or less in 12 of the 13 cases and .005 in the other case. For the QLR
Cl’s, differences are .004 or less in 9 of the 13 cases and .005, .008, .008, and .013 in the other four
cases.

29For the binary choice model, the discrete values of b for which computations are made run from 0
to 30, with a grid of 0.2 for b between 0 and 6, a grid of 0.5 for b between 6 and 12, and a grid of 1 for
b between 12 and 30.
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Figure 6. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of 3 in the
Binary Choice Model when 79 = 1.5.
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Figure 7. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of 7 in the
Binary Choice Model when 7y = 1.5.

The simulation results for the binary choice model are summarized as follows. First,
the LS estimators and the |t| and QLR statistics for 3 and 7 do not display normal or x?
distributions under non-identification and weak identification. However, the asymptotic
approximations developed here work very well in general, as indicated in Figures 6, 7,
9, and 107

Second, tests and CI’s that employ the |¢t| and QLR statistics for 5 and the standard
critical values have incorrect size, but the size distortion is much smaller for the QLR
tests and CI’s. For example, the standard [t| and QLR CI’s for 8 have asymptotic CP’s
around 0.70 and 0.92, respectively, when my = 1.5@ Tests and CI’s that employ the

QLR statistic for m and the standard critical value have correct asymptotic size and

30The largest discrepancies between the asymptotic and finite-sample results occur when 7y = 2.0
and b = 20, see Figures S-9 and S-10, in which case the shape of the asymptotic approximation is good,
but its scale is off.

31The standard QLR CI for $# only under-covers for 3 very close to zero, which makes it difficult to
detect in Figures 8(b) and 9(b).
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Figure 8. Asymptotic 0.95 Quantiles of the |¢| and QLR Statistics for Tests Concerning
B and 7 in the Binary Choice Model.
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Figure 9. Coverage Probabilities of Standard |t| and QLR Cl's for § and 7 in the Binary
Choice Model when 7y = 1.5.
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Figure 10. Coverage Probabilities of Robust |¢| and QLR Cl's for 8 and 7 in the Binary
Choice Model when 79 = 1.5, k = 1.5, D =1, and s(z) = exp(—z/2).

those employ the |t| statistic for 7 only have small size distortions.

Third, the robust CI’s have asymptotic CP’s greater than or equal to 0.95 for all
b. The finite-sample CP’s are greater than or equal to 0.95 in all cases except for the
robust |t| CI for 3, where the CP’s are slightly below 0.95 for a small range of b values
and the lowest CP is around 0.93. The finite-sample under-coverage of the robust CI’s

is much smaller than that of the corresponding standard CI’s.

9. Appendix A: Proofs

This Appendix proves the results in Theorems [4.1, [4.2] 5.1, and 5.2l The method
of proof is to show that Assumptions B1l, B2, and S1-S3 imply certain high-level as-
sumptions in AC1 (specifically, Assumptions A, B3, C1-C4, C8, and D1-D3 of AC1).
In addition, it is straightforward that Assumptions S1 and S4 imply Assumption C5 of
AC1. Given these results, Theorems 3.1, 3.2, 4.2, 4.3, and 4.4(b) of AC1 imply Theo-

rems 1.2l b.1(a), p.1{(b), and respectively, because the results of these theorems

are the same, just the assumptions differ.
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Lemma 9.1. Suppose Assumptions Bl and B2 hold. Assumptions S1-S3 imply that
Assumptions A, B3, C1-C4, C8, and D1-D3 of AC1 hold with

Q(H;VO) = E’YOIO<Wi7 0)7 D¢Qn(9) =n" pr(VVi’ 9)’ Dt/ﬂﬁQn(Q) =n"! prw(Wiv 0)7

=1 =1

m(WZ79) = pzp(VVZae)u Q(W177T2;’YO> = S¢VT((77Z}077-‘-1)7 (¢07W2);70)S;b’

H(m375) = Eqypyp(Wi, 09, ), DQu(0) =01 " py(Wi,0),
=1

n
D*Qu(0) = 17" Y pag(Wi,0), J(70) = Enyphg(Wi, 00), and V() = V(8o 00; 7).
i=1
We start by giving some general results that are useful in the proof of Lemma [9.1
Specifically, Lemma (9.2 is a uniform convergence result for non-stochastic functions,
Lemma [9.3] is a uniform LLN, Lemma [9.4] is a stochastic equicontinuity result for em-
pirical processes based on Theorem 3 of Hansen (1996), and Lemma is a CLT. All

of these results are for strong mixing triangular arrays. The proofs of Lemmas [9.2
are given below following those of Lemmas and

Lemma 9.2. Let {q,(0) : n > 1} be non-stochastic functions on ©. Suppose (i) ¢,(0) —
0V € O, (ii) ||g.(01) — ¢.(02)]| < C6 V01,05 € © with ||0, — 05]] < 0, Vn > 1, for some
C < oo and all 6 > 0, and (iii) © is compact. Then, supgeg ||¢,(8)|] — 0.

Lemma 9.3. Suppose (i) Assumption S1 holds, (ii) for some function Mj(w) : W —
R* and all § > 0, ||s(w,81) — s(w,0)|] < My(w)d, V01,05 € © with ||0; — O] < 6,
Yw e W, (iil) E, supgee ||s(Wi, 0)||*° + E,M(W;) < C Vy €T for some C' < oo and
e > 0, and (iv) © is compact. Then, supyeg ||n~' >0, s(W;,0) — E, s(W;,0)]] —, 0
under {v,} € I'(vy) and B, s(W;,0) is uniformly continuous on © Vv, € T

Comment. Note that the centering term in Lemma is B, s(W;,0), rather than
E’yn5<Wi; 9)

Lemma 9.4. Suppose (i) Assumption S1 holds, (ii) for some function M;(w) : W —
R and all 6 > 0, ||s(w,01) — s(w, bs)|| < My(w)d, V01,05 € O with ||6; —0s|] < 0, Vw €
W, and (iii) E, supgee ||s(Wi, 0)||2+ E,M,(W;)? < C ¥y € T for some C < oo and q as
in Assumption S1. Then, v,s(0) = n~Y23""  (s(W;,0) — E, s(W;,0)) is stochastically
equicontinuous over 6 € © under {7, } € I'(7,), i-e., Ve > 0 and n > 0, 30 > 0 such that
lim sup,, o, P[Supy, g,c0:(16,-6s(|<s |[Vn$(01) — vns(02)|[ > ] <& Vo €T
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Lemma 9.5. Suppose (i) Assumption S1 holds, (ii) s(w) € R and E,|s(W;)|? < C
Vy € T for some C < oo and q as in Assumption S1. Then, n=Y/23 "  (s(W;) —
E,, s(Wi)) —a N(0,Vi(v,)) under {v,} € D'(vy) Yy € T, where Vi(yo) = X0
Cotny (5(W:), 5(Wism).

Proof of Lemma The verification of Assumptions A and B3 are the same for the
scalar § and vector /3 cases. Assumption A follows from Assumptions S2(i) and S2(ii).
Now we verify Assumption B3. In Assumption B3(i), Q(6;v,) = E,,p(W;,0). As-
sumption B3(i) follows from Lemma with s(w,0) = p(w,d) by Assumptions S1,
S2(') S2(v), and S3(iii). Assumptions B3(ii) and B3(iii) can be verified by Assumption
*. Assumption B3*(i) holds by Assumptions S2(i) and S3(iii). The remaining parts

of Assumptlon B3* follow from Assumption S2 immediately.

We verify the quadratic expansions in Assumptions C1 and D1 using Lemma 11.5 in
Appendix A of AC1-SM, which relies on Assumption Q1 of AC1-SM. Assumptions Q1(i)
and Q1(ii) follow from Assumption S2(i). Assumption Q1(iii) follows from Lemma
with s(w, 0) = py,(w,0).

To verify Assumption Q1(iv) for 6 € ©,,(¢,,), we write

'8 )”712099<Wia9)371(ﬁn>

n

= B(3/1(8,)) (n > (Pho(7:0) + fl(ﬁ)e(%ﬁ))) B(B/1(8,))

:( Zp% W1,9> (1+o(1 ( 1/22 (W;,0) — E%s(WZ-,G)))x
(nl/%(ﬁn)) N1+ 0(1)) + (B,,e(W;, 9)/L(Bn)) (14 0(1)). (9.1)

In (9.1), the first equality follows from (3.19) and the second equality holds because
B(8) only depends on A through «(8), |13l < 18 = B,l + 18,/ < (1 + 8.)l1B,]1
and 0, = o(1). By (9.1) and the fact that n'/?||3,|| — oo for {v,} € I'(7,,00,ws),
to verify Assumption Q1(iv), it suffices to establish the stochastic equicontinuity of
S phe (Wi, 0) and n=V2 3 (e(W, 0) — B, e(W;,6)) over 6 € ©,(5,) and the
equicontinuity of £, ¢(W;,0)/||8,|| over § € ©,(6,).
When 3 is a scalar, the stochastic equicontinuity of n™* > pge(I/Vi, 0) follows from
Lemma using Assumptions S1, S3(ii), and S3(iii). The stochastic equicontinuity

o1



of n712Y"" (e(W;,0) — E, £(W;,0)) follows Lemma with s(w,0) = e(w, ) using
Assumptions S3(ii) and S3(iii).

When f is a vector, the stochastic equicontinuity of n=1 37, pb,(W;, 67) and v,e(w,
0%) = n7 120 (e(Wi, 0F) — B, e(W;,0%)) over 7 € ©F hold by Lemmas and
using Assumption S3 (vector ). By Andrews (1994, p. 2252), the stochastic
equicontinuity of v,e(w,f") over #7 € OF is equivalent to the following: for all se-
quences of random elements {Efn € ©F : n > 1} and {5;1 € ©F : n > 1} that
satisfy ||5;rn — gfan —, 0, we have ||vn€(w,§In) — vne(wﬁ;n)H —, 0. Note that
vpe(w,0) = v,e(w, ), where 0 is the reparameterization of . Hence, to show the
stochastic equicontinuity of v,e(w, ) over § € ©,,(0,), it is sufficient to show that for
all sequences of random elements {§1n € 0,(0,) :n > 1} and {/égn € 0,(0,) :n > 1},
||/0\1n —/0\12,”|| —, 0 implies that ||§1+n —§f2n|| —, 0, where /H\jn is the reparameterization
of @n for i = 1 and 2. The convergence related to ||f||,(, and 7 are straightforward.
To show ||Wy, — Wan|| —p 0, it is sufficient to show that &, —, wy for all sequences
of random elements {[9\,1 € 0,(d,) : n > 1} under {7,} € I'(vy, 00,wp) as in Assump-
tion D1. By the definition of ©,(3,), ||8,/7 (8, — 8,) = 0,(1). This implies that

By = B+ 11Ballop(1) and [|B,]1/]18,]l = 1 + 0,(1). Hence,

~ Bu _ Ba=BulIBull . Bu Bl

LT = T > p Wo- 9.2
’ B 1B 1B, 18418, ]] wo (9.2)

This completes the verification of the stochastic equicontinuity of v,e(w, ) over 6 €
©,(0,) when f is a vector. The stochastic equicontinuity of n~" 327, ph, (Wi, 6) over
0 € ©,(d,) holds by the same reparameterization arguments above in the vector 3 case.

It remains to show supy, g,co,,(s,) Er, (E(Wi, 01) — (Wi, 02)) = o(|[B,][). When £ is
a scalar, for any 0 € ©,,(4,),

1Bl M| By, e (W3, 0)]
= |ﬁn|_1||E’Yn€(VVi7 9) - EvnE(VVzﬂ/)mW) + E’Yng(m7¢na ﬂ-)”
< B THBul0n + Collm — ] < (C1 + Cs)é (9.3)

for some C7,C5 < oo and any constants d,, — 0, where the first inequality follows
from Assumptions S3(i)-S3(iii) (scalar 3) with 6 = |3,|d, in Assumption S3(ii) and
10— (2, ™)|| = || —1,|| < 15,]6» by the definition of ©,(4,,), and the second inequality
holds because 6 € ©,,(4,,).
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When 3 is a vector, we reparameterize  as . For any 6 € ©,(d,), we have (1 —

In)|1Bnll < 11B]] < (1 +6)[18, and

n

b=l =\ = | = W+ e (o

<0,(1—=6)" "+ (1—-6,)"1—1=2(1-06,)", <45,, (9.4)

for n large enough that ¢,, < 1/2, where the first inequality uses the triangle inequality,
118 =B, /1Bl < 8, and ||B,11/118]] < (1—46,)~" and the equalities are straightforward.
Let 07 = (]|8,||,w,¢,, m). For § € ©,(6,) and large n,

18,117 s, e(Wi, 0)]]
= (18,117, e (Wi, 07)]]
= 18,17 By, (Wi, 07) — By, e(W3, 077) + s, e(W3, 077))|
< Gl IBlI0n + Collm = mall + [lw — wall) < (C1+5C2)dn (9.5)

for some C4,Cy < oo, where the first inequality follows from Assumption S3(i)-S3(iii)
(vector B) with & = [|3,l16, and (|97 — 0| < [18 = Bl + IIC — ¢l < 211,116,
by the definition of ©,(4,), and the third inequality holds by 6 € ©,(d,) and (9.4).
This completes the verification of Assumptions C1 and D1 with the stochastic partial
derivatives given in Lemma [9.1]

Assumption C2(i) holds with m(w, ) = p,(w, ) by Lemma 11.5(a) of AC1-SM given
the verification above of Assumption Q1. Assumptions C2(ii) and C2(iii) follow from
Assumptions S2(iii) and S2(iv) given that the true parameter 6, lies in the interior of ©
by Assumption B1(i).

The verifications for Assumptions C3, C4, and C8 below are the same for cases with
scalar 3 and vector 3 because p,,(W;,0) and p,,, (Wi, 0) do not involve re-scaling with
B(S).

We now verify Assumption C3. To this end, it is sufficient to show that v,p,,(0) =
n 23" (pp(Wi,0) — E, p,(W;,0)) converges weakly to a Gaussian process on ©
with covariance kernel S, V7(6, 02; Y0) Sy, The finite-dimensional convergence holds by
Lemmal[9.5 and the Cramer-Wold device under Assumptions S3(ii) and S3(iii). Note that
py(w,0) = Syph(w, B) by the structure of B(3). This yields the form of Q(7y, 7y; 7,) given
in Lemma The stochastic equicontinuity of v,,p,(f) on § € © follows from Lemma
with s(w, 0) = p,,(w,#) under Assumptions S3(ii) and S3(iii). The parameter space

53



© C R% is compact. Hence, the weak convergence of Vnpy(0) holds by the Proposition
in Andrews (1994, p. 2251).
To show Assumption C4(i) holds with H(7;v,) = Ey py, (Wi, 1y, 7), we have

sup ||[n”~! Z Py Wiy V00, ™) — By py (Wi thg, )|

mell i1

< 21618 ||n_1 Zwa(Wz‘a 0) — EVOwa(VVi, o)l +
i=1

sup By Py Wiy g 10y T) = By oy (Wi, 0, )| (9.6)

by the triangle inequality. The first term on the rhs of is 0,(1) by Lemma [9.3| with
s(w,0) = py,(w,0) using Assumptions S1, S2(v), and S3(iii). The second term on the
rhs of (9.6)) is o(1) because E, p,,,(W;,0) is continuous in ¢ uniformly over 7 € II by
Lemma . Hence, the rhs of is 0,(1), which is the desired result. Assumption
CA4(ii) holds by Assumptions S3(iii) and S3(iv).

To verify Assumption C8, we have

0
||8—WE%P¢(Wi, Vs Tn) = By Py (Wi, O0) || = [| By, 0y (Wi 005 ) — By g (Wi, 00) ||

< ig@p 1E,, £y (Wi 0) = Ex s (W O)|[ 4 || Ery s (Wi, 00) = By py (Wi, 00) ]

9.7)

where the equality follows from (0/0¢")E, p,(Wi, ¥, mn) = E, pyu(Wi, b, 7,) using
B, supgeo ||pyy (Wi, 0)]| < C Vv, € T, and the inequality holds by the triangle in-
equality. The first term in the second line of converges to 0 by Lemma The
conditions for Lemma hold by the arguments in the second paragraph of the proof
of Lemma, with s(w, #) replaced by p,,,(w,#). The required conditions are provided
in Assumptions S3(ii) and S3(iii). The second term in the second line of converges
to 0 by the continuity of £, p,,(W;, ¢) in 0, which holds by Lemma

To verify Assumption D2, we have

n

T =n""Y " phy (Wi 0,) + (n'/%0(B,))"'n ™2 " e(W;,6,) (9.8)

=1 =1
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by . When [ is a scalar, by applying Lemma with s(w, ) = pge(wﬁ)
and invoking the continuity of E%pge(l/vi, f) in 0, we obtain n=' 31" pho (Wi, 0,,) —,
B, phy(Wi, 00) = J(7,). Because n'/2|8,| — oo, the second summand in is 0,(1)
provided n=Y/23""  &(W;,0,) = O,(1). This is verified by applying the triangular array
CLT in Lemma 9.5 with s(w) = e(w, §,,) using E, e(W;,0,) = 0 by Assumption S3(i).
The above results combine to give J, —, J(7,) as desired. The matrix J(,) is posi-
tive definite by Assumption S3(iv) and symmetric by the construction of pge(Wi, 6o) in
(3.19).

When (3 is a vector, the verification of Assumption D2 is the same as above by repa-
rameterizing 0 as 6, replacing Assumption S3 (scalar 3) with Assumption S3 (vector
), and using the fact that ) — 6 under {v,} € T'(7,, 00, wo), where 6, and 0 are
the counterparts of 6,, and 6, after reparameterization.

To verify Assumption D3, we have

n 2B (B,)DQu(0n) = 012y | ph (Wi b), (9.9)
i=1
where the equality follows from ([3.19)). By Assumptions B1(i), S2(iii), and S2(iv), (9/90)
E, p(W;,0p) = 0 Vv, € I'. Under Assumption S3(iii), we have E, supgce ||pg(Wi, 0)|| <
oo because the parameter space of 3 is bounded. Hence, an exchange of 0 and E
yields E, py(Wi,0p) = 0, which implies that E, ph(W;,0) = 0 by (3.19). Because
By ph(Wis0) = 0,0 230 ph(W,0,) = v (0,).

When £ is a scalar, Vnpg(Q) converges weakly to a Gaussian process with covariance
VT(01,0;7,) on 0 € © by the arguments given in the verification of Assumption C3.
Hence, ynpg(ﬁn) converges in distribution to a normally distributed random variable
with variance V1(6y, 0o; ). Assumption D3(ii) holds by Assumption S3(v).

When £ is a vector, the weak convergence above holds by replacing § and © with 0
and O, respectively, using Assumption S3 (vector /3) and the convergence in distribution
holds because 0, — 6 under {v,,} € I'(7,,00,ws). This completes the verification of
Assumption D3. [J

Proof of Lemma Assumption S3*(i) and (3.28) imply that E, e(W;,6p) = 0.
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Let D(z,0) denote the matrix in the third line of (3.28) so that e(w, 8) = p'(-)D(x, ).

To verify the Lipschitz condition in Assumption S3(i), we have

18ol17H1Eroe (Wi, o, M| = (1Bl |7 1B (Wi, a( X, Bo) (X, 7)) D(X:, 6]
a(Xi> 60)

= ||E70P"(Wz‘7G(Xuﬁo)h(Xz‘a%))th()ﬁﬁ)/(ﬁ — mo) D(X;, 0)]|
< B 0" (Wi a( X, Bo)W(Xi, )] - [ag(Xe, B)|| - | hae(Xi, 7| - || DX, 0)]] - || — o
< Cf|r —moll, (9.10)

where the first equality holds by , the second equality follows from a mean-value
expansion of p/(W;, a(X;, By)h(X;, 7)) in 7 around my with 7 between 7 and 7 and
uses Assumption S3*(i), the first inequality follows from a mean-value expansion of
a(X;, By) in B, around 0 with 5 between (3, and 0, and the second inequality follows
from Assumption $3*(ii) and |a(X;, 8)|/||8] < |las(X;, B)|| with 8 between 3 and 0 by
a mean-value expansion.

This completes the proof when [ is a scalar.

When 3 is a vector, ||E, e(W;,0%)|| < ||E,,e(W;,07) — E, e(Wi, ||Bol], wo, 7)|] +
| By, e(Wi, ||Bol]s wo, T)||, where 67 = (]|B,||,w, 7). By , it is sufficient to show
|| Eroe (Wi || Bol |, w, ) = E5,e(Wi, |86l wo, M) < C| B |(f|w — wol[ + [ — 7ol[) for some
C' < oo. According to (3.28)), (-) = p/(-) D(+). For notational simplicity, we let p’(w) and
D(w) be defined such that e(W;, ||5,||, w, ) = p/(w)D(w). By the triangle inequality,

1By (w) D(w) = Ey,p(wo) D(wo)|
< 1By, (0 (w) = ' (wo)) D(W)I| + [| By, (wo) (D(w) — D(wo)|| (9.11)

Because p/(+) does not involve +(3), the reparameterization inside of p'(-) simply replaces
all 5 with ||f||w. Hence, any partial derivative of p’'(w) wrt w is equivalent to the partial
derivative wrt 3 in the original parametrization multiplied by ||3]|.

The first summand on the right-hand side of satisfies

14, (¢ (wo) — o/ (@))D(w)]
< By lle" QasRON - D) - 1Bl - [l — el
< Cl1Boll - llw = woll, (9.12)
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where the first inequality holds by a mean-value expansion wrt w and uses 5 = ||5||w
and the second inequality holds by Assumption S3*(ii). The arguments of the functions
are suppressed for brevity.

To bound the second summand on the right-hand side of (9.11]), note that p’(wy)
differs from p'(W;, a(X;, 5y)h(X;, 7)) in Assumption S3*(i) by having 7 in the place of

mo. Using Assumption S3*(i), we have

[ By (wo) (D(w) = D(wo))l|

< Ey [17()a(-)hae(:)(D(w) = D(wo))| - |7 — ol
By, 17" (-)ag()hx () (D(w) = D(wo))ll - [1Bol] - |1 — ol
< CllBoll - [l = moll, (9.13)

where the first inequality follows from a mean-value expansion wrt 7 around g, the
equality follows from a mean-value expansion wrt 5 around 0 and uses a(x,0) = 0, and

the second inequality follows from the moment conditions in Assumption S3*(ii). The

desired result follows from (99.11))-(9.13)). O

Proof of Lemma We verify Assumption C6 for the sample average estimator
using Assumption C6** and Lemma 4.1 of AC1. Because [ is a scalar, it remains to
show Assumption C6**(ii). By Lemma[9.1]

Q(M,?Tz,% Z COUA,O pw(VVz,%UoﬂTl) pw<Wi+m7¢07ﬂ-2))* (9-14)

m=—0oQ

This implies that the covariance matrix Qg(m1, m2; ;) in Assumption C6**(ii) takes the
form Qg(71,m9;7,) in Assumption C6(ii). Hence, Assumption C6**(ii) is implied by
Assumption C6(ii). O

Proof of Lemma For any given ¢ > 0, let 6" = min{, 5= }. Using the compactness
of ©, let {B(0;,0") : j =1,...,J} be a finite cover of ©, where B(f;, ") denote a closed
ball in © of radius 6* > 0 centered at ;. Because ¢, (f) converges to 0 V§ € O, there
exists N; such that ||¢,(6;)|| <e/2 for any n > N;, for j =1,...,J. Let N = max;<; N,.
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Then, max;<; ||g,(0;)|| < e/2 for any n > N. For any n > N,

sup [|g,(0)|] < max | sup  |[gu(0") — ¢a(05)]] + [[ga(0;)]]
0O IST \ 0'eB(0;,6%)

<sup sup [[ga(l) — gu(O)]] + max|ga(6;)]| < C6 1 2/2< e, (9.15)
0€0 0’ B(0,5%) J<J
where the first inequality uses the property of the finite cover and the triangle inequality,

the second inequality is straightforward, the third inequality uses condition (ii) of Lemma
and 6" < 4, and the fourth inequality follows from §* < e/(2C). O

Proof of Lemma First, we establish the result of the lemma with E, s(W;,0) in
place of E, s(W;,0). We use the uniform LLN given in Theorem 4 of Andrews (1992)
employing Assumption TSE-1B with ¢/(z,0) = s(w,0). Now we verify Assumptions
TSE-1B, DM, BD, and P-WLLN of Andrews (1992). Assumption TSE-1B(a) holds
because s(w,#) is continuous in # and O is compact. Assumption TSE-1B(b) holds
because {W; : i < n} is strictly stationary and E, 1(W; € A) — E, 1(W; € A) for all
measurable sets A C W under {v,,} € I'(7,) by 7,, — 7, and the weak convergence of W;
under 7,, to IW; under 7,, which holds by the definition of the metric on I, see Section 2.1}
Assumption DM holds by condition (iii) of Lemma[9.3] Assumption BD holds because ©
is compact. Assumption P-WLLN holds, i.e., n ™' Y0 | s(W;,0)—E, s(W;,0) —, 0V €
© under {v,} € T'(7,), by the WLLN for dependent triangular arrays of strong mixing
random variables in Example 4 of Andrews (1988) given that sup, .p E,||s(W;,0)[|' ™ <
oo for some § > 0. Theorem 4 of Andrews (1992) gives supgee ||[n Y 1, s(W;,0) —
E, s(W;,0)|| — 0 under {v,} € I'(y,). Note that the same proof holds whether {W; :
i > 1} are strong mixing or i.i.d. in Assumption S1.

To obtain the desired result, it remains to show supycg || £, s(W;, 0)—E, s(W;, 0)|| —
0 under {v,} € I'(7,). The pointwise convergence holds for any § € © by (i) the
weak convergence induced by v, — 7, and the definition of the metric on I" and (ii)
E, suppee ||s(w, 0)|['T° < C Vv € T for some § > 0. Because O is compact and point-
wise convergence holds, we apply Lemma with ¢,(0) = E, s(W;,0) — £, s(W;,0).

58



Condition (ii) of Lemma (9.2 holds because for any 6,0, € © with ||0; — 05| < 0,

g (01) — @u(02)|] = || B, (s(Wi, 01) — s(Wi, 02)) — E, (s(W;,01) — s(W;, 02)) ||
< B, [|s(W;,01) — s(Wi, 02)|| + B, l|s(W3, 01) — s(Wi, 02|
< (B, My(W;) + Ey My(W;))5 < C3, (9.16)

where the first inequality follows from the triangle inequality and Jensen’s inequality,
the second inequality holds by condition (ii) of Lemma [9.3] and the third inequality
holds by condition (iii) of Lemma [9.3]

The uniform continuity of £, s(W;,¢) on © holds by the dominated convergence

theorem and the compactness of ©. This completes the proof. [

Proof of Lemma For the case that Assumption S1 holds with {W; : ¢ > 1}
being strong mixing, we show the stochastic equicontinuity (SE) of the empirical process
v, s(0) using Theorem 3 of Hansen (1996), which is suitable for strong mixing arrays.
When s(w, ) is a vector, the SE of v,s(0) is implied by the SE of each entry of v,,s(0).
Hence, without loss of generality, we assume s(w,f) € R as in Hansen (1996). We
now verify (11)-(13) in Assumption 4 of Hansen (1996). The condition in (11) holds
provided a,, < Om~4 for some A > (1/p —1/q)~! and dy < p < ¢. This is implied by
Assumption S1. Conditions (12) and (13) hold because E, supycq ||s(W;,0)]|? < C and
E M (W;)? < CVvy el and {W, :i > 1} is strictly stationary. Applying Theorem 3 of
Hansen (1996) with a = dp and A = 1 yields: for each ¢ > 0, there exists a §; > 0 such
that

< g, (9.17)

p

sup  |vns(61) — vns (02) |
p(91,02)<51

lim sup

n—oo

where p(01,05) = limsup,,_,. (B, [s(W;,01)—s(W;,0,)|9)"/% and |||, is the LP-norm for
some dy < p < ¢. By conditions (ii) and (iii) of Lemma for each §; > 0, there exists
6 > 0, such that ||6; — 6|| < ¢ implies that p(6,0>) < d;. This, (9.17), and Markov’s
inequality yield the SE of v,s(0) over 6 € ©.

For the case that Assumption S1 holds with {W; : i > 1} being i.i.d., the stochas-
tic equicontinuity (SE) of the empirical process v,s(f) holds by Theorems 1 and 2 of
Andrews (1994) using the type II class. For this result, the envelope function and the
Lipschitz function must have ¢ = 2 + § moments finite, which holds by Assumption S1

and condition (iii) of the Lemma. [
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Proof of Lemma First, we consider the case in which {W; : ¢ > 1} are strong
mixing. We show that V;(v,) exists and

n

lim Var, (n=*/? Z s(W2) = Vi(7) (9.18)

n—o00 -
=1

under {7, } € I'(7,). By change of variables, we have

n

Var, (n=/? Z s(W;)) (9.19)
= 3 Cou (W) s W)~ Y0 o, (582, 5Wern)

By a standard strong mixing inequality, e.g., see Davidson (1994, p. 212), and Assump-
tion S1,

-2

|Covy (s(W;), s(Wiim))| < Crak 1 < Cym=40-2/9 where A(1 —2/q) > dy a p > 2
q— Qg

(9.20)

using dp > 2, for some C, Cy < 0o ¥y € I'. Hence, V;(7,) exists and the second term on

the rhs of (9.19) converges to 0.
It remains to show that the first term on the rhs of (9.19)) converges to V(7). Because

the metric on I induces weak convergence under v,, — 7, and E,|s(W;)[*° < C Vy €T

for some 0 > 0, we have
Cous, (s(W3), 5(Wism)) — Covy (s(Wh), 5(Wism) (9.21)

under 7, € I'(v,) for any m € R (e.g., see Theorem 2.20 and Example 2.21 of van der

Vaart (1998)). By the DCT, (9.20)), and (9.21)), we have

n—1 0o
Jim > Couv, (s(Wi), s(Wipm)) = lim > Wm| <n—1)Couv, (s(Wy),s(Wism))
m=—n+1 m=—00

— Vi(70)- (9.22)

This and (9.19)) yield (9.18)).
When V;(v,) = 0, we have lim,,_,, Var, (n"Y23"" | s(W;)) = 0, which implies that
n~ V23 (s(W;) — B, s(Wh)) —4 N(0,Vi(vo)) = 0. When Vi(7,) > 0, we assume
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Var, (n712Y1"  s(W;)) > 0 Vn > 1 without loss of generality. To show the triangular
array CLT in Lemmal9.5, we apply Corollary 1 of de Jong (1997) with 8 =~ =0, ¢,; =
BV S 1 2 A () 1), and X = 128, s(Wa) (102 0, Aus(Wll2)
where A, s(W;) = s(W;) — E, s(W;). Now we verify conditions (a)-(c) of Assumption
2 of de Jong (1997). Condition (a) holds automatically. Condition (b) holds because
cni > 0 and B, | Xy /cnil? = E, |Ans(W;)]?7 < C VW, € T for some C' < co. Condition
(c) holds by taking V,;; = X, d,; = 0, and using Assumption S1 because o, < Cm™
and A > ¢/(q—2). By Corollary 1 of de Jong (1997), we have X,,; —4 N(0,1). This and
lead to the desired result.

When Assumption S1 holds with {W; : i > 1} being i.i.d. under v, € I, a standard
triangular array CLT gives the desired result because 2 4+ 6 moments of s(WV;) are finite

and uniformly bounded over 7, € I' by Assumption S1. [J

10. Appendix B: Miscellaneous Results

This Appendix provides (i) the asymptotic size results for the robust QLR CS’s,
(ii) a sophisticated method for choosing  for type 2 robust CS’s, (iii) statements of
Assumptions V1 and V2, which concern the estimator of the variance matrix of @n,
and (iv) an extension of the sufficient conditions for Assumption S3*(i) given in Section
for p(w, ) functions of the form p*(w, a(x, B)h(x,7),(). The extension is to the

case where a parameter ( appears.

10.1. Asymptotic Size of Robust QLR CS’s

Here, we show that the LF and type 2 robust QLR CS’s defined in the text of the
paper have correct asymptotic size.

For the null-imposed (NI) critical values, we use the following notation: H(v) = {h =
(b,7o) € H : ||b]] < 00,7(0) = v}, Vi = {wg : 7(0p) = vo for some h = (b,v,) € H}, and
the NI-LF critical value is ¢, o(v) = max{sup,c () corri-a(h), X3 1 a}-

The asymptotic size results for the LF QLR CS’s rely on the following df continuity

conditions, which are not restrictive in most examples.

Assumption LF. (i) The df of QLR(h) is continuous at cgrr,1-«(h) Vh € H.

(i) If ¢5rR1 o > X 1-ar COLR1o 1S attained at some hpay € H.
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Assumption NI-LF. (i) The df of QLR(h) is continuous at corri1-a(h) Vh € H(v),
Yv e V,.

(ii) For some v € V;, g7 r1-a(V) = X3, 1-a OF CGLr1_o(v) is attained at some hpax € H.

For h € H, define

cQLr,1-a(h) (10.23)
_ CGLR1—a T A1 if A(h) <k
Xa i T D2+ [cBrR1-a + A1 = X5 10 — Do - s(A(R) — k) if A(R) > &.

Note that corr1-a(h) equals ¢oLr1—an With A(h) in place of A,. The asymptotic dis-
tribution of ¢gLr1-an. under {v,} € I'(7,,0,b) for ||b||] < oo is the distribution of
Carn—alh).

Define ¢grr1-o(h,v) analogously to corri-o(h), but with cé€R71_a, Ay, and A,
replaced by ¢grp 1 o(v), A1(v), and Ay(v), respectively, for v € V.. The asymptotic
distribution of ¢gorr1-a.n(v) under {7, } € I'(7,,0,b) for ||b|| < oo is the distribution of
CoLr1—a(h,v).

The asymptotic size results for the type 2 robust QLR CS’s rely on the following df

continuity conditions, which are not restrictive in most examples.

Assumption Rob2. (i) P(QLR(h) =¢grr1-o(h)) =0Vh € H.
(ii) If Ay > 0, NRP(A1, Ag; h*) = « for some point h* € H.

Assumption NI-Rob2. (i) P(QLR(h) = ¢grr1-a(h,v)) =0 VYh € H(v), Vv € V.
(ii) For some v € V,,, Ay(v) = 0 or NRP(A;(v), As(v); h*) = « for some point h* € H (v).

The correct asymptotic size properties of LF and robust type 2 QLR CS’s are estab-

lished in the following Theorem.

Theorem 10.1. Suppose Assumptions S1-S4, B1, B2, C7, RQ1-RQ3, and RQ4(i) hold.
Then, the nominal 1 —«a robust QLR CS has AsySz = 1 —« when based on the following
critical values: (a) LF, (b) NI-LF, (c) type 2 robust, and (d) type 2 NI robust, provided
the following additional Assumptions hold, respectively: (a) LF, (b) NI-LF, (c) C6, Rob2,
V1, and V2, and (d) C6, NI-Rob2, V1, and V2.

Comments. 1. Plug-in versions of the robust QLR CS’s considered in Theorem [10.]]
also have asymptotically correct size under continuity assumptions on cgrri1-o(h) that

typically are not restrictive. For brevity, we do not provide formal results here.
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2. If part (ii) of Assumption LF, NI-LF, Rob2, or NI-Rob2 does not hold, then the
corresponding part of Theorem still holds, but with AsySz > 1 — a.

3. The proof of Theorem is as follows. Theorem holds by Theorem 5.1(b) of
AC1, plus the proof given in Appendix A that Assumptions B1, B2, and S1-S4 imply
Assumptions A, B3, C1-C5, C8, and D1-D3 of AC1. The reason is that the results of
the Theorem and Theorem 5.1(b) of AC1 are the same, just the assumptions differ.

10.2. Choice of k for Type 2 Robust Confidence Sets

For type 2 robust CS’s, a sophisticated method for choosing x is to minimize the
average asymptotic FCP of the robust CS at a chosen set of points[?| Of interest is a
robust CS for 7(f). Let K denote the set of x values from which one selects. First, for
given h € H, one chooses a null value vy, (h) that differs from the true value vy = r(6y)
(where h = (b,7,) and v4 = (0o, @y)). The null value vy, (h) is selected such that the
robust CS based on a reasonable choice of x, such as kK = 1.5 or 2, has a FCP that is
in a range of interest, such as close to 0.50f*"] Second, one computes the FCP of the
value vg,(h) for each robust CS with x € K. Third, one repeats steps one and two for
each h € 'H, where H is a representative subset of H . The optimal choice of k is the

value that minimizes over K the average FCP at vy, (h) over h € H.

10.3. Assumptions V1 and V2

Here we state Assumptions V1 and V2, which concern estimators of the asymptotic
variance matrix of /H\n These assumptions are used with the standard ¢ tests and CS’s, as
well as with the robust ¢t and QLR CS’s, which employ variance matrix estimators in the

identification category selection procedure. These assumptions are not very restrictive.

32For t and Wald CS’s, asymptotic FCP’s follow from the results in this paper, AC1, and/or Andrews
and Cheng (2008). For QLR CI’s, asymptotic FCP results only cover restrictions involving m, see
Comment 5 to Theorem 4.2 of AC1. For other restrictions, one can use a large finite sample size when
determining &.

33For reasonable choices, the value of x used to obtain vy, (h) typically has very little effect on the
final comparison across different values of k. For example, this is true in the binary choice and STAR
models considered here, and in the ARMA(1, 1) model considered in AC1.

34When b is close to 0, the FCP may be larger than 0.50 for all admissible v due to weak identification.
In such cases, vg, (h) is taken to be the admissible value that minimizes the FCP for the selected value
of x that is being used to obtain vy, (h).

35When r() = 7, we do not include h values in H for which b = 0 because when b = 0 there is no
information about 7 and it is not necessarily desirable to have a small FCP.
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Assumption V1 has two forms depending on whether 3 is a scalar or a vector.

Assumption V1 (scalar 8). (i) J, = jn(gn) and V, =V, (0 ) for some (stochastic)
dy % dp matrix-valued functions J,(f) and V,(f) on © that satisfy SUPgco 1 7,(6) —
J(0;70)|] —p 0 and supyee IV, (0) — V(6;7,)]] —, 0 under {v,,} € I'(y,,0,b) with
[[b]] < oo.

(ii) J(0;7,) and V(0;~,) are continuous in € on © Vv, € I with 3, = 0.

(iil) Amin(2(7570)) > 0 and Apax(2(7579,)) < o0 V€ 11, Yy, € T with g, = 0.

~ A~

Assumption V1 (vector 3). (i) J, jn(@ ) and V,, = XA/n(@:) for some (stochastic)
dp x dg matrix-valued functions J,,(6*) and V,,(6*

TO570)]| —p 0 and supgs o [[Va(607) V(0
1] < oo

(ii) J(67;7,) and V(67;~,) are continuous in # on ©F Vv, € I with 3, = 0.

(iii) Amin (Z(m,w; 7)) > 0 and Ay (B(m, w5 7)) < 00 Vr € 11, Vw € R% with ||w]| = 1,
Vv, € I with 3, = 0.

(iv) P(75(7* (7, b); 79, b) = 0) = 0 V7, € T with 8, = 0 and Vb with [|b]| < cof]

) on ©F that satisfy supy+ e+ ||Jn(07)—
770)“ —p 0 under {/Yn} < F(’YOﬂ 07 b) with

Assumption V2. Under I'(0, 00, wq), Jn — J (7o) and V,, —, V(7).

10.4. Adjustment for ¢

Here we provide sufficient conditions for Assumption S3*(i) when p(w,0) = p*(w,
a(z, B)h(z,),(), as in (3.17)), and a parameter ¢ appears. (Section [3.1.4] provides analo-
gous results when no parameter ¢ appears.) For simplicity, we assume a(z, 8) and h(x, )
are both scalars. Let p/(+) and p”() denote the first and second order partial derivatives
of p*(w,a(x, B)h(z,7),() wrt a(z,B)h(x, 7). Let p.(-) and p.(-) denote the first and
second order partial derivatives of p*(w, a(z, B)h(z,7), () wrt ¢. Let p5(+) € R% denote
the partial derivative of p/(-) wrt ¢. The partial derivatives in are the same when

36The functions J(07;~,) and V(07;7,) do not depend on wy, only .

3T Assumption V1 (vector () differs from Assumption V1 (scalar 3) because in the vector 3 case
Assumption V1(ii) (scalar §8) (i.e., continuity in 6) often fails, but Assumption V1(ii) (vector 3) (i.e.,
continuity in #%) holds.
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¢ appears in p(w, #). The partial derivatives wrt ¢ are

pe(w,0) = pc() € R, pee(w,0) = pec(-) € R,
pac(w,0) = ag(x, B)h(x,m)piy(-) € REX,
pw((w’ 0) = a(df,ﬁ)hw(l‘,ﬂ')plz(-) € R, (101)

In this case, we define

pZ(w, 6) = /O/(')CLT(‘T’ '9) + ﬁ{(')? p;‘)(w7 0) = p"(-)aT(x, H)GT(:E? 0)/ + ﬁ(((')’ where

a'(z,0) = (alg(x,ﬂ)'h(x,w),odg,%hﬂ(%ﬂ)')’,
ﬁg(') = (OdgleC(.)70d7r),7
Ods s ag(z, B)h(z,m)p15(-) Ods xdr /
Pec(t) = (ag(x, B)h(x, m)pya(+)) Pee(t) <afé’f)3)hﬂ(af,7r)p12(')> ;
Od, xds GEZB,?) ha(z,7)p1a () Oy xds
ags(x, B)h(z, ) Odyxde ag(z, B)hg(x, )
e(w,0) = (") Ode xdy Od xd Od¢ xds : (10.2)

hﬁ(x,ﬂ')ag(l’,ﬁ), Od,rxdg %hﬂﬁ(xﬂﬂ

Comparing the definition of e(w, @) in (10.2)) with that in , it is clear that, if
p(w, 0) takes the form in and a parameter ( appears, then Assumption S3* still
implies Assumption S3(i) provided p'(-) and p”(-) in Assumption S3* are adjusted to
include ¢, evaluated at (.
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11. Outline

This Supplement includes three Supplemental Appendices (denoted C, D, and E) to
the paper “Maximum Likelihood Estimation and Uniform Inference with Sporadic Iden-
tification Failure.” Supplemental Appendix C provides additional numerical results to
those provided in the main paper for both the smooth transition autoregressive (STAR)
model and the nonlinear binary choice model. Supplemental Appendix D verifies As-
sumptions S1-S4, B1, B2, C6, V1, and V2 for the nonlinear binary choice model. Sup-
plemental Appendix E does likewise for the STAR model.

We let AC1 abbreviate the paper Andrews and Cheng (2007) “Estimation and In-

ference with Weak, Semi-strong, and Strong Identification.”

12. Supplemental Appendix C: Numerical Results

Table S-1 compares the finite-sample (n = 500) coverage probabilities of the null-
imposed robust CI’s for § in the STAR model with true and estimated values of (.
(See the end of the STAR-model numerical-results section in the main paper for further
discussion. )

Figures S-1 and S-2 report asymptotic and finite-sample (n = 500) densities of the
estimators for § and 7 in the STAR model when 7y = —3.0. Figures S-3 to S-6 report
asymptotic and finite-sample (n=500) densities of the ¢ and QLR statistics for 5 and 7
in the STAR model when 79 = —1.5. Figures S-7 and S-8 report CP’s of nominal 0.95
standard and robust |t| and QLR CI’s for 5 and 7 in the STAR model when w9 = —3.0.

Figures S-9 to S-16 are analogous to Figures S-1 to S-8 but for the binary choice

model. The true values of 7 considered are my = 1.5 and mg = 2.0.

Table S-1. Finite-Sample Coverage Probabilities of Null-Imposed Robust CI’s for
in the STAR Model with True and Estimated Values of (, n = 500, 7y = —1.5|§|

b 0 1 2 3 4 3 6 7 8 9 10 11 12

t (o 0.939 0.950 0.946 0.947 0.948 0.947 0.944 0.946 0.949 0.949 0.950 0.947 0.956
t_z 0.936 0.951 0.946 0.947 0.947 0.947 0.949 0.944 0.947 0.947 0.947 0.947 0.957
QLR _(,|0.923 0.932 0.930 0.925 0.923 0.924 0.916 0.921 0.923 0.926 0.929 0.932 0.933
QLR_Z 0.920 0.935 0.927 0.924 0.926 0.919 0.915 0.908 0.915 0.922 0.925 0.924 0.929

38 The simulation is conducted with the null value of b and the true value of = imposed so that the

1
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Figure S-1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of 3 in
the STAR Model when 79 = —3.0.
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Figure S-2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of 7 in
the STAR Model when 79 = —3.0.
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Figure S-3. Asymptotic and Finite-Sample (n = 500) Densities of the ¢ Statistic for
in the STAR Model when my = —1.5 and the Standard Normal Density (Black Line).
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Figure S-4. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for (3
in the STAR Model when 7y = —1.5 and the x? Density (Black Line).
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Figure S-5. Asymptotic and Finite-Sample (n = 500) Densities of the ¢ Statistic for 7
in the STAR Model when 7y = —1.5 and the Standard Normal Density (Black Line).
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Figure S-6. Asymptotlc and Flnlte Sample (n= 500 Den5|t|es of the QLR Statistic for «
in the STAR Model when 7y = —1.5 and the x? DenS|ty (Black Line).
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Figure S-8. Coverage Probabilities of Robust |¢| and QLR CI's for § and 7 in the STAR
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Model when w9 = —3.0, kK = 2.5, D = 1, and s(x) = exp(—2z).
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Figure S-9. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of 3 in
the Binary Choice Model when 7y = 2.0.
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Figure S-10. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of 7 in
the Binary Choice Model when 79 = 2.0.
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Figure S-11. Asymptotic and Finite-Sample (n=500) Densities of the ¢ Statistic for 7 in
the Binary Choice Model when 7y = 1.5 and the Standard Normal Density (Black Line).
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Figure S-12. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for
7 in the Binary Choice Model when 7 = 1.5 and the x? Density (Black Line).
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Figure S-13. Asymptotic and Finite-Sample (n=500) Densities of the ¢ Statistic for 3 in
the Binary Choice Model when 7y = 1.5 and the Standard Normal Density (Black Line).
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Figure S-14. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for
/3 in the Binary Choice Model when 7o = 1.5 and the x3 Density (Black Line).
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Figure S-15. Coverage Probabilities of Standard |¢| and QLR Cl's for 5 and 7 in the

Binary Choice Model when 7y = 2.0.
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Figure S-16. Coverage Probabilities of Robust |¢| and QLR CI's for § and 7 in the
Binary Choice Model when 9 = 2.0, k = 1.5, D = 1, and s(x) = exp(—z/2).
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13. Supplemental Appendix D: Nonlinear Binary

Choice Model, Verification of Assumptions

We start by deriving the formulae for the key quantities specified in (3.33)). Next, we
verify Assumptions S1-S4. Then, we verify Assumptions B1 and B2. Finally, we verify
the remaining Assumptions C6, V1, and V2. (Note that Assumption C7 is verified in

Section [3.5])

13.1. Derivation of Key Quantities

Here we calculate the key quantities Q(my1,ma;7,), H(m;7,), J(70), and V(7,) that
are specified in (3.33)).

By (2.4,

E“/o(}/i - Lz(e())’X“ Zz) =0 a.s. and
E, (Y — Li(00))*|Xs, Z;) = Li(60)(1 — Li(6p)) a.s. (13.1)

For Yo with 50 = 07 we have gi<w07 7T) = gl<00)7 Li<1/}07 7T> = Lz(eo)ﬂ L;(wm 7T) = L;(Go)a
and w;;(Yg, ) = w;;(6p) for j = 1,2, Vr € II. In consequence,
Q(ﬂ-h 723 70) = SwVT((wm 7T1)7 (w07 7T2); VO)S'{/;

_ L2(00) |
= B L;(60)(1 — Li(eo))dw’i(ﬂl)dw’i(m) ’ (13.2)

where Sy, = [I4, : 04, x4,], the first equality holds by Lemma , and the second equality
holds by independence across i of {W; : i < n} and (13.1)).

Now, we have

Py (Wi g, m) = [wi,;(00)(Y; — Li(00))? 4 w2,3(00) (Y — Li(0o))]dy,i(w)dyi(m)" and

H(m570) = Ery pyp(Wis oo, ) = Li(eo)L(;i (_‘)ozi(eo))d¢,i(w)d¢,i(ﬁ)f, (13.3)

where the first equality uses (3.22), the second equality holds by Lemma and the

asymptotic CP is 0.95 for all b values, which serves as a good benchmark. The finite-sample CP’s in
Table S-1 sometimes differ noticeably from 0.95 due to the small scale of the simulation, i.e., only 1000
simulations repetitions are employed to compute the CP’s, as described in footnote



third equality uses (13.1)).

In addition, we have

V(7o) = V1 (00,605 70) = Vars, (p(Ws, b0))
= By wi;(00) (Y — Li(09))*d;(mo)di(mo)’

_ =z L (0o)

T Li(00)(1 — Li(60)) di(mo)di(mo)’, (134)

where the first equality holds by (3.20)) and the second equality holds by independence
across i of {W; :i <n} and (13.1)).

Next, we have

J(v0) = E%PQQ(WZ»QO)
= By [wi (00)(Yi — Li(00))? + wa,i(00) (Y; — Li(00))]d;i(m)d; ()’

B LZ(6o)
= P00 Li(6)

d;(m)d; (), (13.5)

where the first equality holds by Lemma , the second equality holds using (3.23)), and

the third equality holds by ((13.1)).
The matrix K (m;7,) is derived in Section below.

13.2. Verification of Assumptions S1 and S2

Given that {W; : ¢ > 1} are i.i.d. under 7, Vv, € T', Assumption S1 holds with
qg=2+46ford > 0.
Assumption S2(i) holds with

p(Wi,0) = —[Y;log Li(0) + (1 — Y;) log(1 — Li(9))]. (13.6)

When 5 = 0, L;(#) = L(Bh(X;,7) + Z/() does not depend on 7 and, hence, p(W;, )
does not depend on 7. This verifies Assumption S2(ii).

To verify Assumptions S2(iii) and S2(iv), we have
By (p(Wi, 0)| X3, Zi) = —[Li(6o) log Li(0) + (1 — Li(6o)) log(1 — Li(0))] (13.7)

because E, (Y;|X;, Z;) = Li(0) by (2.4). Now we view E, (p(W;,0)|X;, Z;) as a function



of L;i(#). The first- and second-order derivatives of E, (p(W;,0)|X;, Z;) wrt L;(0) are

5 i g L0 L)
gL oW O1Xe Z) = A gy
S EuloW0)|x;. z) = PO IO 2 2LOG) g5

dL2(6) L3(0)(1 — Li(9))

see below. The second-order derivative is positive for all # € © because its
numerator is greater than (L;(0y) — L;(0))* > 0. When L;(0) = L;(6,), the first-order
derivative is 0. Hence, E, (p(W;,0)|X;, Z;), viewed as a function of L;(¢), has a unique
global minima at L;(f). Because L'(u) > 0, £, p(W;,0) is minimized at 6 if and only if
Py, (9i(0) = gi(0o)) = 1

When §, = 0, g;(0) — 9i(0o) = Bh(X;,7) + (¢ — (o) Zi. Because P, (a'(h(X;, ), Z;) =
0) < 1foralla € R%*! with a # 0 (by the definition of ®* in (3.32)), P,,(9:(8) —g:(6o)
0) = 1 if and only if 5 = 0 and ¢ = (. This implies Assumption S2(iii).

When S, # 0, gi(0) — ¢g:(6o) = Bh(Xi,7) — Boh(Xi,mo) + (¢ — ()’ Z;. Because
P, (a'(h(Xi,m), h(X;,m0), Z;) = 0) < 1 for all @ € R%*? with a # 0 and © # o,
P, (gi(0) — gi(0) = 0) < 1 when m # m. When 7 = mo, gi(0) — g:(fo) = (8 —
Bo)W(X;, mv) + (¢ — (o)'Z;. Because Py (d/(h(X;,7),Z;) = 0) < 1 for all a € R¥**!
with a # 0, Py (9:(0) — gi(6p) = 0) = 1 if and only if { = (, 8 = By, and ® = 7. This

verifies Assumption S2(iv).

Assumption S2(v) holds because ¥(7) does not depend on 7 and W, I, and O are
all compact. Assumption S2(vi) holds automatically because ¥(7) does not depend on

.

13.3. Verification of Assumption S3(ii)

Assumption S3(i) is verified in the text of the paper. Here we verify Assumption
S3(ii). We use the following generic results in the calculations below. Let A = ad/,
where a = (a}, ...,al) € R% and ay, ..., a, are vectors (possibly of different dimensions).

Then,

Y P

p p 1/2 p

R D9 ST T I 139)

j=1 k=1 j=1

where the first equality holds by the definition of ||A|| and the second equality holds
* %/

because ||at'|| = [|a|| - |[b]| for vectors a and b. Similarly, let A* = a*a™, where aj, ..., ay

10



are sub-vectors of a* that are conformable with ay, ..., a,. Then,

1A = A%[| = |lad” — a”a™|| < la(a — a™)'[[ + [|(a — a")a™|]
P P
= (lall + la[Dlla = a*[| < Y (lagll + a311) D llax = aill, (13.10)
j=1 k=1

where the first inequality holds by triangle inequality, the second equality holds because

1/2

|a/|| = ||a]| - ||0]|, and the last inequality holds because (2% + y?)¥/? < x + y for non-

negative scalars x and y.

Define vy ;(0) = w1 4(0)(Y;i— Li(0)), vo(0) = wy:(0)(Y; — Li(#)), and 5 = max{by, by }.
Below, let 01,05 € © with ||0; — 02| < § for 6 > 0.

By the triangle inequality, we have

s (Wiy 01) — py (Wi, 02)]|
< (|[03:(01) — 07 (02)]] + [|v2,4(61) — v2,4(02)|]) - ||dy,i (1) dys i (1) ||
+ ([[07:(02)]] + o2, (02)]) - || i(m1)dys i (1) — dypi(w2)dy i(m2)' || (13.11)

Note that

[[07:(61) — 07, (02)]] = [Jo1,4(61) = v (B2)]] - [[v1,4(61) + v1,:(B2)]], where

[[v1,i(61) — v1,4(02)]] < [|wii(01) — w1 (02)|]-[[Ys — Li(01) ]|+ |[w1,:(02)]] - [|Li(01) — Li(62)]|
< (Ml(VVz) + ELZI;(E,- +[|1Z]| + B - E,,J-)) J, and

[[v1,i(61) + v1,4(02)[] < 21, (13.12)

where the first inequality follows from the triangle inequality, the second inequality holds
by (i) [[wi,:(01) —w1i(02)|| < M1(W;)d, (ii) [|Yi—Li(0)|] < 1, and (iii) || Li(61) — Li(02)]] <
Li(hi + || Z|| + B - hr)d by a mean-value expansion of L;(f) = L(g;(6)) wrt 6, and the
third inequality follows from the triangle inequality and ||Y; — L;(6)|| < 1. Similarly,

o2:(62) = vas(0a)]| < (Mo (W) + o i + 1|21 + 5+ ) ) 0,
03,8211 < 2, and [[o(62)]| < (13.13)

11



Applying the inequality in (13.9) with a = dy;(m1) = (h(X;, m1), Z])', we have
—2
ldy,i(m)dyi(m1)'|| < B +[1Zl]%. (13.14)

Applying the inequality in (13.10) with a = dy,;(71), a* = dyi(72), [|a1 —al|| < hpil|m1—

mo||, and ||ag — a}|| = 0, we have
|dy,i(m1)dy.i(m1)" — dyi(ma)dyi(ma)'|| < 2(Rs 4[| Zl[) ol |11 — o . (13.15)
Equations - combine to yield
1 (Wi 01) = i (Wi, 02) ]| < Moy (W), (13.16)
where
My (W) = |21 (My(W:) + @1 TR + 1 Zi + B Frg) ) + Ma(Wi) - (13.07)
+02,,Ly(hi + 1 Zil | + B Em’)} (hy + 1| ZilP) + 2 (@3, + Wa) (i + || Zil | P

To show ||phy(01) — phe(82)]] < Mag(W;)d for some function Mgs(W;), the calculation
is the same as that above with dy ;(7) replaced by d;(7). The inequalities in (13.14)) and

(13.15) become

\di(m1)di(m1)']| < By + || Z||> + ey and (13.18)
||di(m1)d;(m1)" — di(m2)d;(ma)'|]| < 2(51' + || Zi]] +E7r,i)(ﬁ7r,i +E7r7r,i) Nl — |

By the same arguments as those used in (13.11))-(13.17)), we have
Moo(W;) = [2@1,1‘ (Ml(VVz) +E1,¢EQ(E +[1Zi|| + 3 - Ew,i))

+Ma(W3) + W Ly + || Zall + B - o) | x (B + 11241 + 7)

+2 (W3, 4+ W) (hi + |1 Zi|| + i) (B + Prr)- (13.19)

Next, we show ||p}(61) — p}(62)]| < My(W;)é for some function My(W;). To this end,

12



note that

1ph(01) — p(02)]]
< o1 (01) = v1(02)]] - (hi + [| Zi|| + hrs) + [vri(02)]] - (hi + Prmi)d, (13.20)

where ||v1;(61) —v1,(62)]|| satisfies the inequality in (13.12)) and ||vy ;(62)|| < w;,;. Hence,

My(W;) = (Ml(m) + 1wy, Ly(hs + || Zi|| + B - EM)> (hi + | Zi]| + hori) + 015 (R i + D).

(13.21)

Next, we show ||e(W;, 01) —e(W;, 02)|| < M.(W;)d for some function M, (W;). To this
end, note that

|le(Wi, 01) — e(Wi, 02)|] < 2|[1,:(01) hr (X, 1) — v1,3(02) e (X5, o) ||
+([01,:(01) hrre (X, 1) — v1,3(02) B (X, T2) |
< 2||v14(01) — v1.4(02) || hrs + 2||v1i(02)|[hrmid  (13.22)
H[01,4(01) = v1,0(02) [ enr s + ||v1,:(02) || My, (W5)8,

where ||v1;(61) — v1,:(02)|| satisfies the inequality in (13.12), ||vy;(02)|| < Wi, the first
inequality follows from a mean-value expansion of h,(X;, 7) wrt = and the second in-
equality follows from ||l (X;, m1) — her (X, m2)|| < Mp(X;) - ||m1 — m2||. By (13.22)), we
have

MoW;) = (My(W3) + @1 L (i + 122l 4+ B o) ) (i) 4o+ My (W),
(13.23)
Hence, Assumption S3(ii) holds with

My (W) = My(Wi) + Mag(Wi) and My(W;) = Mp(Wi) + M (W5). (13.24)

13.4. Verification of Assumption S3(iii)

The condition £, My(W;)? < C) for some C; < oo holds if £, My(W;)? < Cy
and E, M.(W;)? < C, for some Cy < oco. Because f; < Wy, £y, My(W;)? < Cy and
E, M.(W;)? < Cy hold provided, for some C' < oo, (i) E%Mlq(Wi)(Ef + || Zi]|7 + Ei,i +

hari) < O, (i) By wih(hi + || Zill” + o) (B + 1 Zil|* + Ry + P ) < O and (i)
Evow‘ii(ﬁiﬂ- + Eim + M, (W;)?) < C. Condition (i) holds by conditions in (3.32) using

13



Holder’s inequality to give E, M{(W;)h; < (E%qu/g)‘q’/‘l(E%E?q)l/“ < C and likewise
with ||Zi||, hri, and hgr; in place of h;. Condition (ii) holds by Evowf?ﬁ?HZin <
BB, || Zi||40)/4 < C and likewise with ||Zi]|7 and A’

(B, @,%)"?(E,,h i in place of
hy and h;, hL ,, and h._. in place of || Z;||9. Condition (iii) holds by B, wi My (W;)? <

K volbi
(B, ) YVA(E,, J\4,l(vv,-);1q/3)3/4 < (' and likewise with %, ; and h. ; in place of M, (W;)9.

The condition E, M;(W;) < Cy for some C; < oo holds if E, M,(W;) < C,
and E, Mgy(W;) < Csp for some Cy < oo. Because f; < Wi, By My(W;) < C; and
E, Mgg(W;) < Cs hold provided, for some C' < oo, (i) EA,OMl(WZ-)@M(E? + |Zi|)? +
Tes) < O, (i) B3 (hi + 1 Zill + Py + 1 Zi12 + oy ) < C (i) oy Ma(W3) (B +
1Zi1? + 7)) < O () By @nias(hi + [1Z] + hes) (B + 1 Zi|1° + Biny) < C. (v)
E,, (Wi, +Ws;) (hi + ||Zi|| + hri) (R i 4 heri) < C. Condition (i) holds by conditions
in (3.32)) using the Cauchy-Schwarz inequality and ¢ > 2 to give E%Ml(VVi)ELﬁf <
(E,YOM1(Wi)2)1/2(E70@‘11’i)1/4(E%E§)1/4 < C and likewise with ||Z;||* and Eiﬂ- in place
of k. Condition (i) holds by Ey w3 B, < (B, 2(Ey k) /A(E, R )Y < C
and likewise with ||Z;|| and h,; in place of h; and with E? and || Z;||* in place of Efm
Condition (iii) holds by B, My(Wi)h, < (Ey My(W;)¥3)3/4(E, hi)Y/* < C and like-
wise with ||Z;||* and E;i in place of Ei. Condition (iv) holds by EVO@L,@ZZ-E-E;Z- <
(EL,OE‘?’Z-)VB(E«m@%’i)lﬁ(E%EZ;)l/ég(E’v(ﬁiﬂ-)l/‘L < C and likewise with ||Z;|| and h,; in
place of h; and with E? and ||Z;||? in place of Eil Condition (v) holds by E, W ihihy; <
(E,,w3,)"*(E 54)1/4(E%Ei7i)1/4 < C and likewise with w7, in place of W, ||Z;|| and

Yo'
Em in place of h;, and Ewm in place of EM.

By ([30).

E,, sup |p(W;, 0)['"° < E, (sup |log L;(0)| + sup | log(1 — L;(9))|)'*° < C,  (13.25)
0cO® 0O 0cO

for some C' < oo, where the first inequality holds because Y; is 0 or 1 and the second

inequality holds by conditions in (3.32)).

By (83.22),
By 5D [0 (Wi, O)[0 < By (@2, + 2,0 sup [l s(m)d (Y 170 < C (13.26)
0cO mell
for some C' < oo, where the first inequality holds by |Y; — L;(6)] < 1 and the triangle

inequality and the second inequality holds ((13.14) and conditions in (3.32). Similarly,
we can show E, supgce b (W3, 0)]|110 < C with dy () in (13.26) replaced by d;()
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and (|13.14) replaced by (13.18)).
By (3.23),

Eyysup [|ph(W;, 0)||* < By (w15 sup ||d(w)]])?
0cO mell

< By o ;(hi + || Zi]] + i) < C (13.27)

for some C' < 0o, where the first inequality holds because |Y; — L;(#)| < 1, the second
inequality holds because ||d;(7)|| < [|h(X;, m)|| + ||Zi|| + ||hx(X;, 7)||, and the third
inequality holds by conditions in ([3.32)).

By (3.23),
B, sup|[e(W;,0)[|7 < By w?;(2hni + har)! < C (13.28)
fcO

for some C' < oo, where the the first inequality follows from |Y; — L;(#)| < 1 and the
second inequality holds by conditions in (3.32)).

This completes the verification of Assumption S3(iii).

13.5. Verification of Assumptions S3(iv) and S3(v)

To verify Assumption S3(iv), we apply the LIE and obtain

E'Yopwi/’(m’ 9) = E’Yo [wil(ﬁ)el,l(ﬁ) + w27i(9)6272~(9)]d¢7,~ (W)dw7i (7T)I, where (1329)
e1i(0) = B, ((Yi — Li(0))%1X;, Z;) and eq,;(0) = E, (Y — L;(0)| Xi, Z;).

When 8y = 0, g;(to,m) = Z{(o and Li(¢g, ) = L(gi(¢g, 7)) = L(Z](o), Vm € IL. By

249,

e1,i(to, ™) = L(ZiCo)(1 — L(Z;(y)) and ez;(1hg, 7) = 0. (13.30)
Hence, when 3, = 0,
L™(Zi)
ZiGo)(1 — L(ZiCy))

The quantity £, p., (Wi, ¥, 7) is continuous in m on II by the DCT using (13.16)),
(13.17), and the discussion following (13.24)). Hence, Amin(Ey,pypy(Wi, 1o, 7)) also is

continuous on the compact set Il and attains its minimum at some point m;, € II.

B ppy Wiy g, m) = B i dyi(m)dy (7). (13.31)

Its minimum is zero only if the positive semi-definite matrix £, py.,,(Wi, ¥, Tmin) is n0t
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positive definite. The latter is ruled out by the fact that L'*(Z!(,)/(L(Z!(,)(1—L(Z!(,)))
is positive a.s. and the condition in that P, (a'(h(X;,7), Z;) = 0) < 1, Vr € 11,
Va € R%™ with a # 0. Thus, infren Amin(Eqy py (Wi, 1o, 7)) > 0 when 8, = 0 and the
first part of Assumption S3(iv) holds.

As in ([13.29)-(13.31)), we can show

L%(6y)
E o (W 0. = E -
voPoo (Wi, o) T Li(60)(1 — L;(00))

d;i(mo)d;(mo)’ (13.32)

by replacing (v, 7) with 6y and dy;(7) with d;(mp) in the arguments above. Be-
cause L(fp) > 0 and 0 < L;(6y) < 1, E%pg@(l/vi,ﬁg) is positive definite because
E, d;(mo)d;(mo)" is positive definite as specified in (3.32)). Hence, the second part of
Assumption S3(iv) holds.

By 1) and ((13.32), V1(0o, 00; 7o) = E%pge(Wi, 0o). Hence, VT(0y, 0o; ;) is positive
definite.

13.6. Verification of Assumption S4
Because m(W;, 0) = p,(W;, 0) by Lemma ,

E,m(Wi,0) = E, p,(W;,0) = E, w1:(0)(Y; — Li(0))dy,i ()
= B, wi1,;(0)(Li(00) — Li(0))dy.i(7), (13.33)

where v, = (5, (o, Mo, ¢y), the second equality holds by (3.22), and the third equality

holds by iterated expectations and (2.4). In (13.33)), £, m(W;, ) depends on 3, only
through L;(6,). Hence,

K(0;70) = (0/080) Eyyw1,i(0)(Li(0o) — Li(0))dy,:i(m)
— B, wns(0) L (00)h(X, 7o) s (), (13.34)

where the first equality holds because the observations are identically distributed and the
second equality holds by an exchange of £/ and 0 because E., supycg g,co, ||w1,i(¢)L;i(00)
h(Xi,mo)dyi(m)|| < oo by conditions in and (0/08y)gi(00) = h(X;, ™). Hence,
Assumption S4(i) holds.
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Now we show that Assumptions S4(ii) holds with
K(m;7v0) = K (g, m;70) = Eyywi,i (Yo, m)Li(00) h(X;, mo)dy i (). (13.35)

Define a;(0,00) = w1 ,:(0)L;(00)h(X;, mo)dy,i (7). It suffices to show that £, a;(0,0") —
E, a;(0,0") uniformly over (0,0") € © x ©* as y,, — v, and E, a;(6,0") is continuous
in (0,0"). The continuity holds by the continuity of a;(6,0%) in (0,0"), £, sup y-)coxo
||ai(6,6%)]] < oo by conditions in (3.32), and the dominated convergence theorem.
By Lemma [9.3] the uniform convergence follows from the pointwise convergence and
the equicontinuity of E, a;(0,0%) in (0,0%) over v, € I'. The pointwise convergence
E, a;(0,0") — E, a;(0,0") holds because (i) the expectations E, a;(0,0%) and E, a;(6,0")
depend on ¢, and ¢, respectively, but not on 6, and 6y, (ii) ¢,, — ¢, implies conver-
gence in distribution by the metric on ®*, and (iii) the L'** boundedness of a;(6,0%),
ie., B, ||a:(6,6")]|' < C < o for any v, € I'. Equicontinuity holds because for any
(61,07) and (6, 03) with [|(6:,03) — (65, 03)]| <6,

By llai(01,67) — ai(02,63)]]
< By [|lwii(01) — wii(02)|] - || Li(07) (X, 77)dy,i (1) ]
By [[wii(02)|] - || L5 (01) A (X5, w1 dy,i(m1) — Li(05) (X, 73)dy i () |
< B, My(Wi)Lih Sup ||y i()]]0 (13.36)

+E, T [(ZQ’E» + Lihns) sup||dys(m)l| + Lihul | sup(0/ )y ()| || & < €5

for some C' < oo for all v, € I', where the first inequality holds by the triangle inequality,
the second inequality follows from ||wy;(61) — wi,(62)|| < Mi(W;)d and a mean-value
expansion of L. (67)h(X;, 77)dy,i(m1) wrt (61, 67) around (62, 03), and the third inequality
holds by the Cauchy-Schwarz inequality and conditions in (3.32)). This completes the

verification of Assumption S4.

13.7. Verification of Assumptions B1 and B2

Given the definitions in Section [3.2] Assumptions B1(i) and B1(iii) follow immedi-
ately. Assumption B1(ii) holds by taking § < min{b},b3} and Z° = int(Z2).

Given the definitions in Sections the true parameter space I is of the form in
(2.6). Thus, Assumption B2(i) holds immediately. Assumption B2(ii) follows from the
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form of B* given in (2.9). Assumption B2(iii) follows from the form of B* and the fact
that ©* is a product space and ®*(6,) does not depend on [3,. Hence, the true parameter

space I satisfies Assumption B2.

13.8. Verification of Assumption C6

Assumption C6 holds by Lemma under Assumptions S1-S3 and C6'. We now
verify Assumption C6. Assumption C6'(i) holds because /3 is a scalar. To verify As-

sumption C6'(ii), we have
When 5, =0,

Py (Wi thg, w1, m2) = wii(v) (Vs — Li(g))hz,i(m1, m2), where

. _ L,(Z;CO) ) _ ! n
w17l(¢0) - L(ZZ/CO)(l . L(Z,L/CO)>’ LZ(wO) L(ZZC0)7 a d
hyi(m1,me) = (R(X;,m1), h(X;,m2), Z7)'. (13.38)

The covariance matrix in Assumption C67(ii) is

QG(ﬂla T2, ’70) = COU’YO (PZ,(VVZ, 1/}07 1, 7T2)7 p:[;(WzJ ¢0; T, 7T2))

= Evowii<1/}0)(Y; - Li(¢o))2hZ,i(le 7T2)hZ,z‘(7T1, 7T2),

L/2 Z/ /
- EVOL(ZZ{CO)(f —ZCLOEZ{CO))hZ’i(Wl’WQ)hZ:i(WlﬂTz) o (13.39)

where the first equality holds because the observations are independent and identically
distributed, the second equality follows from Epj,(W;, ¥, 71, 72) = 0, which in turn holds

by the LIE and (2.4), and the third equality holds by (13.1]). Because L'(Z!(,) > 0 and
0 < L(Z{¢y) < 1, Qa(m1, m2;7,) is positive definite because P(a'hz (71, m) = 0) < 1 for
all a € R%*? with a # 0 by the conditions in (3.32)).

13.9. Verification of Assumptions V1 and V2

Here we verify Assumptions V1 (scalar §) and V2, which are stated in Appendix B

of the main paper.
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For the binary choice model, the matrices J(7,) (= V(7,)) and J,(6) (= V,,(6)) are
defined in (3.35)) and (5.18), respectively. Define

L L(0)
T0:70) = B 0 — e

d;(m)d; (7). (13.40)

Under {v,} € I'(7y), supgeo [ 7,(8) — J(6;7,)]] —, 0 and J(0;7,) is continuous in
6 on © by the uniform law of large numbers in Lemma [9.3] where the smoothness and
moment conditions hold by conditions in (3.32). In addition, J(6p;v,) = J(7,). This
verifies Assumption V1(i) and V1(ii) (for scalar /).

To verify Assumption V1(iii), note that

B(0;70) = J (03 70) and X(m;70) = J (g, T 7). (13.41)

Hence, it suffices to show that (i) Amin(J (¢, 7570)) > 0 and (ii) Amax(J (29, 7570)) < 00
for all 7 € II. Property (i) holds by essentially the same argument as in the para-
graph following with d;(m) in place of dy ;(7) using the condition in that
E, d;(m)d;(m)" is positive definite Vr € II. Positive definiteness of £, d;(7)d;(7)" implies
the same for £, [L"*(Z[¢,)/(L(Z/Co)(1 — L(Z!(,)))]di(m)d; ()" because the latter is well-
defined and L"*(Z!(,)/(L(Z!¢,)(1 — L(Z!(,))) is positive a.s. Property (ii) holds by the
moment conditions in (3.32). This completes the verification of Assumption V1(iii).

Assumptions V1(i) and V1(ii) hold not only under {~,} € I'(7,,0, b), but also under
{~,} € T(7,,00,wp) in this example. This and 6, —, 0 under {v,} € (v, 00,wo),
which holds by Lemma 5.3 of AC1, imply that Assumption V2 holds. Among the
assumptions employed in Lemma 5.3 of AC1, Assumptions B1, B2, and C7 are verified
directly, Assumptions A, B3, and C1-C5 hold by Lemma [9.1] under Assumptions B1,
B2, and S1-S4, and Assumption C6 holds by Lemma [3.2] under Assumptions S1-S3 and
C6'.
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13.10. Calculation of Partial Derivatives

Here we calculate the partial derivatives of p(W;, 0) wrt 6. Let L abbreviate L(g;(0)).

The first-order derivative wrt 6 is

Y;‘ 1_Y; /a
po(Wi,0) = — [f T 1_ L] %91’(0)
Y=L 0
L1—1)" 967
-
L1—-L)

(0) = wy,(0)(Y; — L)B(5)d;(m), where
wy i (0) = (13.42)

Now we calculate the second-order derivatives. To this end, we have

[ [ v
RUCETETES ol P
T
s P )
0 0 02

_ I: /I_ . [EE—'c — .

Hence,

(Y; - L)?
21— 1)?
YL , &
“a=n " aear ¥
= [wi, (Vi = L)* + wy,(Y; — L) B(B)di(m)di(m) B(B)
+wi,;(Y; — L)Di(6), where
_— .y
pi-o " S Ty

Poo(Wi, 0) = (L/)Z B R

wy;(0) = (13.44)

Lastly, we calculate the derivatives in (13.8). Let L = L;(0) and Ly = L;(6p). We
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have

LO 1—L0 L—LO
FOC = -2 -
OoC + )

LI "1-1L L and

1
L(1— L) — (L — Lo)(1 — 2L)
I2(1— L)
L— L2~ (L~ Ly— 2L% + 2LLy)
[2(1— L)
Lo+ L?—2LLy (Lo — L)?

SOC =

= > > 0.

I2(1-L2 ~ L*(1- Ly
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14. Supplemental Appendix E: STAR Example,

Verification of Assumptions

14.1. Verification of Assumptions S1 and S2

Assumption S1 holds by Assumption STARI(ii).
Assumption S2(i) holds with

p(W,0) = UZ(0)/2, where U;(0) =Y, — X;¢ — X3 -m(Z;, 7). (14.46)

The residual U(#) is twice continuously differentiable in 6 for both the logistic function
and the exponential function. When g = 0, U;(0) = Y; — X](, which does not depend
on 7. This verifies Assumption S2(ii).

To verify Assumptions S2(iii) and S2(iv), we have

E’Yop<Wt’ 0) = E“fo th - X;C - X;ﬁ ’ m<Zt7 71_)}2
= B, (U — X[(¢ = ) — X, [Bm(Zy,7) — Bym(Zy, m0)])°
= B, U + B\ [X[(C = o) + X{(Bm(Zy, m) — Bom(Zy, mo))]?. (14.47)

To verify Assumption S2(iii), we need that when [, = 0,
By (Wi th,7) = Bgp(Wey g, ) = B [XU(C — Co) + XiBm(Zo,m)P >0 (14.48)
Vi # ¢y and V7 € II. The inequality in holds unless
P, (X7 + Xim(Zy,m))a=0) =1, (14.49)

where a = ((¢ — (,)’,3'). By Assumption STAR2(i), does not hold for any
a # 0. Hence, the inequality in holds V4 # 1. This completes the verification
of Assumption S2(iii).

To verify Assumption S2(iv), we need that when S, # 0,

EWOP(VVM 0) - E%p(Wt, 00)
= B, [X{(¢ = Co) + X{Bm(Zy, m) — X{Bgm(Zi,m0)]? > 0 (14.50)
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V6 # 0y. The inequality in (14.50]) holds unless
Py, (X{(C = o) + Xim(Zy, m) — X, Bgm(Zy, mo) = 0) = 1 (14.51)

for some 0 # 0,. Because 3, # 0, Assumption STAR2(i) implies that (14.51) does not
hold for any m # my. When m = 7, (14.51)) becomes

Py (X{(C = Co) + Xi(B = Bo)m(Zy, mo) = 0) = 1. (14.52)

Because ((14.49) does not hold for any a # 0 for any 7 € II, (14.52)) cannot hold for
(8,¢) # (By,(p)- This completes the verification of Assumption S2(iv).
Assumption S2(v) holds by Assumption STAR5(ii). Assumption S2(vi) holds because

¥ does not depend on 7.

14.2. Verification of Assumption S3(i)

Now we verify Assumption S3 (vector ). In the STAR model, Z; is an element of
X; and the function p(w, 6) takes the form in (3.19) with

a<Xt75) = X;B S R7 h(Xt77T) = m(Zt77T) S Ra and
p'(Wi,a(X,, B)R(Xy, 7),¢) = [V = Xi¢ = a(X, (X, m)]*/2. (14.53)

By Lemma we verify Assumption S3(i) by showing that Assumption S3* holds.

To verify Assumption S3*(i), we have
p' (Wi, a( Xy, Bo) (Xt o), Co) = —[Vi — X{Co — a(Xy, Bo)n(Xy, mo)] = — U (14.54)

Note that p'(-) and p”(-) in Assumption S3* are partial derivatives of p*(-) wrt a(Xy, 5)
h(X}, 7). Assumption S3*(i) holds immediately by Assumption STARI1().
To verify Assumption S3*(ii), we first derive the terms that appear in it. By (14.53),

p”(Wt,a(Xt,B)h(Xt,w), O =1,
WXy, m) =m(Zy, m), ha( Xy, ) = M (Zy, )y M (X, ) = M (Zy, ),
ag(Xy, B) = Xy, ags(Xy, B) = 0. (14.55)

Assumption S3*(ii) holds because E, sup, cy(|m(Z;, 7)| 4 ||m(Z, 7)|]) - (|m(Z;, 7)| +
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[lmx(Zt,
| + [|mar(Zi, 7)|]) - || Xe]]> < C for some C < oo by Assumption STAR2(iii) and
the Cauchy-Schwarz inequality.

This completes the verification of Assumption S3(i).

14.3. Verification of Assumption S3(ii)

Next, we verify Assumption S3(ii). We first show some generic results that are used

in the calculation below. Let A = ada’, where a = [a},...,a],]’ € R% and ay, ..., a,, are

coy Uy

sub-vectors of a. Similarly, A* = a*a* and aj, ..., a}, are sub-vectors of a*. Then,

m m
A= A"|| = [Jad' —a”a”|| < Y Y llaia} — afaf|

i=1 j=1
m m
<30 (et = oua | + e — ai|)
i=1 j=1
m m
< 3 el + i Dl — .
i=1 o

where the first inequality holds by the inequality (2% + y?)'/2 < z + y for non-negative
scalars x and y, the second inequality holds by the triangle inequality, and the third
inequality holds by the inequality ||AB|| < [|A]| - ||B|| for matrices A and B.

By (7.12),

05 (Wi, 01) = (Wi, 02) || < |dy o (1) (1) — o () iy o (702)|]
< 4||Xt|| : ||Xt,m(Zt77T1) - Xém(Zt;ﬂ-Q)H
< 41X SugHmw(ZtﬂT)H ||y — o], (14.57)
e

where the first inequality holds by applying the inequality in (14.56|) to a = dy (1) =
(Xim(Zy, m1), X]) and a* = dy(m2) = (X;m(Z;, ), X])" and the second inequality
holds by a mean-value expansion of m(Z;, 7) wrt .

Applying the arguments in to ph,(Wy,01) with a = (X/m(Zy, m1), X}, ' Xemy(Z,
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m)") and a* = (Xjm(Z;, ma), X{, whXem,(Z;, m3)") yields
1050 (W, 05) — pbe (W, 03)1] < 201X4[[*(2 + sup |l (Ze, T)]) % (14.58)
(Sup(Hmw(ZtﬂT)H + M (Ze, m)|]) - [0 = 72| + sup |[mr (Ze, 7] - |Jwr1 — w2|\) :
mell mell
Therefore, the function M;(W;) in Assumption S3(ii) takes the form
My(W;) = 4| X - sup | (Ze, 7|
e
2/ X 22 + sup ||mr(Zy, 7)) - sup (2[lma(Ze, T)|| + [|mrr(Ze, m)]]) - (14.59)
s e

The form of M;(W;) is used in the verification of Assumption S3(iii) below.
Next, we show the form of My(W;) in Assumption S3(ii) (vector §). By (7.12),

1Py (Wi, 01) = py (Wi, 02)]] = [[Ue(01)dup i (1) — Un(02)dpo (2|
< |U(01) = Ur(02)] - [[dy ()| + [Un(01)] - [[dy1(m1) = dya ()], (14.60)

where the inequality holds by the triangle inequality and ||aB|| = |a| - || B|| when a is a

scalar.

Let B = SUPyco 18| and Z = SUPgco <]
Note that in (14.60)), the terms concerning U, () satisfy

Ui (01) — U(0)]

IN

)
U016, — 0
223”@9' H(O)]] - 161 — 62|

< QIX] + []X] -3-Sggllmw(2t,ﬂ)ll) |16y = 2]l

U (00)] < {1Vl + [ X]IC + 1] X[ (14.61)
The terms concerning dy, () satisfy

l|dy+(m2)|] < 2[|X¢|| and
Iselm) — dualmll < 1K1 sup lme(Ze -l — ol (1462)
S

25



The inequalities in (14.60))-(|14.62)) imply that

105 (We,02) = py (Wi, 05)| < My(W) - 61 = o], where
My(Wy) = 2|| X2+ B - sup [[m(Z;, 7))
e

(Yol + [1XIC + [1X01B) - (1] sup |l (Ze, ). (14.63)

Similarly, (7.14]) gives

105 (W, 07) = ph(We 031 = 1067 )da(m1, 1) — Up(63 )y (2, wo)l| - (14.64)
< U(07) = Ui(03)] - [1di(ma, )| 4+ [U(07)] - [1di (1, wi) = di(ma, wo)l.

In (14.64), the terms concerning U, (6") satisfy that

U(07) =Y, — Xi¢ = [|Bllw' Xy - m(Zy, 7),
(U(0)] < [[¥el] + [1XIC + 118,
0

WU(9+) - _(w,Xtm<Zt’ 7T)7 ||B||X£m(Zt7 ﬂ-)’ Xl{, ||ﬁ| |letm7T(Zt7 77-),)7

0
U07) = Ui07) < sup |l UO)]]- 1167 — 65|

ftco+

< <2+B- <sup||mﬂ<zt,w>u " 1)) 1l — ol (14.65)

mell

In (14.64]), the terms concerning d;(7,w) satisfy
|| (7, )| < ||Xt||(2+Sug||m7r(Zt,7T)||) and
TE

[lde (1, wi) = di(ma,w2) || < || X4 - (Sup [lma(Ze, ™)l + sup [[merr (22, 7T)I|> 1 — |
e

mell

HIXel[ - sup [Jmr (Zp, w] - [l = wall (14.66)
S

By ([L69)-(T450).

105 (W2, 07) = ph (Wi, 03)[| < M, (W;) - (|07 — 05 ]|, where
My(Wy) = [2+ B+ (sup||ma(Ze, m)[| + 1)) - || X [* - (2 + i [l (Ze, m)]])
e

mell

+ (1Yl + XIS+ [1118) - [1Xel] - Sup Cllma(Ze, Wl + [[Mar(Ze, 7)]])(14.67)
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Another term in Assumption S3(ii) is ||e(W, 07) — e(W;, 05)||, which satisfies
||e(Wr, 07) — e(We, 03)|
< |U07) — Ue(03)] - [1Xe] SUD2|m(Ze, ) + [[man (22, )]
H O] - 1 X SUp(||3mer (22, 7) + Man(Z)) - 107 — 031, (14.68)
TE

where M, (Z;) is as in Assumption STAR2. This and the inequalities in (14.65) imply
that

Ie(0W2,65) — (W3, 61| < MW - |05 = 6511, where M.(:) =
(247 (suplimaZ,mll 1) ) 112 - sup(2llne (Ze ) + s (21,
TE TE

+ (1Yl + [IX[C+ 11X 1B) - 11X - (Slelg |31 (Ze, )| + Mrr (Z1)). (14.69)

Equations (14.63)), (14.67)), and (14.69) yield that Assumption S3(ii) holds with

My(Wh) = My(Wy) + My(Wh) + Mc(W3). (14.70)

14.4. Verification of Assumption S3(iii)

In the verification of Assumption S3(iii) below, we use

E, sup |Uy(0)*" = E, sup|Y; — X[¢ — X, 8- m(Z, )
USC) 0€©
< CLE, (Vi + [IXe])* < (14.71)
for some C7, Cy < 0o, where the first inequality holds because the parameter spaces of ¢
and [ are bounded and |m(Z;, 7)| € [0,1] and the second inequality holds by Holder’s

inequality and Assumptions STAR1(ii) and STAR2(iii). Because the value of U;(#) does
not change when 6 is reparameterized as 0", (14.71)) is equivalent to

E,, sup |[U(6)* <C (14.72)

6tco+

for some C < 0.
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By (14.46),

1
E, sup |p(W,0)|'" = —E, sup |U;(9)*') < C (14.73)
’ oco 21010 e
for some C' < oo by ((14.71)).

By (1D,

E,, sup [|ph(W,,0%)||" < E,, sup |Ui(07)E,, Sup ||y (7, w)|[*?
otco+ 9 co+ cot

<G VOSgg<2Hx;H+—H)QH-\wn«<zavowo2qs;cxl4ﬁ4>

for some C', Cy < 0o, where the first inequality holds by the Cauchy-Schwarz inequality,
the second inequality holds by and ||AB|| < ||A||-||B||, and the third inequality
holds by Holder’s inequality and Assumptions STAR1(ii) and STAR2(iii).

In the calculation of B, supyee ||pyy (Wi, 0)|['*? and E, supgee ||ohe (Wi, 0)[|*+? be-
low, we use the following inequality. Let A = ad’, where a = [d},...,a/,] € R% and

ai, ..., a,, are sub-vectors of a. Then,

||A||<ZZI|M’|I< (ZII%H) (14.75)

=1 j=1

by arguments analogous to those in (14.56)).

By (12,

I, Sl (Wi O) [0 = I, s s (w0 < 2, (211,049 < €

(14.76)
for some C' < oo, where the first inequality holds by (14.75)) with a = (X{m/(Z;, 7), X})’
and the second inequality holds by Assumptions STAR1(ii) and STAR2(iii).

Similarly, by (7.14)),
E,, sup ||phe(Wi, 09)||'70 = By, sup ||di(m,w)dy(m, w)'[['*°
pteo+ gteco+
< By sup (ILX |+ 1XG -l (22, m) ) < € (14.77)
S

for some C' < 0o, where the first inequality holds by (14.75)) with a = (X[m/(Z;, ), X},
W' Xym,(Zy, 7)) and the second inequality holds by Assumption STAR2.
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By (7.14),

E,, sup ||le(W;,0")||* < E,, sup [|U,(67)]*

ftce+ ptcot

X By sup(2| Xel| - [lmr (Ze, m)l] + (| Xell - Iman(Ze, m)[)* < C - (14.78)
e

for some C' < oo, where the first inequality holds by the Cauchy-Schwarz inequality and
the inequality [[A[| < >, . [|A4;;]| for any matrix A, where A;; denotes an element of
A, and the second inequality follows from , Holder’s inequality, and Assumptions
STAR1(ii) and STAR2(iii).

Finally, E, (M;(W;) + My(W;)?) < C for some C' < oo by Holder’s inequality,
(14.59), (14.63), (14.67), (14.69), (14.70), and Assumptions STAR(ii) and STAR2(iii).

This completes the verification of Assumption S3(iii) (vector ).

14.5. Verification of Assumptions S3(iv) and S3(v)

To verify Assumption S3(iv), note that

B (Westho, ™) = By o(m)dy ()" and
B,y pbe (Wi, 00) = E. di(m0, wo)di (0, wp)'. (14.79)

For any A = ()\1,)\2) #0, A\, A2 € Rdﬁ, and V7 € II,
Ny dy i (1) dy (7N = By (N Xm(Z, ) + Ay X,)° > 0, (14.80)

where the inequality holds by Assumption STAR2(i). This implies that £, dy,(7)dy ()’
is positive definite V7 € II.

For any A = (A1, Ao, A3, \a) # 0, A, Ay € R%. A3, \y € R, Vw with ||w|| = 1 and
v e Il

NE,, dy(m,w)dy(m,w)'A (14.81)
= E%()\'lXtm(Zt, ) + Ao Xy + Asw' Xemp 1 (Zy, m) + M’ Xymig 2(Z, 7))? > 0,

where the inequality holds by Assumption STAR2(ii) with a = (A1, Ay, Asw, \qw). Note
that A # 0 implies that a # 0. The inequality in (14.81]) implies that E. pge(Wt, o) is
positive definite Vv, € I'.
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To verify Assumption S3(v), note that Vm # 0,
Covg(ph(Wi, 00), o (Wi, 00)) = E Uil ymdy (10, w0)dym(wo, o) =0 (14.82)
by Assumption STARI1(i). This yields that

V00, 00;79) = Covy, Ui dy(mo, wo)dy (o, wo)’
- EvoUt2dt(7T07wo)dt(%,wo),, (14.83)

where the second equality uses E, Uyd,(mo,wo) = 0 by Assumption STAR1(i). The
matrix E, UZd,(mo,wo)d(mo, wo)’ is positive definite by the argument in (14.81)) with
dy+(m) replaced by Updy(m,w) and using E., (U}|F—1) = 0* > 0.

14.6. Verification of Assumption S4

To verify Assumption S4, we have

By py (W, 0) = =B, Uy (0)dy ()
= —E,, (U + X{(Co — Q) + Xi[Bom(Ze, mo) — B(Zy, )])dy (1) and
K(0;7) = —Ey,dy s (m)X{m(Z, o)
= —E, dy(m)dys(mo) - Sp. (14.84)

where S5 = [Iy, : 0] € R%>(2ds),

Assumption S4(i) holds with K (6;7,) in by the moment conditions in As-
sumption STAR2(iii). To verify Assumption S4(ii), we need to show that E. dy+(7m)dy (7o)’
is continuous in 7, 1y, and ¢. Continuity in © and 7y follows from the the continuity of
m(Zs, ) in m and the moment conditions in Assumption STAR2(iii). Continuity in ¢
holds because ¢,, — ¢, under dg implies weak convergence of (Y}, Y;.,,) for all t,m > 1,
which in turn implies the convergence of E., dy (m)dy, (7o) to E, dy+(m)dy(m0)" by the
moment conditions in Assumption STAR2(iii).

The continuity in 7, 79, and ¢ holds uniformly over = € Il by Lemma using (i)
the pointwise convergence above, (ii) the fact that £, dy.(7)dy(mo) is differentiable
in 7 and the partial derivative is bounded over = € II, and (iii) the compactness of II.

This completes the verification of Assumption S4.
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14.7. Verification of Assumptions B1 and B2

Now we verify Assumptions Bl and B2. Assumptions B1(i) and B1(iii) hold by
Assumptions STAR5(i) and STARS(ii) immediately. Assumption B1(ii) holds with
Z% = int(Zy) by Assumptions STAR4(iv) and STAR5(iii). Assumption B2(i) holds
immediately because the true parameter space I' is of the form in and [ is as-
sumed to be compact. Assumption B2(ii) holds by Assumption STARA(ii). Assumption
B2(iii) holds by Assumption STARA4(iv) and the form of the true parameter space in
(7.10).

14.8. Verification of Assumptions C6 and C7

Assumption C6 is implied by Assumption STAR3(J).
Now we verify Assumption C7 with H(7;~,) and K(m;~,) given in (7.9). By the
matrix Cauchy-Schwarz inequality in Tripathi (1999),

K(m;70) H (5 70) K (11570) < By Xe Xym?(Zy, o). (14.85)

The matrix “<” holds as an equality if and only if X;m(Z;, mo)a+ (X[, X;m(Z;,7))c =0
with probability 1 for some a € R% and ¢ € R?*®* with (d’,¢) # 0. The “<” holds as
an equality uniquely at m = mo by Assumption STAR2(i).

Proof of Lemma We prove Lemma by verifying Assumption C6' and using
Lemma 8.2l Note that

ps (Wi, g, ) = U Xym(Zy, )
Pc(Wta%a m) = Ui Xy,
Py(Wis b, m1,m2) = Updy (1, 72), where
d(m1,m2) = (Xim(Zy,m1), Xim(Zi, 72), X7)' (14.86)

The matrix Qg(my, 72;7,) that appears in Assumption C6' takes the form
Qe (1, m2370) = By UL dy (o, ma)di (1, m2)' (14.87)

by Assumption STARI1(i). Assumption C6'(ii) holds by Assumption STAR2(i) and
E, (U}|Fi—1) = 0 > 0 using arguments analogous to those in (14.81). O
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14.9. Verification of Assumptions V1 (vector 3) and V2

Here we verify Assumptions V1 (vector 5) and V2, which are stated in Appendix B
of the main paper.
In the STAR model, Assumption V1(i) holds with

J(0%;7y) = By dy (7, w) di(m,w)" and
V(0F;57,) = B, Uldy (7, w) dy(m,w)’ (14.88)
+E4 [ X3 (Co = €) + Xi(l|Bollwom(Ze, mo) — [|Bllwm(Zy, m))*dy(m, w)dy(m, w)',

by the uniform law of large numbers in Lemma [9.3

Assumption V1(ii) holds by the continuity of m(z, 7) and m,(z,7) in 7 and Assump-
tion STAR2(iii).

To verify Assumption V1(iii), note that X(m,w;~,) takes the form

X(m,w; ) (14.89)
= (Byydy (m,w) dy(m,w)) ™" By URd, (m,w) dy(m,w)' (Byydy (m,w) dy(m,w)')

Given that E, d; (7, w)di(m,w)" and E, UZd, (7,w) dy(m,w)’ are both positive definite,
Y (m,w;y,) is positive definite Vrr € II and Vw with ||w|| = 1.

Because the determinant of E d; (7, w) di(7,w)" is bounded away from 0 as a function
of (m,w) Vyy € I' and ||E, d; (7, w) di(m,w)'|| < Cy for some C; < 0o Vy, € T' by
Assumption STAR2(iii), we have || (E, d; (7,w) dt(ﬂ,w)’)_l | < Cy for some Cy < 0.
Hence, ||3(m,w;7,)|| < C Vr € IT and Yw with ||w|| = 1. This completes the verification
of Assumption V1(iii).

Assumption V1(iv) holds by Assumption STAR3(ii).

Assumptions V1(i) and V1(ii) hold not only under {~,} € I'(7,,0, b), but also under
{7,} € T'(7g,00,wp) in this example. This and 0, —, 0o under {v,,} € I'(v,, 00, wo),
which holds by Lemma 5.3 of AC1, imply that Assumption V2 holds. Regarding the
assumptions employed in Lemma 5.3 of AC1, Assumptions B1, B2, C6, and C7 are ver-
ified above and Assumptions A, B3, and C1-C4 hold by Lemma [9.1] under Assumptions

B1, B2, and S1-S4. O
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