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Abstract

This paper analyzes the properties of a class of estimators, tests, and con�dence

sets (CS�s) when the parameters are not identi�ed in parts of the parameter space.

Speci�cally, we consider estimator criterion functions that are sample averages and are

smooth functions of a parameter �: This includes log likelihood, quasi-log likelihood,

and least squares criterion functions.

We determine the asymptotic distributions of estimators under lack of identi�cation

and under weak, semi-strong, and strong identi�cation. We determine the asymptotic

size (in a uniform sense) of standard t and quasi-likelihood ratio (QLR) tests and CS�s.

We provide methods of constructing QLR tests and CS�s that are robust to the strength

of identi�cation.

The results are applied to two examples: a nonlinear binary choice model and the

smooth transition threshold autoregressive (STAR) model.

Keywords: Asymptotic size, binary choice, con�dence set, estimator, identi�cation, like-
lihood, nonlinear models, test, smooth transition threshold autoregression, weak identi-

�cation.
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1. Introduction

This paper provides a set of maximum likelihood (ML) regularity conditions under

which the asymptotic properties of ML estimators and corresponding t and QLR tests

and con�dence sets (CS�s) are obtained. The novel feature of the conditions is that

they allow the information matrix to be singular in parts of the parameter space. In

consequence, the parameter vector is unidenti�ed and weakly identi�ed in some parts

of the parameter space, while semi-strongly and strongly identi�ed in other parts. The

conditions maintain the usual assumption that the log-likelihood satis�es a stochastic

quadratic expansion. The results also apply to quasi-log likelihood and nonlinear least

squares procedures.

Compared to standard asymptotic results in the literature for ML estimators, tests,

and CS�s, the results given here cover both �xed and drifting sequences of true para-

meters. The latter are necessary to treat cases of weak identi�cation and semi-strong

identi�cation. In particular, they are necessary to determine the asymptotic sizes of

tests and CS�s (in a uniform sense).

This paper is a sequel to Andrews and Cheng (2007a) (AC1). The method of estab-

lishing the results outlined above and in the Abstract is to provide a set of su¢ cient

conditions for the high-level conditions of AC1 for estimators, tests, and CS�s that are

based on smooth sample-average criterion functions. The high-level conditions in AC1

involve the behavior of the estimator criterion function under certain drifting sequences

of distributions. In contrast, the assumptions given here are much more primitive. They

only involve mixing, smoothness, and moment conditions, plus conditions on the para-

meter space.

The paper considers models in which the parameter � of interest is of the form

� = (�; �; �); where � is identi�ed if and only if � 6= 0; � is not related to the identi�cation
of �; and  = (�; �) is always identi�ed. For examples, the nonlinear binary choice

model is of the form: Yi = 1(Y �
i > 0) and Y

�
i = � �h(Xi; �)+Z

0
i��Ui; where (Yi; Xi; Zi)

is observed and h(�; �) is a known function. The STAR model is of the form: Yt =

�1 + �2Yt�1 + � �m(Yt�1; �) + Ut; where Yt is observed and m(�; �) is a known function.
In general, the parameters �; �; and � may be scalars or vectors. We determine

the asymptotic properties of ML estimators, tests, and CS�s under drifting sequences of

parameters/distributions. Suppose the true value of the parameter is �n = (�n; �n; �n)

for n � 1; where n indexes the sample size. The behavior of ML estimators and test
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statistics depends on the magnitude of jj�njj: The asymptotic behavior of these statistics
varies across three categories of sequences f�n : n � 1g: Category I(a): �n = 0 8n � 1;
� is unidenti�ed; Category I(b): �n 6= 0 and n1=2�n ! b 2 Rd� ; � is weakly identi�ed;

Category II: �n ! 0 and n1=2jj�njj ! 1; � is semi-strongly identi�ed; and Category

III: �n ! �0 6= 0; � is strongly identi�ed.
For Category I sequences, we obtain the following results: the estimator of � is incon-

sistent, the estimator of  = (�; �) and the t and QLR test statistics have non-standard

asymptotic distributions, and the standard tests and CS�s (that employ standard normal

or �2 critical values) have asymptotic null rejection probabilities and coverage probabil-

ities that may or may not be correct depending on the model.1 (In many cases, they

are not correct). For Category II sequences, estimators and standard tests and CS�s are

found to have standard asymptotic properties, but the rate of convergence of the estima-

tor of � is less than n1=2: Speci�cally, the estimators are asymptotically normal and the

test statistics have asymptotic chi-squared distributions. For Category III sequences,

the estimators and standard tests and CS�s have standard asymptotic properties and

the estimators converge at rate n1=2:

We also consider t and QLR tests and CS�s that are robust to the strength of iden-

ti�cation. These procedures use di¤erent critical values from the standard ones. First,

we consider critical values based on asymptotically least-favorable sequences of distrib-

utions. Next, we consider data-dependent critical values that employ an identi�cation-

category selection procedure that determines whether � is near the value 0 that yields

lack of identi�cation of �; and if it is, the critical value is adjusted (in a smooth way) to

take account of the lack of identi�cation or weak identi�cation. We show that the ro-

bust procedures have correct asymptotic size (in a uniform sense). The data-dependent

robust critical values yield more powerful tests than the least favorable critical values.

The numerical results for the STAR and nonlinear binary choice models are summa-

rized as follows. The asymptotic distributions of the estimators of � and � are far from

the normal distribution under weak identi�cation and lack of identi�cation. The as-

ymptotic distributions range from being strongly bimodal, to being close to uniform, to

being extremely peaked. The asymptotics provide remarkably accurate approximations

to the �nite-sample distributions.

In the STAR model, the standard t and QLR con�dence intervals (CI�s) for � have

1Here, by �correct�we mean � or less for tests and 1�� or greater for CS�s, where � and 1�� are
the nominal sizes of the tests or CS�s.
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substantial asymptotic size distortions with asymptotic sizes equaling :56 and :72; re-

spectively, for nominal :95 CI�s. This is also true for the t and QLR CI�s for �; where

the asymptotic sizes are :40 and :84; respectively. Note that the size distortions are

noticeably larger for the standard t than QLR CI. In the binary choice model, the stan-

dard t and QLR CI�s for � have incorrect asymptotic sizes: :68 versus :92; respectively,

for nominal :95 CI�s. However, the standard t and QLR CI�s for � have small and no

size distortion, respectively. In both models, the asymptotic sizes provide very good

approximations to the �nite-sample sizes for the cases considered.

In both models, the robust CI�s have correct asymptotic sizes and �nite-sample sizes

that are quite close to the asymptotic size for the QLR CI�s and fairly close for the t

CI�s.

In sum, the numerical results indicate that the asymptotic results of the paper are

quite useful in determining the �nite-sample behavior of estimators and standard tests

and CI�s under weak identi�cation and lack of identi�cation. They are also quite useful

in designing robust tests and CI�s whose �nite-sample size is close to their nominal size.

The results of this paper apply when the criterion function satis�es a stochastic

quadratic expansion in the parameter �: This rules out a number of interesting models

that exhibit lack of identi�cation in parts of the parameter space, including regime

switching models, mixture models, abrupt transition structural change models, and

abrupt transition threshold autoregressive models.2

Now, we brie�y discuss the literature related to this paper. See AC1 for a more

detailed discussion. The following are companion papers to this one: AC1, Andrews

and Cheng (2007c) (AC1-SM), and Andrews and Cheng (2008) (AC3). These papers

provide related, complementary results to the present paper. AC1 provides results under

high-level conditions and analyzes the ARMA(1, 1) model in detail. AC1-SM provides

proofs for AC1 and related results. AC3 provides results for estimators and tests based

on generalized method of moments (GMM) criterion functions. It provides applications

to an endogenous nonlinear regression model and an endogenous binary choice model.

Cheng (2008) provides results for a nonlinear regression model with multiple sources

of weak identi�cation, whereas the present paper only considers a single source. However,

the present paper applies to a much broader range of models.

Tests of H0 : � = 0 versus H1 : � 6= 0 are tests in which a nuisance parameter �

only appears under the alternative. Such tests have been considered in the literature

2See AC1 for references concerning results for these models.
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starting from Davies (1977). The results of this paper cover tests of this sort, as well

as tests for a whole range of linear and nonlinear hypotheses that involve (�; �; �) and

corresponding CS�s.

The weak instrument (IV) literature is closely related to this paper. However, papers

in that literature focus on criterion functions that are indexed by parameters that do

not determine the strength of identi�cation. In contrast, in this paper, the parameter

�; which determines the strength of identi�cation of �; appears as one of parameters

in the criterion function. Selected papers from the weak IV literature include Nelson

and Startz (1990), Dufour (1997), Staiger and Stock (1997), Stock and Wright (2000),

Kleibergen (2002, 2005), Moreira (2003), and Kleibergen and Mavroeidis (2009).

Andrews and Mikusheva (2010) and Qu (2011) consider Lagrange multiplier (LM)

tests in a maximum likelihood context where identi�cation may fail, with emphasis on

dynamic stochastic general equilibrium models. The results of the present paper apply

to t and QLR statistics, but not to LM statistics. The consideration of LM statistics is

in progress.

Antoine and Renault (2009, 2010) and Caner (2010) consider GMM estimation with

IV�s that lie in the semi-strong category, using our terminology. Nelson and Startz

(2007) and Ma and Nelson (2008) analyze models like those considered in this paper.

However, they do not provide asymptotic results or robust tests and CS�s of the type

given in this paper. Sargan (1983), Phillips (1989), and Choi and Phillips (1992) provide

�nite-sample and asymptotic results for linear simultaneous equations models when some

parameters are not identi�ed. Phillips and Shi (2011) provide results for a nonlinear

regression model with non-stationary regressors in which identi�cation may fail.

The remainder of the paper is organized as follows. Section 2 introduces the smooth

sample average extremum estimators, criterion functions, tests, CS�s, and drifting se-

quences of distributions considered in the paper. Section 3 states the assumptions em-

ployed. Section 4 provides the asymptotic results for the extremum estimators. Section

5 establishes the asymptotic distributions of QLR statistics, determines the asymptotic

size of standard QLR CS�s, and introduces robust QLR tests and CS�s, whose asymp-

totic size is equal to their nominal size. Section 6 considers t-based CS�s. The nonlinear

binary choice model is used as a running example in the previous sections. Section 7 pro-

vides results for the smooth transition threshold autoregressive model (STAR) model.

Section 8 provides numerical results for the STAR and binary choice models. Appendix

A provides proofs of the results given in the paper. Appendix B provides some mis-
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cellaneous results. Three Supplemental Appendices to this paper are given in Andrews

and Cheng (2007b). Supplemental Appendix C provides additional numerical results

for the nonlinear binary choice and STAR models. Supplemental Appendices D and

E verify the assumptions for the nonlinear binary choice model and the STAR model,

respectively.

All limits below are taken �as n!1:�Let �min(A) and �max(A) denote the smallest

and largest eigenvalues, respectively, of a matrix A: All vectors are column vectors. For

notational simplicity, we often write (a; b) instead of (a0; b0)0 for vectors a and b: Also,

for a function f(c) with c = (a; b) (= (a0; b0)0); we often write f(a; b) instead of f(c): Let

0d denote a d-vector of zeros. Because it arises frequently, we let 0 denote a d�-vector

of zeros, where d� is the dimension of a parameter �: Let R[�1] = R [ f�1g : Let
Rp
[�1] = R[�1]� :::�R[�1] with p copies. Let) denote weak convergence of a sequence

of stochastic processes indexed by � 2 � for some space �:3

2. Estimator and Criterion Function

2.1. Smooth Sample Average Estimators

We consider an extremum estimator b�n that is de�ned by minimizing a sample cri-
terion function of the form

Qn(�) = n�1
nX
i=1

� (Wi; �) ; (2.1)

where fWi : i � ng are the observations and �(w; �) is a known function that is twice
continuously di¤erentiable in �: This includes ML and LS estimators. The observations

fWi : i � ng may be i.i.d. or strictly stationary. Formal assumptions are provided in
Section 3 below.

The paper considers the case where � is not identi�ed (by the criterion function

Qn(�)) at some points in the parameter space. Lack of identi�cation occurs when the

Qn(�) is �at wrt some sub-vector of �: To model this identi�cation problem, � is parti-

3In the de�nition of weak convergence, we employ the uniform metric d on the space Ev of Rv-valued
functions on �: See the Outline of the Supplemental Appendix of AC1 for more details.
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tioned into three sub-vectors:

� = (�; �; �) = ( ; �); where  = (�; �): (2.2)

The parameter � 2 Rd� is unidenti�ed when � = 0 (2 Rd�): The parameter  = (�; �) 2
Rd is always identi�ed. The parameter � 2 Rd� does not e¤ect the identi�cation of

�: These conditions allow for a wide range of cases, including cases in which reparame-

trization is used to convert a model into the framework considered here.

Example 1. This example is the nonlinear binary choice model

Yi = 1(Y
�
i > 0) and Y

�
i = � � h(Xi; �) + Z 0i� � Ui; (2.3)

where h(Xi; �) 2 R is known up to the �nite-dimensional parameter � 2 Rd� : Suppose

h(x; �) is twice continuously di¤erentiable wrt � for any x in the support of Xi and

the �rst- and second-order partial derivatives are denoted by h�(x; �) and h��(x; �);

respectively.

The observed variables are fWi = (Yi; Xi; Zi) : i = 1; :::; ng: The random variables

f(Xi; Zi; Ui) : i = 1; :::; ng are i.i.d. The distribution of (Xi; Zi) is �; which is an in�nite-

dimensional nuisance parameter. The parameter of interest is � = (�; �; �): Conditional

on (Xi; Zi); the distribution function (df) of Ui is L(u): The df L(u) is known and does

not depend on (Xi; Zi): For example, L(u) is the standard normal distribution df in

a probit model and the logistic df in a logit model. We assume that L(u) is twice

continuously di¤erentiable and its �rst- and second-order derivatives are denoted by

L0(u) and L00(u); respectively. Suppose L0(u) > 0 and 0 < L(u) < 1 8u 2 R:
In this model,

P (Yi = 1jXi; Zi) = P (Ui < �h(Xi; �) + Z 0i�jXi; Zi) = L(gi(�)); where

gi(�) = �h(Xi; �) + Z 0i�: (2.4)

We estimate � = (�; �; �) by the ML estimator. The sample criterion function is

Qn(�) = �n�1
nX
i=1

[Yi logL(gi(�)) + (1� Yi) log(1� L(gi(�))] (2.5)

and the ML estimator minimizes Qn(�) over � 2 �: (Here we use the negative of the

6



standard log-likelihood function so that the estimator minimizes the sample criterion

function as in the general set-up of the paper.)

When � = 0; gi(�) and Qn(�) do not depend on �; and � is not identi�ed. �

The true distribution of the observations fWi : i � ng is denoted F
 for some

parameter 
 2 �: We let P
 and E
 denote probability and expectation under F
: The
parameter space � for the true parameter, referred to as the �true parameter space,�is

compact and is of the form:

� = f
 = (�; �) : � 2 ��; � 2 ��(�)g; (2.6)

where �� is a compact subset of Rd� and ��(�) � �� 8� 2 �� for some compact metric
space �� with a metric that induces weak convergence of the bivariate distributions

(Wi;Wi+m) for all i;m � 1:4 In unconditional likelihood scenarios, no parameter �

appears. In conditional likelihood scenarios, with conditioning variables fXi : i � 1g;
� indexes the distribution of fXi : i � 1g: In nonlinear regression models estimated
by least squares, � indexes the regression functions and possibly a �nite-dimensional

feature of the distribution of the errors, such as its variance, and � indexes the remaining

characteristics of the distribution of the errors, which may be in�nite dimensional.

By de�nition, the estimator b�n (approximately) minimizes Qn(�) over an �optimiza-

tion parameter space��:5

b�n 2 � and Qn(b�n) = inf
�2�

Qn(�) + o(n�1): (2.7)

We assume that the interior of � includes the true parameter space �� (see Assump-

tion B1 below). This ensures that the asymptotic distribution of b�n is not a¤ected by
boundary constraints for any sequence of true parameters in ��: The focus of this paper

is not on boundary e¤ects.

Without loss of generality (wlog), the optimization parameter space � can be written

4Thus, the metric satis�es: if 
 ! 
0; then (Wi;Wi+m) under 
 converges in distribution to
(Wi;Wi+m) under 
0: Note that � is a metric space with metric d�(
1; 
2) = jj�1 � �2jj+ d��(�1; �2);
where 
j = (�j ; �j) 2 � for j = 1; 2 and d�� is the metric on ��:

5The o(n�1) term in (2.7), and in (4.1) and (4.2) below, is a �xed sequence of constants that does
not depend on the true parameter 
 2 � and does not depend on � in (4.1). The o(n�1) term allows for
some numerical inaccuracy in practice and circumvents the issue of the existence of parameter values
that achieve the in�ma.
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as

� = f� = ( ; �) :  2 	(�); � 2 �g; where
� = f� : ( ; �) 2 � for some  g and

	(�) = f : ( ; �) 2 �g for � 2 �: (2.8)

We allow 	(�) to depend on � and, hence, � need not be a product space between  

and �: For example, this is needed in the STAR model and in the ARMA(1, 1) example

in AC1.

Example 1 (cont.). The true parameter space for � is

�� = B� �Z� � ��; where B� = [�b�1; b�2] � R; (2.9)

b�1 � 0; b�2 � 0; b�1 and b�2 are not both equal to 0; Z� (� Rd�) is compact, and �� (� Rd�)

is compact.

The ML estimator of � minimizes Qn(�) over � 2 �: The optimization parameter
space � is

� = B � Z � �; where B = [�b1; b2] � R; (2.10)

b1 > b�1; b2 > b�2; Z (� Rd�) is compact, � (� Rd�) is compact, Z� 2 int(Z); and
B� 2 int(B):

2.2. Con�dence Sets and Tests

We are interested in the e¤ect of lack of identi�cation or weak identi�cation on the

extremum estimator b�n; on CS�s for various functions r(�) of �; and on tests of null
hypotheses of the form H0 : r(�) = v:

CS�s are obtained by inverting tests. A nominal 1� � CS for r(�) is

CSn = fv : Tn(v) � cn;1��(v)g; (2.11)

where Tn (v) is a test statistic, such as the QLR statistic, and cn;1�� (v) is a critical value
for testing H0 : r(�) = v: Critical values considered in this paper may depend on the

null value v of r(�) as well as on the data. The coverage probability of a CS for r(�) is

P
(r(�) 2 CSn) = P
(Tn(r(�)) � cn;1��(r(�))); (2.12)
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where P
 (�) denotes probability when 
 is the true value.
We are interested in the �nite-sample size of a CS, which is the smallest �nite-

sample coverage probability of the CS over the parameter space. It is approximated by

the asymptotic size, which is de�ned as follows:

AsySz = lim inf
n!1

inf

2�

P
(r(�) 2 CSn) = lim inf
n!1

inf

2�

P
(Tn(r(�)) � cn;1��(r(�))): (2.13)

For a test, we are interested in the maximum null rejection probability, which is the

�nite-sample size of the test. A test�s asymptotic size is an approximation to the latter.

The asymptotic size of a test of H0 : r(�) = v is

AsySz = lim sup
n!1

sup

2�:r(�)=v

P
(Tn(v) > cn;1��(v)): (2.14)

2.3. Drifting Sequences of Distributions

The uniformity over 
 2 � for any given sample size n in (2.13) and (2.14) is crucial
for the asymptotic size to be a good approximation to the �nite-sample size. The value

of 
 at which the �nite-sample size of a CS or test is attained may vary with the

sample size. Thus, to determine the asymptotic size we need to derive the asymptotic

distribution of the test statistic Tn(vn) under sequences of true parameters 
n = (�n; �n)
and vn = r(�n) that may depend on n:

As shown in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggen-

berger (2009), the asymptotic size of CS�s and tests are determined by certain drifting

sequences of distributions. The following sequences f
ng are key:

�(
0) = ff
n 2 � : n � 1g : 
n ! 
0 2 �g ; (2.15)

�(
0; 0; b) =
n
f
ng 2 �(
0) : �0 = 0 and n1=2�n ! b 2 Rd�

[�1]

o
; and

�(
0;1; !0) =
�
f
ng 2 �(
0) : n1=2jj�njj ! 1 and �n=jj�njj ! !0 2 Rd�

	
;

where 
0 = (�0; �0; �0; �0) and 
n = (�n; �n; �n; �n):

The sequences in �(
0; 0; b) are in Categories I and II and are sequences for which

f�ng is close to 0: �n ! 0: When jjbjj < 1; f�ng is within O(n�1=2) of 0 and the
sequence is in Category I. The sequences in �(
0;1; !0) are in Categories II and III and

are more distant from � = 0: n1=2jj�njj ! 1:

Throughout the paper we use the terminology: �under f
ng 2 �(
0)�to mean �when

9



the true parameters are f
ng 2 �(
0) for any 
0 2 �;��under f
ng 2 �(
0; 0; b)�to
mean �when the true parameters are f
ng 2 �(
0; 0; b) for any 
0 2 � with �0 = 0 and
any b 2 R

d�
[�1];�and �under f
ng 2 �(
0;1; !0)�to mean �when the true parameters

are f
ng 2 �(
0;1; !0) for any 
0 2 � and any !0 2 Rd� with jj!0jj = 1:�

3. Assumptions

3.1. Smooth Sample Average Assumptions

This section provides primitive su¢ cient conditions for many of the high-level as-

sumptions given in AC1 for the class of sample average criterion functions that are

smooth in �: Note that the high-level assumptions in AC1 concern limit behavior under

drifting sequences of true distributions. In contrast, the assumptions given here concern

behavior under �xed true distributions and do not involve the sample size n:6

In Assumptions S1-S4 below, the true distribution of fWi : i � 1g is F
0 : The
conditions in Assumptions S1-S4 are assumed to hold for all 
0 = (�0; �0; �0; �0) 2 �:
Let C be a generic �nite positive constant that does not necessarily take the same

value when it appears in two di¤erent places. None of the constants that appear in

Assumptions S1-S4 depend on 
0 2 �:

3.1.1. Assumption S1

The �rst assumption is the following.

Assumption S1. Under any 
0 2 �; fWi : i � 1g is a strictly stationary and strong
mixing sequence with mixing coe¢ cients �m � Cm�A for some A > d�q=(q � d�) and

some q > d� � 2; or fWi : i � 1g is an i.i.d. sequence and the constant q (that appears
in Assumption S3 below) equals 2 + � for some � > 0:

In Assumption S1, the decay rate of the strong mixing coe¢ cients is used to ob-

tain the stochastic equicontinuity of certain empirical processes using results in Hansen

(1996). The WLLN and CLT for strong mixing arrays also hold under this decay rate,

see Andrews (1988) and de Jong (1997). In the i.i.d. case, the constant q is smaller than

in the strong mixing case, which yields weaker moment restrictions in Assumption S3

below.
6The su¢ cient conditions given here imply Assumptions A, B3, C1-C8, and D1-D3 of AC1.
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Example 1 (cont.). In this example, Assumption S1 holds with q = 2 + � for some

� > 0 because fWi : i � 1g are i.i.d. for each 
0 2 �: �

3.1.2. Assumption S2

The second assumption is as follows.

Assumption S2. (i) For some function � (w; �) 2 R; Qn(�) = n�1
Pn

i=1 � (Wi; �) ; where

�(w; �) is twice continuously di¤erentiable in � on an open set containing �� 8w 2 W :

(ii) � (w; �) does not depend on � when � = 0 8w 2 W :

(iii) 8
0 2 � with �0 = 0; E
0�(Wi;  ; �) is uniquely minimized by  0 8� 2 �:
(iv) 8
0 2 � with �0 6= 0; E
0�(Wi; �) is uniquely minimized by �0:

(v) 	(�) is compact 8� 2 �; and � and � are compact.
(vi) 8" > 0; 9� > 0 such that dH (	 (�1) ;	(�2)) < " 8�1; �2 2 � with k�1 � �2k < �;

where dH (�) is the Hausdor¤ metric.

For i.i.d. observations with density f(w; �); the ML estimator is obtained by tak-

ing � (Wi; �) = log f(Wi; �): For a stationary p-th order Markov process fW �
i : �p +

1 � i � ng; we let Wi = (W �
i ; :::;W

�
i�p): If the conditional density of W

�
i given

(W �
i�1; :::;W

�
i�p) is f(w

�jW �
i�1; :::;W

�
i�p; �); then the ML estimator is obtained by tak-

ing � (Wi; �) = log f(W
�
i jW �

i�1; :::;W
�
i�p; �):

Example 1 (cont.). Assumption S2(i) holds in this example with

�(Wi; �) = Yi logL(gi(�)) + (1� Yi) log(1� L(gi(�)) (3.16)

by (2.5) and the smoothness conditions on h(Xi; �) and L(u): Assumption S2(ii) holds

because gi(�) does not depend on h(Xi; �) when � = 0: For brevity, Assumptions S2(iii)

and S2(iv) are veri�ed in Supplemental Appendix D. The argument for Assumption

S2(iv) is a standard argument for ML estimators in well-identi�ed scenarios. Assumption

S2(v) holds because 	(�) = B � Z; which does not depend on �; � = B � Z � �; and
B; Z; and � are all compact. Assumption S2(vi) holds because 	(�) does not depend
on �: �

A class of examples of �(w; �) functions that satisfy Assumption S2(ii) are functions

of the form

�(w; �) = ��(w; a(x; �)h(x; �); �); where a(x; 0) = 0; 8w 2 W ; (3.17)
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x is a sub-vector of w; and a(x; �) and h(x; �) are known functions. In (3.17), �(w; �)

does not depend on � when � = 0 because a(x; �) = 0: Examples of a(x; �) include

(i) a(x; �) = �; (ii) a(x; �) = exp(�) � 1; and (iii) a(x; �) = x0�: Example (i) covers

the nonlinear regression example, where � is the coe¢ cient of the nonlinear regressor.

Example (ii) demonstrates that a(x; �) can be nonlinear in � provided a(x; �) = 0 at

� = 0: Example (iii) covers the weak IV example and the case in which � enters the

model through a single index. The form in (3.17) does not require a regression model

and it allows for complicated structural models by allowing di¤erent functional forms

for a(x; �); h(x; �); and �(w; �):

Returning now to the general �(w; �) case, Assumption S2(vi) holds immediately in

cases where 	(�) does not depend on �:When 	(�) depends on �; the boundary of 	(�)

is often a continuous linear function of �; as in the STAR model and the ARMA(1,1)

model considered in AC1. In such cases, it is simple to verify Assumption S2(vi).

3.1.3. Assumption S3

Let ��(w; �) and ���(w; �) denote the �rst-order and second-order partial derivatives

of �(w; �) wrt �; respectively. Let � (w; �) and �  (w; �) denote the �rst-order and

second-order partial derivatives of �(w; �) wrt  :

We de�ne a matrix B(�) that is used to normalize the second-derivative matrix

���(w; �) so that its sample average has a nonsingular probability limit. Let

B(�) =

"
Id 0d �d�

0d��d �(�)Id�

#
2 Rd��d� ; where �(�) =

(
� if � is a scalar

jj�jj if � is a vector
: (3.18)

We use a di¤erent de�nition of B(�) in the scalar and vector � cases because in the

scalar case the use of �; rather than jj�jj; produces noticeably simpler (but equivalent)
formulae, but in the vector case jj�jj is required.
For � 6= 0; let

B�1(�)��(w; �) = �y�(w; �) and

B�1(�)���(w; �)B
�1(�) = �y��(w; �) + ��1(�)"(w; �); (3.19)

where �y��(w; �) is symmetric and �
y
�(w; �); �

y
��(w; �); and "(w; �) satisfy Assumption S3

below. The re-scaling matrix B�1(�) in (3.19) is used to deal with the singularity issue

12



that arises when � = 0: In particular, the covariance matrix of ��(Wi; �) is singular when

� = 0 and close to singular when � is close to 0. In contrast, the re-scaled quantity

�y�(Wi; �) has a covariance matrix that is not close to being singular even when � is close

to 0. Similarly, E
0���(Wi; �) is singular when � = 0 and close to singular when � is close

to 0: Re-scaling of ���(Wi; �) yields a quantity �
y
��(Wi; �) whose expectation is not close

to singular even when � is close to 0 plus another term "(Wi; �) that is asymptotically

negligible.

Below we illustrate the form of �y�(w; �); �
y
��(w; �); and "(w; �) in Example 1 and for

�(w; �) functions as in (3.17), see Section 3.1.4.

Next, de�ne

V y(�1; �2; 
0) =
1X

m=�1
Cov
0(�

y
�(Wi; �1); �

y
�(Wi+m; �2)); (3.20)

which does not depend on i because the observations are stationary under Assumption

S1. Under Assumptions S1 and S3(iii) below, V y(�1; �2; 
0) exists by a standard strong

mixing inequality.

The form of Assumption S3 di¤ers depending on whether � is a scalar or vector. We

state Assumption S3 for the scalar � case �rst because it is simpler.

Assumption S3 (scalar �). (i) E
0"(Wi; �0) = 0 and j�0j�1jjE
0"(Wi;  0; �)jj �
Cjj� � �0jj 8
0 2 � with 0 < j�0j < � for some � > 0:

(ii) For all � > 0 and some functions M1(w) : W ! R+ and M2(w) : W ! R+;

jj�  (w; �1)��  (w; �2)jj+jj�
y
��(w; �1)��

y
��(w; �2)jj �M1(w)� and jj�y�(w; �1)��

y
�(w; �2)jj

+ jj"(w; �1)� "(w; �2)jj �M2(w)�; 8�1; �2 2 � with jj�1 � �2jj � �; 8w 2 W :

(iii) E
0 sup�2�fj�(Wi; �)j1+�+jj�  (Wi; �)jj1+�+jj�y��(Wi; �)jj1+�+M1(Wi)+jj�y�(Wi; �)jjq

+ jj"(Wi; �)jjq+M2(Wi)
qg � C for some � > 0 8
0 2 �; where q is as in Assumption S1.

(iv) �min(E
0�  (Wi;  0; �)) > 0 8� 2 � when �0 = 0 and E
0�
y
��(Wi; �0) is positive

de�nite 8
0 2 �:
(v) V y(�0; �0; 
0) is positive de�nite 8
0 2 �:

In Assumption S3(iii), the last three terms have bounded qth moments in order to

establish the stochastic equicontinuity of empirical processes based on �y�(Wi; �) and

"(Wi; �) using Lemma 9.4 in Appendix A.

In Assumptions S1-S3, Assumptions S2(ii), S2(iii), S3(i), S3(iii), S3(iv) and S3(v) are

related to the weak identi�cation problem. Assumption S2(ii) implies that the sample

13



criterion function is �at in � when � = 0; as in Assumption A of AC1. Assumption S2(iii)

di¤ers from a standard condition in the sense that the population criterion function

is not uniquely minimized by the true value when �0 = 0: The Lipschitz condition

in Assumption S3(i) typically holds because the partial derivative of E
0"(Wi;  0; �)

wrt � is approximately proportional to jj�0jj when jj�0jj is close to 0: Because parts of
B�1(�) diverge as � converges to 0, the moment conditions for �y�(Wi; �) and �

y
��(Wi; �) in

Assumption S3(iii) are stronger than standard moment conditions on the �rst-order and

second-order derivatives. These conditions hold in typical examples, see below, because

the partial derivative of �(w; �) wrt � is small when � is close to 0 under Assumption

S2(ii). Hence, the rhs moments are uniformly bounded even after the scaling by B�1(�):

In Assumptions S3(iv) and S3(v), E
0�
y
��(Wi; �0) and V y(�0; �0; 
0) typically are positive

de�nite due to the re-scaling in (3.19).

Under Assumptions S1-S3, the criterion functionQn(�) has probability limitQ(�; 
) =

E
�(Wi; �) under any sequence of parameters 
n ! 
:

Example 1 (cont.). In this example, �y�(Wi; �); �
y
��(Wi; �); and "(w; �) are de�ned

as follows. For notational simplicity, let Li(�); L0i(�); and L
00(�) abbreviate L(gi(�));

L0(gi(�)); and L00(gi(�)); respectively. Let

d ;i(�) = (h(Xi; �); Z
0
i)
0; di(�) = (h (Xi; �) ; Z

0
i; h�(Xi; �)

0)0; and

Di(�) =

264 0 01�d� h�(Xi; �)
0

0d��1 0d��d� 0d��d�

h�(Xi; �) 0d��d� h��(Xi; �)�

375 : (3.21)

The �rst-and second-order partial derivatives of �(Wi; �) wrt to  and � are

� (Wi; �) = w1;i(�)(Yi � Li(�))d ;i(�);

��(Wi; �) = w1;i(�)(Yi � Li(�))B(�)di(�);

�  (Wi; �) = [w
2
1;i(�)(Yi � Li(�))

2 + w2;i(�)(Yi � Li(�))]d ;i(�)d ;i(�)
0;

���(Wi; �) = [w
2
1;i(�)(Yi � Li(�))

2 + w2;i(�)(Yi � Li(�))]B(�)di(�)di(�)
0B(�)

+w1;i(�)(Yi � Li(�))Di(�); where

w1;i(�) =
�L0i(�)

Li(�)(1� Li(�))
and w2;i(�) =

�L00i (�)
Li(�)(1� Li(�))

: (3.22)

See Section 13.10 for the calculation of these derivatives.
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The re-scaled partial derivatives in (3.19) take the form

�y�(Wi; �) = w1;i(�)(Yi � Li(�))di(�);

�y��(Wi; �) = [w
2
1;i(�)(Yi � Li(�))

2 + w2;i(�)(Yi � Li(�))]di(�)di(�)
0; and

"(w; �) = w1;i(�)(Yi � Li(�))

264 0 01�d� h�(Xi; �)
0

0d��1 0d��d� 0d��d�

h�(Xi; �) 0d��d� h��(Xi; �)

375 : (3.23)

To verify Assumption S3(i), note that E
0(YijXi; Zi) = P
0(Yi = 1jXi; Zi) = Li(�0)

by (2.4). Hence, E
0(Yi � Li(�0)jXi; Zi) = 0 implies E
0"(Wi; �0) = 0 by the law of

iterated expectations (LIE).

Let L
0
i = sup�2� jL0i(�)j and L

00
i = sup�2� jL00i (�)j:

A mean-value expansion of Li( 0; �) wrt � around �0 yields

Li( 0; �)� Li(�0) = L0i( 0; e�)@gi( 0; e�)@�0
(� � �0)

= L0i( 0; e�)h�(Xi;  0; e�)0�0(� � �0); (3.24)

where e� is between � and �0: To verify the second part of Assumption S3(i), we have
jjE
0(w1;i( 0; �)[Yi � Li( 0; �)]h�(Xi; �))jj

= jjE
0(w1;i( 0; �)[Li(�0)� Li( 0; �)]h�(Xi; �))jj
� j�0j � jj� � �0jjE
0(w1;iL

0
ih
2

�;i) � Cj�0j � jj� � �0jj; (3.25)

for some C <1; where the equality holds by LIE, the �rst inequality holds using (3.24),

and the second inequality holds by the Cauchy-Schwarz inequality and the moment

conditions in (3.32).

Similarly, we have

jjE
0(w1;i( 0; �)[Yi � Li( 0; �)]h��(Xi; �))jj � Cj�0j � jj� � �0jj (3.26)

for some C < 1: By (3.23), (3.25), and (3.26), the second part of Assumption S3(i)

holds.

The rest of Assumption S3 is veri�ed in Supplemental Appendix D for this example.

�
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When � is a vector, i.e., d� > 1; we reparameterize � as (jj�jj; !); where ! =

�=jj�jj if � 6= 0 and by de�nition ! = 1d�=jj1d� jj with 1d� = (1; :::; 1) 2 Rd� if � = 0:

Correspondingly, � is reparameterized as �+ = (jj�jj; !; �; �): Let �+ = f�+ : �+ =
(jj�jj; �=jj�jj; �; �); � 2 �g:
This new parameterization is needed when � is a vector because �y�(w; �); �

y
��(w; �);

and "(w; �) typically involve �=jj�jj due to the re-scaling in (3.19) and �=jj�jj is not
continuous in � for � 2 �: In consequence, the Lipschitz conditions in Assumptions S3(ii)
and S3(iii) (scalar �) can not be veri�ed when � is a vector. The new parameterization

treats jj�jj and ! = �=jj�jj as separate variables. In Assumption S3 (vector �) below,
some Lipschitz conditions are speci�ed in terms of �+ = (jj�jj; !; �; �):
In Assumption S3 (vector �), both the original parameterization with � and the

alternative parameterization with �+ are employed for convenience. Note that only con-

ditions related to �y�(w; �); �
y
��(w; �); and "(w; �) require the alternative parameterization

with �+:

Assumption S3 (vector �). (i) E
0"(Wi; �0) = 0 and jj�0jj�1jjE
0"(Wi; �
+)jj �

C(jj� � �0jj + jj! � !0jj) 8�+ = (jj�0jj; !; �0; �) and 8
0 2 � with 0 < jj�0jj < �

for some � > 0:

(ii) For all � > 0 and some functions M1(w) : W ! R+ and M2(w) : W ! R+;

jj�  (w; �1) � �  (w; �2)jj + jj�
y
��(w; �

+
1 ) � �y��(w; �

+
2 )jj � M1(w)� and jj� (w; �1) �

� (w; �2)jj + jj�
y
�(w; �

+
1 ) � �y�(w; �

+
2 )jj + jj"(w; �+1 ) � "(w; �+2 )jj � M2(w)�; 8�1; �2 2 �

with jj�1 � �2jj � �; 8�+1 ; �+2 2 �+ with jj�+1 � �+2 jj � �; 8w 2 W :

(iii) Assumptions S3(iii)-(iv) (scalar �) hold with the de�nitions of M1(w) and M2(w)

replaced by those given above.

Assumption S3(i) (vector �) typically holds because the partial derivatives ofE
0"(Wi;

�+) wrt � and ! are approximately proportional to jj�0jj:

3.1.4. Forms of �y�(w;�); �
y
��(w;�); and "(w;�)

Now, we illustrate the forms of �y�(w; �); �
y
��(w; �); and "(w; �) when �(w; �) be-

longs to the class speci�ed in (3.17) and show that Assumption S3(i) holds in this

case. For simplicity, we assume a(x; �) and h(x; �) are both scalars and no parame-

ter � appears. Let �0(�) and �00(�) abbreviate the �rst- and second-order derivatives of
��(w; a(x; �)h(x; �)) wrt a(x; �)h(x; �): Let a�(x; �); a��(x; �); h�(x; �); h��(x; �) de-

note the �rst- and second-order partial derivatives of a(x; �) and h(x; �) wrt � and �:
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The �rst and second order partial derivatives of �(w; �) wrt to � and � are

��(w; �) = �0(�)a�(x; �)h(x; �); ��(w; �) = �0(�)a(x; �)h�(x; �);
���(w; �) = �00(�)a�(x; �)a�(x; �)0h2(x; �) + �0(�)a��(x; �)h(x; �);
���(w; �) = �00(�)a(x; �)h(x; �)a�(x; �)h�(x; �)0 + �0(�)a�(x; �)h�(x; �)0; and
���(w; �) = �00(�)a2(x; �)h�(x; �)h�(x; �)0 + �0(�)a(x; �)h��(x; �): (3.27)

In this case, we have

�y�(w; �) = �0(�)ay(x; �); �y��(w; �) = �00(�)ay(x; �)ay(x; �)0; where

ay(x; �) = (a�(x; �)
0h(x; �);

a(x; �)

�(�)
h�(x; �)

0)0 and

"(w; �) = �0(�)
"
a��(x; �)h(x; �) a�(x; �)h�(x; �)

0

h�(x; �)a�(x; �)
0 a(x;�)

�(�)
h��(x; �)

#
: (3.28)

Note that ��1a(x; �) is continuous at � = 0 in the scalar � case. In particular,

lim�!0 �
�1a(x; �) = a�(x; 0) by a mean-value expansion because a(x; 0) = 0 and a(x; �)

is continuously di¤erentiable in �: In the vector � case, lim�!0;�=jj�jj!!0 jj�jj�1a(x; �) =
a�(x; 0)!0:

When "(w; �) takes the form in (3.28), Assumption S3� below implies Assumption

S3(i). In Assumption S3�(i), Xi is a sub-vector of Wi that takes the place of x in w:

Assumption S3�. (i) Xi is a vector of weakly exogenous variables such that

E
0(�
0(Wi; a(Xi; �0)h(Xi; �0))jXi) = 0 a.s. 8
0 2 �:

(ii) E
0 supjj�jj<�;�2� j�00(Wi; a(Xi; �)h(Xi; �))j � (jjh(Xi; �)jj+ jjh�(Xi; �)jj) � (jh(Xi; �)j+
jjh�(Xi; �)jj + jjh��(Xi; �)jj) � supjj�jj<� jja�(Xi; �)jj � (jja�(Xi; �)jj + jja��(Xi; �)jj) � C

for some C <1 and � > 0 8
0 2 �:

Several of the derivatives in Assumption S3�(ii) are constants in many examples,

which makes the moment condition in Assumption S3�(ii) less restrictive than it may

appear. For example, when a(Xi; �) = �; a�(Xi; �) = 1 and a��(Xi; �) = 0:

Lemma 3.1. Suppose �(w; �) belongs to the class in (3.17), where a(x; �) 2 R and

h(x; �) 2 R are twice di¤erentiable wrt � and �; respectively, and no parameter �

appears. Then, "(w; �) takes the form in (3.28) and Assumption S3(i) is implied by

Assumption S3� in both the scalar and vector � cases.
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Comment. When �(w; �) belongs to the class in (3.17) and a parameter � appears,
the form of "(w; �) is the same as in (3.28) but with zeros in the rows and columns

that correspond to �: In this case, Assumption S3(i) is still implied by Assumption S3�

provided �0(�) and �00(�) in Assumption S3� are adjusted to include �; evaluated at �0:
See Appendix B for details.

3.1.5. Assumption S4

Next, we state an assumption that controls how the mean E
0� ;i(�) changes as

the true �0 changes, where 
0 = (�0; �0; �0; �0): De�ne the d � d�-matrix of partial

derivatives of the average population moment function wrt the true � value, �0; to be

K(�; 
0) =
@

@�00
E
0� (Wi; �): (3.29)

The domain of the function K(�; 
0) is �� � �0; where �� = f� 2 � : jj�jj < �g and
�0 = f
a = (a�; �; �; �) 2 � : 
 = (�; �; �; �) 2 � with jj�jj < � and a 2 [0; 1]g for some
� > 0:7

Assumption S4. (i) K(�; 
0) exists 8(�; 
0) 2 �� � �0:
(ii) K(�; 
�) is continuous in (�; 
�) at (�; 
�) = (( 0; �); 
0) uniformly over � 2 �

8
0 2 � with �0 = 0; where  0 is a sub-vector of 
0:

Assumption S4 is not restrictive in most applications.8

For simplicity, K ( 0; �; 
0) is abbreviated as K (�; 
0) :

Example 1 (cont.). It is shown in Supplemental Appendix D that Assumption S4

holds with

K(�; 
0) = K( 0; �; 
0) = E
0
L02i (�0)

Li(�0)(1� Li(�0))
h(Xi; �0)d ;i(�) (3.30)

for 
0 = (�0; �0): �
7The constant � > 0 is as in Assumption B2(iii) stated below. The set �0 is not empty by Assumption

B2(ii).
8Assumptions S1 and S4 imply Assumption C5 of AC1. A set of primitive su¢ cient conditions for

Assumption C5 of AC1 is given in Appendix A of AC1-SM. These conditions also are su¢ cient for
Assumption S4.
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3.2. Parameter Space Assumptions

Next, we specify conditions on the parameter spaces � and �:

De�ne ��� = f� 2 �� : jj�jj < �g; where �� is the true parameter space for �; see
(2.6). The optimization parameter space � satis�es:

Assumption B1. (i) int(�) � ��:
(ii) For some � > 0; � � f� 2 Rd� : jj�jj < �g�Z0�� � ��� for some non-empty open
set Z0�Rd� and � as in (2.8).

(iii) � is compact.

Because the optimization parameter space is user selected, Assumptions B1(ii)-(iii) can

be made to hold by the choice of �:

The true parameter space � satis�es:

Assumption B2. (i) � is compact and (2.6) holds.
(ii) 8� > 0; 9
 = (�; �; �; �) 2 � with 0 < jj�jj < �:

(iii) 8
 = (�; �; �; �) 2 � with 0 < jj�jj < � for some � > 0; 
a = (a�; �; �; �) 2 �
8a 2 [0; 1]:

Assumption B2(ii) guarantees that � is not empty and that there are elements 
 of �

whose � values are non-zero but are arbitrarily close to 0; which is the region of the true

parameter space where near lack of identi�cation occurs. Assumption B2(iii) ensures

that � is compatible with the existence of partial derivatives of certain expectations wrt

the true parameter � around � = 0; which arise in (3.29) and Assumption S4.

Example 1 (cont.). Let 
 = (�; �); where � is the distribution of (Xi; Zi); and � 2 ��;
where �� is a compact metric space with some metric that induces weak convergence.

The parameter space for the true value of 
 is

� = f
 = (�; �) : � 2 ��; � 2 ��(�)g; (3.31)

where ��(�) � �� 8� 2 ��:
The parameter space ��(�); which must be speci�ed precisely to obtain the uni-

form asymptotic results, is de�ned as follows. For notational simplicity, let hi =

sup�2� jh(Xi; �)j; h�;i = sup�2� jjh�(Xi; �)jj; h��;i = sup�2� jjh��(Xi; �)jj; w1;i = sup�2�
jw1;i(�)j; and w2;i = sup�2� jw2;i(�)j: Let q = 2 + � for some � > 0:
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For any �0 2 ��; the true parameter space for � is

��(�0) = f�0 2 �� : E
0(h
4q

i + h
4q

�;i + h
4q

��;i + jjZijj4q + w4q1;i + w2+�2;i ) � C

jjw1;i(�1)� w1;i(�2)jj �M1(Wi)jj�1 � �2jj; jjw2;i(�1)� w2;i(�2)jj
�M2(Wi)jj�1 � �2jj; jjh��(Xi; �1)� h��(Xi; �2)jj �Mh(Wi)jj�1 � �2jj;
8�1; �2 2 � for some functions M1(Wi); M2(Wi); Mh(Wi);

E
0(M1(Wi)
4q=3 +M2(Wi)

4=3 +Mh(Wi)
4q=3) � C;

E
0 sup
�2�

�
j logLi(�)j1+� + j log(1� Li(�))j1+�

�
� C;

P
0(a
0(h(Xi; �1); h(Xi; �2); Zi) = 0) < 1; 8�1; �2 2 � with �1 6= �2; 8a 2 Rd�+2

with a 6= 0; E
0di(�)di(�)
0) is positive de�nite 8� 2 �g (3.32)

for some C <1; where di(�) = (h(Xi; �); Z
0
i; h�(Xi; �)

0)0:9 �

3.3. Key Quantities

Now, we de�ne some of the key quantities that arise in the asymptotic distribution

of the estimator b�n and the test statistics considered. Let S = [Id : 0d �d� ] denote the
d � d� selector matrix that selects  out of �: De�ne


(�1; �2; 
0) = S V
y(( 0; �1); ( 0; �2); 
0)S

0
 ;

H(�; 
0) = E
0�  (Wi;  0; �);

J(
0) = E
0�
y
��(Wi; �0); and

V (
0) = V y(�0; �0; 
0): (3.33)

Example 1 (cont.). The key quantities that determine the asymptotic behavior of the
ML estimator in the binary choice model are as follows. The probability limit of the

criterion function Qn(�) when the true value is 
0 2 � is

Q(�; 
0) = E
0�(Wi; �) = E
0E
0(�(Wi; �)jXi; Zi)

= �E
0 [Li(�0) logLi(�) + (1� Li(�0)) log(1� Li(�))]: (3.34)

9In (3.32), the expectation E
0(�) only depends on �0: Because �0 shows up in some other expecta-
tions, we use E
0(�) throughout the example for notational consistency.
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By calculations given in Section 13.1 of Supplemental Appendix D, we have


(�1; �2; 
0) = E
0
L02i (�0)

Li(�0)(1� Li(�0))
d ;i(�1)d ;i(�2)

0;

H(�; 
0) = E
0
L02i (�0)

Li(�0)(1� Li(�0))
d ;i(�)d ;i(�)

0; and

J(
0) = V (
0) = E
0
L02i (�0)

Li(�0)(1� Li(�0))
di(�0)di(�0)

0: (3.35)

�

3.4. Quadratic Approximations

Here we specify certain quadratic approximations to Qn(�) and related results that

hold under Assumptions S1-S4, B1, and B2. These results help to explain the form of

the asymptotic distributions that arise in the results stated below.

(i) Under f
ng 2 �(
0; 0; b) (de�ned in (2.15) above), the sample criterion function
Qn(�) (= Qn( ; �)) has a quadratic expansion in  around the point  0;n = (0; �n) for

given � for the form:

Qn( ; �) = Qn( 0;n; �) +D Qn( 0;n; �)
0( �  0;n) +

1

2
( �  0;n)

0D  Qn( 0;n; �)( �  0;n) +Rn( ; �); (3.36)

where D Qn( 0;n; �) and D  Qn( 0;n; �) denote the vector and matrix of �rst and

second partial derivatives of Qn( ; �) with respect to  ; respectively, evaluated at  =

 0;n; and Rn( ; �) is a remainder term that is small uniformly in � 2 � for  close to
 0;n:

10

(ii) Under f
ng 2 �(
0;1; !0); the sample criterion function Qn(�) has a quadratic

expansion in � around the true value �n of the form:

Qn(�) = Qn(�n) +DQn(�n)
0(� � �n) +

1

2
(� � �n)D

2Qn(�n)(� � �n) +R�n(�); (3.37)

where DQn(�n) and D2Qn(�n) denote the vector and matrix of �rst and second partial

derivatives of Qn(�) with respect to �; respectively, evaluated at � = �n; and R�n(�) is a

10The precise conditions that the remainder Rn( ; �) satis�es are speci�ed in Assumption C1 of AC1.
The quadratic approximation result (i) and results (ii)-(iv) that follow are established in the proof of
Theorem 4.1 given in Appendix A.
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remainder term that is small for � close to �n:11

(iii) Under f
ng 2 �(
0; 0; b); the recentered and rescaled �rst derivative of Qn (�)

wrt  satis�es an empirical process CLT:

Gn(�) ) G(�; 
0); where

Gn(�) = n�1=2
nX
i=1

�
� ;i( 0;n; �)� E
n� ;i( 0;n; �)

�
(3.38)

and G(�; 
0) is a mean zero Gaussian process indexed by � 2 � with bounded continuous
sample paths and covariance kernel 
(�1; �2; 
0) for �1; �2 2 �:
(iv) Under f
ng 2 �(
0;1; !0); the rescaled �rst and second derivatives of Qn (�)

satisfy

n1=2B�1(�n)DQn(�n)!d G
�(
0) � N(0d� ; V (
0)) (3.39)

and

Jn = B�1(�n)D
2Qn(�n)B

�1(�n)!p J(
0) 2 Rd��d� 8
0 2 �: (3.40)

3.5. Assumptions C6 and C7

In this section, we state assumptions that concern the minimum of the limit of the

normalized criterion function after  has been concentrated out.12

De�ne a �weighted non-central chi-square�process f�(�; 
0; b) : � 2 �g and a non-
stochastic function f�(�; 
0; !0) : � 2 �g by

�(�; 
0; b) = �
1

2
(G(�; 
0) +K(�; 
0) b)

0H�1(�; 
0) (G(�; 
0) +K(�; 
0)b) and

�(�; 
0; !0) = �
1

2
!00K(�; 
0)

0H�1(�; 
0)K(�; 
0)!0: (3.41)

The process �(�; 
0; b) is the limit under f
ng 2 �(
0; 0; b) for jjbjj < 1; de�ned in

(2.15), and the function �(�; 
0; !0) is the limit under f
ng 2 �(
0; 0; b) for jjbjj = 1:

Under Assumptions S1-S4, f�(�; 
0; b) : � 2 �g has bounded continuous sample paths
a.s.

To obtain the asymptotic distribution of b�n when �n = O(n�1=2) via the continuous

mapping theorem, we use the following assumption.

11The precise conditions that the remainder R�n(�) satis�es are speci�ed in Assumption D2 of AC1.
12Assumptions C6 and C7 are the same as in AC1, which is why the numbering starts at C6, rather

than C1.
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Assumption C6. Each sample path of the stochastic process f�(�; 
0; b) : � 2 �g in
some set A(
0; b) with P
0(A(
0; b)) = 1 is minimized over � at a unique point (which

may depend on the sample path), denoted ��(
0; b); 8
0 2 � with �0 = 0; 8b with
jjbjj <1:

In Assumption C6, ��(
0; b) is random.

Next, we give a primitive su¢ cient condition for Assumption C6 for the case where

� is a scalar parameter. Let � (w; �) = (��(w; �)
0; ��(w; �)

0)0:When � = 0; ��(w; �) does

not depend on � by Assumption S2(ii) and is denoted by ��(w; ): When d� = 1 and

�0 = 0; de�ne

�� (Wi;  0; �1; �2) = (��(Wi;  0; �1); ��(Wi;  0; �2); ��(Wi;  0)
0)0 and


G(�1; �2; 
0) =
1X

m=�1
Cov
0(�

�
 (Wi;  0; �1; �2); �

�
 (Wi+m;  0; �1; �2)): (3.42)

Assumption C6y. (i) d� = 1 (i.e., � is a scalar).
(ii) 
G(�1; �2; 
0) is positive de�nite 8�1; �2 2 � with �1 6= �2; 8
0 2 � with �0 = 0:

Lemma 3.2. Assumptions S1-S3 and C6y imply Assumption C6:

Example 1 (cont.). For this example, Assumption C6y is veri�ed in Supplemental
Appendix D with the covariance matrix in Assumption C6y(ii) equal to


G(�1; �2; 
0) = E
0
L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
hZ;i(�1; �2)hZ;i(�1; �2)

0; where

hZ;i(�1; �2) = (h(Xi; �1); h(Xi; �2); Z
0
i)
0: (3.43)

�

The following assumption is used in the proof of consistency of b�n for the case where
the true parameter �n satis�es �n ! 0 and n1=2jj�njj ! 1:

Assumption C7. The non-stochastic function �(�; 
0; !0) is uniquely minimized over
� 2 � at �0 8
0 2 � with �0 = 0:

In Assumption C7, �0 is non-random. Assumption C7 can be veri�ed using the

Cauchy-Schwarz inequality or a matrix version of it, see Tripathi (1999), when K (�; 
0)

and H (�; 
0) take proper forms, as in our examples.
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Example 1 (cont.). Assumption C7 is veri�ed in this example as follows. By (2.4)
and (3.35), when �0 = 0;

H(�; 
0) = E
0
L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
d ;i(�)d ;i(�)

0: (3.44)

By (2.4) and (3.30), when �0 = 0;

K(�; 
0) = E
0
L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
h(Xi; �0)d ;i(�): (3.45)

Hence, when �0 = 0;

K(�; 
0)
0H�1(�; 
0)K(�; 
0) � E
0

L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
h2(Xi; �0) (3.46)

by the matrix Cauchy-Schwarz inequality in Tripathi (1999). The ��� holds as an
equality if and only if h(Xi; �0)a+ d ;i(�)

0b = 0 with probability 1 for some a 2 R and
b 2 Rd�+1 with (a; b0) 6= 0: The ���holds as an equality uniquely at � = �0 because for

any � 6= �0; P
0(c
0(h(Xi; �0); h(Xi; �); Z

0
i)
0 = 0) < 1 for any c 6= 0 by (3.32). �

4. Estimation Results

This section provides the asymptotic results of the paper for the extremum estimatorb�n: The results are given under the drifting sequences of distributions de�ned in Section
2.3. De�ne a concentrated extremum estimator b n(�) (2 	(�)) of  for given � 2 � by

Qn(b n(�); �) = inf
 2	(�)

Qn( ; �) + o(n�1): (4.1)

Let Qc
n(�) denote the concentrated sample criterion function Qn(b n(�); �): De�ne

an extremum estimator b�n (2 �) by
Qc
n(b�n) = inf

�2�
Qc
n(�) + o(n�1): (4.2)

We assume that the extremum estimator b�n in (2.7) can be written as b�n =

(b n(b�n); b�n): Note that if (4.1) and (4.2) hold and b�n = (b n(b�n); b�n); then (2.7) au-
tomatically holds.
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For 
n = (�n; �n; �n; �n) 2 �; let Q0;n = Qn( 0;n; �); where  0;n = (0; �n): Note that

Q0;n does not depend on � by Assumption S2(ii).

De�ne the Gaussian process f�(�; 
0; b) : � 2 �g by

�(�; 
0; b) = �H�1(�; 
0)(G(�; 
0) +K(�; 
0)b)� (b; 0d�); (4.3)

where (b; 0d�) 2 Rd : Note that, by (3.41) and (4.3), �(�; 
0; b) = �(1=2)(�(�; 
0; b) +
(b; 0d�))

0H(�; 
0)(�(�; 
0; b) + (b; 0d�)): Let

��(
0; b) = argmin
�2�

�(�; 
0; b): (4.4)

Theorem 4.1. Suppose Assumptions S1-S4, B1, B2, and C6 hold. Under f
ng 2
�(
0; 0; b) with jjbjj <1;

(a)

 
n1=2(b n �  n)b�n

!
!d

 
�(��(
0; b); 
0; b)

��(
0; b)

!
; and

(b) n
�
Qn(b�n)�Q0;n

�
!d inf�2� �(�; 
0; b):

Comments. 1. The results of Theorem 4.1 and Theorem 4.2 below are like those of

Theorems 5.1 and 5.2 of AC1. However, Theorems 4.1 and Theorem 4.2 are obtained

under assumptions that are much more primitive and easier to verify, though less general,

than the results in AC1. In particular, Assumptions S1-S4 impose conditions for �xed

parameters, not conditions on the behavior of random variables under sequences of

parameters. In addition, explicit formulae for the components of the asymptotic results

are provided here based on the sample average form of Qn(�) that is considered.

2. De�ne the Gaussian process f��(�; 
0; b) : � 2 �g by

��(�; 
0; b) = S��(�; 
0; b) + b; (4.5)

where S� = [Id� : 0d��d� ] is the d� � d selector matrix that selects � out of  : The

asymptotic distribution of n1=2b�n (without centering at �n) under �(
0; 0; b) with jjbjj <
1 is given by ��(��(
0; b); 
0; b):

3. Assumption C6 is not needed for Theorem 4.1(b).

Let

G�(
0) � N(0d� ; V (
0)): (4.6)
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Theorem 4.2. Suppose Assumptions S1-S3, B1, B2, and C7 hold. Under f
ng 2
�(
0;1; !0);

(a) n1=2B(�n)(b�n � �n)!d �J�1(
0)G�(
0) � N(0d� ; J
�1(
0)V (
0)J

�1(
0)); and

(b) n(Qn(b�n)�Qn(�n))!d �1
2
G�(
0)

0J�1(
0)G
�(
0):

5. QLR Con�dence Sets

In this section, we consider CS�s based on the quasi-likelihood ratio (QLR) statistic.

We establish (i) the asymptotic distribution of the QLR statistic under the drifting

sequences of distributions de�ned in Section 2.3, (ii) the asymptotic size of standard

QLR CS�s, which often are size-distorted, and (iii) the correct asymptotic size of robust

QLR CS�s, which are designed to be robust to the strength of identi�cation. The proofs

of the results given here rely on results given in Appendix A and AC1.

5.1. De�nition of the QLR Test Statistic

We consider CS�s for a function r(�) (2 Rdr) of � obtained by inverting QLR tests.

The function r(�) is assumed to be smooth and to be of the form

r(�) =

"
r1( )

r2(�)

#
; (5.7)

where r1( ) 2 Rdr1 ; dr1 � 0 is the number of restrictions on  ; r2(�) 2 Rdr2 ; dr2 � 0 is
the number of restrictions on �; and dr = dr1 + dr2 :

For v 2 r(�); we de�ne a restricted estimator e�n(v) of � subject to the restriction
that r(�) = v: By de�nition,

e�n(v) 2 �; r(e�n(v)) = v; and Qn(e�n(v)) = inf
�2�:r(�)=v

Qn(�) + o(n�1): (5.8)

The QLR test statistic for testing H0 : r(�) = v is

QLRn(v) = 2n(Qn(e�n(v))�Qn(b�n))=bsn; (5.9)

where bsn is a random real-valued scaling factor that is employed in some cases to yield

a QLR statistic that has an asymptotic �2dr null distribution under strong identi�cation.
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See Assumptions RQ2 and RQ3 below.

Let cn;1��(v) denote a nominal level 1 � � critical value to be used with the QLR

test statistic. It may be stochastic or non-stochastic. The usual choice, based on the

asymptotic distribution of the QLR statistic under standard regularity conditions, is the

1� � quantile of the �2dr distribution, which we denote by �
2
dr;1��:

Given a critical value cn;1��(v); the nominal level 1� � QLR CS for r(�) is

CSQLRr;n = fv 2 r(�) : QLRn(v) � cn;1��(v)g: (5.10)

5.2. QLR Assumptions

If r(�) includes restrictions on �; i.e., dr2 > 0; then not all values � 2 � are consistent
with the restriction r2(�) = v2: For v2 2 r2(�); the set of � values that are consistent

with r2(�) = v2 is denoted by

�r(v2) = f� 2 � : r2(�) = v2 for some � = ( ; �) 2 �g: (5.11)

If dr2 = 0; then by de�nition �r(v2) = � 8v2 2 r2(�):
We assume r(�) satis�es:

Assumption RQ1. (i) r(�) is continuously di¤erentiable on �:
(ii) r�(�) (= (@=@�

0)r(�)) is full row rank dr 8� 2 �:
(iii) r(�) satis�es (5.7).

(iv) dH(�r(v2);�r(v0;2))! 0 as v2 ! v0;2 8v0;2 2 r2(��):
(v) Q( ; �; 
0) is continuous in  at  0 uniformly over � 2 � (i.e., sup�2� jQ( ; �; 
0)�
Q( 0; �; 
0)j ! 0 as  !  0) 8
0 2 � with �0 = 0:
(vi) Q(�; 
0) is continuous in � at �0 8
0 2 � with �0 6= 0:

In Assumption RQ1(iv), dH denotes the Hausdor¤ distance. In Assumptions RQ1(iv)

and (v), Q(�; 
0) = E
0�(Wi; �):

Assumptions RQ1(i) and RQ1(ii) are standard and are not restrictive. Assumption

RQ1(iii) rules out the case where any single restriction depends on both  and �: This

is restrictive. But, in some cases, a reparametrization can be used to obtain results for

such restrictions, see AC1 for details. Assumption RQ1(iv) is not very restrictive and is

easy to verify in most cases. Assumptions RQ1(v) and RQ1(vi) are not restrictive.
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Even under strong identi�cation, it is known that the QLR statistic has an asymp-

totic �2dr null distribution only under additional assumptions to those used for Wald and

Lagrange multiplier (LM) statistics. The following two assumptions are needed.

Assumption RQ2. (i) V (
0) = s(
0)J(
0) for some non-random scalar constant

s(
0) 8
0 2 �; or (ii) V (
0) and J(
0) are block diagonal (possibly after reordering

their rows and columns), the restrictions r(�) only involve parameters that correspond

to one block of V (
0) and J(
0); call them V11(
0) and J11(
0); and for this block

V11(
0) = s(
0)J11(
0) for some non-random scalar constant s(
0) 8
0 2 �:

Assumption RQ3. The scalar statistic bsn satis�es bsn !p s(
0) under f
ng 2 �(
0; 0; b)
and under f
ng 2 �(
0;1; !0):

For example, Assumptions RQ2(i) and RQ3 hold with s(
0) = bsn = 1 for a correctly
speci�ed log-likelihood criterion function. For a homoskedastic nonlinear regression

model, Assumptions RQ2(i) and RQ3 hold with s(
0) equal to the error variance �
2

and bsn equal to a consistent estimator of �2; such as the sample variance based on the
residuals.

5.3. QLR Asymptotic Distributions

To obtain the asymptotic size of QLR CS�s, we need to determine the limits of

the coverage probabilities of the QLR CS�s under all sequences f
ng 2 �(
0; 0; b) and
f
ng 2 �(
0;1; !0) when the null hypotheses are true. That is, we need to know

these limits when v = vn = r(�n) for 
n = (�n; �n) 8n � 1: To obtain these coverage

probabilities, we �rst determine the asymptotic null distributions of the QLR statistic

under these sequences.

In the results below, we use the following notational simpli�cations:

QLRn = QLRn(vn) and e�n = e�n(vn); where vn = r(�n) and 
n = (�n; �n):
13 (5.12)

For notational simplicity, let �r;0 = �r(v0;2); where v0;2 = r2(�0) and 
0 = (�0; �0) 2
�: That is, �r;0 is the set of values � that are compatible with the restrictions on � when


0 is the true parameter value.

13As a consequence of these de�nitions, the asymptotic results given below for the statisticsQLRn ande�n under f
ng 2 �(
0; 0; b) and under f
ng 2 �(
0;1; !0) are results that hold when the restrictions
are true.
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Next, we introduce the limit under f
ng 2 �(
0; 0; b) with jjbjj < 1 of the re-

stricted concentrated criterion function after suitable normalization. De�ne the process

f�r(�; 
0; b) : � 2 �g by

�r(�; 
0; b) = �(�; 
0; b) +
1

2
�(�; 
0; b)

0P (�; 
0)
0H(�; 
0)P (�; 
0)�(�; 
0; b); where

P (�; 
0) = H�1(�; 
0)r1; ( 0)
0 �r1; ( 0)H�1(�; 
0)r1; ( 0)

0��1 r1; ( 0); (5.13)

r1; ( ) = (@=@ 
0)r1( ) 2 Rdr1�d ; and �(�; 
0; b) is de�ned in (4.3). The d �d -matrix

P (�; 
0) is an oblique projection matrix that projects onto the space spanned by the

rows of r1; ( 0):

The following Theorem shows that the QLR statistic converges in distribution to

�QLR(
0)=s(
0) under f
ng 2 �(
0;1; !0); where �QLR(
0) is de�ned by

�QLR(
0) = G�(
0)
0J�1(
0)P�(
0)

0J(
0)P�(
0)J
�1(
0)G

�(
0);

P�(
0) = J�1(
0)r�(�0)
0 �r�(�0)J�1(
0)r�(�0)0��1 r�(�0); (5.14)

r�(�0) = (@=@�0)r(�0); and J(
0) and G
�(
0) are de�ned in (3.33) and (3.39), respec-

tively. The d� � d�-matrix P�(
0) is an oblique projection matrix that projects onto the
space spanned by the rows of r�(�0):

Theorem 5.1. Suppose Assumptions S1-S4, B1, B2, RQ1, and RQ3 hold.
(a) Under f
ng 2 �(
0; 0; b) with jjbjj <1;

QLRn !d 2(inf�2�r;0 �r(�; 
0; b)� inf�2� �(�; 
0; b))=s(
0):
(b) Under f
ng 2 �(
0;1; !0); QLRn !d �QLR(
0)=s(
0) provided Assumption C7 also

holds.

Comment. By Theorem 5.1(b) and some calculations, when Assumptions RQ2 also

holds,

QLRn !d �QLR(
0)=s(
0) � �2dr : (5.15)

5.4. Asymptotic Size of Standard QLR Con�dence Sets

Here we establish the asymptotic size of a standard nominal 1�� CS for r(�) 2 Rdr

obtained by inverting the QLR statistic, de�ned in (5.10), using the �2dr critical value.

The asymptotic size is determined using Theorem 5.1 combined with Lemma 2.1 in AC1.
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Let

h = (b; 
0); H = fh = (b; 
0) : jjbjj <1; 
0 2 � with �0 = 0g; and
QLR(h) = 2( inf

�2�r;0
�r(�; 
0; b)� inf

�2�
�(�; 
0; b))=s(
0) (5.16)

for jjbjj <1: Note that QLR(h) is the asymptotic distribution of QLRn under f
ng 2
�(
0; 0; b) for jjbjj < 1 by Theorem 5.1(a). Let cQLR;1��(h) denote the 1 � � quantile

of QLR(h) for h 2 H:
The asymptotic size results given below use the following df continuity assumption,

which typically is not restrictive.

Assumption RQ4. The df of QLR(h) is continuous at (i) �2dr;1�� and (ii) suph2H
cQLR;1��(h); 8h 2 H:

Theorem 5.2. Suppose Assumptions S1-S4, B1, B2, C7, RQ1-RQ3, and RQ4(i) hold.
Then, the asymptotic size of the standard nominal 1� � QLR CS is

AsySz = minf inf
h2H

P (QLR(h) � �2dr;1��); 1� �g:

Comment. Depending on the distribution of fQLR(h) : h 2 Hg; the standard QLR
CS has asymptotic size equal to 1�� or less than 1��: Often, it is less than 1�� and
the standard QLR CS is size distorted.

5.5. Robust QLR Con�dence Sets

In this section, we construct two QLR CS�s that have correct asymptotic size. These

CS�s are robust to the strength of identi�cation. We construct CS�s for r(�) by inverting

a robust QLR test that combines the QLR test statistic with a robust critical value that

di¤ers from the standard strong-identi�cation critical value, which is a �2dr quantile.

The �rst robust CS uses the least favorable (LF) critical value. The second robust

CS is introduced in AC1. It is more sophisticated and uses a data-dependent critical

value. It is called a type 2 robust CS. It is smaller than the LF robust CS under strong

identi�cation.
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5.5.1. Least Favorable Critical Value

The LF critical value is

cLFQLR;1�� = maxfsup
h2H

cQLR;1��(h); �
2
dr;1��g: (5.17)

The LF critical value can be improved (i.e., made smaller) by exploiting the knowl-

edge of the null hypothesis value of r(�): For instance, if the null hypothesis speci�es

the value of � to be 3; then the supremum in (5.17) does not need to be taken over

all h 2 H; only over the h values for which � = 3: We call such a critical value a null-

imposed (NI) LF critical value. Using a NI-LF critical value increases the computational

burden because a di¤erent critical value is employed for each null hypothesis value.14 ;15

When part of 
 is unknown under H0 but can be consistently estimated, then a plug-

in LF (or plug-in NI-LF) critical value can be used that has correct size asymptotically

and is smaller than the LF (or NI-LF) critical value. The plug-in critical value replaces

elements of 
 with consistent estimators in the formulae in (5.17) and the supremum

over H is reduced to a supremum over the resulting subset of H; denoted bHn; for which

the consistent estimators appear in each vector 
:16

5.5.2. Type 2 Robust Critical Value

Next, we improve on the LF critical value by employing an identi�cation category

selection (ICS) procedure that uses the data to determine whether b is �nite.17

By Theorem 4.2, the asymptotic covariance matrix of b�n under strong identi�cation
is �(
0) = J�1 (
0)

0 V (
0)J
�1(
0): Let b�n = bJ�1n (b�n)bVn(b�n) bJ�1n (b�n) denote an estimator

14To be precise, let H(v) = fh = (b; 
0) 2 H : jjbjj < 1; r(�0) = vg; where 
0 = (�0; �0): By
de�nition, H(v) is the subset is H that is consistent with the null hypothesis H0 : r(�0) = v; where �0
denotes the true value. The NI-LF critical value, denoted cLFQLR;1��(v); is de�ned by replacing H by
H(v) in (5.17) when the null hypothesis value is r(�0) = v: Note that v takes values in the set Vr = fv0 :
r(�0) = v0 for some h = (b; 
0) 2 Hg:
15When r(�) = � and the null hypothesis imposes that � = v; the parameter b can be imposed to

equal n1=2v: In this case, H(v) = Hn(v) = fh = (b; 
0) 2 H : b = n1=2vg: The asymptotic size results
given below for NI-LF CI�s and NI robust CI�s hold in this case.
16For example, if � is consistently estimated by b�n; then H is replaced by bHn = fh = (b; 
) 2 H : 
 =

(�;b�n; �; �)g: If a plug-in NI-LF critical value is employed, H(v) is replaced by H(v)\ bHn; where H(v)
is de�ned in a footnote above. Note that the parameter b is not consistently estimable, so it cannot be
replaced by a consistent estimator.
17When the null hypothesis speci�es the value of �; it is not necesary to use an ICS procedure.

Instead, we recommend using a (possibly plug-in) NI-LF critical value, see the footnote above.

31



of �(
0); where bJn(�) and bVn(�) are estimators with probability limits J(�; 
0) and
V (�; 
0); respectively, under 
n ! 
0 and J(
0) = J(�0; 
0) and V (
0) = V (�0; 
0): For

brevity, we state the formal consistency Assumptions V1 and V2 concerning bJn(�) andbVn(�) in Appendix B.
Example 1 (cont.) In this example, we estimate J(
0) = V (
0) by bJn(b�n) = bVn(b�n);
where bJn(�) = bVn(�) = n�1

nX
i=1

L02i (�)

Li(�)(1� Li(�))
di(�)di(�)

0: (5.18)

�
The ICS procedure chooses between the identi�cation categories IC0 : jjbjj <1 and

IC1 : jjbjj =1: The statistic used for identi�cation-category selection is

An =
�
nb�0nb��1��;nb�n=d��1=2 ; (5.19)

where b���;n is the upper left d� � d� block of b�n: We use An to assess the strength of
identi�cation.

Now, we de�ne the type 2 robust critical value, which provides a continuous transition

from a weak-identi�cation critical value to a strong-identi�cation critical value using a

transition function s(x): Let s(x) be a continuous function on [0;1) that satis�es: (i)
0 � s(x) � 1; (ii) s(x) is non-increasing in x; (iii) s(0) = 1; and (iv) s(x)! 0 as x!1:

Examples of transition functions include (i) s(x) = exp(�c � x) for some c > 0 and (ii)
s(x) = (1+ c � x)�1 for some c > 0:18 For example, in the binary choice example, we use
the function s(x) = exp(�x=2):
The type 2 robust critical value is

bcQLR;1��;n = ( cB if An � �

cS + [cB � cS] � s(An � �) if An > �; where

cB = cLFQLR;1�� +�1; cS = �2dr;1�� +�2; (5.20)

and �1 � 0 and �2 � 0 are asymptotic size-correction factors that are de�ned below.
Here, �B�denotes Big, and �S�denotes Small. When An � �; bcQLR;1��;n equals the
LF critical value cLFQLR;1�� plus a size-correction factor �1: When An > �; bcQLR;1��;n
18If cLFQLR;1�� =1; one should take s(x) to equal 0 for x su¢ ciently large and de�ne 1� 0 in (5.20)

to equal 0: Then, the critical value bcQLR;1��;n is in�nite if An is small and is �nite if An is su¢ ciently
large.
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is a convex combination of cLFQLR;1�� + �1 and �2dr;1�� + �2; where �2 is another size-

correction factor and the weight given to the standard critical value �2dr;1�� increases

with the strength of identi�cation, as measured by An � �:

The ICS statistic An satis�es An !d A(h) under f
ng 2 �(
0; 0; b) with jjbjj < 1;

where A(h) is de�ned by

A(h) =
�
��(�

�; 
0; b)
0��1�� (�

�; 
0)��(�
�; 
0; b)=d�

�1=2
; (5.21)

where �� abbreviates ��(
0; b); ��(�; 
0; b) is de�ned in (4.5), and ���(�; 
0) is the upper

left (1,1) element of �( 0; �; 
0) for �(�; 
0) = J�1(�; 
0)V (�; 
0)J
�1(�; 
0):

19 ;20 ;21

Under 
n 2 �(
0; 0; b) with jjbjj < 1; the asymptotic null rejection probability of a

test based on the statistic QLRn and the robust critical value bcQLR;1��;n is equal to
NRP (�1;�2;h) = P (QLR(h) > cB & A(h) � �) + P (QLR(h) > cA(h) & A(h) > �)

= P (QLR(h) > cB) + P (QLR(h) 2 (cA(h); cB] & A(h) > �); where

cA(h) = cS + (cB � cS) � s(A(h)� �): (5.22)

The constants �1 and �2 are chosen such that NRP (�1;�2;h) � � 8h 2 H: In par-
ticular, we de�ne �1 = suph2H1 �1(h); where �1(h) � 0 solves NRP (�1(h); 0;h) = �

(or �1(h) = 0 if NRP (0; 0;h) < �); H1 = f(b; 
0) : (b; 
0) 2 H & jjbjj � jjbmaxjj +Dg;
bmax is de�ned such that cQLR;1��(h) is maximized over h 2 H at hmax = (bmax; 
max) 2 H
for some 
max 2 �; and D is a non-negative constant, such as 1: We de�ne �2 =

suph2H �2(h); where �2(h) solves NRP (�1;�2(h);h) = � (or �2(h) = 0 if NRP (�1; 0;

h) < �):22 ;23 As de�ned, �1 and �2 can be computed sequentially, which is computa-

19The convergence in distribution follows from Theorem 4.1(a) and Assumption V1.
20In the vector � case, ��1�� (�

�; 
0) is replaced in (5.21) by a slightly di¤erent expresssion, see footnote
51 of AC1. When the type 2 robust critical value is considered in the vector � case, h is de�ned to
include !0 = limn!1 �n=jj�njj 2 Rd� as an element, i.e., h = (b; 
0; !0) and H = fh = (b; 
0; !0) :
jjbjj <1; 
0 2 � with �0 = 0; jj!0jj = 1g because the true value !0 a¤ects the asymptotic distribution
of An:
21Alternatively to the ICS statistic An; one can use a NI-ICS statistic An(v); which employs the

restricted estimator e�n(v) of � in place of b�n and a di¤erent weight matrix. See AC1 for details.
22When NRP (0; 0;h) > �; a unique solution �1(h) typically exists because NRP (�1; 0;h) is always

non-increasing in �1 and is typically strictly decreasing and continuous in �1: If no exact solution to
NRP (�1(h); 0;h) = � exists, then �1(h) is taken to be any value for which NRP (�1(h); 0;h) � � and
�1(h) � 0 is as small as possible. Analogous comments apply to the equation NRP (�1;�2(h);h) = �
and the de�nition of �2(h):
23When the LF critical value is achieved at jjbjj = 1; i.e., �2dr;1�� � suph2H cQLR;1��(h); the
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tionally convenient.

Given the de�nitions of �1 and �2; the asymptotic rejection probability is always

less than or equal to the nominal level � and it is close to � when h is close to hmax (due

to the adjustment by �1) and when jjbjj is large (due to the adjustment by �2):

The type 2 robust critical value can be improved by employing NI and/or plug-in

versions of it, denoted by bcQLR;1��;n(v): These are de�ned by replacing cLFQLR;1�� in (5.20)
by the NI-LF or plug-in NI-LF critical value and making �1 and �2 depend on the null

value v: We recommend employing these versions whenever possible because they lead

to smaller CS�s.

The asymptotic sizes of QLR CS�s based on LF and type 2 robust critical values

(possibly with NI and/or plug-in features) are always 1 � � or greater and are exactly

1 � � under some mild df continuity conditions. For brevity, these results are stated

formally in Theorem 10.1 in Appendix B.

For any given value of �; the type 2 robust CS has correct asymptotic size due to the

choice of �1 and �2: In consequence, a good choice of � depends on the false coverage

probabilities (FCP�s) of the robust CS. (An FCP of a CS for r(�) is the probability that

the CS includes a value di¤erent from the true value r(�):) The numerical work in this

paper and in AC1 shows that if a reasonable value of � is chosen, such as � = 1:5 or 2:0;

the FCP�s of type 2 robust CS�s are not sensitive to deviations from this value of �: The

reason is that the size-correction constants �1 and �2 have to adjust as � is changed

in order to maintain correct asymptotic size. The adjustments of �1 and �2 o¤set the

e¤ect of changing �:

One can select � in a simple way, i.e., by taking � = 1:5 or 2:0; or one can select �

in a more sophisticated way that explicitly depends on FCP�s. (See Appendix B for a

description of the more sophisticated method.) Both methods yield quite similar results

for the cases that we have considered.

6. t Con�dence Intervals

In this section, we introduce con�dence intervals (CI�s) based on t statistics. The-

oretical results for the t CI�s are obtained using the asymptotic distributions of the

standard asymptotic critical value �2dr;1�� yields a test or CI with correct asymptotic size and constants
�1 and �2 are not needed. Hence, here we consider the case where jjbmaxjj <1: If suph2H cQLR;1��(h)
is not attained at any point hmax; then bmax can be taken to be any point such that cQLR;1��(hmax) is
arbitrarily close to suph2H cQLR;1��(h) for some hmax = (bmax; 
max) 2 H:
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unrestricted estimator b�n in Theorems 4.1 and 4.2. Details are given in AC1.24 In this
section, the number of restrictions, dr; equals one.

The t statistic takes the form

Tn(v) =
n1=2(r(b�n)� v)

(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)1=2 ; (6.1)

where r�(�) = (@=@�
0)r(�) 2 Rdr�d� and b�n is de�ned as in Section 5.5. Although this

de�nition of the t statistic involves B�1(b�n); it is the same as the standard de�nition
used in practice, see AC1.

For testing H0 : r(�) = v against two-sided, upper-one-sided, and lower-one-sided

alternatives, the t statistic is jTn(v)j; Tn(v); and �Tn(v); respectively.
Let cn;1��(v) denote a nominal level 1 � � critical value to be used with the t test

statistic. It may be stochastic or non-stochastic. The usual choice, based on the asymp-

totic distribution of the t statistic under standard regularity conditions, is the 1� �=2

or 1 � � quantile of the N(0; 1) distribution: z1��=2 or z1�� depending on whether a

two-sided or one-sided CI is desired.

Critical values that deliver robust t CS�s for r(�) that have correct asymptotic size

can be constructed using the same approaches as in Section 5.5.

Given a critical value cn;1��(v); the two-sided nominal level 1� � t CI for r(�) is

CStr;n = fv 2 r(�) : jTn(v)j � cn;1��(v)g: (6.2)

For one-sided t CI�s, jTn(v)j is replaced by Tn(v) or �Tn(v) depending on whether one
desires an upper or lower CI, respectively.

7 . Smooth Transition Autoregressive (STAR)Model

7.1. STAR Model and Criterion Function

In this section, we apply the results above to the STAR model. This model and its

applications are considered in Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta

and Anderson (1992), and Teräsvirta (1994) among others. To �t the STAR model into

24See Theorems 4.1, 4.4(a), and 5.1(a) in Sections 4.1, 4.7, and 5, respectively, in AC1. Lemma 9.1
of Appendix A shows that Assumptions B1, B2, and S1-S3 imply the high-level conditions B3, C1-C4,
C8, and D1-D3 employed in the results just stated in AC1.
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our identi�cation set-up, we write the model as

Yt = X 0
t� +X 0

t� �m(Zt; �) + Ut; where

Xt = (1; Yt�1; :::; Yt�p)
0; Zt = Yt�d; (7.3)

fYt : t = 1; :::; ng are observed random variables, fUt : t = 1; :::; ng are unobserved
innovations, and m(�; �) is a known transition function. We assume p and d are known
and 1 � d � p:

As in the literature, two di¤erent forms of the transition function m(Zt; �) are con-

sidered. The �rst one is the logistic function

m(Zt; �) = (1 + exp[��1(Zt � �2)])
�1 (7.4)

and the second one is the exponential function

m(Zt; �) = 1� exp[��1(Zt � �2)
2]; (7.5)

where � = (�1; �2)0 2 R2; �1 > 0 measures the slope of the transition, and �2 measures
the location of the transition. For both the logistic function and the exponential function,

m(Zt; �) 2 [0; 1].
We consider the LS estimator of � = (�; �; �): The LS sample criterion function is

Qn(�) = n�1
nX
t=1

U2t (�)=2; where Ut(�) = Yt �X 0
t� �X 0

t� �m(Zt; �): (7.6)

The LS estimator of � minimizes Qn(�) over � 2 �: The optimization parameter space
� takes the form

� = f(�; �; �) : � 2 B; � 2 Z(�); � 2 �g: (7.7)

We show in Supplemental Appendix E that under the assumptions given below As-

sumptions S1-S4, B1, B2, C6, C7, V1, and V2 hold. Hence, all of the asymptotic results

given above apply to the STAR model considered here.

The distribution of fUt : t = :::;�1; 0; 1; :::g is � 2 �; where � is a compact metric
space with some metric d� that induces weak convergence of the bivariate distributions

(Yt; Yt+m) for all t;m � 1:25 In this model, � is an in�nite-dimensional nuisance para-

25For example, the metric d� can be de�ned as follows. Let futg1 and futg2 denote two in-
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meter. The true value of 
 = (�; �), denoted by 
0; belongs to a compact set �: Let Ft
denote some increasing set of sigma-�elds to which Ut and Yt are adapted. The data

generating process (DGP) is assumed to satisfy Assumption STAR1 below.

Assumption STAR1. (i) E
0(UtjFt�1) = 0 a.s.; E
0(U2t jFt�1) = �2 a.s. with �2 > 0;

and supt�1E
0 jUtj4+" � C <1 8
0 2 �:
(ii) Under 
0; fYt : t = 1; :::; ng is a strictly stationary and strong mixing sequence with
mixing coe¢ cients �m � Cm�A for some A > d�q=(q�d�) and q > d� = 2p+4; 8
0 2 �:

By Bhattacharya and Lee (1995), a set of su¢ cient conditions for Assumption

STAR1(ii) is (i) fUt : t = :::;�1; 0; 1; :::g is a sequence of i.i.d. real-valued random
variables, (ii) the distribution of Ut is absolutely continuous wrt the Lebesgue measure

and has a density function that is positive almost everywhere, (iii) E
0jUtj < 1; and

(iv)
Pp

i=1(j� ij + j�ij) < 1; where � = (� int; �1; :::; �p), � = (�int; �1; :::; �p); and � int and
�int are the intercepts when m (�; �) = 0 and 1; respectively.
Let m�(Zt; �) = (m�;1(Zt; �);m�;2(Zt; �))

0 2 R2 and m��(Zt; �) 2 R2�2 denote the

�rst- and second-order partial derivatives of m(Zt; �) wrt �: Suppose jjm��(Zt; �1) �
m��(Zt; �2)jj � M��(Zt)� for any �1; �2 2 � and jj�1 � �2jj � � and M��(Zt) satis�es

Assumption STAR2(iii) below. In Assumption STAR2, the constants " > 0 and 0 <

C <1 do not depend on 
0:

Assumption STAR2. (i) P
0([X
0
t; X

0
tm(Zt; �); X

0
tm(Zt; �)]a = 0) < 1 8a 6= 0 2 R3d� ;

8�; � 2 � with � 6= �:

(ii) P
0([X
0
t; X

0
tm(Zt; �); X

0
tm�;1(Zt; �); X

0
tm�;2(Zt; �)]a = 0) < 1 8a 6= 0 2 R4d� and

8� 2 �:
(iii) E
0 sup�2�(jYtj4q + jjm�(Zt; �)jj4q + jjm��(Zt; �)jj2q + jjM��(Zt)jj2q) � C; where q is

as in Assumption STAR1.

Let G(�; 
0) be a mean zero Gaussian process indexed by � 2 � with bounded

�nite fut : t = :::;�1; 0; 1; :::g sequences. The distribution of futgi is denoted by L(futgi)
for i = 1; 2: Let Yt(futgi; �) denote Yt generated with the innovation sequence futgi and �;
for i = 1; 2: Let L(Yt(futgi; �); Yt+m(futgi; �)) denote the bivariate distribution of (Yt(futgi; �);
Yt+m(futgi; �)) for i = 1; 2: The metric d� can be de�ned as d�(L(futg1);L(futg2)) =
supm�1 sup�2�� d2(L(Yt(futg1; �); Yt+m(futg1; �));L(Yt(futg2; �); Yt+m(futg2; �))); where �� is the
true parameter space for � and d2 is some metric on the space of bivariate distributions that induces
weak convergence.
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continuous sample paths and covariance kernel 
(�1; �2; 
0) for �1; �2 2 �; where


(�1; �2; 
0) = E
0U
2
t d ;t(�1)d ;t(�2)

0 and

d ;t(�) = (X
0
tm(Zt; �); X

0
t)
0: (7.8)

De�ne a "weighted non-central chi-square" process f�(�; 
0; b) : � 2 �g and a Gaussian
process f��(�; 
0; b) : � 2 �g by

�(�; 
0; b) = �
1

2
(G(�; 
0) +K(�; 
0) b)

0H�1(�; 
0) (G(�; 
0) +K(�; 
0)b) and

��(�; 
0; b) = �S�H�1(�; 
0) (G(�; 
0) +K(�; 
0)b) ; where

K(�; 
0) = �E
0d ;t(�)d ;t(�0)
0 � S 0�; S� = [Id� : 0] 2 Rd��d , and

H(�; 
0) = E
0d ;t(�)d ;t(�)
0: (7.9)

Assumption STAR3. (i) Each sample path of the stochastic process f�(�; 
0; b) : � 2
�g in some set A(
0; b) with P
0(A(
0; b)) = 1 is minimized over � at a unique point
(which may depend on the sample path), denoted ��(
0; b); 8
0 2 � with �0 = 0; 8b
with jjbjj <1:

(ii) P
0(��(�
�(
0; b); 
0; b) = 0) = 0 8
0 2 � with �0 = 0 and 8b with jjbjj <1:

Lemma 7.1. When Xt = Yt�k for some k � 1 or Xt = 1; Assumption STAR2(i)

implies Assumption STAR3(i):

7.2. Parameter Space

The true parameter space for � = (�; �; �) is

�� = f(�; �; �) : � 2 B�; � 2 Z�(�); � 2 ��g: (7.10)

In (7.10), �� is not a product space. For any � 2 B�; �� belongs to Z�(�) which is
de�ned such that fYt : 1 � t � ng is a strictly stationary and strong mixing sequence
as in Assumption STAR1.

For any �0 2 ��; let �(�0) � � denote the true parameter space for the nuisance

parameter �: The true parameter spaces�� and �(�0) are assumed to satisfy Assumption

STAR4.
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Assumption STAR4. (i) �� is compact.
(ii) 0d� 2 int(B�):
(iii) �� = ��1 � ��2; where �1 � " for some " > 0 8�1 2 ��1:
(iv) For some set Z�0 and some � > 0; Z�(�) = Z�0 8jj�jj < �.

The parameter space � is de�ned to be such that for any �0 2 �� and �0 2 �(�0);

0 = (�0; �0) 2 � satis�es Assumptions STAR1-STAR4. We also assume � is compact.
Assumption STAR4(ii) guarantees that the region of non-identi�cation (� = 0) and

near lack of identi�cation (jj�jj close to 0) is in the true parameter space. Assumption
STAR4(iii) bounds the true parameter space of �1 away from 0 because our focus is on

the weak identi�cation of � that occurs when � is close to 0; rather than a di¤erent

sort of weak identi�cation that occurs when �1 is close to 0: Assumption STAR4(iv) is

employed in the veri�cation of Assumption B2(iii).

The optimization parameter space � de�ned in (7.7) is assumed to satisfy Assump-

tion STAR5 below. Let 	 = f(�; �) : � 2 B and � 2 Z(�)g:

Assumption STAR5. (i) int(�) � ��:
(ii) �;B;�; and 	 are compact, Z(�) is compact 8� 2 B:
(iii) For some set Z0 and some � > 0; Z(�) = Z0 8jj�jj < � and int(Z0) � Z�0 ; where
Z�0 is as in Assumption STAR4(iv).

7.3. Key Quantities

The quantities G(�; 
0); K(�; 
0); H(�; 
0); and �(�; 
0) in (7.9) appear in Theorem
4.1.

In the STAR model, Wt = (Yt; X
0
t; Z

0
t)
0: The criterion function in (7.6) takes the form

Qn(�) = n�1
nX
t=1

�(Wt; �); where �(Wt; �) =
1

2
U2t (�): (7.11)
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The �rst- and second-order partial derivatives of �(Wt; �) wrt  and � are

� (Wt; �) = �Ut(�)d ;t(�); ��(Wt; �) = �Ut(�)d�;t(�);
�  (Wt; �) = d ;t(�)d ;t(�)

0;

���(Wt; �) = d�;t(�)d�;t(�)
0 � Ut(�)Dt(�); where

d ;t(�) = (X
0
tm(Zt; �); X

0
t)
0; d�;t(�) = (X

0
tm(Zt; �); X

0
t; �

0Xtm�(Zt; �)
0)0 and

Dt(�) =

264 0d��d� 0d��d� Xtm�(Zt; �)
0

0d��d� 0d��d� 0d��d�

m�(Zt; �)X
0
t 0d��d� �0Xt �m��(Zt; �)

375 : (7.12)

De�ne

dt(�; !) = (X
0
tm(Zt; �); X

0
t; !

0Xtm�(Zt; �)
0)0: (7.13)

The re-scaled partial derivatives in (3.19) take the form

�y�(Wt; �
+) = �Ut(�+)dt(�; !); �y��(Wt; �

+) = dt(�; !)dt(�; !)
0; and

"(Wt; �
+) = �Ut(�+)

264 0d��d� 0d��d� Xtm�(Zt; �)
0

0d��d� 0d��d� 0d��d�

m�(Zt; �)X
0
t 0d��d� !0Xt �m��(Zt; �)

375 , where
Ut(�

+) = Yt �X 0
t� �X 0

t!jj�jj �m(Zt; �): (7.14)

Let

V y(�+0 ; �
+
0 ; 
0) = V (
0) = E
0U

2
t dt(�0; !0)dt(�0; !0)

0 and

J(
0) = E
0dt(�0; !0)dt(�0; !0): (7.15)

The quantities in (7.12), (7.14), and (7.15) appear in Assumptions S1-S4. The matrices

J(
0) and V (
0) appear in Theorem 4.2.
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7.4. Variance Matrix Estimators

t tests and CI�s employ estimators of J(
0) and V (
0): We estimate these matrices

by

bJn = bJn(b�+n ) and bVn = bVn(b�+n ); where (7.16)

bJn(�+) = n�1
nX
i=1

dt(�; !)dt(�; !)
0 and bVn(�+) = n�1

nX
i=1

U2t (�
+)dt(�; !)dt(�; !)

0:

These variance matrix estimators also are used to construct the identi�cation-category-

selection statistic An:

8. Numerical Results

In this section, we provide asymptotic and �nite-sample simulation results for the

STAR model and the binary choice model.

8.1. Numerical Results for the STAR Model

The STAR model considered is

Yt = �1 + �2Yt�1 + � �m(Yt�1; �) + Ut; (8.1)

with m(x; �) = x(1+ exp(�10(x��)))�1; fUt : t = 1; :::; ng are i.i.d., and Ut � N(0; 1):

The true values of �1 and �2 are �1 and 0:5; respectively. The true parameter space for
� is [�3:5;�1:5] and the optimization space for � is [�4;�1]: The number of simulation
repetitions is 20,000.26

Figures 1 and 2 provide the asymptotic and �nite-sample densities of the ML es-

timators of � and � in the STAR model when the true � value is �0 = �1:5. Each
Figure gives the densities for b = 0; 2; 4; and 10; where b indexes the magnitude of �.

Speci�cally, for the �nite-sample results, b = n1=2�: In these Figures, the �nite-sample

size considered is n = 500: Figures S-1 and S-2 in Supplemental Appendix C provide

analogous results for �0 = �3:0:
26For the STAR model, the discrete values of b for which computations are made run from 0 to 12,

with a grid of 0:2 for b between 0 and 5; a grid of 0:5 for b between 5 and 8, and a grid of 1 for b between
8 and 12:
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Figure 1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the STAR Model when �0 = �1:5:
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Figure 2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the STAR Model when �0 = �1:5:

Figure 1 shows that the ML estimator of � has a bi-modal distribution that is very

far from a normal distribution in the unidenti�ed and weakly-identi�ed cases. Figure

2 shows that there is a build-up of mass at the boundaries of the optimization space

for the estimator of � in the unidenti�ed and weakly-identi�ed cases. Figures 1 and 2

indicate that the asymptotic approximations developed here work very well.

Figures S-3 to S-6 in Supplemental Appendix C provide the asymptotic and �nite-

sample (n = 500) densities of the t and QLR statistics for � and � in the STAR model

when �0 = �1:5: These Figures show that in the case of weak identi�cation the t and
QLR statistics are not well approximated by standard normal and �21 distributions.

However, the asymptotic approximations developed here work very well.

Figure 3 provides graphs of the 0:95 asymptotic quantiles of the jtj and QLR statistics
concerning � and � in the STAR model as a function of b for �0 = �1:5; �2:0; �3:0; and
�3:5: For the jtj statistic concerning �, for small to medium b values, the graphs exceed

the 0:95 quantiles under strong identi�cation (given by the horizontal black lines). This
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Figure 3. Asymptotic 0.95 Quantiles of the jtj and QLR Statistics for Tests Concerning
� and � in the STAR Model.
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Figure 4. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the STAR
Model when �0 = �1:5.
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implies that tests and CI�s that employ the jtj statistic for � and the standard critical
value (based on the normal distribution) have incorrect size. The same pattern emerges

for the QLR statistic for � (although the quantile graphs are slightly below the black

line for a range of b around 4 when �0 = �3:0 and �0 = �3:5): The graphs in Figure 3(b)
imply that tests and CI�s that employ the QLR statistic for � and the standard critical

value (based on the �21 distribution) have incorrect size due to the under-coverage for b

values around 0: Given the heights of the graphs in Figure 3(c) and 3(d), tests and CI�s

that employ the jtj and QLR statistic for � and the standard critical value also have
incorrect asymptotic size.

Figure 4 reports the asymptotic and �nite-sample CP�s of nominal 0:95 standard

jtj and QLR CI�s for � and � in the STAR model when �0 = �1:5: For example, the
smallest asymptotic and �nite-sample CP�s (over b) are around 0:67 for the jtj CI for �
and 0:40 for the jtj CI for �: The corresponding values for the QLR CI�s are 0:72 for
� and 0:84 for �: Hence, the size distortions for the standard jtj and QLR CI�s for �
are similar. But, for the CI�s for �; the size distortion of the standard QLR CI (both

asymptotic and �nite sample) is noticeably smaller than that of the standard jtj CI.
Note that the asymptotic CP�s provide a very good approximation to the �nite-sample

CP�s. Figure S-7 in Supplemental Appendix C provides analogous results for �0 = �3:0:
Next, we consider CI�s that are robust to weak identi�cation. For the robust CI for

�; we impose the null value of b = n1=2�0; where �0 is the true value of � under the null.

With the knowledge of b under the null, no identi�cation category selection procedure

is needed. Furthermore, the NI-LF critical value for the robust QLR CI for � is as in

(5.17), but with h and H replaced by � and �; respectively, resulting in a smaller LF

critical value. The same simpli�cation applies to the NI-LF critical value for the robust

jtj CI for �:
As indicated in Figures 3(a) and 3(b), the NI-LF critical values for both jtj and QLR

CI�s for � are attained at �0 = �1:5 for all b values. In consequence, the robust jtj and
QLR CI�s for � are asymptotically similar when �0 = �1:5; as shown in Figures 5(a) and
5(b). Figures 5(a) and 5(b) also report the �nite-sample (n = 500) CP�s of the robust

jtj and QLR CI�s for �: For the former, the �nite-sample CP is around 0.91 in the worst
case, as opposed to 0.67 for the standard jtj CI. For the latter, the �nite-sample CP
is around 0.95 for all b values, showing that the robust QLR for � has excellent �nite-

sample performance. Figures S-8(a) and S-8(b) in Supplemental Appendix C provide

analogous results for �0 = �3:0: The robust CI�s for � are not asymptotically similar
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Figure 5. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the STAR
Model when �0 = �1:5; � = 2:5; D = 1; and s(x) = exp(�x):

when �0 = �3:0; but they have correct asymptotic size and the asymptotic and �nite-
sample CP�s are close for all b values.

The robust CI�s for � are constructed with the null value �0 imposed. Because b

is unknown, we apply the smooth transition in (5.20) to obtain critical values for the

robust CI�s for �. Figures 5(c) and 5(d) report the asymptotic and �nite-sample CP�s

of the robust jtj and QLR CI�s for � in the STAR model when �0 = �1:5: To construct
these robust CI�s, we employ the transition function s(x) = exp(�x) and the constants
� = 2:5 andD = 1: The choices of s(x) andD were determined via some experimentation

to be good choices in terms of yielding CP�s that are relatively close to the nominal size

0:95 across di¤erent values of b: Given s(x) and D; the choice of � was determined based

on minimizing average FCP�s. However, a wide range of � values yield similar results

(because the constants �1 and �2 adjust to maintain correct asymptotic size as � is

changed).

Figures 5(c) and 5(d) show that the robust CI�s for � have correct asymptotic size

and the �nite-sample sizes are reasonably close to 0:95 for both the jtj and QLR CI�s.
Analogous results for the robust CI�s for � when �0 = �3:0 are reported in Figures
S-8(c) and S-8(d) in Supplemental Appendix C.
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Besides b and �0; the construction of a robust CI also requires the � value in order

to obtain the LF (or NI-LF) critical value through simulation. In the STAR model,

� = (�1; �2)
0: Because � can be consistently estimated, we recommend plugging in the

estimator b�n in place of �0 in practice. To ease the computational burden required to
simulate the CP�s, the �nite-sample CP�s of the robust CI�s reported in Figures 5 and

S-8 are constructed using the true value �0; rather than the estimated value b�n:27 To
see how much these robust CI�s may di¤er from their counterparts constructed withb�n; which is what one would use in practice, Table S-1 in Supplemental Appendix C
compares their CP�s in di¤erent identi�cation scenarios in a small-scale simulation. The

comparison suggests that the robust CI�s obtained with �0 and those obtained with b�n
are fairly close.28

8.2. Numerical Results for the Binary Choice Model

The binary choice model considered is

Yi = 1(Y
�
i > 0) and Y

�
i = �0 + �1Z

�
i + � � h(Xi; �)� Ui; (8.2)

with h(x; �) = (x� � 1)=�; Z�i � N(0; 1); Xi = jX�
i j with X�

i � N(3; 1); Corr(Z�i ; X
�
i ) =

0:5; and Ui � N(0; 1): The true values of �0 and �1 are �2 and 2; respectively. The true
parameter space for � is [1:5; 3:5] and the optimization space for � is [1; 4]. The number

of simulation repetitions is 20; 000:29

Figures 6-10 provide results analogous to those in Figures 1-5. Figures S-9 to S-16

in Supplemental Appendix C report results analogous to those in Figures S-1 to S-8.

27With a single sample, the computational burden is the same whether the true value �0 or the
estimated value b�n is employed. However, in a simulation study, it is much faster to simulate the
critical values for a range of true values of b and �0 and the single true value of �0 one time and then
use them in each of the simulation repetitions, rather than to simulate a new critical value for each
simulation repetition, which is required if b�n is employed.
28The comparison is made based on a simulation with 1; 000 samples of size 500 to obtain the �nite-

sample CP�s and 5; 000 simulation repetitions to determine the two LF critical values for each sample.
The CI�s considered are robust t and QLR CI�s for �: The estimator b�n employed is the null-imposed
estimator. For CI�s with nomial CP :950; the di¤erences in �nite sample CP�s for t CI�s between using
the true � and using b� are :003 or less in 12 of the 13 cases and :005 in the other case. For the QLR
CI�s, di¤erences are :004 or less in 9 of the 13 cases and :005; :008; :008; and :013 in the other four
cases.
29For the binary choice model, the discrete values of b for which computations are made run from 0

to 30, with a grid of 0:2 for b between 0 and 6; a grid of 0:5 for b between 6 and 12, and a grid of 1 for
b between 12 and 30:
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Figure 6. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of � in the
Binary Choice Model when �0 = 1:5:
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Figure 7. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of � in the
Binary Choice Model when �0 = 1:5:

The simulation results for the binary choice model are summarized as follows. First,

the LS estimators and the jtj and QLR statistics for � and � do not display normal or �21
distributions under non-identi�cation and weak identi�cation. However, the asymptotic

approximations developed here work very well in general, as indicated in Figures 6, 7,

9, and 10.30

Second, tests and CI�s that employ the jtj and QLR statistics for � and the standard
critical values have incorrect size, but the size distortion is much smaller for the QLR

tests and CI�s. For example, the standard jtj and QLR CI�s for � have asymptotic CP�s
around 0:70 and 0:92; respectively, when �0 = 1:5:31 Tests and CI�s that employ the

QLR statistic for � and the standard critical value have correct asymptotic size and

30The largest discrepancies between the asymptotic and �nite-sample results occur when �0 = 2:0
and b = 20; see Figures S-9 and S-10, in which case the shape of the asymptotic approximation is good,
but its scale is o¤.
31The standard QLR CI for � only under-covers for � very close to zero, which makes it di¢ cult to

detect in Figures 8(b) and 9(b).
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Figure 8. Asymptotic 0.95 Quantiles of the jtj and QLR Statistics for Tests Concerning
� and � in the Binary Choice Model.
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Figure 9. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the Binary
Choice Model when �0 = 1:5:
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Figure 10. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the Binary
Choice Model when �0 = 1:5; � = 1:5; D = 1; and s(x) = exp(�x=2):

those employ the jtj statistic for � only have small size distortions.
Third, the robust CI�s have asymptotic CP�s greater than or equal to 0:95 for all

b: The �nite-sample CP�s are greater than or equal to 0.95 in all cases except for the

robust jtj CI for �; where the CP�s are slightly below 0.95 for a small range of b values
and the lowest CP is around 0.93. The �nite-sample under-coverage of the robust CI�s

is much smaller than that of the corresponding standard CI�s.

9. Appendix A: Proofs

This Appendix proves the results in Theorems 4.1, 4.2, 5.1, and 5.2. The method

of proof is to show that Assumptions B1, B2, and S1-S3 imply certain high-level as-

sumptions in AC1 (speci�cally, Assumptions A, B3, C1-C4, C8, and D1-D3 of AC1).

In addition, it is straightforward that Assumptions S1 and S4 imply Assumption C5 of

AC1. Given these results, Theorems 3.1, 3.2, 4.2, 4.3, and 4.4(b) of AC1 imply Theo-

rems 4.1, 4.2, 5.1(a), 5.1(b), and 5.2, respectively, because the results of these theorems

are the same, just the assumptions di¤er.

49



Lemma 9.1. Suppose Assumptions B1 and B2 hold. Assumptions S1-S3 imply that
Assumptions A, B3, C1-C4, C8, and D1-D3 of AC1 hold with

Q(�; 
0) = E
0�(Wi; �); D Qn(�) = n�1
nX
i=1

� (Wi; �); D  Qn(�) = n�1
nX
i=1

�  (Wi; �);

m(Wi; �) = � (Wi; �); 
(�1; �2; 
0) = S V
y(( 0; �1); ( 0; �2); 
0)S

0
 ;

H(�; 
0) = E
0�  (Wi;  0; �); DQn(�) = n�1
nX
i=1

��(Wi; �);

D2Qn(�) = n�1
nX
i=1

���(Wi; �); J(
0) = E
0�
y
��(Wi; �0); and V (
0) = V y(�0; �0; 
0):

We start by giving some general results that are useful in the proof of Lemma 9.1.

Speci�cally, Lemma 9.2 is a uniform convergence result for non-stochastic functions,

Lemma 9.3 is a uniform LLN, Lemma 9.4 is a stochastic equicontinuity result for em-

pirical processes based on Theorem 3 of Hansen (1996), and Lemma 9.5 is a CLT. All

of these results are for strong mixing triangular arrays. The proofs of Lemmas 9.2-9.5

are given below following those of Lemmas 9.1, 3.1, and 3.2.

Lemma 9.2. Let fqn(�) : n � 1g be non-stochastic functions on �: Suppose (i) qn(�)!
0 8� 2 �; (ii) jjqn(�1)� qn(�2)jj � C� 8�1; �2 2 � with jj�1 � �2jj � �; 8n � 1; for some
C <1 and all � > 0; and (iii) � is compact. Then, sup�2� jjqn(�)jj ! 0:

Lemma 9.3. Suppose (i) Assumption S1 holds, (ii) for some function M1(w) : W !
R+ and all � > 0; jjs(w; �1) � s(w; �2)jj � M1(w)�; 8�1; �2 2 � with jj�1 � �2jj � �;

8w 2 W ; (iii) E
 sup�2� jjs(Wi; �)jj1+" + E
M1(Wi) � C 8
 2 � for some C < 1 and

" > 0; and (iv) � is compact. Then, sup�2� jjn�1
Pn

i=1 s(Wi; �) � E
0s(Wi; �)jj !p 0

under f
ng 2 �(
0) and E
0s(Wi; �) is uniformly continuous on � 8
0 2 �:

Comment. Note that the centering term in Lemma 9.3 is E
0s(Wi; �); rather than

E
ns(Wi; �):

Lemma 9.4. Suppose (i) Assumption S1 holds, (ii) for some function M1(w) : W !
R+ and all � > 0; jjs(w; �1)�s(w; �2)jj �M1(w)�; 8�1; �2 2 � with jj�1��2jj � �; 8w 2
W ; and (iii) E
 sup�2� jjs(Wi; �)jjq+E
M1(Wi)

q � C 8
 2 � for some C <1 and q as

in Assumption S1: Then, �ns(�) = n�1=2
Pn

i=1(s(Wi; �) � E
ns(Wi; �)) is stochastically

equicontinuous over � 2 � under f
ng 2 �(
0); i.e., 8" > 0 and � > 0; 9� > 0 such that
lim supn!1 P [sup�1;�22�:jj�1��2jj<� jj�ns(�1)� �ns(�2)jj > �] < " 8
0 2 �:
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Lemma 9.5. Suppose (i) Assumption S1 holds, (ii) s(w) 2 R and E
js(Wi)jq � C

8
 2 � for some C < 1 and q as in Assumption S1: Then, n�1=2
Pn

i=1(s(Wi) �
E
ns(Wi)) !d N(0; Vs(
0)) under f
ng 2 �(
0) 8
0 2 �; where Vs(
0) =

P1
m=�1

Cov
0(s(Wi); s(Wi+m)):

Proof of Lemma 9.1. The veri�cation of Assumptions A and B3 are the same for the
scalar � and vector � cases. Assumption A follows from Assumptions S2(i) and S2(ii).

Now we verify Assumption B3. In Assumption B3(i), Q(�; 
0) = E
0�(Wi; �): As-

sumption B3(i) follows from Lemma 9.3 with s(w; �) = �(w; �) by Assumptions S1,

S2(i), S2(v), and S3(iii). Assumptions B3(ii) and B3(iii) can be veri�ed by Assumption

B3�. Assumption B3�(i) holds by Assumptions S2(i) and S3(iii). The remaining parts

of Assumption B3� follow from Assumption S2 immediately.

We verify the quadratic expansions in Assumptions C1 and D1 using Lemma 11.5 in

Appendix A of AC1-SM, which relies on Assumption Q1 of AC1-SM. Assumptions Q1(i)

and Q1(ii) follow from Assumption S2(i). Assumption Q1(iii) follows from Lemma 9.3

with s(w; �) = �  (w; �):

To verify Assumption Q1(iv) for � 2 �n(�n); we write

B�1(�n)n
�1

nX
i=1

���(Wi; �)B
�1(�n)

= B(�=�(�n))

 
n�1

nX
i=1

�
�y��(Wi; �) + ��1(�)"(Wi; �)

�!
B(�=�(�n))

=

 
n�1

nX
i=1

�y��(Wi; �)

!
(1 + o(1)) +

 
n�1=2

nX
i=1

�
"(Wi; �)� E
n"(Wi; �)

�!
�

(n1=2�(�n))
�1(1 + o(1)) +

�
E
n"(Wi; �)=�(�n)

�
(1 + o(1)): (9.1)

In (9.1), the �rst equality follows from (3.19) and the second equality holds because

B(�) only depends on � through �(�); jj�jj � jj� � �njj + jj�njj � (1 + �n)jj�njj;
and �n = o(1): By (9.1) and the fact that n1=2jj�njj ! 1 for f
ng 2 �(
0;1; !0);

to verify Assumption Q1(iv), it su¢ ces to establish the stochastic equicontinuity of

n�1
Pn

i=1 �
y
��(Wi; �) and n�1=2

Pn
i=1("(Wi; �) � E
n"(Wi; �)) over � 2 �n(�n) and the

equicontinuity of E
n"(Wi; �)=jj�njj over � 2 �n(�n):
When � is a scalar, the stochastic equicontinuity of n�1

Pn
i=1 �

y
��(Wi; �) follows from

Lemma 9.3 using Assumptions S1, S3(ii), and S3(iii): The stochastic equicontinuity
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of n�1=2
Pn

i=1("(Wi; �) � E
n"(Wi; �)) follows Lemma 9.4 with s(w; �) = "(w; �) using

Assumptions S3(ii) and S3(iii).

When � is a vector, the stochastic equicontinuity of n�1
Pn

i=1 �
y
��(Wi; �

+) and vn"(w;

�+) = n�1=2
Pn

i=1("(Wi; �
+) � E
n"(Wi; �

+)) over �+ 2 �+ hold by Lemmas 9.3 and
9.4 using Assumption S3 (vector �). By Andrews (1994, p. 2252), the stochastic

equicontinuity of vn"(w; �
+) over �+ 2 �+ is equivalent to the following: for all se-

quences of random elements fb�+1;n 2 �+ : n � 1g and fb�+2;n 2 �+ : n � 1g that
satisfy jjb�+1;n � b�+12;njj !p 0; we have jjvn"(w;b�+1;n) � vn"(w;b�+2;n)jj !p 0: Note that

vn"(w; �
+) = vn"(w; �); where �

+ is the reparameterization of �: Hence, to show the

stochastic equicontinuity of vn"(w; �) over � 2 �n(�n); it is su¢ cient to show that for
all sequences of random elements fb�1;n 2 �n(�n) : n � 1g and fb�2;n 2 �n(�n) : n � 1g;
jjb�1;n�b�12;njj !p 0 implies that jjb�+1;n�b�+12;njj !p 0; where b�+i;n is the reparameterization
of b�i;n for i = 1 and 2: The convergence related to jj�jj; �; and � are straightforward.
To show jjb!1;n � b!2;njj !p 0; it is su¢ cient to show that b!n !p !0 for all sequences

of random elements fb�n 2 �n(�n) : n � 1g under f
ng 2 �(
0;1; !0) as in Assump-

tion D1. By the de�nition of �n(�n); jj�njj�1(b�n � �n) = op(1): This implies thatb�n = �n + jj�njjop(1) and jjb�njj=jj�njj = 1 + op(1): Hence,

b!n = b�n
jjb�njj =

b�n � �n
jj�njj

jj�njj
jjb�njj + �n

jj�njj
jj�njj
jjb�njj !p !0: (9.2)

This completes the veri�cation of the stochastic equicontinuity of vn"(w; �) over � 2
�n(�n) when � is a vector: The stochastic equicontinuity of n�1

Pn
i=1 �

y
��(Wi; �) over

� 2 �n(�n) holds by the same reparameterization arguments above in the vector � case.
It remains to show sup�1;�22�n(�n)E
n ("(Wi; �1)� "(Wi; �2)) = o(jj�njj): When � is

a scalar, for any � 2 �n(�n);

j�nj�1jjE
n"(Wi; �)jj
= j�nj�1jjE
n"(Wi; �)� E
n"(Wi;  n; �) + E
n"(Wi;  n; �)jj
� C1j�nj�1j�nj�n + C2jj� � �njj � (C1 + C2)�n (9.3)

for some C1; C2 < 1 and any constants �n ! 0; where the �rst inequality follows

from Assumptions S3(i)-S3(iii) (scalar �) with � = j�nj�n in Assumption S3(ii) and
jj��( n; �)jj = jj � njj � j�nj�n by the de�nition of �n(�n); and the second inequality
holds because � 2 �n(�n):
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When � is a vector, we reparameterize � as �+: For any � 2 �n(�n); we have (1 �
�n)jj�njj � jj�jj � (1 + �n)jj�njj and

jj! � !njj =




 �

jj�jj �
�n
jj�njj





 = 



� � �n
jj�njj

jj�njj
jj�jj +

�n
jj�njj

�
jj�njj
jj�jj � 1

�




� �n(1� �n)

�1 + (1� �n)
�1 � 1 = 2(1� �n)

�1�n � 4�n; (9.4)

for n large enough that �n � 1=2; where the �rst inequality uses the triangle inequality,
jj���njj=jj�njj � �n; and jj�njj=jj�jj � (1��n)�1 and the equalities are straightforward.
Let �++ = (jj�njj; !; �n; �): For � 2 �n(�n) and large n;

jj�njj�1jjE
n"(Wi; �)jj
= jj�njj�1jjE
n"(Wi; �

+)jj
= jj�njj�1jjE
n"(Wi; �

+)� E
n"(Wi; �
++) + E
n"(Wi; �

++)jj
� C1jj�njj�1jj�njj�n + C2(jj� � �njj+ jj! � !njj) � (C1 + 5C2)�n (9.5)

for some C1; C2 < 1; where the �rst inequality follows from Assumption S3(i)-S3(iii)

(vector �) with � = jj�njj�n and jj�+ � �++jj � jj� � �njj + jj� � �njj � 2jj�njj�n
by the de�nition of �n(�n); and the third inequality holds by � 2 �n(�n) and (9.4).
This completes the veri�cation of Assumptions C1 and D1 with the stochastic partial

derivatives given in Lemma 9.1.

Assumption C2(i) holds withm(w; �) = � (w; �) by Lemma 11.5(a) of AC1-SM given

the veri�cation above of Assumption Q1. Assumptions C2(ii) and C2(iii) follow from

Assumptions S2(iii) and S2(iv) given that the true parameter �0 lies in the interior of �

by Assumption B1(i).

The veri�cations for Assumptions C3, C4, and C8 below are the same for cases with

scalar � and vector � because � (Wi; �) and �  (Wi; �) do not involve re-scaling with

B(�):

We now verify Assumption C3. To this end, it is su¢ cient to show that �n� (�) =

n�1=2
Pn

i=1(� (Wi; �) � E
n� (Wi; �)) converges weakly to a Gaussian process on �

with covariance kernel S V y(�1; �2; 
0)S
0
 : The �nite-dimensional convergence holds by

Lemma 9.5 and the Cramer-Wold device under Assumptions S3(ii) and S3(iii). Note that

� (w; �) = S �
y
�(w; �) by the structure ofB(�): This yields the form of 
(�1; �2; 
0) given

in Lemma 9.1. The stochastic equicontinuity of �n� (�) on � 2 � follows from Lemma

9.4 with s(w; �) = � (w; �) under Assumptions S3(ii) and S3(iii). The parameter space
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� � Rd� is compact. Hence, the weak convergence of vn� (�) holds by the Proposition

in Andrews (1994, p. 2251).

To show Assumption C4(i) holds with H(�; 
0) = E
0�  (Wi;  0; �); we have

sup
�2�

jjn�1
nX
i=1

�  (Wi;  0;n; �)� E
0�  (Wi;  0; �)jj

� sup
�2�

jjn�1
nX
i=1

�  (Wi; �)� E
0�  (Wi; �)jj+

sup
�2�

jjE
0�  (Wi;  0;n; �)� E
0�  (Wi;  0; �)jj (9.6)

by the triangle inequality. The �rst term on the rhs of (9.6) is op(1) by Lemma 9.3 with

s(w; �) = �  (w; �) using Assumptions S1, S2(v), and S3(iii). The second term on the

rhs of (9.6) is o(1) because E
0�  (Wi; �) is continuous in  uniformly over � 2 � by
Lemma 9.3. Hence, the rhs of (9.6) is op(1); which is the desired result. Assumption

C4(ii) holds by Assumptions S3(iii) and S3(iv).

To verify Assumption C8, we have

jj @
@ 0

E
n� (Wi;  n; �n)�E
0�  (Wi; �0)jj= jjE
n�  (Wi;  n; �n)�E
0�  (Wi; �0)jj

� sup
�2�

jjE
n�  (Wi; �)�E
0�  (Wi; �)jj+ jjE
0�  (Wi; �n)�E
0�  (Wi; �0)jj;

(9.7)

where the equality follows from (@=@ 0)E
n� (Wi;  n; �n) = E
n�  (Wi;  n; �n) using

E
0 sup�2� jj�  (Wi; �)jj � C 8
0 2 �; and the inequality holds by the triangle in-

equality. The �rst term in the second line of (9.7) converges to 0 by Lemma 9.2. The

conditions for Lemma 9.2 hold by the arguments in the second paragraph of the proof

of Lemma 9.3 with s(w; �) replaced by �  (w; �): The required conditions are provided

in Assumptions S3(ii) and S3(iii). The second term in the second line of (9.7) converges

to 0 by the continuity of E
0�  (Wi; �) in �; which holds by Lemma 9.3.

To verify Assumption D2, we have

Jn = n�1
nX
i=1

�y��(Wi; �n) + (n
1=2�(�n))

�1n�1=2
nX
i=1

"(Wi; �n) (9.8)
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by (3.19). When � is a scalar, by applying Lemma 9.3 with s(w; �) = �y��(w; �)

and invoking the continuity of E
0�
y
��(Wi; �) in �; we obtain n�1

Pn
i=1 �

y
��(Wi; �n) !p

E
0�
y
��(Wi; �0) = J(
0): Because n

1=2j�nj ! 1; the second summand in (9.8) is op(1)

provided n�1=2
Pn

i=1 "(Wi; �n) = Op(1): This is veri�ed by applying the triangular array

CLT in Lemma 9.5 with s(w) = "(w; �n) using E
n"(Wi; �n) = 0 by Assumption S3(i).

The above results combine to give Jn !p J(
0) as desired. The matrix J(
0) is posi-

tive de�nite by Assumption S3(iv) and symmetric by the construction of �y��(Wi; �0) in

(3.19).

When � is a vector, the veri�cation of Assumption D2 is the same as above by repa-

rameterizing � as �+; replacing Assumption S3 (scalar �) with Assumption S3 (vector

�); and using the fact that �+n ! �+0 under f
ng 2 �(
0;1; !0); where �
+
n and �

+
0 are

the counterparts of �n and �0 after reparameterization.

To verify Assumption D3, we have

n�1=2B�1(�n)DQn(�n) = n�1=2
nX
i=1

�y�(Wi; �n); (9.9)

where the equality follows from (3.19). By Assumptions B1(i), S2(iii), and S2(iv), (@=@�)

E
0�(Wi; �0) = 0 8
0 2 �: Under Assumption S3(iii), we have E
0 sup�2� jj��(Wi; �)jj <
1 because the parameter space of � is bounded. Hence, an exchange of @ and E

yields E
0��(Wi; �0) = 0; which implies that E
0�
y
�(Wi; �0) = 0 by (3.19). Because

E
n�
y
�(Wi; �n) = 0; n

�1=2Pn
i=1 �

y
�(Wi; �n) = �n�

y
�(�n):

When � is a scalar, �n�
y
�(�) converges weakly to a Gaussian process with covariance

V y(�1; �2; 
0) on � 2 � by the arguments given in the veri�cation of Assumption C3.

Hence, �n�
y
�(�n) converges in distribution to a normally distributed random variable

with variance V y(�0; �0; 
0): Assumption D3(ii) holds by Assumption S3(v).

When � is a vector, the weak convergence above holds by replacing � and � with �+

and�+; respectively, using Assumption S3 (vector �) and the convergence in distribution

holds because �+n ! �+0 under f
ng 2 �(
0;1; !0): This completes the veri�cation of

Assumption D3. �

Proof of Lemma 3.1. Assumption S3�(i) and (3.28) imply that E
0"(Wi; �0) = 0:
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LetD(x; �) denote the matrix in the third line of (3.28) so that "(w; �) = �0(�)D(x; �):
To verify the Lipschitz condition in Assumption S3(i), we have

jj�0jj�1jjE
0"(Wi;  0; �)jj = jj�0jj�1jjE
0�
0(Wi; a(Xi; �0)h(Xi; �))D(Xi; �)jj

= jjE
0�
00(Wi; a(Xi; �0)h(Xi; e�))a(Xi; �0)

jj�0jj
h�(Xi; e�)0(� � �0)D(Xi; �)jj

� E
0j�
00(Wi; a(Xi; �0)h(Xi; e�))j � jja�(Xi; e�)jj � jjh�(Xi; e�)jj � jjD(Xi; �)jj � jj� � �0jj

� Cjj� � �0jj; (9.10)

where the �rst equality holds by (3.28), the second equality follows from a mean-value

expansion of �0(Wi; a(Xi; �0)h(Xi; �)) in � around �0 with e� between � and �0 and

uses Assumption S3�(i), the �rst inequality follows from a mean-value expansion of

a(Xi; �0) in �0 around 0 with e� between �0 and 0; and the second inequality follows
from Assumption S3�(ii) and ja(Xi; �)j=jj�jj � jja�(Xi; e�)jj with e� between � and 0 by
a mean-value expansion.

This completes the proof when � is a scalar.

When � is a vector, jjE
0"(Wi; �
+)jj � jjE
0"(Wi; �

+) � E
0"(Wi; jj�0jj; !0; �)jj +
jjE
0"(Wi; jj�0jj; !0; �)jj; where �+ = (jj�0jj; !; �): By (9.10), it is su¢ cient to show
jjE
0"(Wi; jj�0jj; !; �)�E
0"(Wi; jj�0jj; !0; �)jj � Cjj�0jj(jj!�!0jj+ jj���0jj) for some
C <1: According to (3.28), "(�) = �0(�)D(�): For notational simplicity, we let �0(!) and
D(!) be de�ned such that "(Wi; jj�0jj; !; �) = �0(!)D(!): By the triangle inequality,

jjE
0�
0(!)D(!)� E
0�

0(!0)D(!0)jj
� jjE
0 (�

0(!)� �0(!0))D(!)jj+ jjE
0�
0(!0)(D(!)�D(!0)jj: (9.11)

Because �0(�) does not involve �(�); the reparameterization inside of �0(�) simply replaces
all � with jj�jj!: Hence, any partial derivative of �0(!) wrt ! is equivalent to the partial
derivative wrt � in the original parametrization multiplied by jj�jj:
The �rst summand on the right-hand side of (9.11) satis�es

jjE
0(�
0(!0)� �0(!))D(!)jj

� E
0jj�
00(�)a�(�)h(�)jj � jjD(!)jj � jj�0jj � jj! � !0jj

� Cjj�0jj � jj! � !0jj; (9.12)
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where the �rst inequality holds by a mean-value expansion wrt ! and uses � = jj�jj!
and the second inequality holds by Assumption S3�(ii): The arguments of the functions

are suppressed for brevity.

To bound the second summand on the right-hand side of (9.11), note that �0(!0)

di¤ers from �0(Wi; a(Xi; �0)h(Xi; �0)) in Assumption S3�(i) by having � in the place of

�0: Using Assumption S3�(i), we have

jjE
0�
0(!0)(D(!)�D(!0))jj

� E
0 k�
00(�)a(�)h�(�)(D(!)�D(!0))k � jj� � �0jj

= E
0 k�
00(�)a�(�)h�(�)(D(!)�D(!0))k � jj�0jj � jj� � �0jj

� Cjj�0jj � jj� � �0jj; (9.13)

where the �rst inequality follows from a mean-value expansion wrt � around �0; the

equality follows from a mean-value expansion wrt � around 0 and uses a(x; 0) = 0; and

the second inequality follows from the moment conditions in Assumption S3�(ii). The

desired result follows from (9.11)-(9.13). �

Proof of Lemma 3.2. We verify Assumption C6 for the sample average estimator
using Assumption C6�� and Lemma 4.1 of AC1. Because � is a scalar, it remains to

show Assumption C6��(ii). By Lemma 9.1,


(�1; �2; 
0) =
1X

m=�1
Cov
0(� (Wi;  0; �1); � (Wi+m;  0; �2)): (9.14)

This implies that the covariance matrix 
G(�1; �2; 
0) in Assumption C6
��(ii) takes the

form 
G(�1; �2; 
0) in Assumption C6
y(ii). Hence, Assumption C6��(ii) is implied by

Assumption C6y(ii). �

Proof of Lemma 9.2. For any given " > 0; let �� = minf�; "
2C
g: Using the compactness

of �, let fB(�j; ��) : j = 1; :::; Jg be a �nite cover of �; where B(�j; ��) denote a closed
ball in � of radius �� � 0 centered at �j: Because qn(�) converges to 0 8� 2 �, there
exists Nj such that jjqn(�j)jj � "=2 for any n � Nj; for j = 1; :::; J: Let N = maxj�J Nj:
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Then, maxj�J jjqn(�j)jj � "=2 for any n � N: For any n � N;

sup
�2�

jjqn(�)jj � max
j�J

 
sup

�02B(�j ;��)
jjqn(�0)� qn(�j)jj+ jjqn(�j)jj

!
� sup

�2�
sup

�02B(�;��)
jjqn(�0)� qn(�)jj+max

j�J
jjqn(�j)jj � C�� + "=2 � "; (9.15)

where the �rst inequality uses the property of the �nite cover and the triangle inequality,

the second inequality is straightforward, the third inequality uses condition (ii) of Lemma

9.2 and �� � �; and the fourth inequality follows from �� � "=(2C): �

Proof of Lemma 9.3. First, we establish the result of the lemma with E
ns(Wi; �) in

place of E
0s(Wi; �): We use the uniform LLN given in Theorem 4 of Andrews (1992)

employing Assumption TSE-1B with qt(z; �) = s(w; �): Now we verify Assumptions

TSE-1B, DM, BD, and P-WLLN of Andrews (1992). Assumption TSE-1B(a) holds

because s(w; �) is continuous in � and � is compact. Assumption TSE-1B(b) holds

because fWi : i � ng is strictly stationary and E
n1(Wi 2 A) ! E
01(Wi 2 A) for all

measurable sets A � W under f
ng 2 �(
0) by 
n ! 
0 and the weak convergence ofWi

under 
n toWi under 
0; which holds by the de�nition of the metric on �; see Section 2.1.

Assumption DM holds by condition (iii) of Lemma 9.3. Assumption BD holds because �

is compact. Assumption P-WLLN holds, i.e., n�1
Pn

i=1 s(Wi; �)�E
ns(Wi; �)!p 0 8� 2
� under f
ng 2 �(
0); by the WLLN for dependent triangular arrays of strong mixing
random variables in Example 4 of Andrews (1988) given that sup
2�E
jjs(Wi; �)jj1+� <
1 for some � > 0: Theorem 4 of Andrews (1992) gives sup�2� jjn�1

Pn
i=1 s(Wi; �) �

E
ns(Wi; �)jj ! 0 under f
ng 2 �(
0): Note that the same proof holds whether fWi :

i � 1g are strong mixing or i.i.d. in Assumption S1.
To obtain the desired result, it remains to show sup�2� jjE
ns(Wi; �)�E
0s(Wi; �)jj !

0 under f
ng 2 �(
0): The pointwise convergence holds for any � 2 � by (i) the

weak convergence induced by 
n ! 
0 and the de�nition of the metric on � and (ii)

E
 sup�2� jjs(w; �)jj1+� � C 8
 2 � for some � > 0: Because � is compact and point-

wise convergence holds, we apply Lemma 9.2 with qn(�) = E
ns(Wi; �) � E
0s(Wi; �):
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Condition (ii) of Lemma 9.2 holds because for any �1; �2 2 � with jj�1 � �2jj � �;

jjqn(�1)� qn(�2)jj = jjE
n (s(Wi; �1)� s(Wi; �2))� E
0 (s(Wi; �1)� s(Wi; �2)) jj
� E
njjs(Wi; �1)� s(Wi; �2)jj+ E
0 jjs(Wi; �1)� s(Wi; �2)jj
� (E
nM1(Wi) + E
0M1(Wi))� � C�; (9.16)

where the �rst inequality follows from the triangle inequality and Jensen�s inequality,

the second inequality holds by condition (ii) of Lemma 9.3, and the third inequality

holds by condition (iii) of Lemma 9.3.

The uniform continuity of E
0s(Wi; �) on � holds by the dominated convergence

theorem and the compactness of �: This completes the proof. �

Proof of Lemma 9.4. For the case that Assumption S1 holds with fWi : i � 1g
being strong mixing, we show the stochastic equicontinuity (SE) of the empirical process

vns(�) using Theorem 3 of Hansen (1996), which is suitable for strong mixing arrays.

When s(w; �) is a vector, the SE of �ns(�) is implied by the SE of each entry of �ns(�):

Hence, without loss of generality, we assume s(w; �) 2 R as in Hansen (1996). We

now verify (11)-(13) in Assumption 4 of Hansen (1996). The condition in (11) holds

provided �m � Cm�A for some A > (1=p � 1=q)�1 and d� < p < q: This is implied by

Assumption S1. Conditions (12) and (13) hold because E
 sup�2� jjs(Wi; �)jjq � C and

E
M1(Wi)
q � C 8
 2 � and fWi : i � 1g is strictly stationary. Applying Theorem 3 of

Hansen (1996) with a = d� and � = 1 yields: for each " > 0; there exists a �1 > 0 such

that

lim sup
n!1






 sup
�(�1;�2)<�1

j�ns(�1)� �ns (�2) j






p

< "; (9.17)

where �(�1; �2) = lim supn!1(E
njs(Wi; �1)�s(Wi; �2)jq)1=q and jj � jjp is the Lp-norm for
some d� < p < q: By conditions (ii) and (iii) of Lemma 9.4, for each �1 > 0; there exists

� > 0; such that jj�1 � �2jj < � implies that �(�1; �2) < �1: This, (9.17), and Markov�s

inequality yield the SE of �ns(�) over � 2 �:
For the case that Assumption S1 holds with fWi : i � 1g being i.i.d., the stochas-

tic equicontinuity (SE) of the empirical process vns(�) holds by Theorems 1 and 2 of

Andrews (1994) using the type II class. For this result, the envelope function and the

Lipschitz function must have q = 2 + � moments �nite, which holds by Assumption S1

and condition (iii) of the Lemma. �
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Proof of Lemma 9.5. First, we consider the case in which fWi : i � 1g are strong
mixing. We show that Vs(
0) exists and

lim
n!1

V ar
n(n
�1=2

nX
i=1

s(Wi)) = Vs(
0) (9.18)

under f
ng 2 �(
0): By change of variables, we have

V ar
n(n
�1=2

nX
i=1

s(Wi)) (9.19)

=
n�1X

m=�n+1
Cov
n(s(Wi); s(Wi+m))�

n�1X
m=�n+1

jmj
n
Cov
n(s(Wi); s(Wi+m)):

By a standard strong mixing inequality, e.g., see Davidson (1994, p. 212), and Assump-

tion S1,

jCov
(s(Wi); s(Wi+m))j � C1�
1�2=q
m � C2m

�A(1�2=q); where A(1� 2=q) > d�
q � 2
q � d�

� 2
(9.20)

using d� � 2, for some C1; C2 <1 8
 2 �: Hence, Vs(
0) exists and the second term on
the rhs of (9.19) converges to 0.

It remains to show that the �rst term on the rhs of (9.19) converges to Vs(
0): Because

the metric on � induces weak convergence under 
n ! 
0 and E
js(Wi)j2+� � C 8
 2 �
for some � > 0; we have

Cov
n(s(Wi); s(Wi+m))! Cov
0(s(Wi); s(Wi+m)) (9.21)

under 
n 2 �(
0) for any m 2 R (e.g., see Theorem 2.20 and Example 2.21 of van der

Vaart (1998)). By the DCT, (9.20), and (9.21), we have

lim
n!1

n�1X
m=�n+1

Cov
n(s(Wi); s(Wi+m)) = lim
n!1

1X
m=�1

1(jmj < n� 1)Cov
n(s(Wi); s(Wi+m))

! Vs(
0): (9.22)

This and (9.19) yield (9.18).

When Vs(
0) = 0; we have limn!1 V ar
n(n
�1=2Pn

i=1 s(Wi)) = 0; which implies that

n�1=2
Pn

i=1(s(Wi) � E
ns(Wi)) !d N(0; Vs(
0)) = 0: When Vs(
0) > 0; we assume
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V ar
n(n
�1=2Pn

i=1 s(Wi)) > 0 8n � 1 without loss of generality: To show the triangular
array CLT in Lemma 9.5, we apply Corollary 1 of de Jong (1997) with � = 
 = 0; cni =

n�1=2(jj
Pn

i=1 n
�1=2�ns(Wi)jj2)�1; and Xni = n�1=2�ns(Wi)(jjn�1=2

Pn
i=1�ns(Wi)jj2)�1;

where �ns(Wi) = s(Wi) � E
ns(Wi): Now we verify conditions (a)-(c) of Assumption

2 of de Jong (1997). Condition (a) holds automatically. Condition (b) holds because

cni > 0 and E
njXni=cnijq = E
nj�ns(Wi)jq � C 8
n 2 � for some C < 1: Condition

(c) holds by taking Vni = Xni; dni = 0; and using Assumption S1 because �m � Cm�A

and A > q=(q� 2): By Corollary 1 of de Jong (1997), we have Xni !d N(0; 1): This and

(9.18) lead to the desired result.

When Assumption S1 holds with fWi : i � 1g being i.i.d. under 
0 2 �; a standard
triangular array CLT gives the desired result because 2 + � moments of s(Wi) are �nite

and uniformly bounded over 
0 2 � by Assumption S1. �

10. Appendix B: Miscellaneous Results

This Appendix provides (i) the asymptotic size results for the robust QLR CS�s,

(ii) a sophisticated method for choosing � for type 2 robust CS�s, (iii) statements of

Assumptions V1 and V2, which concern the estimator of the variance matrix of b�n;
and (iv) an extension of the su¢ cient conditions for Assumption S3�(i) given in Section

3.1.4 for �(w; �) functions of the form ��(w; a(x; �)h(x; �); �): The extension is to the

case where a parameter � appears.

10.1. Asymptotic Size of Robust QLR CS�s

Here, we show that the LF and type 2 robust QLR CS�s de�ned in the text of the

paper have correct asymptotic size.

For the null-imposed (NI) critical values, we use the following notation: H(v) = fh =
(b; 
0) 2 H : jjbjj <1; r(�0) = vg; Vr = fv0 : r(�0) = v0 for some h = (b; 
0) 2 Hg; and
the NI-LF critical value is cLFQLR;1��(v) = maxfsuph2H(v) cQLR;1��(h); �2dr;1��g:
The asymptotic size results for the LF QLR CS�s rely on the following df continuity

conditions, which are not restrictive in most examples.

Assumption LF. (i) The df of QLR(h) is continuous at cQLR;1��(h) 8h 2 H:
(ii) If cLFQLR;1�� > �2dr;1��; c

LF
QLR;1�� is attained at some hmax 2 H:
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Assumption NI-LF. (i) The df of QLR(h) is continuous at cQLR;1��(h) 8h 2 H(v);

8v 2 Vr:
(ii) For some v 2 Vr; cLFQLR;1��(v) = �2dr;1�� or c

LF
QLR;1��(v) is attained at some hmax 2 H:

For h 2 H; de�ne

bcQLR;1��(h) (10.23)

=

(
cLFQLR;1�� +�1 if A(h) � �

�2dr;1�� +�2 + [c
LF
QLR;1�� +�1 � �2dr;1�� ��2] � s(A(h)� �) if A(h) > �:

Note that bcQLR;1��(h) equals bcQLR;1��;n with A(h) in place of An: The asymptotic dis-
tribution of bcQLR;1��;n under f
ng 2 �(
0; 0; b) for jjbjj < 1 is the distribution ofbcQLR;1��(h):
De�ne bcQLR;1��(h; v) analogously to bcQLR;1��(h); but with cLFQLR;1��; �1; and �2

replaced by cLFQLR;1��(v); �1(v); and �2(v); respectively, for v 2 Vr: The asymptotic

distribution of bcQLR;1��;n(v) under f
ng 2 �(
0; 0; b) for jjbjj <1 is the distribution ofbcQLR;1��(h; v):
The asymptotic size results for the type 2 robust QLR CS�s rely on the following df

continuity conditions, which are not restrictive in most examples.

Assumption Rob2. (i) P (QLR(h) = bcQLR;1��(h)) = 0 8h 2 H:
(ii) If �2 > 0; NRP (�1;�2;h

�) = � for some point h� 2 H:

Assumption NI-Rob2. (i) P (QLR(h) = bcQLR;1��(h; v)) = 0 8h 2 H(v); 8v 2 Vr:
(ii) For some v 2 Vr;�2(v) = 0 orNRP (�1(v);�2(v);h

�) = � for some point h� 2 H(v):

The correct asymptotic size properties of LF and robust type 2 QLR CS�s are estab-

lished in the following Theorem.

Theorem 10.1. Suppose Assumptions S1-S4, B1, B2, C7, RQ1-RQ3, and RQ4(i) hold.
Then, the nominal 1�� robust QLR CS has AsySz = 1�� when based on the following
critical values: (a) LF, (b) NI-LF, (c) type 2 robust, and (d) type 2 NI robust, provided

the following additional Assumptions hold, respectively: (a) LF, (b) NI-LF, (c) C6, Rob2,

V1, and V2, and (d) C6, NI-Rob2, V1, and V2.

Comments. 1. Plug-in versions of the robust QLR CS�s considered in Theorem 10.1

also have asymptotically correct size under continuity assumptions on cQLR;1��(h) that

typically are not restrictive. For brevity, we do not provide formal results here.
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2. If part (ii) of Assumption LF, NI-LF, Rob2, or NI-Rob2 does not hold, then the
corresponding part of Theorem 10.1 still holds, but with AsySz � 1� �:

3. The proof of Theorem 10.1 is as follows. Theorem 10.1 holds by Theorem 5.1(b) of

AC1, plus the proof given in Appendix A that Assumptions B1, B2, and S1-S4 imply

Assumptions A, B3, C1-C5, C8, and D1-D3 of AC1. The reason is that the results of

the Theorem 10.1 and Theorem 5.1(b) of AC1 are the same, just the assumptions di¤er.

10.2. Choice of � for Type 2 Robust Con�dence Sets

For type 2 robust CS�s, a sophisticated method for choosing � is to minimize the

average asymptotic FCP of the robust CS at a chosen set of points.32 Of interest is a

robust CS for r(�): Let K denote the set of � values from which one selects. First, for

given h 2 H; one chooses a null value vH0(h) that di¤ers from the true value v0 = r(�0)

(where h = (b; 
0) and 
0 = (�0; �0)): The null value vH0(h) is selected such that the

robust CS based on a reasonable choice of �; such as � = 1:5 or 2; has a FCP that is

in a range of interest, such as close to 0:50:33 ;34 Second, one computes the FCP of the

value vH0(h) for each robust CS with � 2 K: Third, one repeats steps one and two for
each h 2 H; where H is a representative subset of H:35 The optimal choice of � is the

value that minimizes over K the average FCP at vH0(h) over h 2 H:

10.3. Assumptions V1 and V2

Here we state Assumptions V1 and V2, which concern estimators of the asymptotic

variance matrix of b�n: These assumptions are used with the standard t tests and CS�s, as
well as with the robust t and QLR CS�s, which employ variance matrix estimators in the

identi�cation category selection procedure. These assumptions are not very restrictive.

32For t and Wald CS�s, asymptotic FCP�s follow from the results in this paper, AC1, and/or Andrews
and Cheng (2008). For QLR CI�s, asymptotic FCP results only cover restrictions involving �; see
Comment 5 to Theorem 4.2 of AC1. For other restrictions, one can use a large �nite sample size when
determining �:
33For reasonable choices, the value of � used to obtain vH0

(h) typically has very little e¤ect on the
�nal comparison across di¤erent values of �: For example, this is true in the binary choice and STAR
models considered here, and in the ARMA(1, 1) model considered in AC1.
34When b is close to 0; the FCP may be larger than 0:50 for all admissible v due to weak identi�cation.

In such cases, vH0(h) is taken to be the admissible value that minimizes the FCP for the selected value
of � that is being used to obtain vH0(h):
35When r(�) = �; we do not include h values in H for which b = 0 because when b = 0 there is no

information about � and it is not necessarily desirable to have a small FCP.
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Assumption V1 has two forms depending on whether � is a scalar or a vector.

Assumption V1 (scalar �). (i) bJn = bJn(b�n) and bVn = bVn(b�n) for some (stochastic)
d� � d� matrix-valued functions bJn(�) and bVn(�) on � that satisfy sup�2� jj bJn(�) �
J(�; 
0)jj !p 0 and sup�2� jjbVn(�) � V (�; 
0)jj !p 0 under f
ng 2 �(
0; 0; b) with

jjbjj <1:

(ii) J(�; 
0) and V (�; 
0) are continuous in � on � 8
0 2 � with �0 = 0:
(iii) �min(�(�; 
0)) > 0 and �max(�(�; 
0)) <1 8� 2 �; 8
0 2 � with �0 = 0:

Assumption V1 (vector �). (i) bJn = bJn(b�+n ) and bVn = bVn(b�+n ) for some (stochastic)
d��d� matrix-valued functions bJn(�+) and bVn(�+) on�+ that satisfy sup�+2�+ jj bJn(�+)�
J(�+; 
0)jj !p 0 and sup�+2�+ jjbVn(�+)�V (�+; 
0)jj !p 0 under f
ng 2 �(
0; 0; b) with
jjbjj <1:36

(ii) J(�+; 
0) and V (�
+; 
0) are continuous in �

+ on �+ 8
0 2 � with �0 = 0:
(iii) �min(�(�; !; 
0)) > 0 and �max(�(�; !; 
0)) <1 8� 2 �; 8! 2 Rd� with jj!jj = 1;
8
0 2 � with �0 = 0:
(iv) P (��(��(
0; b); 
0; b) = 0) = 0 8
0 2 � with �0 = 0 and 8b with jjbjj <1:37

Assumption V2. Under �(0;1; !0); bJn !p J(
0) and bVn !p V (
0):

10.4. Adjustment for �

Here we provide su¢ cient conditions for Assumption S3�(i) when �(w; �) = ��(w;

a(x; �)h(x; �); �); as in (3.17), and a parameter � appears. (Section 3.1.4 provides analo-

gous results when no parameter � appears.) For simplicity, we assume a(x; �) and h(x; �)

are both scalars. Let �0(�) and �00(�) denote the �rst and second order partial derivatives
of ��(w; a(x; �)h(x; �); �) wrt a(x; �)h(x; �): Let ��(�) and ���(�) denote the �rst and
second order partial derivatives of ��(w; a(x; �)h(x; �); �) wrt �: Let �12(�) 2 Rd� denote

the partial derivative of �0(�) wrt �: The partial derivatives in (3.27) are the same when
36The functions J(�+; 
0) and V (�

+; 
0) do not depend on !0; only 
0:
37Assumption V1 (vector �) di¤ers from Assumption V1 (scalar �) because in the vector � case

Assumption V1(ii) (scalar �) (i.e., continuity in �) often fails, but Assumption V1(ii) (vector �) (i.e.,
continuity in �+) holds.
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� appears in �(w; �): The partial derivatives wrt � are

��(w; �) = ��(�) 2 Rd��1; ���(w; �) = ���(�) 2 Rd��d� ;

���(w; �) = a�(x; �)h(x; �)�12(�) 2 Rd��d� ;

���(w; �) = a(x; �)h�(x; �)�12(�) 2 Rd��d� : (10.1)

In this case, we de�ne

�y�(w; �) = �0(�)ay(x; �) + ��(�); �
y
��(w; �) = �00(�)ay(x; �)ay(x; �)0 + ���(�); where

ay(x; �) = (a�(x; �)
0h(x; �); 0d� ;

a(x; �)

�(�)
h�(x; �)

0)0,

��(�) = (0d� ; ��(�); 0d�)0;

���(�) =

2664
0d��d� a�(x; �)h(x; �)�12(�) 0d��d�

(a�(x; �)h(x; �)�12(�))
0 ���(�)

�
a(x;�)
�(�)

h�(x; �)�12(�)
�0

0d��d�
a(x;�)
�(�)

h�(x; �)�12(�) 0d��d�

3775 ;

"(w; �) = �0(�)

264 a��(x; �)h(x; �) 0d��d� a�(x; �)h�(x; �)
0

0d��d� 0d��d� 0d��d�

h�(x; �)a�(x; �)
0 0d��d�

a(x;�)
�(�)

h��(x; �)

375 : (10.2)

Comparing the de�nition of "(w; �) in (10.2) with that in (3.28), it is clear that, if

�(w; �) takes the form in (3.17) and a parameter � appears, then Assumption S3� still

implies Assumption S3(i) provided �0(�) and �00(�) in Assumption S3� are adjusted to
include �; evaluated at �0:
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11. Outline

This Supplement includes three Supplemental Appendices (denoted C, D, and E) to

the paper �Maximum Likelihood Estimation and Uniform Inference with Sporadic Iden-

ti�cation Failure.�Supplemental Appendix C provides additional numerical results to

those provided in the main paper for both the smooth transition autoregressive (STAR)

model and the nonlinear binary choice model. Supplemental Appendix D veri�es As-

sumptions S1-S4, B1, B2, C6, V1, and V2 for the nonlinear binary choice model. Sup-

plemental Appendix E does likewise for the STAR model.

We let AC1 abbreviate the paper Andrews and Cheng (2007) �Estimation and In-

ference with Weak, Semi-strong, and Strong Identi�cation.�

12. Supplemental Appendix C: Numerical Results

Table S-1 compares the �nite-sample (n = 500) coverage probabilities of the null-

imposed robust CI�s for � in the STAR model with true and estimated values of �:

(See the end of the STAR-model numerical-results section in the main paper for further

discussion.)

Figures S-1 and S-2 report asymptotic and �nite-sample (n = 500) densities of the

estimators for � and � in the STAR model when �0 = �3:0: Figures S-3 to S-6 report
asymptotic and �nite-sample (n=500) densities of the t and QLR statistics for � and �

in the STAR model when �0 = �1:5: Figures S-7 and S-8 report CP�s of nominal 0:95
standard and robust jtj and QLR CI�s for � and � in the STAR model when �0 = �3:0:
Figures S-9 to S-16 are analogous to Figures S-1 to S-8 but for the binary choice

model. The true values of � considered are �0 = 1:5 and �0 = 2:0:

Table S-1. Finite-Sample Coverage Probabilities of Null-Imposed Robust CI�s for �

in the STAR Model with True and Estimated Values of �; n = 500; �0 = �1:538

b 0 1 2 3 4 5 6 7 8 9 10 11 12

t_�0 0:939 0:950 0:946 0:947 0:948 0:947 0:944 0:946 0:949 0:949 0:950 0:947 0:956

t_b� 0:936 0:951 0:946 0:947 0:947 0:947 0:949 0:944 0:947 0:947 0:947 0:947 0:957

QLR_�0 0:923 0:932 0:930 0:925 0:923 0:924 0:916 0:921 0:923 0:926 0:929 0:932 0:933

QLR_b� 0:920 0:935 0:927 0:924 0:926 0:919 0:915 0:908 0:915 0:922 0:925 0:924 0:929

38 The simulation is conducted with the null value of b and the true value of � imposed so that the
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Figure S-1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the STAR Model when �0 = �3:0:
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Figure S-2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the STAR Model when �0 = �3:0:
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Figure S-9. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of � in
the Binary Choice Model when �0 = 2:0:
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Figure S-10. Asymptotic and Finite-Sample (n=500) Densities of the Estimator of � in
the Binary Choice Model when �0 = 2:0:
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Figure S-11. Asymptotic and Finite-Sample (n=500) Densities of the t Statistic for � in
the Binary Choice Model when �0 = 1:5 and the Standard Normal Density (Black Line).
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Figure S-12. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for
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the Binary Choice Model when �0 = 1:5 and the Standard Normal Density (Black Line).
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Figure S-15. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the
Binary Choice Model when �0 = 2:0:
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Figure S-16. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the
Binary Choice Model when �0 = 2:0; � = 1:5; D = 1; and s(x) = exp(�x=2):
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13. Supplemental Appendix D: Nonlinear Binary

Choice Model, Veri�cation of Assumptions

We start by deriving the formulae for the key quantities speci�ed in (3.33). Next, we

verify Assumptions S1-S4. Then, we verify Assumptions B1 and B2. Finally, we verify

the remaining Assumptions C6, V1, and V2. (Note that Assumption C7 is veri�ed in

Section 3.5.)

13.1. Derivation of Key Quantities

Here we calculate the key quantities 
(�1; �2; 
0); H(�; 
0); J(
0); and V (
0) that

are speci�ed in (3.33).

By (2.4),

E
0(Yi � Li(�0)jXi; Zi) = 0 a.s. and

E
0((Yi � Li(�0))
2jXi; Zi) = Li(�0)(1� Li(�0)) a.s. (13.1)

For 
0 with �0 = 0; we have gi( 0; �) = gi(�0); Li( 0; �) = Li(�0); L
0
i( 0; �) = L0i(�0);

and wj;i( 0; �) = wj;i(�0) for j = 1; 2; 8� 2 �: In consequence,


(�1; �2; 
0) = S V
y(( 0; �1); ( 0; �2); 
0)S

0
 

= E
0
L02i (�0)

Li(�0)(1� Li(�0))
d ;i(�1)d ;i(�2)

0; (13.2)

where S = [Id : 0d �d� ]; the �rst equality holds by Lemma 9.1, and the second equality

holds by independence across i of fWi : i � ng and (13.1).
Now, we have

�  (Wi;  0; �) = [w
2
1;i(�0)(Yi � Li(�0))

2 + w2;i(�0)(Yi � Li(�0))]d ;i(�)d ;i(�)
0 and

H(�; 
0) = E
0�  (Wi;  0; �) = E
0
L02i (�0)

Li(�0)(1� Li(�0))
d ;i(�)d ;i(�)

0; (13.3)

where the �rst equality uses (3.22), the second equality holds by Lemma 9.1, and the

asymptotic CP is 0:95 for all b values, which serves as a good benchmark. The �nite-sample CP�s in
Table S-1 sometimes di¤er noticeably from 0:95 due to the small scale of the simulation, i.e., only 1000
simulations repetitions are employed to compute the CP�s, as described in footnote 28.
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third equality uses (13.1).

In addition, we have

V (
0) = V y(�0; �0; 
0) = V ar
0(�
y
�(Wi; �0))

= E
0w
2
1;i(�0)(Yi � Li(�0))

2di(�0)di(�0)
0

= E
0
L02i (�0)

Li(�0)(1� Li(�0))
di(�0)di(�0)

0; (13.4)

where the �rst equality holds by (3.20) and the second equality holds by independence

across i of fWi : i � ng and (13.1).
Next, we have

J(
0) = E
0�
y
��(Wi; �0)

= E
0 [w
2
1;i(�0)(Yi � Li(�0))

2 + w2;i(�0)(Yi � Li(�0))]di(�)di(�)
0

= E
0
L02i (�0)

Li(�0)(1� Li(�0))
di(�)di(�)

0; (13.5)

where the �rst equality holds by Lemma 9.1, the second equality holds using (3.23), and

the third equality holds by (13.1).

The matrix K(�; 
0) is derived in Section 13.6 below.

13.2. Veri�cation of Assumptions S1 and S2

Given that fWi : i � 1g are i.i.d. under 
0 8
0 2 �; Assumption S1 holds with
q = 2 + � for � > 0:

Assumption S2(i) holds with

�(Wi; �) = �[Yi logLi(�) + (1� Yi) log(1� Li(�))]: (13.6)

When � = 0; Li(�) = L(�h(Xi; �) + Z 0i�) does not depend on � and, hence, �(Wi; �)

does not depend on �: This veri�es Assumption S2(ii).

To verify Assumptions S2(iii) and S2(iv), we have

E
0(�(Wi; �)jXi; Zi) = �[Li(�0) logLi(�) + (1� Li(�0)) log(1� Li(�))] (13.7)

because E
0(YijXi; Zi) = Li(�0) by (2.4). Now we view E
0(�(Wi; �)jXi; Zi) as a function

9



of Li(�): The �rst- and second-order derivatives of E
0(�(Wi; �)jXi; Zi) wrt Li(�) are

@

@Li(�)
E
0(�(Wi; �)jXi; Zi) =

Li(�)� Li(�0)

Li(�)(1� Li(�))
and

@2

@L2i (�)
E
0(�(Wi; �)jXi; Zi) =

Li(�0) + L2i (�)� 2Li(�)Li(�0)
L2i (�)(1� Li(�))2

; (13.8)

see (13.45) below. The second-order derivative is positive for all � 2 � because its

numerator is greater than (Li(�0) � Li(�))
2 � 0: When Li(�) = Li(�0); the �rst-order

derivative is 0: Hence, E
0(�(Wi; �)jXi; Zi); viewed as a function of Li(�); has a unique

global minima at Li(�0): Because L0(u) > 0, E
0�(Wi; �) is minimized at � if and only if

P
0(gi(�) = gi(�0)) = 1:

When �0 = 0; gi(�)�gi(�0) = �h(Xi; �)+(���0)0Zi: Because P
0(a0(h(Xi; �); Zi) =

0) < 1 for all a 2 Rd�+1 with a 6= 0 (by the de�nition of �� in (3.32)), P
0(gi(�)�gi(�0) =
0) = 1 if and only if � = 0 and � = �0: This implies Assumption S2(iii).

When �0 6= 0; gi(�) � gi(�0) = �h(Xi; �) � �0h(Xi; �0) + (� � �0)
0Zi: Because

P
0(a
0(h(Xi; �); h(Xi; �0); Zi) = 0) < 1 for all a 2 Rd�+2 with a 6= 0 and � 6= �0;

P
0(gi(�) � gi(�0) = 0) < 1 when � 6= �0: When � = �0; gi(�) � gi(�0) = (� �
�0)h(Xi; �v) + (� � �0)

0Zi: Because P
0(a
0(h(Xi; �); Zi) = 0) < 1 for all a 2 Rd�+1

with a 6= 0; P
0(gi(�)� gi(�0) = 0) = 1 if and only if � = �0; � = �0; and � = �0: This

veri�es Assumption S2(iv).

Assumption S2(v) holds because 	(�) does not depend on � and 	; �; and � are

all compact. Assumption S2(vi) holds automatically because 	(�) does not depend on

�:

13.3. Veri�cation of Assumption S3(ii)

Assumption S3(i) is veri�ed in the text of the paper. Here we verify Assumption

S3(ii). We use the following generic results in the calculations below. Let A = aa0;

where a = (a01; :::; a
0
p)
0 2 Rda and a1; :::; ap are vectors (possibly of di¤erent dimensions).

Then,

jjAjj =
 

pX
j=1

pX
k=1

jjaja0kjj2
!1=2

=

pX
j=1

jjajjj2; (13.9)

where the �rst equality holds by the de�nition of jjAjj and the second equality holds
because jjab0jj = jjajj � jjbjj for vectors a and b: Similarly, let A� = a�a�0; where a�1; :::; a

�
p

10



are sub-vectors of a� that are conformable with a1; :::; ap: Then,

jjA� A�jj = jjaa0 � a�a�0jj � jja(a� a�)0jj+ jj(a� a�)a�0jj

= (jjajj+ jja�jj)jja� a�jj �
pX
j=1

(jjajjj+ jja�j jj)
pX

k=1

jjak � a�kjj; (13.10)

where the �rst inequality holds by triangle inequality, the second equality holds because

jjab0jj = jjajj � jjbjj; and the last inequality holds because (x2 + y2)1=2 � x + y for non-

negative scalars x and y:

De�ne v1;i(�) = w1;i(�)(Yi�Li(�)); v2;i(�) = w2;i(�)(Yi�Li(�)); and � = maxfb1; b2g:
Below, let �1; �2 2 � with jj�1 � �2jj � � for � > 0:

By the triangle inequality, we have

jj�  (Wi; �1)� �  (Wi; �2)jj
�
�
jjv21;i(�1)� v21;i(�2)jj+ jjv2;i(�1)� v2;i(�2)jj

�
� jjd ;i(�1)d ;i(�1)0jj

+
�
jjv21;i(�2)jj+ jjv2;i(�2)jj

�
� jjd ;i(�1)d ;i(�1)0 � d ;i(�2)d ;i(�2)

0jj: (13.11)

Note that

jjv21;i(�1)� v21;i(�2)jj = jjv1;i(�1)� v1;i(�2)jj � jjv1;i(�1) + v1;i(�2)jj; where
jjv1;i(�1)� v1;i(�2)jj � jjw1;i(�1)�w1;i(�2)jj � jjYi�Li(�1)jj+ jjw1;i(�2)jj � jjLi(�1)�Li(�2)jj

�
�
M1(Wi) + w1;iL

0
i(hi + jjZijj+ � � h�;i)

�
�; and

jjv1;i(�1) + v1;i(�2)jj � 2w1;i; (13.12)

where the �rst inequality follows from the triangle inequality, the second inequality holds

by (i) jjw1;i(�1)�w1;i(�2)jj �M1(Wi)�; (ii) jjYi�Li(�)jj � 1; and (iii) jjLi(�1)�Li(�2)jj �
L
0
i(hi + jjZijj + � � h�;i)� by a mean-value expansion of Li(�) = L(gi(�)) wrt �, and the

third inequality follows from the triangle inequality and jjYi � Li(�)jj � 1: Similarly,

jjv2;i(�1)� v2;i(�2)jj �
�
M2(Wi) + w2;iL

0
i(hi + jjZijj+ � � h�;i)

�
�;

jjv21;i(�2)jj � w21;i; and jjv2;i(�2)jj � w2;i: (13.13)

11



Applying the inequality in (13.9) with a = d ;i(�1) = (h(Xi; �1); Z
0
i)
0; we have

jjd ;i(�1)d ;i(�1)0jj � h
2

i + jjZijj2: (13.14)

Applying the inequality in (13.10) with a = d ;i(�1); a
� = d ;i(�2); jja1�a�1jj � h�;ijj�1�

�2jj; and jja2 � a�2jj = 0; we have

jjd ;i(�1)d ;i(�1)0 � d ;i(�2)d ;i(�2)
0jj � 2(hi + jjZijj)h�;ijj�1 � �2jj: (13.15)

Equations (13.11)-(13.15) combine to yield

jj�  (Wi; �1)� �  (Wi; �2)jj �M (Wi)�; (13.16)

where

M (Wi) =
h
2w1;i

�
M1(Wi) + w1;iL

0
i(hi + jjZijj+ � � h�;i)

�
+M2(Wi) (13.17)

+w2;iL
0
i(hi + jjZijj+ � � h�;i)

i
(h
2

i + jjZijj2) + 2
�
w21;i + w2;i

�
(hi + jjZijj)h�;i:

To show jj�y��(�1)� �
y
��(�2)jj �M��(Wi)� for some function M��(Wi); the calculation

is the same as that above with d ;i(�) replaced by di(�): The inequalities in (13.14) and

(13.15) become

jjdi(�1)di(�1)0jj � h
2

i + jjZijj2 + h
2

�;i and (13.18)

jjdi(�1)di(�1)0 � di(�2)di(�2)
0jj � 2(hi + jjZijj+ h�;i)(h�;i + h��;i) � jj�1 � �2jj:

By the same arguments as those used in (13.11)-(13.17), we have

M��(Wi) =
h
2w1;i

�
M1(Wi) + w1;iL

0
i(hi + jjZijj+ � � h�;i)

�
+M2(Wi) + w2;iL

0
i(hi + jjZijj+ � � h�;i)

i
� (h2i + jjZijj2 + h

2

�;i)

+2
�
w21;i + w2;i

�
(hi + jjZijj+ h�;i)(h�;i + h��;i): (13.19)

Next, we show jj�y�(�1)� �
y
�(�2)jj �M�(Wi)� for some function M�(Wi): To this end,

12



note that

jj�y�(�1)� �y�(�2)jj
� jjv1;i(�1)� v1;i(�2)jj � (hi + jjZijj+ h�;i) + jjv1;i(�2)jj � (h�;i + h��;i)�; (13.20)

where jjv1;i(�1)�v1;i(�2)jj satis�es the inequality in (13.12) and jjv1;i(�2)jj � w1;i: Hence,

M�(Wi) =
�
M1(Wi) + w1;iL

0
i(hi + jjZijj+ � � h�;i)

�
(hi+ jjZijj+h�;i)+w1;i(h�;i+h��;i):

(13.21)

Next, we show jj"(Wi; �1)�"(Wi; �2)jj �M"(Wi)� for some functionM"(Wi): To this

end, note that

jj"(Wi; �1)� "(Wi; �2)jj � 2jjv1;i(�1)h�(Xi; �1)� v1;i(�2)h�(Xi; �2)jj
+jjv1;i(�1)h��(Xi; �1)� v1;i(�2)h��(Xi; �2)jj

� 2jjv1;i(�1)� v1;i(�2)jjh�;i + 2jjv1;i(�2)jjh��;i� (13.22)

+jjv1;i(�1)� v1;i(�2)jjh��;i + jjv1;i(�2)jjMh(Wi)�;

where jjv1;i(�1) � v1;i(�2)jj satis�es the inequality in (13.12), jjv1;i(�2)jj � w1;i; the �rst

inequality follows from a mean-value expansion of h�(Xi; �) wrt � and the second in-

equality follows from jjh��(Xi; �1)� h��(Xi; �2)jj �Mh(Xi) � jj�1 � �2jj: By (13.22), we
have

M"(Wi) =
�
M1(Wi) + w1;iL

0
i(hi + jjZijj+ � � h�;i)

�
(2h�;i+h��;i)+w1;i(2h��;i+Mh(Wi)):

(13.23)

Hence, Assumption S3(ii) holds with

M1(Wi) =M (Wi) +M��(Wi) and M2(Wi) =M�(Wi) +M"(Wi): (13.24)

13.4. Veri�cation of Assumption S3(iii)

The condition E
0M2(Wi)
q � C1 for some C1 < 1 holds if E
0M�(Wi)

q � C2

and E
0M"(Wi)
q � C2 for some C2 < 1: Because L

0
i � w1;i; E
0M�(Wi)

q � C2 and

E
0M"(Wi)
q � C2 hold provided, for some C < 1; (i) E
0M

q
1 (Wi)(h

q

i + jjZijjq + h
q

�;i +

h
q

��;i) � C; (ii) E
0w
2q
1;i(h

q

i + jjZijjq + h
q

�;i)(h
q

i + jjZijjq + h
q

�;i + h
q

��;i) � C; and (iii)

E
0w
q
1;i(h

q

�;i + h
q

��;i +Mh(Wi)
q) � C: Condition (i) holds by conditions in (3.32) using
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Hölder�s inequality to give E
0M
q
1 (Wi)h

q

i � (E
0M
4q=3
1 )3=4(E
0h

4q

i )
1=4 � C and likewise

with jjZijj; h�;i; and h��;i in place of hi: Condition (ii) holds by E
0w
2q
1;ih

q

i jjZijjq �
(E
0w

4q
1;i)

1=2(E
0h
4q

i )
1=4(E
0jjZijj4q)1=4 � C and likewise with jjZijjq and h

q

�;i in place of

h
q

i and h
q

i ; h
q

�;i, and h
q

��;i in place of jjZijjq: Condition (iii) holds by E
0w
q
1;iMh(Wi)

q �
(E
0w

4q
1;i)

1=4(E
0Mh(Wi)
4q=3)3=4 � C and likewise with h

q

�;i and h
q

��;i in place ofMh(Wi)
q:

The condition E
0M1(Wi) � C1 for some C1 < 1 holds if E
0M (Wi) � C2

and E
0M��(Wi) � C2 for some C2 < 1: Because L
0
i � w1;i; E
0M (Wi) � C2 and

E
0M��(Wi) � C2 hold provided, for some C < 1; (i) E
0M1(Wi)w1;i(h
2

i + jjZijj2 +
h
2

�;i) � C, (ii) E
0w
3
1;i(hi + jjZijj + h�;i)(h

2

i + jjZijj2 + h
2

�;i) � C; (iii) E
0M2(Wi)(h
2

i +

jjZijj2 + h
2

�;i) � C; (iv) E
0w1;iw2;i(hi + jjZijj + h�;i)(h
2

i + jjZijj2 + h
2

�;i) � C; (v)

E
0
�
w21;i + w2;i

�
(hi + jjZijj + h�;i)(h�;i + h��;i) � C: Condition (i) holds by conditions

in (3.32) using the Cauchy-Schwarz inequality and q > 2 to give E
0M1(Wi)w1;ih
2

i �
(E
0M1(Wi)

2)1=2(E
0w
4
1;i)

1=4(E
0h
8

i )
1=4 � C and likewise with jjZijj2 and h

2

�;i in place

of h
2

i : Condition (ii) holds by E
0w
3
1;ihih

2

�;i � (E
0w
6
1;i)

1=2(E
0h
4

i )
1=4(E
0h

8

�;i)
1=4 � C

and likewise with jjZijj and h�;i in place of hi and with h
2

i and jjZijj2 in place of h
2

�;i:

Condition (iii) holds by E
0M2(Wi)h
2

i � (E
0M2(Wi)
4=3)3=4(E
0h

8

i )
1=4 � C and like-

wise with jjZijj2 and h
2

�;i in place of h
2

i : Condition (iv) holds by E
0w1;iw2;ihih
2

�;i �
(E
0w

8
1;i)

1=8(E
0w
2
2;i)

1=2(E
0h
8

i )
1=8(E
0h

8

�;i)
1=4 � C and likewise with jjZijj and h�;i in

place of hi and with h
2

i and jjZijj2 in place of h
2

�;i: Condition (v) holds by E
0w2;ihih�;i �
(E
0w

2
2;i)

1=2(E
0h
4

i )
1=4(E
0h

4

�;i)
1=4 � C and likewise with w21;i in place of w2;i; jjZijj and

h�;i in place of hi; and h��;i in place of h�;i:

By (13.6),

E
0 sup
�2�

j�(Wi; �)j1+� � E
0(sup
�2�

j logLi(�)j+ sup
�2�

j log(1� Li(�))j)1+� � C; (13.25)

for some C < 1; where the �rst inequality holds because Yi is 0 or 1 and the second

inequality holds by conditions in (3.32).

By (3.22),

E
0 sup
�2�

jj�  (Wi; �)jj1+� � E
0(w
2
1;i + w2;i)

1+� sup
�2�

jjd ;i(�)d ;i(�)0jj1+� � C (13.26)

for some C < 1; where the �rst inequality holds by jYi � Li(�)j � 1 and the triangle

inequality and the second inequality holds (13.14) and conditions in (3.32). Similarly,

we can show E
0 sup�2� jj�
y
��(Wi; �)jj1+� � C with d ;i(�) in (13.26) replaced by di(�)
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and (13.14) replaced by (13.18).

By (3.23),

E
0 sup
�2�

jj�y�(Wi; �)jjq � E
0(w1;i sup
�2�

jjdi(�)jj)q

� E
0w
q
1;i(hi + jjZijj+ h�;i)

q � C (13.27)

for some C < 1, where the �rst inequality holds because jYi � Li(�)j � 1; the second
inequality holds because jjdi(�)jj � jjh(Xi; �)jj + jjZijj + jjh�(Xi; �)jj; and the third
inequality holds by conditions in (3.32).

By (3.23),

E
0 sup
�2�

jj"(Wi; �)jjq � E
0w
q
1;i(2h�;i + h��;i)

q � C (13.28)

for some C < 1; where the the �rst inequality follows from jYi � Li(�)j � 1 and the

second inequality holds by conditions in (3.32).

This completes the veri�cation of Assumption S3(iii).

13.5. Veri�cation of Assumptions S3(iv) and S3(v)

To verify Assumption S3(iv), we apply the LIE and obtain

E
0�  (Wi; �) = E
0 [w
2
1;i(�)e1;i(�) + w2;i(�)e2;i(�)]d ;i(�)d ;i(�)

0; where (13.29)

e1;i(�) = E
0((Yi � Li(�))
2jXi; Zi) and e2;i(�) = E
0(Yi � Li(�)jXi; Zi):

When �0 = 0; gi( 0; �) = Z 0i�0 and Li( 0; �) = L(gi( 0; �)) = L(Z 0i�0); 8� 2 �: By
(2.4),

e1;i( 0; �) = L(Z 0i�0)(1� L(Z 0i�0)) and e2;i( 0; �) = 0: (13.30)

Hence, when �0 = 0;

E
0�  (Wi;  0; �) = E
0
L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
d ;i(�)d ;i(�)

0: (13.31)

The quantity E
0�  (Wi;  0; �) is continuous in � on � by the DCT using (13.16),

(13.17), and the discussion following (13.24). Hence, �min(E
0�  (Wi;  0; �)) also is

continuous on the compact set � and attains its minimum at some point �min 2 �:
Its minimum is zero only if the positive semi-de�nite matrix E
0�  (Wi;  0; �min) is not
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positive de�nite. The latter is ruled out by the fact that L02(Z 0i�0)=(L(Z
0
i�0)(1�L(Z 0i�0)))

is positive a.s. and the condition in (3.32) that P
0(a
0(h(Xi; �); Zi) = 0) < 1; 8� 2 �;

8a 2 Rd�+1 with a 6= 0: Thus, inf�2� �min(E
0�  (Wi;  0; �)) > 0 when �0 = 0 and the

�rst part of Assumption S3(iv) holds.

As in (13.29)-(13.31), we can show

E
0�
y
��(Wi; �0) = E
0

L02i (�0)

Li(�0)(1� Li(�0))
di(�0)di(�0)

0 (13.32)

by replacing ( 0; �) with �0 and d ;i(�) with di(�0) in the arguments above. Be-

cause L0i(�0) > 0 and 0 < Li(�0) < 1; E
0�
y
��(Wi; �0) is positive de�nite because

E
0di(�0)di(�0)
0 is positive de�nite as speci�ed in (3.32). Hence, the second part of

Assumption S3(iv) holds.

By (13.4) and (13.32), V y(�0; �0; 
0) = E
0�
y
��(Wi; �0):Hence, V y(�0; �0; 
0) is positive

de�nite.

13.6. Veri�cation of Assumption S4

Because m(Wi; �) = � (Wi; �) by Lemma 9.1,

E
0m(Wi; �) = E
0� (Wi; �) = E
0w1;i(�)(Yi � Li(�))d ;i(�)

= E
0w1;i(�)(Li(�0)� Li(�))d ;i(�); (13.33)

where 
0 = (�0; �0; �0; �0); the second equality holds by (3.22), and the third equality

holds by iterated expectations and (2.4). In (13.33), E
0m(Wi; �) depends on �0 only

through Li(�0): Hence,

K(�; 
0) = (@=@�0)E
0w1;i(�)(Li(�0)� Li(�))d ;i(�)

= E
0w1;i(�)L
0
i(�0)h(Xi; �0)d ;i(�); (13.34)

where the �rst equality holds because the observations are identically distributed and the

second equality holds by an exchange of E and @ because E
0 sup�2�;�02�0 jjw1;i(�)L0i(�0)
h(Xi; �0)d ;i(�)jj < 1 by conditions in (3.32) and (@=@�0)gi(�0) = h(Xi; �0): Hence,

Assumption S4(i) holds.
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Now we show that Assumptions S4(ii) holds with

K(�; 
0) = K( 0; �; 
0) = E
0w1;i( 0; �)L
0
i(�0)h(Xi; �0)d ;i(�): (13.35)

De�ne ai(�; �0) = w1;i(�)L
0
i(�0)h(Xi; �0)d ;i(�): It su¢ ces to show that E
nai(�; �

�) !
E
0ai(�; �

�) uniformly over (�; ��) 2 � � �� as 
n ! 
0 and E
0ai(�; �
�) is continuous

in (�; ��): The continuity holds by the continuity of ai(�; �
�) in (�; ��); E
0 sup(�;��)2����

jjai(�; ��)jj < 1 by conditions in (3.32), and the dominated convergence theorem.

By Lemma 9.3, the uniform convergence follows from the pointwise convergence and

the equicontinuity of E
0ai(�; �
�) in (�; ��) over 
0 2 �: The pointwise convergence

E
nai(�; �
�)! E
0ai(�; �

�) holds because (i) the expectationsE
nai(�; �
�) andE
0ai(�; �

�)

depend on �n and �0; respectively, but not on �n and �0; (ii) �n ! �0 implies conver-

gence in distribution by the metric on ��; and (iii) the L1+� boundedness of ai(�; �
�);

i.e., E
0jjai(�; �
�)jj1+� � C < 1 for any 
0 2 �: Equicontinuity holds because for any

(�1; �
�
1) and (�2; �

�
2) with jj(�1; ��1)� (�2; ��2)jj � �;

E
0jjai(�1; �
�
1)� ai(�2; �

�
2)jj

� E
0jjw1;i(�1)� w1;i(�2)jj � jjL0i(��1)h(Xi; �
�
1)d ;i(�1)jj

+E
0jjw1;i(�2)jj � jjL
0
i(�

�
1)h(Xi; �

�
1)d ;i(�1)� L0i(�

�
2)h(Xi; �

�
2)d ;i(�2)jj

� E
0M1(Wi)L
0
ihi sup

�2�
jjd ;i(�)jj� (13.36)

+E
0w1;i

��
L
00
i hi + Lih�;i

�
sup
�2�

jjd ;i(�)jj+ L
0
ihijj sup

�2�
(@=@�0)d ;i(�)jj

�
� � C�

for some C <1 for all 
0 2 �; where the �rst inequality holds by the triangle inequality,
the second inequality follows from jjw1;i(�1) � w1;i(�2)jj � M1(Wi)� and a mean-value

expansion of L0i(�
�
1)h(Xi; �

�
1)d ;i(�1) wrt (�1; �

�
1) around (�2; �

�
2); and the third inequality

holds by the Cauchy-Schwarz inequality and conditions in (3.32). This completes the

veri�cation of Assumption S4.

13.7. Veri�cation of Assumptions B1 and B2

Given the de�nitions in Section 3.2, Assumptions B1(i) and B1(iii) follow immedi-

ately. Assumption B1(ii) holds by taking � < minfb�1; b�2g and Z0 = int(Z):
Given the de�nitions in Sections 3.2, the true parameter space � is of the form in

(2.6). Thus, Assumption B2(i) holds immediately. Assumption B2(ii) follows from the
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form of B� given in (2.9). Assumption B2(iii) follows from the form of B� and the fact
that �� is a product space and ��(�0) does not depend on �0: Hence, the true parameter

space � satis�es Assumption B2.

13.8. Veri�cation of Assumption C6

Assumption C6 holds by Lemma 3.2 under Assumptions S1-S3 and C6y. We now

verify Assumption C6. Assumption C6y(i) holds because � is a scalar. To verify As-

sumption C6y(ii), we have

��(Wi; �) = w1;i(�)(Yi � Li(�))h(Xi; �) and ��(Wi; �) = w1;i(�)(Yi � Li(�))Zi: (13.37)

When �0 = 0;

�� (Wi;  0; �1; �2) = w1;i( 0)(Yi � Li( 0))hZ;i(�1; �2); where

w1;i( 0) =
L0(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
; Li( 0) = L(Z 0i�0); and

hZ;i(�1; �2) = (h(Xi; �1); h(Xi; �2); Z
0
i)
0: (13.38)

The covariance matrix in Assumption C6y(ii) is


G(�1; �2; 
0) = Cov
0(�
�
 (Wi;  0; �1; �2); �

�
 (Wi;  0; �1; �2))

= E
0w
2
1;i( 0)(Yi � Li( 0))

2hZ;i(�1; �2)hZ;i(�1; �2)
0

= E
0
L02(Z 0i�0)

L(Z 0i�0)(1� L(Z 0i�0))
hZ;i(�1; �2)hZ;i(�1; �2)

0; (13.39)

where the �rst equality holds because the observations are independent and identically

distributed, the second equality follows fromE�� (Wi;  0; �1; �2) = 0, which in turn holds

by the LIE and (2.4), and the third equality holds by (13.1). Because L0(Z 0i�0) > 0 and

0 < L(Z 0i�0) < 1; 
G(�1; �2; 
0) is positive de�nite because P (a
0hZ;i(�1; �2) = 0) < 1 for

all a 2 Rdz+2 with a 6= 0 by the conditions in (3.32).

13.9. Veri�cation of Assumptions V1 and V2

Here we verify Assumptions V1 (scalar �) and V2, which are stated in Appendix B

of the main paper.
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For the binary choice model, the matrices J(
0) (= V (
0)) and bJn(�) (= bVn(�)) are
de�ned in (3.35) and (5.18), respectively. De�ne

J(�; 
0) = E
0
L02i (�)

Li(�)(1� Li(�))
di(�)di(�)

0: (13.40)

Under f
ng 2 �(
0); sup�2� jj bJn(�) � J(�; 
0)jj !p 0 and J(�; 
0) is continuous in

� on � by the uniform law of large numbers in Lemma 9.3, where the smoothness and

moment conditions hold by conditions in (3.32). In addition, J(�0; 
0) = J(
0): This

veri�es Assumption V1(i) and V1(ii) (for scalar �).

To verify Assumption V1(iii), note that

�(�; 
0) = J�1(�; 
0) and �(�; 
0) = J�1( 0; �; 
0): (13.41)

Hence, it su¢ ces to show that (i) �min(J( 0; �; 
0)) > 0 and (ii) �max(J( 0; �; 
0)) <1
for all � 2 �: Property (i) holds by essentially the same argument as in the para-

graph following (13.31) with di(�) in place of d ;i(�) using the condition in (3.32) that

E
0di(�)di(�)
0 is positive de�nite 8� 2 �: Positive de�niteness of E
0di(�)di(�)0 implies

the same for E
0 [L
02(Z 0i�0)=(L(Z

0
i�0)(1�L(Z 0i�0)))]di(�)di(�)0 because the latter is well-

de�ned and L02(Z 0i�0)=(L(Z
0
i�0)(1� L(Z 0i�0))) is positive a.s. Property (ii) holds by the

moment conditions in (3.32). This completes the veri�cation of Assumption V1(iii).

Assumptions V1(i) and V1(ii) hold not only under f
ng 2 �(
0; 0; b); but also under
f
ng 2 �(
0;1; !0) in this example. This and b�n !p �0 under f
ng 2 �(
0;1; !0);

which holds by Lemma 5.3 of AC1, imply that Assumption V2 holds. Among the

assumptions employed in Lemma 5.3 of AC1, Assumptions B1, B2, and C7 are veri�ed

directly, Assumptions A, B3, and C1-C5 hold by Lemma 9.1 under Assumptions B1,

B2, and S1-S4, and Assumption C6 holds by Lemma 3.2 under Assumptions S1-S3 and

C6y.
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13.10. Calculation of Partial Derivatives

Here we calculate the partial derivatives of �(Wi; �) wrt �: Let L abbreviate L(gi(�)):

The �rst-order derivative wrt � is

��(Wi; �) = �
�
Yi
L
� 1� Yi
1� L

�
L0
@

@�
gi(�)

= � Yi � L

L(1� L)
L0
@

@�
gi(�) = w1;i(�)(Yi � L)B(�)di(�); where

w1;i(�) =
�L0

L(1� L)
: (13.42)

Now we calculate the second-order derivatives. To this end, we have

@

@�0

�
Yi
L
� 1� Yi
1� L

�
=

�
�Yi
L2

+
�(1� Yi)

(1� L)2

�
L0

@

@�0
gi(�)

= �
�
Yi(1� L)2 + (1� Yi)L

2

L2(1� L)2

�
L0

@

@�0
gi(�)

= �
�
Yi � 2YiL+ L2

L2(1� L)2

�
L0

@

@�0
gi(�)

= � (Yi � L)2

L2(1� L)2
L0

@

@�0
gi(�);

@

@�0
L0 = L00

@

@�0
gi(�); and

@2

@�@�0
gi(�) = Di(�): (13.43)

Hence,

���(Wi; �) =

�
(Yi � L)2

L2(1� L)2
(L0)

2 � Yi � L

L(1� L)
L00
��

@

@�
gi(�)

@

@�0
gi(�)

�
� Yi � L

L(1� L)
L0

@2

@�@�0
gi(�)

= [w21;i(Yi � L)2 + w2;i(Yi � L)]B(�)di(�)di(�)
0B(�)

+w1;i(Yi � L)Di(�); where

w1;i(�) =
�L0

L(1� L)
and w2;i(�) =

�L00
L(1� L)

: (13.44)

Lastly, we calculate the derivatives in (13.8). Let L = Li(�) and L0 = Li(�0): We
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have

FOC = �L0
L
+
1� L0
1� L

=
L� L0
L(1� L)

and

SOC =
L(1� L)� (L� L0)(1� 2L)

L2(1� L)2

=
L� L2 � (L� L0 � 2L2 + 2LL0)

L2(1� L)2

=
L0 + L2 � 2LL0
L2(1� L)2

>
(L0 � L)2

L2(1� L)2
> 0: (13.45)
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14 . Supplemental Appendix E: STAR Example,

Veri�cation of Assumptions

14.1. Veri�cation of Assumptions S1 and S2

Assumption S1 holds by Assumption STAR1(ii).

Assumption S2(i) holds with

�(Wt; �) = U2t (�)=2; where Ut(�) = Yt �X 0
t� �X 0

t� �m(Zt; �): (14.46)

The residual Ut(�) is twice continuously di¤erentiable in � for both the logistic function

and the exponential function. When � = 0; Ut(�) = Yt � X 0
t�; which does not depend

on �: This veri�es Assumption S2(ii).

To verify Assumptions S2(iii) and S2(iv), we have

E
0�(Wt; �) = E
0 [Yt �X 0
t� �X 0

t� �m(Zt; �)]
2

= E
0 (Ut �X 0
t(� � �0)�X 0

t [�m(Zt; �)� �0m(Zt; �0)])
2

= E
0U
2
t + E
0 [X

0
t(� � �0) +X 0

t(�m(Zt; �)� �0m(Zt; �0))]
2:(14.47)

To verify Assumption S2(iii), we need that when �0 = 0;

E
0�(Wt;  ; �)� E
0�(Wt;  0; �) = E
0 [X
0
t(� � �0) +X 0

t�m(Zt; �)]
2 > 0 (14.48)

8 6=  0 and 8� 2 �: The inequality in (14.48) holds unless

P
0((X
0
t +X 0

tm(Zt; �))a = 0) = 1; (14.49)

where a = ((� � �0)
0; �0)0: By Assumption STAR2(i), (14.49) does not hold for any

a 6= 0: Hence, the inequality in (14.48) holds 8 6=  0: This completes the veri�cation

of Assumption S2(iii).

To verify Assumption S2(iv), we need that when �0 6= 0;

E
0�(Wt; �)� E
0�(Wt; �0)

= E
0 [X
0
t(� � �0) +X 0

t�m(Zt; �)�X 0
t�0m(Zt; �0)]

2 > 0 (14.50)
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8� 6= �0: The inequality in (14.50) holds unless

P
0 (X
0
t(� � �0) +X 0

t�m(Zt; �)�X 0
t�0m(Zt; �0) = 0) = 1 (14.51)

for some � 6= �0: Because �0 6= 0; Assumption STAR2(i) implies that (14.51) does not
hold for any � 6= �0: When � = �0; (14.51) becomes

P
0 (X
0
t(� � �0) +X 0

t(� � �0)m(Zt; �0) = 0) = 1: (14.52)

Because (14.49) does not hold for any a 6= 0 for any � 2 �; (14.52) cannot hold for
(�; �) 6= (�0; �0): This completes the veri�cation of Assumption S2(iv).
Assumption S2(v) holds by Assumption STAR5(ii). Assumption S2(vi) holds because

	 does not depend on �:

14.2. Veri�cation of Assumption S3(i)

Now we verify Assumption S3 (vector �). In the STAR model, Zt is an element of

Xt and the function �(!; �) takes the form in (3.19) with

a(Xt; �) = X 0
t� 2 R; h(Xt; �) = m (Zt; �) 2 R; and

��(Wt; a(Xt; �)h(Xt; �); �) = [Yt �X 0
t� � a(Xt; �)h(Xt; �)]

2=2: (14.53)

By Lemma 3.1, we verify Assumption S3(i) by showing that Assumption S3� holds.

To verify Assumption S3�(i), we have

�0(Wt; a(Xt; �0)h(Xt; �0); �0) = �[Yt �X 0
t�0 � a(Xt; �0)h(Xt; �0)] = �Ut: (14.54)

Note that �0(�) and �00(�) in Assumption S3� are partial derivatives of ��(�) wrt a(Xt; �)

h(Xt; �): Assumption S3�(i) holds immediately by Assumption STAR1(i).

To verify Assumption S3�(ii), we �rst derive the terms that appear in it. By (14.53),

�00(Wt; a(Xt; �)h(Xt; �); �) = 1;

h(Xt; �) = m(Zt; �); h�(Xt; �) = m�(Zt; �); h��(Xt; �) = m��(Zt; �);

a�(Xt; �) = Xt; a��(Xt; �) = 0: (14.55)

Assumption S3�(ii) holds because E
0 sup�2�(jm(Zt; �)j + jjm�(Zt; �)jj) � (jm(Zt; �)j +
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jjm�(Zt;

�)jj + jjm��(Zt; �)jj) � jjXtjj2 � C for some C < 1 by Assumption STAR2(iii) and

the Cauchy-Schwarz inequality.

This completes the veri�cation of Assumption S3(i).

14.3. Veri�cation of Assumption S3(ii)

Next, we verify Assumption S3(ii). We �rst show some generic results that are used

in the calculation below. Let A = aa0; where a = [a01; :::; a
0
m]
0 2 Rda and a1; :::; am are

sub-vectors of a. Similarly, A� = a�a�0 and a�1; :::; a
�
m are sub-vectors of a

�: Then,

jjA� A�jj = jjaa0 � a�a�0jj �
mX
i=1

mX
j=1

jjaia0j � a�i a
�0
j jj

�
mX
i=1

mX
j=1

�
jjaia0j � aia

�0
j jj+ jjaia�0j � a�i a

�0
j jj
�

�
mX
i=1

(jjaijj+ jja�i jj)
mX
j=1

jjai � a�i jj; (14.56)

where the �rst inequality holds by the inequality (x2 + y2)1=2 � x + y for non-negative

scalars x and y; the second inequality holds by the triangle inequality, and the third

inequality holds by the inequality jjABjj � jjAjj � jjBjj for matrices A and B:
By (7.12),

jj�  (Wt; �1)� �  (Wt; �2)jj � jjd ;t(�1)d ;t(�1)0 � d ;t(�2)d ;t(�2)
0jj

� 4jjXtjj � jjX 0
tm(Zt; �1)�X 0

tm(Zt; �2)jj
� 4jjXtjj2 � sup

�2�
jjm�(Zt; �)jj � jj�1 � �2jj; (14.57)

where the �rst inequality holds by applying the inequality in (14.56) to a = d ;t(�1) =

(X 0
tm(Zt; �1); X

0
t)
0 and a� = d ;t(�2) = (X 0

tm(Zt; �2); X
0
t)
0 and the second inequality

holds by a mean-value expansion of m(Zt; �) wrt �:

Applying the arguments in (14.57) to �y��(Wt; �
+) with a = (X 0

tm(Zt; �1); X
0
t; !

0
1Xtm�(Zt;
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�1)
0)0 and a� = (X 0

tm(Zt; �2); X
0
t; !

0
2Xtm�(Zt; �2)

0)0 yields

jj�y��(Wt; �
+
1 )� �y��(Wt; �

+
2 )jj � 2jjXtjj2(2 + sup

�2�
jjm�(Zt; �)jj)� (14.58)�

sup
�2�

(jjm�(Zt; �)jj+ jjm��(Zt; �)jj) � jj�1 � �2jj+ sup
�2�

jjm�(Zt; �)jj � jj!1 � !2jj
�
:

Therefore, the function M1(Wt) in Assumption S3(ii) takes the form

M1(Wt) = 4jjXtjj2 � sup
�2�

jjm�(Zt; �)jj

+2jjXtjj2(2 + sup
�2�

jjm�(Zt; �)jj) � sup
�2�

(2jjm�(Zt; �)jj+ jjm��(Zt; �)jj) : (14.59)

The form of M1(Wt) is used in the veri�cation of Assumption S3(iii) below.

Next, we show the form of M2(Wt) in Assumption S3(ii) (vector �). By (7.12),

jj� (Wt; �1)� � (Wt; �2)jj = jjUt(�1)d ;t(�1)� Ut(�2)d ;t(�2)jj
� jUt(�1)� Ut(�2)j � jjd ;t(�2)jj+ jUt(�1)j � jjd ;t(�1)� d ;t(�2)jj; (14.60)

where the inequality holds by the triangle inequality and jjaBjj = jaj � jjBjj when a is a
scalar.

Let � = sup�2� jj�jj and � = sup�2� jj�jj:
Note that in (14.60), the terms concerning Ut(�) satisfy

jUt(�1)� Ut(�2)j � sup
�2�

jj @
@�0

Ut(�)jj � jj�1 � �2jj

� (2jjXtjj+ jjXtjj � � � sup
�2�

jjm�(Zt; �)jj) � jj�1 � �2jj;

jUt(�1)j � jjYtjj+ jjXtjj� + jjXtjj�: (14.61)

The terms concerning d ;t(�) satisfy

jjd ;t(�2)jj � 2jjXtjj and
jjd ;t(�1)� d ;t(�2)jj � jjXtjj � sup

�2�
jjm�(Zt; �)jj � jj�1 � �2jj: (14.62)
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The inequalities in (14.60)-(14.62) imply that

jj� (Wt; �1)� � (Wt; �2)jj �M (Wt) � jj�1 � �2jj; where
M (Wt) = 2jjXtjj2(2 + � � sup

�2�
jjm�(Zt; �)jj)

+(jYtj+ jjXtjj� + jjXtjj�) � jjXtjj � sup
�2�

jjm�(Zt; �)jj: (14.63)

Similarly, (7.14) gives

jj�y�(Wt; �
+
1 )� �y�(Wt; �

+
2 )jj = jjUt(�+1 )dt(�1; !1)� Ut(�

+
2 )dt(�2; !2)jj (14.64)

� jUt(�+1 )� Ut(�
+
2 )j � jjdt(�2; !2)jj+ jUt(�+1 )j � jjdt(�1; !1)� dt(�2; !2)jj:

In (14.64), the terms concerning Ut(�
+) satisfy that

Ut(�
+) = Yt �X 0

t� � jj�jj!0Xt �m(Zt; �);
jUt(�+1 )j � jjYtjj+ jjXtjj� + jjXtjj�;
@

@�+0
U(�+) = �(!0Xtm(Zt; �); jj�jjX 0

tm(Zt; �); X
0
t; jj�jj!0Xtm�(Zt; �)

0);

jUt(�+1 )� Ut(�
+
2 )j � sup

�+2�+
jj @
@�+

U(�+)jj � jj�+1 � �+2 jj

�
�
2 + � �

�
sup
�2�

jjm�(Zt; �)jj+ 1
��

� jjXtjj � jj�+1 � �+2 jj: (14.65)

In (14.64), the terms concerning dt(�; !) satisfy

jjdt(�; !)jj � jjXtjj(2 + sup
�2�

jjm�(Zt; �)jj) and

jjdt(�1; !1)� dt(�2; !2)jj � jjXtjj �
�
sup
�2�

jjm�(Zt; �)jj+ sup
�2�

jjm��(Zt; �)jj
�
� jj�1 � �2jj

+jjXtjj � sup
�2�

jjm�(Zt; �)jj � jj!1 � !2jj: (14.66)

By (14.64)-(14.66),

jj�y�(Wt; �
+
1 )� �y�(Wt; �

+
2 )jj �M�(Wt) � jj�+1 � �+2 jj; where

M�(Wt) = [2 + � � (sup
�2�

jjm�(Zt; �)jj+ 1)] � jjXtjj2 � (2 + sup
�2�

jjm�(Zt; �)jj)

+
�
jjYtjj+ jjXtjj� + jjXtjj�

�
� jjXtjj � sup

�2�
(2jjm�(Zt; �)jj+ jjm��(Zt; �)jj) :(14.67)
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Another term in Assumption S3(ii) is jj"(Wt; �
+
1 )� "(Wt; �

+
2 )jj; which satis�es

jj"(Wt; �
+
1 )� "(Wt; �

+
2 )jj

� jUt(�+1 )� Ut(�
+
2 )j � jjXtjj � sup

�2�
(2jjm�(Zt; �) + jjm��(Zt; �)jj)

+jUt(�+1 )j � jjXtjj � sup
�2�
(jj3m��(Zt; �) +M��(Zt)) � jj�+1 � �+2 jj; (14.68)

where M��(Zt) is as in Assumption STAR2. This and the inequalities in (14.65) imply

that

jj"(Wt; �
+
1 )� "(Wt; �

+
2 )jj �M"(Wt) � jj�+1 � �+2 jj; where M"(Wt) =�

2 + � �
�
sup
�2�

jjm�(Zt; �)jj+ 1
��

� jjXtjj2 � sup
�2�
(2jjm�(Zt; �)jj+ jjm��(Zt; �)jj)

+
�
jYtj+ jjXtjj� + jjXtjj�

�
� jjXtjj � (sup

�2�
jj3m��(Zt; �)jj+M��(Zt)): (14.69)

Equations (14.63), (14.67), and (14.69) yield that Assumption S3(ii) holds with

M2(Wt) =M (Wt) +M�(Wt) +M"(Wt): (14.70)

14.4. Veri�cation of Assumption S3(iii)

In the veri�cation of Assumption S3(iii) below, we use

E
0 sup
�2�

jUt(�)j2q = E
0 sup
�2�

jYt �X 0
t� �X 0

t� �m(Zt; �)j2q

� C1E
0(jYtj+ jjXtjj)2q � C2 (14.71)

for some C1; C2 <1; where the �rst inequality holds because the parameter spaces of �

and � are bounded and jm(Zt; �)j 2 [0; 1] and the second inequality holds by Holder�s
inequality and Assumptions STAR1(ii) and STAR2(iii). Because the value of Ut(�) does

not change when � is reparameterized as �+; (14.71) is equivalent to

E
0 sup
�+2�+

jUt(�+)j2q � C (14.72)

for some C <1:
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By (14.46),

E
0 sup
�2�

j�(Wt; �)j1+� =
1

21+�
E
0 sup

�2�
jUt(�)j2(1+�) � C (14.73)

for some C <1 by (14.71).

By (7.14),

E
0 sup
�+2�+

jj�y�(Wt; �
+)jjq � E
0 sup

�+2�+
jUi(�+)j2qE
0 sup

�+2�+
jjdt(�; !)jj2q

� C1E
0 sup
�2�
(2jjXtjj+ jjXtjj � jjm�(Zt; �)jj)2q � C2(14.74)

for some C1; C2 <1; where the �rst inequality holds by the Cauchy-Schwarz inequality,

the second inequality holds by (14.72) and jjABjj � jjAjj � jjBjj; and the third inequality
holds by Holder�s inequality and Assumptions STAR1(ii) and STAR2(iii).

In the calculation of E
0 sup�2� jj�  (Wi; �)jj1+� and E
0 sup�2� jj�
y
��(Wi; �)jj1+� be-

low, we use the following inequality. Let A = aa0; where a = [a01; :::; a
0
m] 2 Rda and

a1; :::; am are sub-vectors of a. Then,

jjAjj �
mX
i=1

mX
j=1

jjaia0jjj �
 

mX
i=1

jjaijj
!2

; (14.75)

by arguments analogous to those in (14.56).

By (7.12),

E
0 sup
�2�

jj�  (Wi; �)jj1+� = E
0 sup
�2�

jjd ;t(�)d ;t(�)0jj1+� � E
0(2jjXtjj)2(1+�) � C

(14.76)

for some C <1; where the �rst inequality holds by (14.75) with a = (X 0
tm(Zt; �); X

0
t)
0

and the second inequality holds by Assumptions STAR1(ii) and STAR2(iii).

Similarly, by (7.14),

E
0 sup
�+2�+

jj�y��(Wi; �
+)jj1+� = E
0 sup

�+2�+
jjdt(�; !)dt(�; !)0jj1+�

� E
0 sup
�2�

(2jjXtjj+ jjXtjj � jjm�(Zt; �)jj)2(1+�) � C (14.77)

for some C < 1; where the �rst inequality holds by (14.75) with a = (X 0
tm(Zt; �); X

0
t;

!0Xtm�(Zt; �))
0 and the second inequality holds by Assumption STAR2.
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By (7.14),

E
0 sup
�+2�+

jj"(Wi; �
+)jjq � E
0 sup

�+2�+
jjUt(�+)jj2q

�E
0 sup
�2�
(2jjXtjj � jjm�(Zt; �)jj+ jjXtjj � jjm��(Zt; �)jj)2q � C (14.78)

for some C <1; where the �rst inequality holds by the Cauchy-Schwarz inequality and

the inequality jjAjj �
P

i;j jjAi;jjj for any matrix A; where Ai;j denotes an element of
A; and the second inequality follows from (14.72), Holder�s inequality, and Assumptions

STAR1(ii) and STAR2(iii).

Finally, E
0(M1(Wt) + M2(Wt)
q) � C for some C < 1 by Holder�s inequality,

(14.59), (14.63), (14.67), (14.69), (14.70), and Assumptions STAR(ii) and STAR2(iii).

This completes the veri�cation of Assumption S3(iii) (vector �).

14.5. Veri�cation of Assumptions S3(iv) and S3(v)

To verify Assumption S3(iv), note that

E
0�  (Wt;  0; �) = E
0d ;t(�)d ;t(�)
0 and

E
0�
y
��(Wt; �0) = E
0dt(�0; !0)dt(�0; !0)

0: (14.79)

For any � = (�1; �2) 6= 0; �1; �2 2 Rd� ; and 8� 2 �;

�0E
0d ;t(�)d ;t(�)
0� = E
0 (�

0
1Xtm(Zt; �) + �02Xt)

2
> 0; (14.80)

where the inequality holds by Assumption STAR2(i). This implies thatE
0d ;t(�)d ;t(�)
0

is positive de�nite 8� 2 �:
For any � = (�1; �2; �3; �4) 6= 0; �1; �2 2 Rd� ; �3; �4 2 R; 8! with jj!jj = 1 and

8� 2 �;

�0E
0dt(�; !)dt(�; !)
0� (14.81)

= E
0(�
0
1Xtm(Zt; �) + �02Xt + �3!

0Xtm�;1(Zt; �) + �4!
0Xtm�;2(Zt; �))

2 > 0;

where the inequality holds by Assumption STAR2(ii) with a = (�1; �2; �3!; �4!): Note

that � 6= 0 implies that a 6= 0: The inequality in (14.81) implies that E
0�
y
��(Wt; �0) is

positive de�nite 8
0 2 �:
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To verify Assumption S3(v), note that 8m 6= 0;

Cov�(�
y
�(Wt; �0); �

y
�(Wt+m; �0)) = E
0UtUt+mdt(�0; !0)dt+m(!0; �0)

0 = 0 (14.82)

by Assumption STAR1(i). This yields that

V y(�0; �0; 
0) = Cov�0U
2
t dt(�0; !0)dt(�0; !0)

0

= E
0U
2
t dt(�0; !0)dt(�0; !0)

0; (14.83)

where the second equality uses E
0Utdt(�0; !0) = 0 by Assumption STAR1(i). The

matrix E
0U
2
t dt(�0; !0)dt(�0; !0)

0 is positive de�nite by the argument in (14.81) with

d ;t(�) replaced by Utdt(�; !) and using E
0(U
2
t jFt�1) = �2 > 0:

14.6. Veri�cation of Assumption S4

To verify Assumption S4, we have

E
0� (Wt; �) = �E
0Ut(�)d ;t(�)
= �E
0(Ut +X 0

t(�0 � �) +X 0
t[�0m(Zt; �0)� �m(Zt; �)])d ;t(�) and

K(�; 
0) = �E
0d ;t(�)X
0
tm(Zt; �0)

= �E
0d ;t(�)d ;t(�0)
0 � S 0�: (14.84)

where S� = [Id� : 0] 2 Rd��(2d�):

Assumption S4(i) holds with K(�; 
0) in (14.84) by the moment conditions in As-

sumption STAR2(iii). To verify Assumption S4(ii), we need to show thatE
0d ;t(�)d ;t(�0)
0

is continuous in �; �0; and �: Continuity in � and �0 follows from the the continuity of

m(Zt; �) in � and the moment conditions in Assumption STAR2(iii). Continuity in �

holds because �n ! �0 under d� implies weak convergence of (Yt; Yt+m) for all t;m � 1;
which in turn implies the convergence of E
nd ;t(�)d ;t(�0)

0 to E
0d ;t(�)d ;t(�0)
0 by the

moment conditions in Assumption STAR2(iii).

The continuity in �; �0; and � holds uniformly over � 2 � by Lemma 9.2 using (i)
the pointwise convergence above, (ii) the fact that E
0d ;t(�)d ;t(�0)

0 is di¤erentiable

in � and the partial derivative is bounded over � 2 �; and (iii) the compactness of �.
This completes the veri�cation of Assumption S4.
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14.7. Veri�cation of Assumptions B1 and B2

Now we verify Assumptions B1 and B2. Assumptions B1(i) and B1(iii) hold by

Assumptions STAR5(i) and STAR5(ii) immediately. Assumption B1(ii) holds with

Z0 = int(Z0) by Assumptions STAR4(iv) and STAR5(iii). Assumption B2(i) holds
immediately because the true parameter space � is of the form in (2.6) and � is as-

sumed to be compact. Assumption B2(ii) holds by Assumption STAR4(ii). Assumption

B2(iii) holds by Assumption STAR4(iv) and the form of the true parameter space in

(7.10).

14.8. Veri�cation of Assumptions C6 and C7

Assumption C6 is implied by Assumption STAR3(i).

Now we verify Assumption C7 with H(�; 
0) and K(�; 
0) given in (7.9). By the

matrix Cauchy-Schwarz inequality in Tripathi (1999),

K(�; 
0)
0H�1(�; 
0)K(�; 
0) � E
0XtX

0
tm

2(Zt; �0): (14.85)

The matrix ���holds as an equality if and only if Xtm(Zt; �0)a+(X
0
t; X

0
tm(Zt; �))c = 0

with probability 1 for some a 2 Rd� and c 2 R2d� with (a0; c0)0 6= 0: The ���holds as
an equality uniquely at � = �0 by Assumption STAR2(i).

Proof of Lemma 7.1. We prove Lemma 7.1 by verifying Assumption C6y and using
Lemma 3.2. Note that

��(Wt;  0; �) = UtXtm(Zt; �);

��(Wt;  0; �) = UtXt;

�� (Wi;  0; �1; �2) = Utd
�
 (�1; �2); where

d� (�1; �2) = (X
0
tm(Zt; �1); X

0
tm(Zt; �2); X

0
t)
0: (14.86)

The matrix 
G(�1; �2; 
0) that appears in Assumption C6
y takes the form


G(�1; �2; 
0) = E
0U
2
t d

�
 (�1; �2)d

�
 (�1; �2)

0 (14.87)

by Assumption STAR1(i). Assumption C6y(ii) holds by Assumption STAR2(i) and

E
0(U
2
t jFt�1) = �2 > 0 using arguments analogous to those in (14.81). �
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14.9. Veri�cation of Assumptions V1 (vector �) and V2

Here we verify Assumptions V1 (vector �) and V2, which are stated in Appendix B

of the main paper.

In the STAR model, Assumption V1(i) holds with

J(�+; 
0) = E
0dt (�; !) dt(�; !)
0 and

V (�+; 
0) = E
0U
2
t dt (�; !) dt(�; !)

0 (14.88)

+E
0 [X
0
t(�0 � �) +X 0

t(jj�0jj!0m(Zt; �0)� jj�jj!m(Zt; �))]2dt(�; !)dt(�; !)0;

by the uniform law of large numbers in Lemma 9.3.

Assumption V1(ii) holds by the continuity ofm(z; �) andm�(z; �) in � and Assump-

tion STAR2(iii).

To verify Assumption V1(iii), note that �(�; !; 
0) takes the form

�(�; !; 
0) (14.89)

=
�
E
0dt (�; !) dt(�; !)

0��1E
0U2t dt (�; !) dt(�; !)0 �E
0dt (�; !) dt(�; !)0��1 :
Given that E
0dt (�; !) dt(�; !)

0 and E
0U
2
t dt (�; !) dt(�; !)

0 are both positive de�nite,

�(�; !; 
0) is positive de�nite 8� 2 � and 8! with jj!jj = 1:
Because the determinant of E
0dt (�; !) dt(�; !)

0 is bounded away from 0 as a function

of (�; !) 8
0 2 � and jjE
0dt (�; !) dt(�; !)0jj � C1 for some C1 < 1 8
0 2 � by

Assumption STAR2(iii), we have jj
�
E
0dt (�; !) dt(�; !)

0��1 jj � C2 for some C2 < 1:

Hence, jj�(�; !; 
0)jj � C 8� 2 � and 8! with jj!jj = 1: This completes the veri�cation
of Assumption V1(iii).

Assumption V1(iv) holds by Assumption STAR3(ii).

Assumptions V1(i) and V1(ii) hold not only under f
ng 2 �(
0; 0; b); but also under

f
ng 2 �(
0;1; !0) in this example. This and b�n !p �0 under f
ng 2 �(
0;1; !0);

which holds by Lemma 5.3 of AC1, imply that Assumption V2 holds. Regarding the

assumptions employed in Lemma 5.3 of AC1, Assumptions B1, B2, C6, and C7 are ver-

i�ed above and Assumptions A, B3, and C1-C4 hold by Lemma 9.1 under Assumptions

B1, B2, and S1-S4. �
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