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Abstract

This paper quantifies the role of alternative shocks in account-
ing for the recent declines in Japanese saving rates and interest rates
and provides some projections about their future course. We consider
three distinct sources of variation in saving rates and real interest
rates: changes in fertility rates, changes in survival rates, and changes
in technology. The empirical relevance of these factors is explored us-
ing a computable dynamic OLG model. We find that the combined
effects of demographics and slower total factor productivity growth
successfully explain both the levels and the magnitudes of the de-
clines in the saving rate and the after-tax real interest rate during the
1990s. Model simulations indicate that the Japanese savings puzzle is
over.
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1 Introduction

One of the biggest distinctions between Japanese and U.S. households
is that the Japanese save more. As recently as 1990 the gap between the
personal saving rate in Japan and the United States exceeded 8 percentage
points. This gap has spawned a large body of research that has documented
these differences and tried to account for the Japanese saving puzzle (see, e.g.,
Hayashi (1997) and Horioka (1990) for reviews of this literature). Recently
this gap has been narrowing. In 2002 the gap had fallen to less than 2
percentage points, leading some to predict that the Japanese saving rate is
about to fall below the U.S. saving rate of 4 percent. Associated with this
decline in the Japanese personal saving rate has been a concurrent decline
in the after-tax real return on capital or after-tax real interest rate, from 6
percent in 1990 to 4 percent in 2000.1

This paper quantifies the role of alternative shocks in accounting for the
recent declines in Japanese saving rates and interest rates and provides some
projections about their future course. We start from the life-cycle hypothesis
of Modigliani and Brumberg (1954). This choice is motivated by recent find-
ings of Hayashi (1995) and Horioka, et.al. (2000). Hayashi estimates Engel
curves for Japanese households and finds that they are inconsistent with the
hypothesis that bequest motives are important. Horioka, et.al. (2000) argue,
more generally, that survey evidence of Japanese households is much more
consistent with the life-cycle hypothesis than the alternatives of altruistic
or dynastic households.2 Under the life-cycle hypothesis household saving
varies with age. With the further assumption of overlapping generations,
demographic changes such as the aging of a baby boom can have important
implications for saving rates. In order to measure the magnitude of these
effects we assume that households live for 80 years. Households are assumed
to interact in perfectly competitive markets in a closed, general equilibrium

1Our measure of the after-tax real interest rate is from Hayashi and Prescott( 2000)
2To check the robustness of our results, we also report simulations from a variant of

the model populated by infinitely-lived, representative households.
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economy.3

We focus our analysis on three distinct sources of variation in saving rates
and real interest rates: changes in fertility rates, changes in survival rates,
and changes in technology.4 The interaction of fertility rates and survival
rates jointly determines the age distribution of the population at any point
in time. By varying fertility rates and survival rates, we can model the effects
of a baby boom and increased longevity on the age distribution and thus on
aggregate saving rates and interest rates. In a model calibrated to Spanish
data, Rios-Rull (2002) found that permanent shocks to demographics have
large effects on saving and interest rates.

Changes in the growth rate of productivity can also have large effects on
saving and interest rates. Hayashi and Prescott (2002), for instance, have
found that the the productivity slow-down in the 1990’s produces big declines
in after-tax real interest rates in a representative agent real business cycle
model. Chen, İmrohoroğlu, and İmrohoroğlu (2005, 2006a, 2006b) found that
changes in total factor productivity (TFP) growth alone can explain much
of the variation in the Japanese saving rate over the last four decades of the
twentieth century.5

We calibrate our model to Japanese data and conduct a dynamic analysis

3Japan is one of the largest economies in the world both in terms of aggregate and per
capita GDP. Japan also has the smallest trade-to-GDP ratios for both goods and services
in the OECD. For instance, in 2001 the trade-to-GDP ratio for goods was 9.3% in the
United States and 8.4% in Japan and the ratio of services to GDP was 2.4% and 2.3%
respectively. For these reasons we think it reasonable to assume that real interest rates
are determined in the domestic market in Japan.

4In explaining the historical behavior of Japanese saving and interest rates, we also
permit time variation in the depreciation rate and various indicators of fiscal policy, in-
cluding government purchases, tax rates, the public debt, and the size of the public pension
system.

5Changes in unemployment risk can also affect saving and interest rates. Unemploy-
ment rates in Japan rose from 2.2 percent in 1990 to 5.5 percent in 2003. Moreover,
between 1990 and 2000 the median duration spell of unemployment rose from 3.5 to 5.5
months and the replacement rate fell from 0.84 to 0.68. If this risk is largely uninsurable
then households will respond to it by increasing their demand for savings. The general
equilibrium effects described in Aiyagari (1994) then imply that the real interest rate will
fall. Although not reported here, we also simulated steady-state versions of our model
incorporating unemployment risk and found that the measured increase in unemployment
risk during the 1990s had a much smaller impact on saving and interest rates than ei-
ther TFP or fertility rates. TFP and fertility rates had about equal sized affects on the
saving rate. Because modeling unemployment risk when performing dynamic simulations
substantially increases the computational burden, we chose to omit it.
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starting from 1961 to trace out the evolution of saving and interest rates
through the middle of the next century under alternative assumptions about
productivity and fertility. We find that the model is reasonably successful in
reproducing the observed year-to-year pattern of saving rates between 1961
and 2000. It also generates a substantial secular decline in interest rates over
that period that roughly matches that seen in the data, although it does not
produce the extraordinarily high real returns observed in the late 1960s and
early 1970s. For the 1990s, the model predicts a decline in the saving rate
from 0.136 to 0.055, which is reasonably close to the decline from 0.149 to
0.057 observed empirically. Over the same period, it predicts a decline in the
interest rate of 240 basis points, compared with the observed decline of 210
basis points.

Using the National Institute for Population and Social Security’s (IPSS)
intermediate population projections and assuming that annual TFP growth
recovers to 2 percent by 2010, the model predicts that the net national saving
rate will fall to a low of 1.5 percent in 2051 and then remain below five percent
indefinitely. The real interest rate gradually increases to about 5.7 percent by
2025 and remains in that neighborhood until at least the end of the century.

We also conduct a sensitivity analysis to assess the robustness of these
conclusions to our conditioning assumptions about future demographics and
TFP growth. Using the IPSS high population projections, the net national
saving rate reaches a minimum of 2.2 percent in 2046 and then gradually rises
to 4.5 percent after that. Under the low population projections, the saving
rate falls to zero beginning in the year 2066. These alternative population
assumptions have little effect on interest rate forecasts, however. To assess
the role of our conditioning assumptions for TFP we use the intermediate
population projections but assume that TFP growth remains at the levels
of the 1990s. These conditioning assumptions yield forecasts of both saving
and interest rates that are noticeably below the baseline case. The interest
rate approaches a long-run value more than 100 basis points lower than the
baseline forecast. The saving rate remains negative into the next century and
eventually settles at a value below one percent, compared with 4.5 percent
in the baseline specification.

Our work is related to research by Hayashi, Ito, and Slemrod (1988),
who investigate the role of imperfections in the Japanese housing market
in accounting for the Japanese saving puzzle in an overlapping generations
endowment economy. They find that the combination of rapid economic
growth, demographics, and housing market imperfections explains the level
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of Japanese saving rates in 1980. Their projections, which condition on an
unchanged real interest rate, show declines in the saving rate of about 10
percent between 2000 and 2030.

The remainder of the paper is divided into six sections. In section 2 we
describe the model economy, while section 3 reports its calibration. Section
4 evaluates the model’s ability to explain the observed behavior of saving
and interest rates since 1961 and section 5 reports our projections. Section
5 contains our conclusions.

2 Model

2.1 Demographic Structure

This economy evolves in discrete time. We will index time by t where
t ∈ {...,−2,−1, 0,+1,+2, ...}. Households can live at most J periods and J
cohorts of households are alive in any period t. They experience mortality
risk in each period of their lifetime.

Let µj,t denote the number of households of age j in period t. Then the
dynamics of population are governed by the first-order Markov process:

µt+1 =


(1 + n1,t)ψ1,t 0 0 . . . 0

ψ2,t 0 0 . . . 0
0 ψ3,t 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 ψJ,t 0

µt ≡ Γtµt, (1)

where µt is a J × 1 vector that describes the population of each cohort in
period t, ψj,t is the conditional probability that a household of age j − 1 in
period t survives to period t + 1, and ψ1,t = 1 for all t. The growth rate of
the number of age-1 households between periods t and t+1 is n1,t, which we
will henceforth refer to as the net fertility rate.6 The aggregate population

6Note that this usage differs from other common definitions of the fertility rate and
that the net fertility rate, as we have defined it, can be negative, indicating a decline in the
size of the youngest cohort from one period to the next. We compute quantities analogous
to n1,t from Japanese data and use these values to parameterize our model. We use our
definition of the fertility rate to describe both the model quantities and their empirical
counterparts.
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in period t, denoted by Nt, is given by

Nt =
J∑

j=1

µj,t. (2)

The population growth rate is then given by nt = Nt+1/Nt. The uncondi-
tional probability of surviving from birth in period t− j + 1 to age j > 1 in
period t is:

πj,t = ψj,tπj−1,t−1 (3)

where π1,t−j+1 = 1 for all t.

2.2 Firm’s Problem

Firms combine capital and labor using a Cobb-Douglas constant returns
to scale prodution function

Yt = AtK
α
t L

1−α
t , (4)

where Yt is the output which can be used either for consumption or invest-
ment, Kt is the capital stock, Lt is effective aggregate labor input and At

is total factor productivity.7 Total factor productivity grows at the rate
γt = A

1/(1−α)
t+1 /A

1/(1−α)
t . We will assume that the the market for goods and

the markets for the two factor inputs are competitive. Then labor and capital
inputs are chosen according to

rt =αAtK
α−1
t L1−α

t (5)

wt =(1− α)AtK
α
t L

−α
t , (6)

where rt is the rental rate on capital and wt is the wage rate per effective
unit of labor.

7As described below, labor efficiency is assumed to vary with age, so that changes in
the age distribution of the population alter the average efficiency of the labor force. This
effect is measured by Lt, while changes in efficiency due to technical progress are captured
by At.
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2.3 Household’s Problem

All households have one adult but may have one or more children. The
utility function for a household born (and thus of age 1) in period s is given
by

Us =
J∑

j=1

βj−1πj,s+j−1ηju(cj,s+j−1/ηj, `j,s+j−1), (7)

where β is the preference discount rate, cj,s+j−1 is total household consump-
tion for a household of age j in period s + j − 1, and ηj is the scale of a
household of age j. This specification of preferences makes it possible for the
size of a household to vary with the age of the adult member but imposes
the restriction that the distribution of household size, [η1, ..., ηJ ], remain fixed
over time.

Households of age j and cohort s supply labor of 1 − `j,s+j−1 in period
s + j − 1. They receive labor income that consists of an efficiency-weighted
wage rate ws+j−1εj per unit of labor supplied, where wt denotes the market
wage rate per unit of effective labor in period t and εj denotes the time-
invariant efficiency of an age-j worker. The efficiency index εj is assumed
to drop to zero for all j ≥ Jr, where Jr is the retirement age. The budget
constraint for a household of age j in period t is:

cj,t + aj,t ≤ Rtaj−1,t−1 + wtεj(1− `j,t) + bj,t + ξt − θj,t (8)

where aj,t denotes assets held at the end of period t (with a0,t = 0 for all
t), θj,t are taxes imposed by the government, bj,t denotes public pension
(social security) benefits, ξt is a uniform, lump-sum government transfer to
all individuals alive in period t, and Rt = 1 + rt − δt. Here, δt denotes the
depreciation rate of capital in period t. The pension benefit bj,t is assumed
to be zero before age Jr and a lump-sum payment thereafter. Households
are also subject to a borrowing constraint that rules out negative holdings of
assets: aj,t ≥ 0.

Taxes imposed by the government are given by

θj,t = τ c
t cj,t + τa

t (Rt − 1)aj−1,t−1 + τ `
t + wtεj(1− `j,t) (9)

where τ c is the tax rate on consumpation and τa and τ ` are the tax rates on
income from labor and capital, respectively.
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2.4 Household’s Decision Rules

Suppose that a household’s asset holdings take on a finite number of
values a ∈ {0, ....., ā}. Then we can summarize the situation of an age-
j household in period t with the state variable xj,t. The individual state
consists solely of asset holdings aj−1,t−1 : xj,t = {aj−1,t−1}. The period-t
wealth distribution describes the measure of households in each individual
state: λj(xj,t), j = 1, ....J. The aggregate state of the economy, denoted Xt,
is composed of the aggregate capital stock, Kt, total factor productivity,
At, the wealth distribution, λt, and the population distribution, µt,: Xt =
{Kt, At, λt, µt}. Finally, define the government policy rule in period t as Ψt.
It will be convenient when solving the household’s problem to assume that
households know the entire future path of government policies, Ψt = {Ψi}∞i=t

and the entire future path of total factor productivity. With these various
definitions and assumptions in hand, we can now state Bellman’s equation
for a typical household:

Vj,t(xj,t;Xt,Ψ
t) (10)

= maxu(cj,t/ηj, `j,t) + βψj+1Vj+1(xj+1,t+1;Xt+1,Ψ
t+1)

subject to

cj,t + aj,t ≤ R(Xt)aj−1,t−1 + w(Xt)εj(1− `j,t) + bj,t + ξt − θj,t (11)

aj,t ≥ 0, cj,t ≥ 0 (12)

µt+1 = Γtµt (13)

and the law of motion of the aggregate wealth distribution and the law of mo-
tion for the aggregate capital stock given by Kt+1 = K(Xt). Since households
die at the end of period J , VJ+1,t = 0 for all t. A solution to the household’s
problem consists of a sequence of value functions: {Vj,t(xj,t;Xt,Ψ

t)}J
j=1 for all

t, and policy functions:{aj,t(xj,t;Xt,Ψ
t), cj,t(xj,t;Xt,Ψ

t), `j,t(xj,t;Xt,Ψ
t)}J

j=1

for all t. The law of motion for the wealth distribution is computed using
forward recursion on the following sum:

λj+1(xj+1,t+1) =
∑

aj−1,t−1∈Λj,t

λj(xj,t) (14)

where the set Λj,t is {aj−1,t−1|aj,t ∈ aj,t(xj,t, Xt;Ψ
t)}. The recursion starts

from the initial conditions of a newly-born household with zero assets, λ0(0) =
1 and otherwise λ0(·) = 0.
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2.5 Government

The government raises revenue by taxing consumption and income from
labor and capital at the flat rates τ c, τ `, and τa, respectively. It receives
additional revenue by imposing a 100-percent tax on all accidental bequests.
Total accidental bequests in period t are:

Zt =
J∑

j=2

∑
a

(1− ψj,t)R(Xt)aj−1,t−1(xj−1,t−1)λj−1(xj−1,t−1)µj−1,t−1 (15)

and total tax government is

Tt =
J∑

j=1

∑
a

θj,t(xj,t)λj(xj,t)µj,t + Zt (16)

Note that θj,t depends on xj,t since it is a function of aj−1,t−1 by (10).
Total government expenditure is the sum of government purchases, public

pension benefits, interest on the public debt, and lump-sum transfers. Gov-
ernment purchases are set exogenously to Gt. Aggregate pension benefits are
given by

Bt =
∑
j=Jr

µj,tbj,t. (17)

The public debt is set exogenously and evolves according to

Dt+1 = RtDt +Gt +Bt + Ξt − Tt. (18)

Aggregate lump-sum transfers, Ξt, are set so as to satisfy this equation, and
the per capita transfer, ξt, is determined from the equation

Ξt =
J∑

j=1

ξtµj,t. (19)

2.6 Recursive Competitive Equilibrium

Given this description of the economy we can now define a recursive
competitive equilibrium.

Definition 1: Recursive Competitive Equilibrium
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Given government policy rules {Ψt}t and a law of motion for popula-
tion {Γt}t, a recursive competitive equilibrium is a set of value functions
{Vj,t(xj,t;Xt,Ψ

t}J
j=1 for all t, policy functions: {aj,t(xj,t;Xt,Ψ

t), cj,t(xj,t;Xt,Ψ
t),

`j,t(xj,t;Xt,Ψ
t)}J

j=1 for all t, a wealth distribution λt, factor prices {w(Xt), r(Xt)}
for all t, a law of motion for aggregate capital Kt+1 = K(Xt) and a function
for the average efficiency of labor input ht = h(Xt) such that:

• Given the functions of factor prices {w(Xt), R(Xt)} and the law of
motion for aggregate capital K(Xt) and the function for average ef-
ficiency of labor input h(Xt), the set of household policy functions
{aj,t(xj,t;Xt,Ψ

t), cj,t(xj,t;Xt,Ψ
t), `j,t(xj,t;Xt,Ψ

t)} solve the household’s
dynamic program (11).

• The factor prices are competitively determined so that (5) and (6) hold
and Rt = rt + 1− δt.

• The commodity market clears:

Yt = Ct + It +Gt

where Ct =
∑

j

∑
a cj,t(xj,t;Xt,Ψ

t)λj(xj,t)µj,t is aggregate consumption
and It is aggregate investment, and Gt is government purchases.

• The laws of motion for aggregate capital and the effective labor input
are given by:

K(Xt) =
∑

j

∑
a

aj,t(xj,t;Xt,Ψ
t)λj(xj,t)µj,t

L(Xt) =
Jr−1∑

j

∑
a

εj(1− `j,t(xj,t;Xt,Ψ
t))λj(xj,t)µj,t.

• The measure of households λt is generated by (15).

• The government budget constraint is satisfied in each period:

Dt+1 − Tt = RtDt +Gt +Bt + Ξt

In our simulations we assume that the economy eventually approaches a
stationary recursive competitive equilibrium. Before we can define a station-
ary recursive competitive equilibrium we need to define some of the building
blocks.
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Definition 2: Stationary population distribution

Suppose that the fertility rate and the conditional survival probabilities
are constant over time: n1,t = n1 for all t and ψj,t = ψj for all t and j.
Then a stationary population distribution, µ∗t , satisfies µ∗t+1 = Γ∗µt and
µ∗t+1 = (1 + n1) · µ∗t where

Γ∗ =


(1 + n1)ψ1 0 0 . . . 0

ψ2 0 0 . . . 0
0 ψ3 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 ψJ 0


A stationary population distribution has two desirable properties. First,

cohort shares in the total population are constant over time: µj,t+1/Nt+1 =
µj,t/Nt for all t. Second, the aggregate population growth rate is time-
invariant: nt = Nt+1/Nt = n1 for all t. This allows us to convert the growth
economy into a stationary economy using the following transformations:

c̃j,t =
cj,t

A
1/(1−α)
t

, ãj,t =
aj,t

A
1/(1−α)
t

Other per-capita variables in the household budget constraint are trans-
formed in same way. Aggregate variables in period t are transformed by
dividing by A

1/(1−α)
t Nt except for aggregate labor input, which is transformed

by dividing by Nt.

Definition 3: Stationary recursive competitive equilibrium

Suppose the population distribution is stationary and the growth rate of
total factor productivity is constant over time: γt = γ∗ for all t. Then a
stationary recursive competitive equilibrium is a recursive competitive equi-
librium that satisfies:

c̃j,t = c̃∗j , ãj,t = ã∗j ,
˜̀
j,t = `∗j

for all t and j, i.e., the factor prices are constant over time: {rt, w̃t} =
{r∗, w̃∗} for all t where w̃ = w/A1/(1−α).

This completes the description of the model.
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3 Calibration

The model is calibrated to Japanese data. We assume that each household
has one adult member. New households are formed when individuals reach
the age of 21 and households die no later than the end of the 100th year of
life, i.e., J = 80. The labor efficiency profile, εj, is constructed from Japanese
data on employment, wages, and weekly hours following the methodology de-
scribed in Hansen (1993). The family scale, ηj, is calibrated to Japanese data
following the methodology of Cubeddu and Rios-Rull (1996). The vectors
representing both labor efficiency and family scale as a function of age are
assumed to be time-invariant. The net fertility rate, n1,t, is calibrated to
data on the growth rate of 21-year-olds for the period 1961-2000, and the
series is extended to 2150 using various projections that will be described in
more detail below. A similar procedure is used to calibrate the conditional
survival probabilities, ψj,t.

8

We assume that the utility function is isoelastic: is given by

[cφh,i,j(1− `h,i,j)
1−φ]1−σ

1− σ
, (20)

We choose σ, the risk aversion coefficent, to be 0.617. This choice produces a
hump-shaped life-cycle consumption profile. The preference discount factor
is chosen to reproduce the average capital-output ratio observed in Japanese
data over the period 1984-2001. This yields a value of β = 0.9655. The
preference parameter on leisure, is calibrated to reproduce average hours in
Japanese data over the period 1984-2001. This results in a value of φ = 0.652.
And the capital share parameter, α, is calibrated to reproduce capital’s share
of output over the same sample period 0.3625.9

Dynamic simulations require values for the initial state of the economy in
1961 and for the entire future time path of the exogenous elements of the state
vector. The aggregate state vector Xt consists of the aggregate capital stock,
total factor productivity, the age distribution of the population, and total
asset holdings of each cohort. Of these, TFP is taken as exogenous. The age
distribution of the population at each date is determined by the exogenous
sequences of the net fertility rate, n1,t, and the survival probabilities, ψj,t, so

8See the data appendix for more details.
9We chose to limit the sample period for calibrating the parameters to 1984-2001 be-

cause we believe this sample period to be more representative of the long-run properties
of the Japanese economy than the 1961-2001 sample period.
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that knowledge of these sequences is also required. Finally, it is necessary to
know the path of future government policies, Ψt, and the depreciation rate,
δt.

Total factor productivity is constructed using the same methodology as
Hayashi and Prescott (2002) for the period 1961 through 1999. In our base-
line model, we assume a linear increase in the TFP growth rate to 2 percent
between 2000 and 2010, after which TFP is assumed to grow at a constant
rate of 2 percent per year. We also report analyses using alternative pro-
jections for TFP growth. In some variants of our model, the depreciation
rate is taken from Hayashi and Prescott up through 2001 and is assumed to
remain at the 2001 value of 0.077 thereafter. In our baseline model, however,
we adopt the simpler assumption that the depreciation rate is constant at
0.0848, the average of the Hayashi-Prescott series.

We use actual data on the growth rate of 21-year-olds, n1,t, and survival
probabilities ψj,t to construct the age distribution of the population that that
would arise in a closed economy. We use historical data for the years 1961-
2000 and projections of these series by the National Institute for Population
and Social Security Research (IPSS) up through 2050. These data are de-
scribed in more detail in the Appendix. In our baseline model, we assume
that survival probabilities remain unchanged after 2050 and that the net fer-
tility rate increases linearly to zero between 2050 and 2060 and remains at
zero thereafter. These assumptions about fertility and survival rates imply
an age distribution of the population at each date.

Figure 1 shows the implications of our baseline demographic assumptions
for the time path of fractions of different age groups in total population.
The figure also displays the actual cohort shares and the official IPSS open-
economy projections. These are quite close to the model series. Our demo-
graphic assumptions imply that the Japanese population falls by about 50
percent over the next 100 years.

In some variants of our model, government purchases as a fraction of
GDP as well as the tax rates on income from labor and capital are set to
the values reported in Hayashi and Prescott (2002) for the period 1961-2001,
after which they are assumed to remain constant at their values for 2001.
Similarly, the net public debt as a fraction of GDP is taken from Broda and
Weinstein (2004) for 1978-2004 and from government sources for 1961-1977.
Each of these fiscal variables is then assumed to remain constant indefinitely
at its more recently observed value. In our baseline model, however, the
government purchases ratio and the tax rates are assumed to be constant
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from 1961 onward at the average values reported by Hayashi and Prescott.
Specifically, government purchases are set to 14.5 percent of GDP and the
tax rates on labor and capital are set to 0.245 and 0.445, respectively. The
baseline model also assumes the public debt to be zero in all periods. All
variants of the model reported here set the consumption tax rate to zero.
series. In addition, all variants of the model assume public pension benefits
to be equal to 17 percent of average earnings up through 1976 and 40 percent
thereafter.

We take the value of the capital stock in 1961 from Hayashi and Prescott
(2002). We do not have Japanese data on asset holdings by age in 1961.
Therefore, we assume a uniform distribution by age in our baseline model.

4 Explaining Historical Behavior

The Japanese net national saving rate and after-tax real interest rate
exhibited substantial variation during the decades following 1960. The saving
rate peaked in excess of 25 percent in the late 1960s, then fluctuated between
10 and 15 percent from the early 1970s until 1990, and fell to about 5 percent
during the 1990s. The after-tax real return on capital fell averaged 17.2
percent from 1961 to 1970 and fell below 4 percent during some years in
the 1990s. Before using our model to explain this recent decline in Japanese
saving and interest rates or to project the saving rate saving and interest
rates in coming decades, it is useful to document that the same model can
generate large fluctuations in the saving and interest rates that are related
to those observed in Japanese data in the decades after 1960.

Chen, İmrohoroğlu, and İmrohoroğlu (2005) found that a model simi-
lar to that used here, but with constant birth and death rates over time,
could account for much of the variation in the Japanese saving rate after
1961. The success of their model contrasts sharply with pervious findings
that standard economic theory was incapable of accounting for the observed
swings in Japanese saving. (See, for example, Christiano 1989.) The major
reason for this success was the inclusion of time-varying TFP growth.

More recently, Chen, İmrohoroğlu, and İmrohoroğlu (2006a, 2006b) in-
corporated time-varying birth and death rates into their model, as in the
analysis reported here. They found that the model continued to perform
well in accounting for historical saving behavior but that inclusion of demo-
graphic variation resulted in little increase in explanatory power as compared
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with a model that included only time-varying TFP growth. This conclusion
contrasts with our preliminary finding based on a comparison of steady states
calibrated to Japanese data from 1990 and 2000 and mentioned in the intro-
duction. As noted there, demographics and TFP growth seem to be roughly
equally important in accounting for the declines in saving and interest rates
predicted by our model.

In this section, we use our model to simulate the Japanese saving rate
from 1961 to 2000. Like Chen, İmrohoroğlu, and İmrohoroğlu, we find that
the model does a reasonably good job of accounting for observed variation
in Japanese saving. In the next section, we use the model to generate pro-
jections of the saving rate into the next century. These findings suggest that
demographic considerations will play a larger role going forward than was
the case up until about 1990 and that the evolution of the saving rate also
depends crucially on assumptions about future TFP growth.

Figure 2 displays our baseline results for the period 1961-2001. The upper
panel of each figure shows the behavior of the net national saving rate and
the lower panel shows the after-tax real interest rate.

The model tracks the observed saving rate reasonably well, particularly at
the endpoints of the sample. The empirical saving rate reaches its maximum
value of 0.266 in 1970. The simulated series reaches its maximum of 0.243 in
the same year. In general, the simulated series is below the actual one, and
the discrepancy exceeds 0.05 during 1983-1987.10 The observed series declines
from 0.149 in 1990 to 0.057 in 2000, while the simulated series declines from
0.136 to 0.055.

The model does less well in capturing the year-to-year variation in the
after-tax real interest rate, although it does reproduce the secular decline
from 14 percent in 1962 to about 4 percent in 2000. The model does not
generate the extraordinarily high real return to capital seen in the late 1960s
and early 1970s, and the simulated series is slightly above the observed one
from 1974 onward. The model predicts a decline of 240 basis points during
the 1990s, which is quite close to the observed decline of 210 basis points.

10Our model does a somewhat better job in matching the saving rate reported by Hayashi
(1997). That series is below the Hayashi-Prescott series in every year after 1973, and the
difference between the two series averages 0.014.
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5 Projections

Given the success of our model in reproducing much of the year-to-year
pattern of saving rates as well as the long-term decline in interest rates,
it is interesting to explore its implications for the future. Figure 3 dis-
plays these projections under alternative assumptions about demographics
and TFP growth.11

The single most important fact about Japanese saving in the post-World
War II period has been its magnitude. Our results indicate that the Japanese
saving ”puzzle” is a historical artifact. The results reported in Figure 3 pre-
dict that Japan’s net saving rate will never exceed 10 percent again. Saving
rates fall to a low of −1.5 percent in 2009 and eventually rise to a new steady-
state value of 4.5 percent by the year 2140. This pattern is not monotonic,
however. The saving rate increases to 2.7 percent in 2027 as a result of the
echo of the baby boom. It then falls again to 1.5 percent in 2051 before
increasing gradually to the new steady state. It is worth pointing out that
this pattern is driven by persistent shocks to demographics and total factor
productivity. These shocks are permanent in the sense that the age structure
of the population is permanently altered from that observed historically and
the TFP growth rate is assumed never to return to the values seen during
the 1960s. The assumed decline in TFP growth is transitory, however, when
compared to the average value for the 1970s and 1980s.

Hayashi, et.al., (1988) also provide long-run projections for saving rates.
Their model predicts a decline in the saving rate of 10 percentage points
between 2000 and 2030, close to the decline of 11 percentage points in our
baseline model. The decline in our model is concentrated in the period be-
tween 1990 and 2010, however, and as noted above, the saving rate in 2030 is
temporarily high because of transitory demographics. Moreover, the projec-
tions of Hayashi, et. al., are conditioned on a very different macroeconomic
environment with a constant real interest rate and annual growth rates of
output of 4 percent per year.

11We do not explore the implications of changes in fiscal policy or the depreciation
rate. We are pursuing the effects of changes in fiscal policy, including those arising from
demographic change, in separate work, and we have no basis for forecasting depreciation
rates significantly different from those observed in recent data. Because time variation
in these variables does not improve the in-sample fit of our models, we have held them
constant in the baseline version.
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The baseline results in Figure 3 suggest further that after-tax real interest
rates have temporarily bottomed out. They reach a minimum value of 4.1
percent from 2003 to 2007 and then gradually rise to 5.7 percent in 2025.
After that they fluctuate within a range of 35 basis points.

How sensitive are these predictions to our assumptions about total factor
productivity and demographic factors? In order to answer this question we
report three other simulations in Figure 3. Two of these variants maintain
our baseline assumptions for TFP growth but use either the high or low IPSS
population projections rather than the intermediate projections used in our
baseline model. The third variant retains the baseline population projections
but assumes that the TFP growth rate does not recover and instead remains
at 0.33 percent per year, its average value for the 1990s.

Consider first the results for alternative demographic assumptions. These
assumptions have no discernible effect on the saving rate either in the very
long run, by which point they all yield the same age structure of the popu-
lation, or up until the local peak associated with the echo of the baby boom
around 2025. Over intermediate forecast horizons, however, demographics
exert a noticeable influence on saving. The saving rate under the high popu-
lation assumption is uniformly above the baseline projection, and the decline
after the local peak in 2029 is muted. The corresponding decline under the
low population assumption is quite pronounced, however, with the saving
rate falling to zero in 2066-2068.

Demographic assumptions have much smaller effects on interest rates.
The low (high) population assumption results in interest rates that are below
(above) those predicted by the baseline model during much of the transition
to the new steady state. Because the differences are generally too small to
be noticeable, these alternative projections are not shown in Figure 3. The
differences from the baseline projection are largest during the years 2035-
2087, when they range between five and twenty basis points.

The results would look very different if the low growth rate of TFP of
the 1990s is assumed to be permanent while the demographic variables are
set to their baseline values. The assumption of permanently low total factor
productivity growth is also maintained by Hayashi and Prescott (2002).

Consider first the real interest rate. This plot has two noteworthy fea-
tures. First, observe that the recovery of real interest rates after 2007 that
occurs under the baseline parameterization is predicated on a recovery of
total factor productivity growth. If instead total factor productivity growth
remains low, the real interest rate stays in the neighborhood of 4 percent
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until 2040. In addition, the new steady-state interest rate is also lower − 4.7
percent versus 5.8 percent in the baseline case.

We see similar patterns in the net saving rate, which remains negative into
the next century and eventually approaches a new long-run value below one
percent, as compared with 4.5 percent in the baseline specification. Note,
however, that the saving rate with low TFP growth is above the baseline
case for the years 2001-2011. This is because an anticipated recovery of TFP
depresses saving in the short term.

From this analysis we see that both changing demographics and lower
productivity growth contribute to reproducing the observed decline in the
interest rate from 6 percent in 1990 to 3.6 percent by the year 2000. These
results also indicate that observed and projected changes in fertility rates
produce very persistent responses in the saving rate, but much smaller re-
sponses in the after-tax real interest rate. Sustained but temporary shocks
to total factor productivity growth have large contemporaneous effects but
do not produce much propagation over time in the model. A large perma-
nent decline in TFP growth, on the other hand, causes large and permanent
declines in both the net saving rate and the real interest rate.

6 Conclusion

In this paper we have shown that the measured declines in saving rates
and real interest rates in Japan during the 1990s are consistent with the
predictions of theory. Both low total factor productivity growth and the life
cycle hypothesis play important roles in accounting for these facts. Our the-
ory also has sharp implications for the future evolution of saving rates and
interest rates. It provides a quantitative confirmation of previous claims that
the Japanese saving puzzle is over. According to our projections, Japanese
saving rates will remain below 5 indefinitely. Moreover, this finding is reason-
ably robust to alternative assumptions about demographics and future TFP
growth. The population distribution, which is a key determinant of saving,
changes only gradually over time in a highly predictable way. Thus, even
when we posit a robust recovery in total factor productivity, saving rates
remain low by historical standards.
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Appendix (to be revised)

A.1 Data set

Efficiency units by age

We construct efficiency units by age from time-series data that covers the
period from 1990 to 2000 following the methodology of Hansen(1993). For
each year an (11× 2) age-sex array of data is available. Each of the 22 groups
in the array is denoted by subscript i in each year t. 12

• MEFT : Monthly contractual earnings for employed full-time wage and
salary workers

• HEPT : Hourly scheduled cash earnings for part-time wage and salary
workers

• AEFT : Annual special cash earnings for employed full-time wage and
salary workers13

• AEPT : Annual special cash earnings for employed part-time wage and
salary workers

• NFT : Number of wage and salary workers who work full-time

• NPT : Number of wage and salary workers who work part-time

• HFT : Monthly actual numebr of scheduled hours worked for employed
full-time wage and salary workers

• HPT : Daily actual number of scheduled hours worked for employed
part-time wage and salary workers

• NDPT : Monthly Actual number of days worked for employed part-
time wage and salary workers

12The data source is Basic Survey in Wage Structure by the Ministry of Health, Labor
and Welfare.

13The annual special cash earnings, AEFT and AEPT , are reported for the previous
year e.g. special cash earnings for 1990 refer to earnings received in 1989. For this reason
we treat the annual special cash earnings reported at t+ 1 as those in t.
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• OHFT : Monthly actual number of overtime hours worked for employed
full-time wage and salary workers

• Age : Average age of the each age group

Following Hansen(1993), let small letters denote the real values defined
as x = X/P for any nominal variable X, where P is the GDP deflator. From
the data series obtained in above we can construct the following series:

• weft: Average weekly earnings for employed full-time wage and salary
workers

• wept: Average weekly earnings for employed part-time wage and salary
workers

• AHFT : Average weekly hours for employed full-time wage and salary
workers

• AHPT : Average weekly hours for employed part-time wage and salary
workers

where

weft = meft/4 + aeft/48

wept = hept ·HPT ·NDPT/4 + aept/48

AHFT = (HFT +OHFT )/4

AHPT = HPT ·NDPT/4

From these data an weekly measure of hourly earnings for each subgroup at
time t (HEit) was constructed as:

HEit =
weftit ·NFTit + weptit ·NPTit

AHFTit ·NFTit + AHPTit ·NPTit

Let HEi be the average of HEit over the t-year sample. The efficiency units
for each age-sex subgroup i are formed as follows:

εi = HEi/HE

where

HE =

∑
(NFTi +NPTi)HEi∑

(NFTi +NPTi)
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where NFTi and NPTi are average over t. We next construct, ε, an (11× 1
vector) of efficiency units by age. Each element of this vector is a weighted
average of the εi’s for males and females in that age group, where the weights
are the numbers of male and female workers. From these 11 values we derive
the εj for each age j = 21, ..., 65 using interpolation by polynomials.

Replacement rate

Our model is an annual one, whereas most of the Japanese regulations
and data relating to unemployment are categorized in terms of unemployment
duration measured in months. For example, an employed person who loses
his/her job gets at most 3 months of unemployment benefits. The nominal
replacement ratio varies between 50% to 80% depending on the age and the
salary of the person as prescribed by the Social Security Law. We define the
model’s nominal replacement ratio as m̄ = 0.65.

Define, p0 to be the probability of becoming unemployed in any month
given that one was employed the previous month and let pi be the probability
of being unemloyed at least i months, given that one has been unemployed
for at least i − 1 months. We estimate these conditional probabilities from
data on the duration of unemployment; 1 month, 1-3 month, 3-6 month, 6-12
month, 12-24 month and over 24 months using linear interpolation.14

Given the pj, let xi = Piij=1pj be the probability of being unemployed for
at least j months, given that an unemployment spell has begun. Thus, xi

is the probability that than an unemployment spell, once begun, will last at
least i months. Then zi = xi−xi+1 is the probability that an unemployment
spell lasts exactly i months, given that an unemployment spell has begun.

Then expected income in the first year of unemployment is calculated
as m =

∑11
j=1 zjmj + x12m12 where mj is annual income for an individual

with a duration spell of unemployment of exactly j periods. Thus a person
with a duration of unemployment spell of one month has annual income of
0.65/12+11/12 = m1 This defines the replacement ratio in our annual model.
It is 0.842 in 1990 and 0.683 in 2000.

14The data source is Report on the Special Survey of the Labor Force Survey by the
Statistics Bureau, Management and Coordination Agency, Government of Japan.
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Transition probability matrix

We model employment as a stationary, two-state, first-order Markov pro-
cess with transition matrix of the form:[

Prob(s1|s1) Prob(s2|s1)
Prob(s1|s2) Prob(s2|s2)

]
=

[
1− P0 P0

1− P1 P1

]
(21)

where s1 means employed, s2 means unemployed and Prob(sk|sj) is the con-
ditional probability of being the state sk from the state sj for j, k = 1, 2.
We measure P1, the probability of being unemployed this year conditional
on being unemployed last year, by Π13

j=1pj, the probability that an unem-
ployment spell, once begun, will last for at least 13 months. We use the
unemployment rate, which is given by ν = (1− ν)P0 + νP1, to measure the
remaining transition probability P0. The transition matrices for 1990 and
2000 are respectively given by:

P 1990 =

[
0.981 0.019
0.931 0.069

]
, P 2000 =

[
0.956 0.044
0.836 0.164

]
(22)

Demographic parameters

The exogeneous demographic parameters consist of the initial population
distribution µ1990, the fertility rate n1,t, t = 1990, ..., 2000, and the condi-
tional surviving probability {ψj}J

j=1, t = 1990, ..., 2000. We have data on
Population and Deaths for t = 1990, ..., 2001 and for j = 1, ..., J . 15 Note
that the model age j = 1 means age 21 and J is set to 65 in our simulations.
Then the maximum age is 85, which is the maximum available age data in
Population. This is the reason why we set J = 65.

The initial population distribution µ1990 is given by the Japanese popula-
tion distribution for 1990 in our steady-state analysis and the Japanese pop-
ulation distribution in 1985 in our dynamic analysis. The fertility rate and
the conditional surviving probability are calculated as: for t = 1985, ..., 2000

n1,t = (Population1,t+1 − Population1,t)/Population1,t

ψj,t = 1−Dealthsj−1,t−1/Populationj−1,t−1

15The data source: Population is the Annual Report on Current Population Estimates
by the Ministry of Public Management, Home Affairs, Posts and Telecommunications;
Deaths are the Vital Statistics by the Ministry of Health, Labor and Welfare.
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The other exogeneous parameters

We follow Hayashi and Prescott(2002) in calibrating the other parame-
ters with the exceptions of the time preference parameter β and the relative
risk aversion σ. The value of β is chosen to reproduce the 1990 value of the
after-tax real interest rate in the data.16 The values of the other parameters
are as follows.

Calibrated parameters

α 0.36
β 0.97(0.98)
δ 0.089
τ 0.48
σ 2

A.2 Simulation Methodology

Stationary equilibrium

Given data on conditional survival probabilities {ψj} we next need to
translate the economy into the economy with variables in per-capita effi-
ciency units. Define a cohort share in total population by µ̃j = µj/N . Then
the stationary population distribution, cohort shares {µ̃∗j}J

j=1 are calculated
by µ̃∗j = ψjµ̃

∗
j−1/(1 + n1) such that

∑
j µ̃

∗
j = 1 holds. 17 In a stationary equi-

librium all variables in per-capita efficiency units are constant over time, so
we can ignore the time subscript t. Then the transformed Bellman’s equation
is expressed as:

Vj(x̃j) = max{u(c̃j/ηj) + β̃ψj+1

∑
sj+1

V (x̃j+1)P (sj+1, sj)}

subject to

c̃j + ãj = Rãj−1/γ + w̃εjsj − θ̃j +mw̃εj(1− sj) + ξ̃

aj,t ≥ 0, cj,t ≥ 0

16In the steady-state analysis the value of β is set to 0.978 and in the dynamic analysis
it is set to 0.985.

17Note that we need only the conditional survival probabilities {ψj} to calculate the
stationary population distribution cohort shares. Next define µj = Πj

i=1ψi as ψ1 = 1 and
N =

∑J
j=1 µj . Then we can calculate {µ̃∗j} as described above.
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where x̃j = {ãj−1, sj}, β̃ = βγ(1−σ) and R = 1 + r − δ. Since θ̃j = τa(R −
1)ãj−1/γ by (10), the budget constraint becomes:

c̃j + ãj = (1 + r̂)ãj−1/γ + w̃εjsj +mw̃εj(1− sj) + ξ̃

where r̂ = (1− τa)(r − δ) is the equilibrium after-tax real interest rate.
Let ε1 > 0 and ε2 > 0 denote the convergence criteria for the after-

tax real interest rate and lump-sum transfers in per-capita efficiency units,
respectively. Computing a stationary equilibrium requires finding a fixed
point in the after-tax real interest rate, r̂∗, and the lump-sum transfers in
per-capita efficiency units, ξ̃∗. This is accomplished in the following way.
First set the smoothing parameter ρ ∈ (0, 1) and guess r̂0 and ξ̃0. Then
iterate on the following steps:

1. Compute the average efficiency of labor input h = (1 − ν)
∑Jr−1

j=1 µ̃∗jεj
and the real wage in efficiency unit w̃0 using the first-order condition
of the firms maximization problem.

2. Compute the decision rules {ãj(x̃j), c̃j(x̃j)}J
j=1 by completing a back-

ward induction from the age J to the age 1 with the terminal condtion
aJ = 0, and the wealth distribution λ = {λj(x̃j)}J

j=1 by completing a
forward recursion from the age 1 to the age J with the initial condtion
(16).

3. Compute the new capital stock in per-capita efficiency unit using the
law of motion for capital k̃ =

∑
j

∑
a

∑
s aj(x̃j)λj(x̃j)µ̃

∗
j/ gamma and

derive the new after-tax real interest rate, r̂1, from the above k̃ us-
ing the first-order condition of the firms profit maximization problem.
Next compute the new lump-sum transfers in per-capita efficiency unit.
By transforming the equations (17),(18) and (20) into the per-capita
efficiency unit form we have

ξ̃1 = b̃+ t̃t−
∑

j

∑
a

mw̃εjλj(x̃j)µ̃
∗
j

where 18

b̃ =
∑

j

∑
a

∑
s

(1− ψj)R0ãj−1(x̃j−1)λ(x̃j−1)µ̃
∗
j−1

18Since the subscript t is used for indicating time, we define the per capita capital income
tax as tt = T/N .
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t̃t =
∑

j

∑
a

∑
s

(1− ψj)θ̃j(x̃j−1)λj−1(x̃j−1)µ̃
∗
j−1

R0 = 1 + r̂0/(1− τa)

4. If |r̂1− r̂0|/|r̂0| < ε1 and |ξ̃1− ξ̃0|/|ξ̃0| < ε2, stop. Then we have got the
equilibrium:r̂∗ = r̂0 and ξ̃∗ = ξ̃0. If not, compute r̂2 = ρr̂0 + (1 − ρ)r̂1
and ξ̃2 = ρξ̃0 + (1− ρ)ξ̃1. Set r̂0 = r̂2 and ξ̃0 = ξ̃2, and go to step 1.

Transitional dynamics without unemployment risk

Assume that the economy starts from the period t = 1. Agents have
all the information available at the end of t = 0. The agents have perfect
foresight about the entire future paths of total factor productivity, {At}∞t=1, of
the government policies,{Ψt}∞t=1, and of the demographics {Γt}∞t=1. Note that
there is no employment risk. The individual state is simply x̃j,t = {ãj−1,t−1}.
The transformed Bellman’s equation is:

Vj,t(x̃j,t;Xt,Ψ
t)

= max{u(c̃j,t/ηj) + β̃tψj+1Vj+1,t+1(x̃j+1,t+1;Xt+1,Ψ
t)}

subject to

c̃j,t + ãj,t = Rtãj−1,t−1/γt−1 + w̃tεj − θ̃j,t + ξ̃t

ãj,t ≥ 0, c̃j,t ≥ 0

µ̃t+1 = µt+1/Nt+1, Nt+1 =
∑

j

µt+1, µt+1 = Γtµt

and the law of motion for the per-capita-efficiency-unit wealth distribution,
and the law of motion for the capital stock in per-capita efficiency unit.
We will derive an equilibrium transition path from the initial condition to
the final stationary equilibrium. Computing the equilibrium transition path
requires finding paths of the after-tax real interest rate, {r̂∗t }∞t=1, and of the
lump-sum transfers in per-capita efficiency units. {ξ̃∗t }∞t=1, This is done using
the following steps. First set ε1, ε2 > 0 and ρ ∈ (0, 1).
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1. Set the initial conditions {aj,0}J
j=1, γ0 and µ1.

19 Next set {γt,Ψt,Γt}∞t=1

such that for t1 <∞ we have {γt,Ψt,Γt} = {γt1 ,Ψt1 ,Γt1} for all t ≥ t1.
Compute the final stationary equilibrium, r̂∗∗ and ξ̃∗∗, assuming that
{γ,Ψ,Γ} = {γt1 ,Ψt1 ,Γt1}.

2. Guess the paths of the after-tax real interest rate and the lump-sum
transfers in per-capita efficiency units {r̂0,t, ξ̃0,t}∞t=1 such that {r̂0,t, ξ̃0,t}=
{r̂∗∗, ξ̃∗∗} for all t ≥ T where T is sufficiently large that we are close to
the final stationary equilibrium, say, T = t1 + 130.

3. Compute the paths of the average efficiency of labor input {ht}T
t=1

where ht =
∑Jr−1

j=1 µ̃∗jεj and of the real wage in efficiency units {w̃0,t}T
j=1

using the first-order condtion of the firms maximization problem.

4. Compute the decision rules of the households alive at t = 1 and derive
the path of life-time asset holdings, {aJ−i+t,t}i

t=1 for i = 1, 2, .., J using
the initial conditions {aj,0}J

j=1 where i denote the maximum life-time
period left for each household alive at t = 1. Compute the decision
rules for the household born at t = 2, 3, ..., T and derive the path of
life-time asset holdings, {aj,j+t−1}J

j=1 for t = 2, 3, ..., T using the initial
asset holdings ã0,t = 0 for all t.

5. Compute the capital stock in per-capita efficiency unit

k̃t =∑J
j=1 ãt−1,j−1µ̃j−1,t−1/γt−1 and derive the new after-tax real intrest rate,r̂1,t

for all t = 1, 2, ..., T . Next compute the new lump-sum transfers in per-
capita efficiency unit ξ̃1,t = b̃t + t̃tt for all t = 1, 2, ..., T where

b̃t+1 =
∑

j

(1−ψj+1,t+1)R0,t+1ãj,tµ̃j,t, t̃tt+1 =
∑

j

(1−ψj+1,t+1)θ̃j+1,t+1µ̃j,t

6. If
∑T

t=1 |r̂1,t− r̂0,t|/|r̂0,t| < ε1 and
∑T

t=1 |ξ̃1,t− ξ̃0,t|/|ξ̃0,t| < ε2, stop. Then

we have got the equilibrium transition path r̂∗t = r̂0,t and ξ̃∗t = ξ̃0,t for
all t = 1, 2, ..., T . Otherwise, compute r̂2,t = ρr̂0,t + (1 − ρ)r̂1,t and
ξ̃2,t = ρξ̃0,t +(1−ρ)ξ̃1,t for all t = 1, 2, ..., T . Set r̂0,t = r̂2,t and ξ̃0,t = ξ̃2,t

for all t = 1, 2, ..., T and go back to step 3.

19These values are obtained directly from the data or by computing the initial stationary
equilibrium assuming some conditions.
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Figure 1:  Population Projections
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Figure 2:  In-Sample Performance
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Figure 3a:  Projections (Saving Rate)
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Figure 3b:  Projections (Interest Rate)
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