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Abstract 
 

 

This paper puts forward an alternative approach to multiplicative models and 

their assessment of returns out of financial assets. Firstly, it lays down an 

operative definition but also sets forth a commutative framework of mappings to 

provide foundations to such a definition. Next, the total return is split down into its 

linear and non-linear building blocks. Afterwards, a compatibility lemma draws a 

distinction between what should be meant by linear approximation and linear 

equivalence to the multiplicative model. Last of all, three empirical examples 

bring home how to profit from multiplicative models in actual practice.    
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INTRODUCTION 
 

In the fields of Corporate Finance and Portfolio Management, analysts as well as 

practitioners usually resort to multiplicative models, although not so often as it 

would be expected on the grounds of better practices1.   

 

Roughly speaking, this sort of model assumes that a chosen variable could be 

explained by the joint effect (or performance) of two or more causative (or 

explicative) variables, under the guise of an arithmetic product of the latter2.   

 

We have been concerned with this line of research for the last five years (Apreda, 

2010, 2006a). Now and here, our purpose consists in sharpening up the 

conventional framework of analysis for multiplicative models of return, and setting 

up a stronger distinction between the linear approximation that comes embedded 

within any multiplicative model, against the linear equivalence to be derived from 

the model itself, this topic being rather a recurrent bone of contention among 

practitioners and academics. 

 

The paper proceeds as follows: in section 1 we bring forwards a basic setting 

from which our line of argument could move on to next section so as to establish, 

firstly, what it should be meant by a multiplicative model of financial assets and, 

secondly, how to factor the model into linear and non-linear parts for the total 

return. It is for section 3 to lay bare two convertibility lemmas about 

compatibilities, along with antagonisms, between multiplicative and additive 

models. Section 4 will focus on the multiplicative model which breaks up inflation 

from real rates of return, whereas section 5 addresses a multiplicative model that 

pieces together returns with transaction costs. Section 6 delves into the 

underlying multiplicative model that deals with uncovered returns from assets 

held in foreign currencies.   
                                                 
1  Currently available textbooks like those by Ross et al (2009), Damodaran (2006), and 

Cuthberston (1996) have lately taken heed of multiplicative models. 
2 Section 2 will set forth the definition to be used in this paper. 
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 1. A BASIC SETTING FOR THE ANALYSIS OF MULTIPLICATI VE MODELS   

 
Our starting point of departure will be an investment horizon H = [[[[ t; T ]]]], and the 

set U of all financial assets available at a calendar date t , that is to say  

 

U   =    {{{{  A k    A k  is an available financial asset  ;   k  ∈∈∈∈  Q   ⊂⊂⊂⊂   N  }}}} 

 

where Q is a finite index-set out of the set of natural numbers3. 

 

On the other hand, we are going to denote the set of all likely horizons4 by 

means of the following set: 

 

Int  =  { [ a; b ] ⊂⊂⊂⊂  R 1  a  < b } 

 

For each financial asset Ak, we must attach its rate of return along the assumed 

investment horizon, by eliciting the underlying mapping which works out returns 

from U ××××  Int  upon the set of real numbers R 1 : 

 

ϕϕϕϕ  :  U ××××  Int    →→→→    R 1   

to be defined by 

(1) 

ϕϕϕϕ ( A k  ;  [[[[ t;  T ]]]] )    =   R ( A k  ;  [[[[ t;  T ]]]] )   =   R k 

where5  

 

                                                 
3 If q = Max Q , then Q would be the interval of natural numbers, Q = { k ∈∈∈∈ Nk = 1, 2, 3, ….  , q } ,   
4 About [[[[ t; T ]]]] : if t were actually the starting date of the assessment, and we assimilated it to the 

″0-level″ of our analysis, then [[[[ t; T ]]]] =  [[[[ −−−−3; 0 ]]]] would mean we are assessing from three periods 

before the ″0-level″. Therefore, in what follows, [[[[ a; b ]]]] could carry over one or both extremes 

negative. 
5 R ( A k  ;  [[[[  t;  T ]]]] ) is currently called the total return of the financial asset A k.  
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R ( A k  ;  [[[[  t;  T ]]]] )   =   <<<<  V k ( T )  −−−−  V k ( t )   +   I k ( t; T )  >>>>   ⁄⁄⁄⁄     V k ( t ) 

 

Accordingly, the total return in (1) stems from holding the financial asset from 

date t to date T and it embraces changes in value that may take place on both 

dates, as well as the rewards I(t; T)  likely to be accrued in the shape of, for 

instance, interest or dividends. 

 

 

 2. THE MULTIPLICATIVE MODEL    

 

In this section, we are going to move on towards a contextual setting of analysis 

which intends to answer the following question:  

 

if there were a finite set of rates of change stemming from a set of subsidiary 

economic variables that explain or are influential to the return R (Ak; [[[[ t; T ]]]] )  of 

each financial asset, how would each of them relate to the latter?   

 

To start answering the question raised above, let us assume that there is a set of 

Z economic variables related to the set U of available financial assets:   

 

[[[[ U, Z ]]]]   =    {  X 1 , X 2 , X 3 , ……  , X Z  } 

 

whose rates of change6 lead to the following vector 

 

R( U; Z )   =   [[[[  R 1 ( A k )  ;  R 2  ( A k )  ;   R 3  ( A k )  ;  ……  ;  R Z ( A k ) ]]]]  

 

for any Ak ∈∈∈∈ U. Bearing in mind the former remarks7, we set about to framing next 

definition.  

                                                 
6 Or rates of return, without any loss of generality. 
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Definition 1 

 

For any given financial asset A k ∈∈∈∈ U  , and any [[[[ t; T ]]]] ∈∈∈∈  Int, we say that the 

rate of return  

 R ( A k  ;  [[[[  t;  T ]]]] ) 

   

becomes explained by a multiplicative model coming out of a set of 

variables  [[[[ U, Z ]]]]  if the following relationship holds true: 

 (2) 

< 1  +  R ( A k  ;  [[[[ t;  T ]]]] ) >   =    

 

=  < 1 + R 1 (Ak ; [[[[t;T ]]]] ) > ×××× <1 + R 2 (Ak ; [[[[t; T ]]]] ) > ××××….×××× < 1 + R Z (Ak ; [[[[t; T ]]]] ) > 

 

  

Or, equivalently 8,  

(3) 

<<<<  1  +  R ( A k ;  [[[[ t;  T ]]]] )  >>>>   =   ∏∏∏∏  <<<<  1  +  R h  >>>>      ;  ( h:  1, 2, 3, …. , Z ) 

         h 

 

We will refer to expression (3) as a multiplicative model, MM [[[[U, Z]]]], for the return 

of financial assets in U, under the explanatory scope of the variables in the set Z.    

Next lemma displays how the multiplicative model defined by (3) can be split up 

into a linear and a non-linear components.  

 

 

                                                                                                                                                 
7  As it is customary, we use square brackets for vectors, curly brackets for sets and angle 

brackets for distinctive components within certain mathematical relationships. The horizon [[[[ t; T ]]]] 

will be an exemption from this convention. 
8 For ease of notation, we are going to drop from the right side of expression (3) the symbol 

standing for the horizon H, and also the one for the asset. 



 7

Lemma 1 

 

Given an investment horizon [[[[ t; T ]]]] ∈∈∈∈ Int , and for any financial asset A k ∈∈∈∈ U,  

it holds that the multiplicative model  

 

1  +  R( k )    =   ∏∏∏∏   <<<<  1  +   R h  >>>>            ( h:  1, 2, 3, …. , Z ) 

            h 

 

can be factored into the alternative representation  

(4) 

1 +  R( k )  =  1 +  ∑∑∑∑  R h(1)  +  ∑∑∑∑  R h(1)  ×××× R  h(2)  +  ∑∑∑∑  R h(1) ××××  R h(2)  ××××  R h(3)  + 

                    h(1)            h(1) <<<< h(2)               h(1) <<<< h(2) <<<< h(3) 

 

+   ………    +    ∑∑∑∑   R h(1) ××××  R h(2)  ××××  R h(3)  ××××   …… ××××   R h(Z)   

     h(1) <<<< h(2) <<<< h(3) <<<<  …… <<<< h(Z)          

 

Proof:    

It follows from complete induction that will be developed in Appendix 1. 

Nonetheless, it′s worth paying notice at this place to the convention we are going 

to use for indexes: 

 

h(1) is an index that runs from 1 to Z. 

 

h(2) is an index whose values span from h(1) + 1 to Z. 

 

By iteration, h(j) is an index whose values span from h(j) + 1 to Z. END OF  LEMMA 
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Remarks 

 

a) The main outcome from this lemma lies on the fact that we can translate the 

multiplicative model as coming out of an additive model  

(5) 

∑∑∑∑  R h(j) 

and a non-linear expression 

 

  ΦΦΦΦ (R 1 ;  R 2  ;  R 3 ;  …… ; R N  )   = 

 

 =   ∑∑∑∑  R h(1)  ×××× R  h(2)    +    ∑∑∑∑  R h(1) ××××  R h(2)  ××××  R h(3)     + 

                  h(1) <<<< h(2)               h(1) <<<< h(2) <<<< h(3) 

 

+   ………    +    ∑∑∑∑   R h(1) ××××  R h(2)  ××××  R h(3)  ××××   …… ××××   R h(Z)   

     h(1) <<<< h(2) <<<< h(3) <<<<  …… <<<< h(Z)  

 

Hence, expression (4) can be rewritten like  

(6) 

1 +  R( k )  =  1  +  ∑∑∑∑  R h(j)   +  ΦΦΦΦ (R 1 ;  R 2  ;  R 3 ;  …… ; R Z  )  

 

b) Still further, we should allow for an alternative environment in which, given any 

temporal span, and for every financial asset in U, the variable R(A k ; [[[[ t; T ]]]] ) 

might be explained by more than one set of subsidiary variables. For instance, 

we could face two sets of explanatory variables: 

 

[[[[ U, Z ]]]]   =    {{{{ X 1 , X 2 , X 3 , ……  , X Z  }}}} 

 

[[[[ U, W ]]]]   =    {{{{ Y 1 , Y 2 , Y 3 , ……  , Y W  }}}} 
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On this regard, It will be for sections 4, 5, and 6, to match up alternative sets of 

explanatory variables to empirical settings. 

  

2.1 FORMAL ENLARGEMENT OF THE MULTIPLICATIVE MODEL 

 

Although Definition 1 is fully operational, it might be regarded rather as a pithy 

statement. However, there are a set of distinctive mappings that provide the 

scaffolding of the definition. This section will lay bare those mappings so as to 

lend the definition a more precise mathematical background, while Exhibit 1 will 

avail the reader of the whole structure of mappings. 

 

a)  Firstly, we are going to recall how we had defined in section 1 the mapping 

that chose both a financial asset Ak ∈∈∈∈ U and a horizon [[[[ t; T ]]]] ∈∈∈∈ Int , to figure out 

the financial return of any financial asset along the horizon: 

  

ϕϕϕϕ    :      U ××××  Int      →→→→      R 1 

defined by    

ϕϕϕϕ  ( A k  ;  [[[[ t;  T ]]]] )    =    R ( A k  ;  [[[[ t;  T ]]]] )  

 

Afterwards, we define a new mapping ϕ1 that will be required for the ensuing 

argument: 

(7) 

ϕϕϕϕ 1   :      R 1       →→→→        R 1 

such that 

 

ϕϕϕϕ 1  (  R ( A k  ;  [[[[ t; T ]]]] )  )    =   1   +     R ( A k  ;  [[[[ t;  T ]]]] )  
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or, simplifying, 

 

ϕϕϕϕ 1  (  R ( k )  )    =   1   +     R ( k  )  

 

b)  Then, we define a mapping ϕϕϕϕ2   that takes U ×××× Int into a vector of explanatory 

economic variables: 

(8) 

ϕϕϕϕ2     :    U ××××  Int        →→→→        R Z 

such that 

ϕϕϕϕ2     ( A k  ;  [[[[ t;  T ]]]] )    = 

 

=    [[[[  X 1 ( A k , [[[[ t; T ]]]]) ,  X 2 ( A k , [[[[ t; T ]]]]) ,  …… ,  X Z ( A k , [[[[ t; T ]]]]  ) ]]]] 

 

c) From the vector comprising the explanatory variables, we move on to the 

vector of their corresponding rates of change (or returns): 

(9)  

ϕϕϕϕ 3    :     R Z          →→→→      R Z 

ruled by  

 

ϕϕϕϕ 3  [[[[ X 1 ( A k , [[[[ t; T ]]]]) ,  X 2 ( A k , [[[[ t; T ]]]]) ,  …… ,  X Z ( A k , [[[[ t; T ]]]]  ) ]]]]  = 

 

=   [[[[  R 1 ( A k , [[[[ t; T ]]]]),  R 2 ( A k , [[[[ t; T ]]]]),  …… ,  R Z ( A k , [[[[ t; T ]]]]) ]]]] 

 

d) After that, we need a mapping that takes the vector comprising the rates of 

returns of the explanatory variables into the factorial returns given by relationship 

(3). 
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(10) 

ϕϕϕϕ 4    :     R Z        →→→→      R 1 

such that 

ϕϕϕϕ 4   [[[[  R 1 ( A k , [[[[ t; T ]]]]),  R 2 ( A k , [[[[ t; T ]]]]),  …… ,  R Z ( A k , [[[[ t; T ]]]]) ]]]]    =    

 

=   ∏∏∏∏  <<<<  1  +  R h  >>>>      ;  ( h:  1, 2, 3, …. , Z ) 

      h   

 

Exhibit 1 The commutative diagram brought about  

by the multiplicative model 

 

 
 

 

U  ×××× Int R Z 

R Z R 1 

ϕ3 ϕ 

ϕ4  
 

ϕ2 

ϕ1 
 

R 1 R 1 
ϕ5 
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e) Lastly, we balance up the image of ϕϕϕϕ 4  with the image of ϕϕϕϕ 1 by means of a 

mapping which we are going to denote as ϕϕϕϕ 5 : 

(11) 

ϕϕϕϕ 5   :      R 1        →→→→      R 1 

such that  

 

      ϕϕϕϕ 5   °°°° ( ϕϕϕϕ 1  °°°°   ϕϕϕϕ   ) ( A k ; [[[[ t;  T ]]]] )   =  ϕϕϕϕ 4   °°°°  ( ϕϕϕϕ 3  °°°°   ϕϕϕϕ 2   ) ( A k  ;  [[[[ t;  T ]]]] )      

 

or, equivalently, 

 

1   +     R ( k  )    =   ∏∏∏∏  <<<<  1  +  R h  >>>>      ;  ( h:  1, 2, 3, …. , Z ) 

            h  

Therefore, by (11), it holds that 

(12) 

      ϕϕϕϕ 5   °°°°  ϕϕϕϕ 1   °°°°   ϕϕϕϕ         =    ϕϕϕϕ 4   °°°°  ϕϕϕϕ 3  °°°°   ϕϕϕϕ 2          

 

What sort of message does this relationship convey? It tells that the mappings 

commute when (12) stays true. In such case (see exhibit 1), we say that    

 

ϕϕϕϕ 4     °°°°    ϕϕϕϕ 3  °°°°    ϕϕϕϕ 2   =    MM [[[[U, Z]]]]    
 

that is to say, the multiplicative model  MM [[[[U, Z]]]] stands for the total return R 

( k ). In other words,    

MM [[[[U, Z]]]]    =    ϕϕϕϕ 5   °°°°  ϕϕϕϕ 1   °°°°   ϕϕϕϕ 
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3.  TWO CONVERTIBILITY LEMMAS 

 

It goes without saying that in several frameworks of analysis, using the additive 

model to explain the total return of a financial asset could amount to a hugely 

farfetched procedure, as the convertibility lemmas 2 and 3 will set forth. 

 

Lemma 2 

 

If  ΦΦΦΦ (R 1 ;  R 2  ;  R 3 ;  …… ; R Z  ) =  0, then the additive model is fully 

convertible into the multiplicative model. 

 

Proof:  it follows directly from  (6).  END OF LEMMA 

 

Remarks 

This lemma deserves two comments: 

 

a) As we see, to assume that, in general, ΦΦΦΦ (R 1 ;  R 2  ;  R 3 ;  …… ; R Z  ) =  0, 

it would stand far removed from empirical evidence. 

 

b) However, there should be an empirical yardstick as from which practitioners 

would be able to approximate the multiplicative model by means of a considerate 

usage of the additive model. In point of fact, we have lately introduced an 

alternative yardstick (Apreda, 2010). Bearing in mind that returns and interest 

rates are customarily formatted with four decimal digits, our metrics happens to 

be the following9, which derives from (6) 

                                                 
9 In fact, 10 – 4 is one basis point (0.0001). The issue here is how much a basis point is worthwhile 

for the practitioner as a cost of opportunity. If the investment at date t amounted to a billion 

dollars, to disregard a basis point means that the approximation loses 100,000 dollars. Instead, if 

the yardstick were set up in the order of 10 basis points (10 – 3), the approximation would be 

worth up to 1 million dollars.  
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(13) 

 R( k )  −−−−   ∑∑∑∑  R h(1)    =   ΦΦΦΦ (R 1 ;  R 2  ;  R 3 ;  …… ; R Z  )   <<<<  10 −−−−  4 

 

END OF REMARKS 

  

Sometimes it is read that by means of a useful device any multiplicative model 

could be translated by an additive one eventually. Albeit next lemma proves that 

this is attainable, it would amount to a mistake, however, to regard such 

statement as saying that we can substitute the additive model in (5)  

 

∑ R h(j) 

 

for the multiplicative model conveyed by (6). Nevertheless, this misplaced 

substitution turns out to be a widespread usage among many practitioners. Let 

us cope with this issue in further detail. 

 

 

Lemma 3 

 

Assuming a continuous generating process of returns , the multiplicative 

model can be translated into an additive model. 

 

Proof:  recalling the expression (3) of the multiplicative model for the return of 

any financial asset 

 

<<<< 1  +  R ( A k ;  [[[[ t;  T ]]]] )  >>>>   =   ∏∏∏∏   <<<< 1  +  R g  >>>>      ;  ( g:  1, 2, 3, …. , Z ) 

         g 
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and assuming a continuous generating process10 we get 

 

< 1  +  R ( A k ;  [[[[ t;  T ]]]] )  >    =    e λλλλ ( k ) ( T – t )    

 

∏∏∏∏  < 1  +  R g  >     =    ∏∏∏∏  e λλλλ ( g ) ( T – t )  

 

by taking logarithms 

 

ln  < 1  +  R ( A k ;  [[[[ t;  T ]]]] ) >    =   ln  e λλλλ ( k ) ( T – t )  

 

ln  ∏∏∏∏  < 1  +  R g  >     =   ln   ∏∏∏∏ e λλλλ ( g ) ( T – t )  

 

which leads to 

(14) 

ln  < 1  +  R ( A k ;  [[[[ t;  T ]]]] ) >    =     λλλλ ( k ) ( T – t )  

 

(15) 

ln  ∏∏∏∏  < 1  +  R g  >     =   ∑   λλλλ ( g ) ( T – t )  

 

plugging (14) and (15) into (3), and dropping out (T – t ) we get 

(16) 

λλλλ ( k )     =   ∑   λλλλ ( g )   

 

                                                 
10  In a continuous process like this one, V(t) accrues to V(T) + I(t, T), by means of an 
instantaneous rate of return λλλλ( . ). Therefore:  
 

<<<<  <<<< V(T) + I(t, T) >>>>  ⁄⁄⁄⁄  V(t)   >>>>    =    1 +  R(k)    =  e λλλλ ( . ) ( T – t )    

 
 
 



 16

Hence, departing from the multiplicative model in (3), we arrive at a translation of 

it into an additive expression.  END OF LEMMA 

 

Remarks 

 

a) Some people stand up for additive models like (5) on the grounds of their 

simplicity. Whenever such approximation were tenable, nothing could be more up 

to the mark.   

 

b) At the end of the day, if we wanted a linear approximation to the multiplicative 

model, we should seek for  

 

∑∑∑∑  R h(j) 

 

but if we sought a linear equivalence to the multiplicative model instead, we 

should have dealt with (16): 

 

λλλλ ( k )     =   ∑   λλλλ ( g )   

 

c) At last, but not least, expression (6) conveys essentially good practical value, 

since it is the natural way of working out the real rate of return of financial assets 

and portfolios of financial assets. In contrast, the linear equivalence of lemma 3 

lacks of intuitive appeal and does not bring to light the returns of the explicative 

variables. The trouble with the linear equivalence is not that it is wrong, but rather 

it is uninformative, by which (6) comes as a bonus eventually.  END OF REMARKS 
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4. INFLATION AND REAL RETURNS 

 

We can find a crystal clear example of a multiplicative model when we attempt to 

relate the nominal rate of return with the real rate of return. The following 

relationship is a time-honored proposition by Fisher(1898), predicated upon rates 

of interest within money markets, but easily enlarged to hold in capital markets as 

well.   

 

Let us denote by  

real ( k ) 

 

the real rate of return of a financial asset Ak ∈∈∈∈ U, over the whole investment 

horizon H = [[[[ t; T ]]]] , and by ππππ  =  ππππ(t; T) the expected rate of inflation (or realized, 

if we evaluated at date T). 

 

Lemma 4 

 

For any financial asset  A k ∈∈∈∈ U and any [[[[ t; T ]]]] ∈∈∈∈ Int, it holds that 

 

1  +  R( k )    =     <<<<  1  +   ππππ   >>>>   ××××  <<<<  1   +  real ( k )  >>>> 

 

 Proof: being the real rate of return that return stemming from values adjusted by 

inflation, we have: 

(17) 

1  +  real ( k )  =  <<<< V( T )  +  I( t; T ) >>>>   ⁄⁄⁄⁄   (  V( t )   ××××  <<<<  1  +   ππππ   >>>>  ) 

 

which leads to  

 

<<<<   V( T )  +  I( t; T )   ⁄⁄⁄⁄    V( t )  >>>>    =    <<<<   1  +   ππππ   >>>>  ××××  <<<<  1  +  real ( k )  >>>> 

 

Or, equivalently,  
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1  +  R( k )    =      <<<<   1  +   ππππ   >>>>  ××××  <<<<  1  +  real ( k )  >>>>    END OF LEMMA 

 

Remarks 

 

a) The basic consequence of this lemma amounts to positively answering the 

question: Does a multiplicative model actually exist down to earth?   

 

b) There is a stronger connection between multiplicative models, differential rates 

of returns and residual information sets, which we have dealt with elsewhere 

(Apreda, 2006a, 2004, 2001a, 2001b, 2000).  

 

c) Let us map the commutative structure of mappings displayed in exhibit 1 onto 

the scaffolding of lemma 1.  

 

� Mapping ϕϕϕϕ        ϕϕϕϕ ( Ak , [ t; T ] )     =   R( A k , [ t; T ] )  =  R (k) 

 

� Mapping ϕϕϕϕ 1   ϕϕϕϕ 1 ( R( k ) )    =   1  +  R( k )   

 

� Mapping ϕϕϕϕ 2   ϕϕϕϕ 2 (Ak , [ t; T ] )   =     [ P( t ) ; 1 +  real (k) ] 

 

where real (k)  comes defined out of (17) as 

 

real (k)  =   R( k ) /  ( 1 + ππππ ) 

 

� Mapping  ϕϕϕϕ 3 

 

ϕϕϕϕ 3 ( [ P( t ) ; 1 +  real (k) ] )  =  [ P( T ) / P( t ) ; 1 +  real (k) ]  

 

� Mapping ϕϕϕϕ 4  
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ϕϕϕϕ 4 ([ P( T ) / P( t ) ; 1 +  real (k) ] )  =  <<<< 1 +  ππππ >>>> ×××× <<<< 1 +  real ( k ) >>>> 

 

� Mapping ϕϕϕϕ 5   

 

ϕϕϕϕ 5 (1  +  R( k ) )  =  1  +  R( k ) =    <<<< 1 +  ππππ >>>> ×××× <<<< 1 +  real ( k ) >>>> 
 

END OF REMARKS 

 

 

5. TRANSACTION COSTS 

 

For all intents and purposes, transaction costs are to be reckoned with. In point 

of fact, they matter11 in any down-to-earth application. Sometimes, one still hears 

that they are negligible, or even that they have been decreasing through 

technological advances, but both statements are far from being tenable. In point 

of fact, there are five groups of transaction costs12:  

 

� Trading (tra) 

� Information (inf) 

� Taxes (tax) 

� Financial costs related to the single transaction (fin)  

� Microstructure costs (mst) 

 

It would be convenient to embody transaction costs into a multiplicative model of 

financial assets returns. But for the sake of a stronger semantics, let us move on 

through the building up of a multiplicative model for transaction costs firstly, 

leaving their full embedding into the returns model for the following lemma.   

(18) 

                                                 
11 On this topic, both Damodaran (1997) and Spulberg (1996) are worthy of being read. 
12 See remark b), section 4.  
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1  +  trc ( k )   =    <<<<  1  +  tra( k ) >>>>  ××××  <<<<  1  +  inf ( k ) >>>>  ×××× 

 

   ××××  <<<<  1  +  fin( k ) >>>>  ××××  <<<<  1  +  tax ( k ) >>>>  ××××  <<<<  1   +  mst ( k )  >>>> 

 

Lemma 5 

 

For any financial asset  A k ∈∈∈∈ U and any [[[[ t; T ]]]] ∈∈∈∈ Int, it holds that 

 

(19) 

1  +  R( k )    =     <<<<  1  +   trc( k )  >>>>    ××××   <<<<  1   +  R( k; net of trc  ( k )  >>>> 

 

Proof: it follows from (18) and defining 

  

R( k; net of trc  ( k ) 

 

as the differential rate of return that hinges upon R( k ) and trc( k ) . END OF LEMMA 

 

 

6. UNCOVERED RETURN IN DEALING WITH FOREIGN ASSETS 

 

Let us assume that we have to handle a topical decision-making procedure in 

global markets, consisting in the purchase of a financial asset either in a 

domestic exchange, to be denoted by DOM, or a foreign one13, to be denoted by 

FOR. If the domestic financial asset return is RDOM and its foreign counterpart 

RFOR, decision-making will be to purchase the former only when its return 

surpasses not only the latter return but the swap return 

 

(20) 

1  +  R SWAP ( t; T )   =   FX b ( T )  ⁄⁄⁄⁄  FX a ( t )    

                                                 
13 Further background on this matter in Apreda (2006b). 
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arising out of buying each unit of foreign currency at date t at a price of FX a ( t ) 

in domestic currency, just to be sold later at date T at a price of FX b ( T ) in 

domestic currency. 

 

When the setting above-mentioned it does not hold, we will either invest in the 

foreign exchange, or it would the case that both exchanges are extremely 

arbitraged in which case we look for other alternative investments.  This gives 

rise to a multiplicative model to explain the uncovered arbitrage in dealing with 

foreign assets. 

 

 

Lemma 6   

 

The uncovered arbitrage between domestic and foreig n exchanges is 

explained by the following multiplicative model 

(21) 

1  + R DOM ( t; T )   =    

 

=    <<<<  1 + R FOR ( t; T ) >>>>  ××××  <<<<  1 + R SWAP ( t; T ) >>>>  ××××  <<<< 1 + g ( t; T ) >>>> 

 

where  g ( t; T ) stands for the arbitrage gains (or losse s) to be taken if we 

purchased the domestic financial asset. 

 

Proof: the total return from purchasing at date t a financial asset A k  in the 

domestic exchange DOM will give a total investment value at date T equal to 14 

 

1  +  R DOM ( t; T )  

                                                 
14 If we assessed the return at date t, we should use expected values, whereas if we did so at 

date T, we should use realized values. However, we drop the expected operator on behalf of 

simplicity and without losing generality. 
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whereas the total return from purchasing at date t a financial asset A j  in the 

foreign exchange15 will give a total investment value at date T equal to  

 

<<<<  1 + R FOR ( t; T ) >>>> 

  

Bringing the two settings into comparable terms, and choosing the domestic 

exchange as the actual center point for trading, we need to introduce the return, 

positive or negative, which foreign exchange will bring about by perfecting both 

transactions of purchasing and selling the foreign exchange, that is to say, the 

swap return defined by (20) 

 

<<<<  1 + R SWAP ( t; T ) >>>> 

 

So, the domestic investment will be the best choice whenever  

 

(22) 

 1  + R DOM ( t; T )    >>>>     ( 1 + R FOR ( t; T ) )  ××××  (  1 + R SWAP ( t; T ) )  

 

whereas the foreign investment will more profitable if  

(23) 

1  + R DOM ( t; T )    <<<<     ( 1 + R FOR ( t; T ) )  ××××  (  1 + R SWAP ( t; T ) )  

 

Now we introduce the return that closes the gap between (22) and (23). It will be 

denoted g ( t; T ) . It will carry the gains from purchasing the financial asset in the 

domestic exchange (if positive) and the losses to be incurred if rejecting the 

financial asset in the foreign exchange (if negative). Therefore, the following 

multiplicative model holds true: 

 

1  + R DOM ( t; T )   =    

 
                                                 
15 Notice that A j  could be the same A k  eventually.  
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=  <<<< 1 + R FOR ( t; T )>>>>  ×××× <<<<  1 + R SWAP ( t; T )>>>>  ×××× <<<<  1 + g ( t; T ) >>>>  END OF LEMMA 

 

 

CONCLUSIONS 

 

Firstly, the paper has deployed an alternative setting for the analysis of 

multiplicative models of financial returns, while it has called for a commutative 

structure of mappings that lay foundations to those multiplicative models. 

 

Secondly, it has brought to light a decomposition of the total return into two 

components, a linear approximation, and a non-linear approximation. 

 

Next, it has established a pragmatic metrics of acceptance between the linear 

approximation and the total return itself. 

 

Afterwards, it made a distinctive precision on the antagonisms between the linear 

approximation and the linear equivalence to the multiplicative model. 

 

Lastly, and for the sake of illustration, it provided with three factual settings that 

give empirical grounds to the former analysis.  
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APPENDIX 1 

 

Proof of Lemma 1 (the convention over indexes was explained in lemma 1, 

section 2) 

 
Assume that the index ceiling is h = 2. 
 
 

1   +   R    =     ( 1   +   R 1 )  ××××  ( 1  +  R 2  ) 
 
In such case,  
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1  +   R    =     1   +    R 1    +    R 2      +     R 1 ××××  R 2       
 
where  
 

ΦΦΦΦ (R 1 ;  R 2   )   =    R 1  ××××   R 2       
 
 
Therefore, (2) follows for h = 2. 
 
Now, let us assume that (2) holds when h =  Z −−−− 1. We want to prove that it also 

holds true when h = Z.   

 

From 

[[[[ 1  +  R ]]]]   =   ∏∏∏∏   [[[[ 1  +   R h  ]]]]            ( h:  1, 2, 3, …. , Z ) 

    h 

 
we are led to 
 

[[[[ 1  +  R ]]]]   =  (   ∏∏∏∏   [[[[ 1  +   R h ]]]]   )   ××××   ( 1  +  R Z  )             

          h  <<<<  Z 

that can be translated as 
 

[[[[ 1  +  R ]]]]   =  

 

=    (  ∏∏∏∏   [[[[ 1  +   R h ]]]]   )   +    (   ∏∏∏∏   [[[[ 1  +   R h ]]]]     ××××   R Z  )             

    h  <<<<  Z                                h  <<<<  Z 

 

On the right-side of last expression, the first term adds up to the inductive 

hypothesis, hence 

 

1 +  R( k )  =  1 +  ∑∑∑∑  R h(1)  +  ∑∑∑∑  R h(1)  ×××× R  h(2)  +  ∑∑∑∑  R h(1) ××××  R h(2)  ××××  R h(3)  + 

                    h(1)            h(1) <<<< h(2)                  h(1) <<<< h(2) <<<< h(3) 
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+   ………    +    ∑∑∑∑   R h(1) ××××  R h(2)  ××××  R h(3)  ××××   …… ××××   R h(Z - 1)     + 

     h(1) <<<< h(2) <<<< h(3) <<<<  …… <<<< h(Z - 1)   
 

+  {{{{  1 +  ∑∑∑∑  R h(1)  +  ∑∑∑∑  R h(1)  ×××× R  h(2)  +  ∑∑∑∑  R h(1) ××××  R h(2)  ××××  R h(3)  + 

                    h(1)            h(1) <<<< h(2)                  h(1) <<<< h(2) <<<< h(3) 

 

+   ………    +    ∑∑∑∑   R h(1) ××××  R h(2)  ××××  R h(3)  ××××   …… ××××   R h(Z - 1)   }}}} ××××   R Z   

     h(1) <<<< h(2) <<<< h(3) <<<<  …… <<<< h(Z -1)   
  
 
and by distributing and rearranging we finally reach to 
 
 

1 +  R( k )  =  1 +  ∑∑∑∑  R h(1)  +  ∑∑∑∑  R h(1)  ×××× R  h(2)  +  ∑∑∑∑  R h(1) ××××  R h(2)  ××××  R h(3)  + 

                    h(1)            h(1) <<<< h(2)               h(1) <<<< h(2) <<<< h(3) 

 

+   ………    +    ∑∑∑∑   R h(1) ××××  R h(2)  ××××  R h(3)  ××××   …… ××××   R h(Z)   

     h(1) <<<< h(2) <<<< h(3) <<<<  …… <<<< h(Z)   

 

therefore, (3) also holds when h = Z, and by the principle of complete induction, 

Lemma 1 stays proved.  END OF LEMMA 

 


