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MASSIVELY PARALLEL COMPUTATION USING GRAPHICS
PROCESSORS WITH APPLICATION TO OPTIMAL

EXPERIMENTATION IN DYNAMIC CONTROL

SUDHANSHU MATHUR AND SERGEI MOROZOV

Abstract. The rapid increase in the performance of graphics hardware, coupled with re-
cent improvements in its programmability has lead to its adoption in many non-graphics

applications, including wide variety of scientific computing fields. At the same time,

a number of important dynamic optimal policy problems in economics are athirst of
computing power to help overcome dual curses of complexity and dimensionality. We

investigate if computational economics may benefit from new tools on a case study of

imperfect information dynamic programming problem with learning and experimenta-
tion trade-offthat is, a choice between controlling the policy target and learning system

parameters. Specifically, we use a model of active learning and control of linear autore-

gression with unknown slope that appeared in a variety of macroeconomic policy and
other contexts. As the system evolves, new data on the both sides of the autoregres-

sive relationship forces revisions of estimates for location and precision that characterize
posterior beliefs. These evolving beliefs thereby become part of the multi-dimensional

system state vector to keep track of. The dimension of the state vector matters not only

because Bayes rule is nonlinear but, more importantly, because the value function need
not be convex, and policy function need not be continuous. Functional approximation

methods for numerical dynamic programming that rely on smoothness therefore do not

work and one is driven to brute-force discretization. It is the endogeneity of information
that makes the problem so complex even when state dimension is low. This difficulty

makes the problem a suitable target for massively-parallel computation using graphics

processors. Our findings are cautiously optimistic in that new tools let us easily achieve
a factor of 15 performance gain relative to single-core implementation and thus establish

a better reference point on the computational speed vs. coding complexity trade-off

frontier. yet further gains and wider applicability may be behind steep learning barrier.

JEL classification: C630, C800

Keywords: Graphics Processing Units, GPGPU, dynamic programming, learning, exper-

imentation

1. Introduction

In the quest to satisfy insatiable demand for high-definition real-time 3D graphics ren-
dering in the PC gaming market, Graphics Processing Units (GPUs) have evolved over
the past decade far beyond simple video graphics adapters. Modern GPUs are not single
processors but rather are programmable, highly parallel multi-core computing engines with
supercomputer-level high performance floating point capability and memory bandwidth.
They commonly reach speeds of hundreds of billions of floating point operations per second
(GFLOPS) and some contain over a billion transistors.

Because GPU technology benefits from large economies of scale in the gaming market,
such supercomputers on a plug-in board have become very inexpensive for the raw horse-
power they provide. Scientific community realized that this capability could be put to use
for general purpose computing. Indeed, many mathematical computations, such as matrix
multiplications or random number generation, which are required for complex visual and
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2 SUDHANSHU MATHUR AND SERGEI MOROZOV

physics simulations in games are also the same computations prevalent in a wide variety
of scientific computing applications from computational fluid dynamics to signal process-
ing to cryptography to computational biochemistry. Graphics card manufacturers, such as
AMD/ATI and Nvidia, has supported the trend toward the general purpose computing by
widening the performance edge, by making GPUs more programmable, by including addi-
tional functionality such as single and even double precision floating point capability and
by releasing software development kits.

The advent of GPUs as a viable tool for general purpose computing parallels the recent
shift in the microprocessor industry from maximizing single-core performance to integrating
multiple cores to distributed computing (Creel and Goffe, 2009). GPUs are remarkable in the
level of multi-core integration. For example, high-performance enthusiast GeForce GTX280
GPU from Nvidia contains 30 multiprocessors each consisting of eight scalar processor cores,
for a total of 240 (NVIDIA Corporation, 2008). As each scalar processor core is further
capable of running multiple threads, it is clear that GPUs represent the level of concurrency
today that cannot be found in any other consumer platform. Inevitably, as CPU-based
computing is moving in the same massively multi-core (”manycore”) direction, it is time
now to re-think the algorithms to be aggressively parallel. Otherwise, if the solution is not
fast enough, it will never be (Buck, 2005).

Parallel computing in economics is not widespread but does have fairly long tradition.
Chong and Hendry (1986) developed an early parallel Monte Carlo simulation for economet-
ric evaluation of linear macro-economic models. Coleman (1992) takes advantage of parallel
computing to solve discrete-time nonlinear dynamic models expressed as recursive systems
with an endogenous state variable. Nagurney, Takayama, and Zhang (1995) and Nagurney
and Zhang (1998) use massively parallel supercomputers to model dynamic systems in spa-
tial price equilibrium problems and traffic problems. Doornik, Hendry, and Shephard (2002)
provide simulation-based inference in a stochastic volatility model, Ferrall (2003) optimizes
finite mixture models in parallel, while Swann (2002) develops parallel implementation of
maximum likelihood estimation. A variety of econometric applications for parallel compu-
tation is discussed in Doornik, Shephard, and Hendry (2006). Sims, Waggoner, and Zha
(2009) employ grid computing tools to study Bayesian algorithms for inference in large-scale
multiple equation Markov-switching models. Tutorial of Creel and Goffe (2009) urges fur-
ther application of parallel techniques by economists, whereas Creel (2005) identifies steep
learning curve and expensive hardware as the main adoption barriers. None of these studies
take advantage of GPU technology.

Financial engineering turned to parallel computing with the emergence of complex de-
rivative pricing models and popular use of Monte-Carlo simulations. Zenios (1999) offers
an early synthesis of the developments of high-performance computing in finance. Later
work includes Pflug and Swietanowski (2000) on parallel optimization methods for financial
planning under uncertainty, Abdelkhalek, Bilas, and Michaelides (2001) on parallelization
of portfolio choice, Rahman, Thulasiram, and Thulasiraman (2002) on neural network fore-
casting stock prices using cluster technology, Kola, Chhabra, Thulasiram, and Thulasiraman
(2006) on real-time option valuation, etc. Perhaps due to better funding and more acute
needs, quantitative analysts on Wall Street trading desks took note of GPU technology
(Bennemann, Beinker, Eggloff, and Guckler, 2008) ahead of academic economists.

To the best of our knowledge, ours is the first attempt to accelerate economic decision-
making computations. Our application of choice is from a difficult class of imperfect infor-
mation dynamic programs. In this class, there is an information exploration-exploitation
tradeoff, that is, a choice between learning system parameters and controlling the policy
target. Specifically, we use a model of active learning and control of linear autoregression
with unknown slope. The model is a version of Beck and Wieland’s (2002) Bayesian dual
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control model that shuts down parameter drift.1 As the system evolves, new data on both
sides of the state evolution equation force revisions of estimates for location and precision
parameters that characterize posterior beliefs. These evolving beliefs thereby become part
of the three-dimensional system state vector to keep track of. The dimension of the state
vector matters not only because Bayes rule is nonlinear but, more importantly, because the
value function need not be convex, and policy function need not be continuous (Kendrick,
1978; Easley and Kiefer, 1988; Wieland, 2000). Functional approximation methods that rely
on smoothness therefore do not work and one is compelled to use brute-force discretization.
Endogeneity of information is what makes the problem so complex even when state dimen-
sion is low. This difficulty makes the problem a suitable target for GPU-based computation.

The most compute-intensive part of the algorithm is a loop updating value function at
all points on three-dimensional grid. Since these points can be updated independently, the
problem can be parallelized easily. For multi-core CPU-based computation we use OpenMP
compiler directives (Chandra, Menon, Dagum, and Kohr, 2000; Chapman, Jost, and van
der Paas, 2007) to generate as many as four treads to run on a state-of-the-art workstation
with a quad-core CPU. For GPU-based computation, we use Nvidia’s CUDA platform in
conjunction with several different graphics card supporting this technology. The promise
of GPU acceleration is realized as we see initial speedups up to a factor of 15 relative to
optimized CPU implementation.

The paper is laid out as follows. Section 2 explains the new concepts of GPU programming
and available hardware and software resources. Sections 3 and 4 are dedicated to our case
study of the imperfect information dynamic programming problem. The former sets up
theoretical background, while the latter contrasts CPU- and GPU-based approaches in terms
of program design and performance. Section 5 summarizes our finding and offers a vision
of what’s to come.

2. GPU Programming

2.1. History. Early attempts to harness GPUs for general purpose computing (so called
GPGPU) had to express their algorithms using existing graphics application programming
interfaces (APIs): OpenGL (Kessenich, Baldwin, and Rost, 2006) and DirectX (Bargen and
Donnelly, 1998). The approach was awkward and thus unpopular.

Over the past decade, graphics cards evolved to become programmable GPUs and on
to become fully programmable data-parallel floating-point computing engines. The two
largest discrete GPU vendors, AMD/ATI and Nvidia, have supported this trend by releasing
software tools to simplify the development of GPGPU applications and adding hardware
support to use the increasingly parallel GPU hardware without the need for computations
to be cast as graphics operations. In 2006, AMD/ATI released Close-to-the-metal (CTM), a
relatively low-level interface for GPU programming that bypasses the graphics API. Nvidia,
also in 2006, took a more high-level approach with its Compute Unified Device Architecture
(CUDA) interface library. CUDA extends C programming language to allow the programmer
to delegate portions of the code for execution on GPU.2 Since it is easier to program in a
higher-level language, we chose on Nvidia’s hardware and software tools as a testbed.

General purpose computing on GPUs has come a long way since the initial interest in the
technology in 2003-2004. On the software side, there are now major applications across the
entire spectrum of high performance computing, except perhaps computational economics.
On the hardware side, many of the original limitations of GPU architectures have been
removed and what remains is mostly related to the inherent trade-offs of massively threaded
processors.

1Without constant term, our model also could be obtained as a special case of the one studied in Morozov
(2008) by imposing known persistence.

2Fortran toolset is said to be under development.
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2.2. Data Parallel Computing. While there are already tools available that enable par-
allel processing, these tools are largely dedicated to task parallel models. The task parallel
model is built around the idea that parallelism can be extracted by constructing threads
that each have their own goal or task to complete. While most parallel programming is task
parallel, there is another form of parallelism that can greatly benefit from a different model.

In contrast to the task parallel model, data parallel programming runs the same block
of code on hundreds or even thousands of data points. Whereas typical multi-threaded
program to be executed on moderately multi-core/multi-CPU computer handles only small
number of threads (typically no more than 32), a data parallel program to do something like
image processing may spawn millions of threads to do the processing on each pixel. The way
these threads are actually grouped and handled will depend on both the way the program
is written and the hardware the program is running on. CUDA is one way to implement
data parallel programming.

2.3. CUDA Programming. As already mentioned, CUDA is a general purpose data-
parallel computing interface library. It consists of runtime library, set of function libraries,
C/C++ development toolkit, extensions to the standard C programming language and
a hardware abstraction mechanism that hides GPU hardware from developers. It allows
heterogeneous computation mixing conventional code targeting host CPU with data parallel
code for GPU acceleration. Like OpenMP (Chandra, Menon, Dagum, and Kohr, 2000) and
unlike MPI (Gropp, Lusk, Skjellum, and Thakur, 1999), CUDA adheres to the shared
memory model. Furthermore, although CUDA requires writing special code for parallel
processing, explicitly managing threads is not required.

CUDA hardware abstraction mechanism exposes a virtual machine consisting of a large
number of streaming multi-processors (SMs). A multiprocessor consists of 8 scalar processors
(SPs), each capable of executing independent threads. Each multiprocessor has four types
of on-chip memory: one set of registers per SP, shared memory, constant read-only memory
cache and read-only texture cache.

The main programming concept in CUDA is the notion of a kernel function. A kernel
function is a single subroutine that is invoked simultaneously across multiple thread in-
stances. The threads are organized into one-, two-, or three-dimensional blocks which in
turn are laid out on a two-dimensional grid. The blocks are completely independent of each
other, whereas threads within a block are mapped entirely and execute to completion on
a single streaming multiprocessor. This allows memory sharing and synchronization using
on-chip memory. In order to optimize a CUDA application, one should try to achieve an
optimal balance between the size and number of blocks. More threads in a block reduce the
effect of memory latencies, but it will also reduce the number of available registers.

Every block is comprised of several groups of 32 threads called warps. All threads in the
same warp execute the same program. Execution is the most efficient if all threads in a warp
execute in lockstep. Otherwise, threads in a warp diverge, i.e. follow different execution
paths. If this occurs, the different execution paths have to be serialized causing performance
loss.

CUDA’s extensions to the C programming language are relatively minor. Each function
declaration can include a function type qualifier determining whether the function will exe-
cute on the CPU or GPU and if it is a GPU function, whether it is callable from the CPU.
Variable declarations also include qualifiers specifying where in the memory hierarchy the
variable will reside. Finally, kernels have special thread-identification variables while calls
to GPU functions must include an execution configuration specifying grid and thread-block
configuration and allocations of shared memory on each SM. Functions executed by a GPU
have the following limitations: no recursion, no static variables inside functions or vari-
able number of arguments. Two memory management types are supported: linear memory
with access by 32-bit pointers, and CUDA-arrays with access only through texture fetch
functions.
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Managing memory hierarchy is another key to high performance. Since there are several
kinds of memory available on GPUs with different access times and sizes, the effective
bandwidth can vary significantly depending on the access pattern for each type of memory,
ordering of the data access, use of buffering to minimize data exchange between CPU and
GPU, overlapping inter-GPU communication with computation, etc (Kirk and Hwu, 2009;
NVIDIA Corporation, 2008). Memory access to local shared memory including constant
and texture memory and well aligned access to global memory are particularly fast. Indeed,
ensuring proper memory access can achieve a large fraction of the theoretical peak memory
bandwidth which is in the order of 100 GBps for today’s GPU boards.

The main CUDA process works on a host CPU from where it initializes a GPU, distributes
video and system memory, copies constants into video memory, starts several copies of kernel
processes on a graphics card, copies results from video memory, frees memory, and shuts
down. CUDA-enabled programs can interact with graphics APIs, for example to render
data generated in a program.

Files of the source CUDA C or C++ code are compiled with nvcc, which is just a shell
to other tools: cudacc, g++, cl, etc. nvcc generates: CPU code, which is compiled together
with other parts of the application, written in pure C or C++, and PTX object code for
GPU.

Nvidia CUDA architecture for GPU computing is a good solution for a wide circle of
parallel tasks. It works with many NVIDIA processors. It improves the GPU programming
model, making it much simpler and adding a lot of features, such as shared memory, thread
synchronization, double precision, and integer operations. CUDA technology is available
freely to every software developer, any C programmer. It is the learning curve that is
the steepest adoption barrier. The NVIDIA CUDA technology is now being taught at
universities around the world, typically in computer science or engineering departments.
New textbooks are being written, e.g. Kirk and Hwu (2009). Numerous seminars, tutorials,
technical training courses and third-party consulting services are also available to help one
get started. Website http://www.nvidia.com/object/cuda education.html collects some of
these resources.

CUDA has some disadvantages. This architecture works only with recent Nvidia’s GPUs
– starting from GeForce 8 and 9, and Quadro/Tesla. Writing code is not automatic. In
section 4 we’ll show how much progress we made in the quest for performance and whether
it was difficult to do.

3. Case Study: Dynamic programming solution of learning and active
experimentation problem

3.1. Problem Formulation. The decision-maker is minimizes discounted intertemporal
cost-to-go function with quadratic per-period losses,

(3.1.1) min
{ut}∞t=0

E0

[ ∞∑
t=0

δt
(
(xt − x̄)2 + ω(ut − ū)2

)]
,

subject to the evolution law of policy target xt from a class of linear first-order autoregressive
stochastic processes

(3.1.2) xt = α + βut + γxt−1 + εt, εt ∼ N (0, σ2
ε ).

δ ∈ [0, 1) is discount factor, x̄ is the stabilization target, ū is ”costless” control, ω ≥ 0 gives
weight to the deviations of ut from ū.3 Variance of the shock, σ2

ε is known, and so are the
constant term α and autoregressive persistence parameter γ ∈ (−1, 1). Equation (3.1.2) is a
stylized representation of many macroeconomic policy problems, such as monetary or fiscal
stabilization, exchange rate targeting, pricing of government debt, etc.

3Under monetary policy interpretation of the model, ω describes flexibility of monetary policy with

respect to its dual objectives of inflation and output stability (Svensson, 1997).



6 SUDHANSHU MATHUR AND SERGEI MOROZOV

Only one of the parameters that govern the conditional mean of xt, namely the slope
coefficient β is unknown. Initially, prior belief about β is Gaussian:

(3.1.3) β ∼ N (µ0, Σ0) .

Gaussian prior (3.1.3) combined with normal likelihood (3.1.2) yields Gaussian posterior
(Judge, Lee, and Hill, 1988), and so at each point in time the belief about unknown β is
conditionally normal and is completely characterized by mean µt and variance Σt (sufficient
statistics). Upon observing a realization of xt, these are updated in accordance with the
Bayes law:4

Σt+1 =
(

Σ−1
t +

1
σ2

ε

u2
t

)−1

,

µt+1 = Σt+1

(
1
σ2

ε

utxt + Σ−1
t µt

)
.

(3.1.4)

Note that the evolution of the variance is completely deterministic.
Under distributional assumptions (3.1.2) and (3.1.3), the imperfect information problem

is transformed into the state-space form by defining extended state containing both physical
and informational components:

(3.1.5) St = (xt, µt+1, Σt+1)′ ∈ S ⊆ R3.

As a useful shorthand, encode policy target process (3.1.2) and Bayesian updating (3.1.4)
via mapping

(3.1.6) St+1 = B(St, xt+1, ut+1).

3.2. Dynamic programming. The objective is to find optimal policy function u∗(S) that
minimizes intertemporal cost-to-go (3.1.1) subject to evolution of extended state (3.1.6),
given initial state S. It is also of interest to compare the value (i.e. cost-to-go) of the
optimal policy to those of certain simple alternative policy rules. Thus, we will also require
computation of cost-to-go functions of some simple policies.

3.2.1. Inert uninformative policy. So called inert uninformative policy simply sets control
impulse to zero, regardless of current physical state xt or current beliefs. Such policy is not
informative for Bayesian learning in that it leaves posterior beliefs exactly equal to the prior
beliefs. In turn, this allows closed-form solution for the cost-to-go function corresponding
to inert policy:

V 0(St) =
(α + γxt − x̄)2 − δγ

(
(x̄)2 − α2 − γx̄(2α− x̄) + γx2

t (1 + γ)− 2xt(x̄− α + γ2x̄)
)

(1− δ)(1− γδ)(1− γ2δ)

+
γ3δ2 (xt − x̄)2

(1− δ)(1− γδ)(1− γ2δ)
+

σ2
ε

(1− δ)(1− γ2δ)
+

ω (ū)2

1− δ
.

(3.2.1)

Omitting time subscripts, it could be shown that the inert policy cost-to-go function V 0

satisfies a recursive relationship:

(3.2.2) V 0(x, µ,Σ) = (α + γx− x̄)2 + ωū2 + σ2
ε + δEV 0(α + γx + ε, µ,Σ).

4We use subscript t + 1 to denote beliefs after xt is realized but before the choice of ut+1 is made
at the beginning of period t + 1. This notational timing convention accords with that in Wieland (2000).
Technically, it means that ut+1 is measurable with respect to filtration Ft generated by histories of stochastic

process up until time t.
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Relationship (3.2.2) can serve as a basis of an iterative computational algorithm, starting
from any simple initial guess, for example Ṽ 0 ≡ 0. Upon convergence, the recursive al-
gorithm, policy iteration in disguise, should approximately recover (3.2.1). This provides
simple test of correctness of our CPU-based and GPU-based computations.5

Another use of the inert uninformative policy is to provide explicit bounds on the optimal
policy with experimentation u∗t+1 given current state St via simple quadratic inequality
(3.2.3)

Et

[
(xt+1 − x̄)2 + ω

(
u∗t+1 − ū

)2
]
≤ Et

[ ∞∑
τ=1

δτ−1
(
(xt+τ − x̄)2 + ω(u∗t+τ − ū)2

)]
≤ V 0 (St) .

Asymptotically, the bounds are linear in the x direction, converge to a positive constant in
the µ direction and converge to zero in the Σ direction.

3.2.2. Cautionary myopic policy. Cautionary myopic policy takes account of coefficient un-
certainty but disregards losses incurred in periods beyond current. It optimizes the expected
one-period-ahead loss function

L(St, ut+1) =
∫ (

(α + βut+1 + γxt + εt+1 − x̄)2 + ω(ut+1 − ū)2
)
p(β|St)q(εt+1)dβdεt+1

=
(
Σt+1 + µ2

t+1 + ω
)
u2

t+1 + 2 ((µt+1γ)xt − µt+1x̄− ωū) ut+1

+ ωū2 + γ2x2
t + x̄2 + σ2

ε − 2γx̄xt,

(3.2.4)

where p(β|St), q(εt) represent posterior belief density and density of state shocks, respec-
tively. The solution can be found in closed form:

(3.2.5) uMY OP
t+1 = − µγ

Σ + µ2 + ω
xt +

µ(x̄− α) + ωū

Σ + µ2 + ω
.

Cautionary myopic policy is a useful and popular benchmark in studies of value of experi-
mentation (Prescott, 1972; Easley and Kiefer, 1988; Lindoff and Holst, 1997; Wieland, 2000;
Brezzia and Lai, 2002). From (3.2.3), it follows that myopic policy rule is precisely the
mid-point of the explicit bounds on the optimal policy with experimentation. Thus, it is
likely to be a good initial guess for the optimization algorithm searching for actively optimal
policy with experimentation, see sections 3.2.3 and 4.1.

Cost-to-go function of the cautionary myopic policy is not explicit but satisfies recursive
functional equation analogous to (3.2.2):

V MY OP (x, µ,Σ) = E
(
α + βuMY OP (x, µ,Σ) + γx− x̄

)2
+ ω(uMY OP (x, µ,Σ)− ū)2 + σ2

ε

+ δEV MY OP
(
α + βuMY OP (x, µ,Σ) + γx + ε, µ′, Σ′

)
,

(3.2.6)

where µ′ and Σ′ are future beliefs given by Bayes updating (3.1.4).6 A method to find
approximate solution of (3.2.6) is policy iteration on a discretized state space (i.e. on a
grid). The iteration starts with an arbitrary initial guess which is then plugged into the
right hand side of (3.2.6). Improved guess is obtained upon evaluation of the left hand side
at every gridpoint. The process is continued until convergence to an approximate cost-to-go
function of the cautionary myopic policy. For a formal justification of the algorithm, see
Bertsekas (2005, 2001).

5Since our numerical implementation restricts the state space to a three-dimensional hypercube and

assumes constant cost-to-go function beyond its boundary, analytic and numerical solutions will necessarily
be different near that boundary. However, if the numerical solution is implemented correctly, its final values
at any fixed interior point will converge to the analytical solution as hyper-cube is progressively expanded
while the grid spacing remains constant. This is indeed what we have observed.

6It is this nonlinear dynamics of beliefs that precludes closed-form computation of the value function.

Under constant beliefs, the cost-to-go function would be quadratic in x, with explicit closed-form coefficients.
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3.2.3. Optimal policy with experimentation. Unlike the two previous policies, optimal policy
that take full account of the value of experimentation is not explicit. It is given by a solution
of the Bellman functional equation of dynamic programming. It is given by

(3.2.7) V (St) = min
{ut+1}

{
L(St, ut+1) + δ

∫
V (St+1) p(β, εt+1|St+1)dβdεt+1

}
,

where L(St, ut+1) as in (3.2.4). Although the stochastic process under control is linear and
the loss function is quadratic, the belief updating equations are non-linear, and hence the
dynamic optimization problem is more difficult than those in the class of linear quadratic
problems. Following Easley and Kiefer (1988), it could be shown that Bellman functional
operator is a contraction and a stationary optimal policy exists such that corresponding
value function is continuous and satisfies the above Bellman equation. Solution of (3.2.7) is a
mapping u∗ : S → R from extended state space to policy choices. Based on above theoretical
arguments, an approximate solution can be obtained by recursive use of discretized version
of (3.2.7) starting from some initial guess (i.e. value iteration). Upon convergence, one is
left with both approximate policy and cost-to-go functions. This process is computationally
more demanding than for earlier two policies due to an additional minimization step.

4. CPU-based versus GPU-based Computations

4.1. CPU-based computation. The approximations to optimal policy and value function
calculations follow the general recursive numerical dynamic programming methods outlined
above. Purely for simplicity, we omit several acceleration techniques. In particular, we
do not introduce alternating approximate policy evaluation steps and asynchronous Gauss-
Seidel-type sweeps of the state space (Morozov, 2008, 2009a,b). Those are beneficial but
camouflage the benefits accruing to massively multithreaded implementation.

Since the integration step in (3.2.7) (as well as integration step implicit in 3.2.2 and
3.2.6) cannot be carried out analytically, we resort to Gauss-Hermite quadrature. Further,
actively optimal policy and cost-to-go functions are represented by means of multi-linear
interpolation on the non-uniform tensor (Kroneker) product grid in the state space. The
non-uniform grid is designed to place grid-points more densely in the areas of high curvature,
namely in the vicinity of x = x̄ and µ = 0. The grid is uniform along Σ dimension.
Although, in principle, the state space is unbounded, we restricted our attention to the three-
dimensional hyper-cube. The boundaries were chosen via a priori simulation experiment to
ensure that high curvature regions are completely covered and that all simulated sequences
originating sufficiently deep inside the hyper-cube remain there for the entire time span
of a simulation. The dynamic programming algorithm was iterated to convergence with
relative tolerance of 1e−6 for the two suboptimal policies and 1e−4 for the optimal policy.
Univariate minimization uses safeguarded multiple restart version of Brent’s golden section
search (Brent, 1973).7

Table 1 reports runtimes and memory usage of CPU-based computations for the three
types of policies. These were implemented in Fortran90 with outermost loop over the state
space explicitly parallelized using OpenMP directives (Chandra, Menon, Dagum, and Kohr,

7Preliminary efforts to ensure robustness of minimization step involved testing our method against

Nelder-Meade simplex method (Spendley, Hext, and Himsworth, 1962; Nelder and Mead, 1965; Lagarias,

Reeds, Wright, and Wright, 1998) with overdispersed multiple starting points (random or deterministic),
simulated annealing (Kirkpatrick, Gelatt Jr., and Vecchi, 1983; Goffe, Ferrier, and Rogers, 1994), direct

search (Conn, Gould, and Toint, 1997; Lewis and Torczon, 2002), genetic algorithm (Goldberg, 1989) and
their hybrids (Zabinsky, 2005; Horst and Paradalos, 1994; Paradalos and Romeijn, 2002). They all yielded

virtually identical results, with occasional small random noise due to stochastic nature of the search for

optimum. On the other hand, these alternative methods, so well suited to nonconvex and nonsmooth prob-
lems, required significant computational expense, driven primarily by the sharp increase in the number of
function evaluations. Our choice is a compromise between robustness and speed.
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2000; Chapman, Jost, and van der Paas, 2007). The code was compiled in double precision8

with Intel Fortran compiler for 64-bit systems, version 11.0,9 and run on a high performance
quad-core single CPU workstation utilizing Core i7 Extreme Edition 965 Nehalem CPU
overclocked to 3.4 GHz. In order to reduce timing noise, the codes were run four times and
compute times averaged out for each policy type, CPU thread count and gridsize. It should
be clear that the deck is intentionally stacked in CPU favor.

Table 1 serves to emphasize very good scaling of numerical dynamic programming with
the thread count, since communication among different threads is not required and workload
per thread is fairly uniform. For small grid sizes overhead of thread creation and destruction
dominates performance benefit of multiple threads.10 At large grid sizes, memory becomes
limiting factor both in terms of ability to store cost-to-go function and to quickly update it
in memory.

Gridsize Grid points
CPU

Threads

Inert Uninformative Myopic Optimal
CPU Time Memory

Usage
CPU Time Memory

Usage
CPU Time Memory

Usage

8x8x8 512
1 9.96E-002 15M 9.36E-002 15M 1.43 16M
2 0.16 19M 0.15 19M 0.74 20M
4 0.27 28M 0.22 93M 0.57 94M

16x16x16 4,096
1 0.95 15M 1.01 15M 13.22 16M
2 0.47 19M 0.52 19M 7.03 86M
4 0.33 28M 0.35 94M 4.79 94M

32x32x32 32,768
1 8.42 16M 9.72 16M 122.68 18M
2 4.37 20M 4.97 20M 63.55 87M
4 2.71 94M 3.01 94M 37.56 96M

64x64x64 262,144
1 77.17 24M 94.07 21M 1,085.47 29M
2 39.45 28M 47.5 91M 559.10 98M
4 21.73 99M 26.14 99M 344.43 103M

128x128x128 2,097,152
1 798.45 81M 962.46 64M 9,972.39 111M
2 392.26 85M 491.41 68M 5,300.80 179M
4 211.18 93M 270.37 138M 3,131.72 187M

256x256x256 16,777,216
1 7,368.56 526M 9,880.06 398M 98,809.89 783M
2 3,759.02 530M 5,159.7 402M 51,161.30 787M
4 2,016.57 602M 2,855.14 474M 29,972.30 860M

Table 1: Performance scaling of CPU-based computation under different policies

4.2. GPU-based computation. For our GPU-based computations we used graphics card
featuring GTX280 chip. It has 1.4 billion transistors, theoretical peak performance of 933
Gflops in single precision, peak memory bandwidth of 141.7 Gb/sec and capability to work
on 30,720 threads simultaneously.11

GPU-based computation mirrors CPU-based one in all respects except for how it dis-
tributes the work across multiple threads. Code fragments below illustrate the differences

8Same code compiled in single precision required more dynamic programming iterations to achieve con-

vergence to the same tolerance, outweighing speed benefits of lower precision.
9Intel compilers (Fortran and C) performed significantly better then those from GNU complier collection

(gcc and gfortran).
10More elaborate performance-oriented implementation would vary number of threads depending on the

size of the problem in order to avoid performance degradation due to thread creation.
11Standard configuration is clocked at 602 MHz for the core, 1296 MHz for shader units, and 2214 MHz

for the memory. Higher performing versions are already available.
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in the implementation of the main sweep over all point on the grid between the two program-
ming frameworks. To focus on the key details, we selected these fragments from a codebase
for the evaluation of the cost-to-go function of the cautionary myopic policy. The code for
the optimal policy is conceptually similar but is obscured by the details of implementing
the minimization operator. We also omit parts of the code that are not interesting, such as
checking iteration progress, reading input or generating output files. Omitted segments are
marked by ellipses.

Fortran 90 code

1 ...
2 ! set multithreaded OpenMP version using all available CPUs
3 #ifdef _OPENMP
4 call OMP_SET_NUM_THREADS(numthreads)
5 #endif
6 allocate(V(NX,Nmu,NSigma,2),U(NX,Nmu,NSigma))
7 ...
8 supval = abs(10.0d0*PolTol+1.0)
9 polit1=0

10 ip = 1
11 ppass =0
12 do while((ip<MaxPolIter+1).and.(ppass.eq.0))
13 ! loop over the grid of the three state variables
14 !$omp parallel default(none) &
15 !$omp shared(NX,Nmu,NSigma,U,V,X,mu,Sigma,alpha,gamma,delta,omega,ustar,xstar,sigmasq_epsilon) &
16 !$omp private(i,j,k)
17 !$omp do
18 do i=1,NX
19 do j=1,Nmu
20 do k=1,NSigma
21 V(i,j,k,2) = F(U(i,j,k),i,j,k,V)
22 enddo
23 enddo
24 enddo
25 !$omp end do
26 !$omp end parallel
27

28 ! check convergence criterion for the policy function iteration
29 supval = maxval(abs(V(:,:,:,1)-V(:,:,:,2)))
30 checkp = maxval(delta*abs(V(:,:,:,1)-V(:,:,:,2))/((1-delta)*(abs(V(:,:,:,1)))))
31 if (checkp<PolTol) then
32 ppass = 1
33 endif
34

35 ! update the value function
36 V(:,:,:,1) = V(:,:,:,2)
37

38 print *, ’ FINISHED POlICY ITERATION’,ip
39 if (ppass.eq.1) then
40 print *, ’POLICY ITERATION CONVERGED’
41 else
42 print *, ’POLICY ITERATIONS - NO CONVERGENCE’
43 endif
44 ip=ip+1
45 enddo
46 polit1=ip-1
47 ...

The Fortran code is fairly straightforward. The main loop starts on line 14 and encloses
pointwise value updates. So called OpenMP sentinels on lines 14-17 and 25-26 tell compiler
to generate multiple threads that will execute the loop in parallel. Division of the workload
is up to compiler to decide.

Cuda code (main)

1 ...
2 cudaMalloc((void**) &d_X,NX*sizeof(double));
3 ...
4 cudaMemcpy(d_X,X,NX*sizeof(double),cudaMemcpyHostToDevice);
5 ...
6 numBlocks=512;
7 numThreadsPerBlock=180;
8 dim3 dimGrid(numBlocks);
9 dim3 dimBlock(numThreadsPerBlock);

10
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11 // start value iteration cycles
12 supval=fabs(10.0*PolTol+1.0);
13 polit1=0;
14 ip=1;
15 ppass=0;
16 while ((ip<MaxPolIter+1)&&(ppass==0))
17 {
18

19 // update expected cost-to-go function on the whole grid (in parallel)
20 UpdateExpectedCTG_kernel<<<dimGrid,dimBlock>>>(d_U,d_X,d_mu,d_Sigma,d_V0,d_rno,d_wei,d_V1);
21 cudaThreadSynchronize();
22

23 // move the data from device to host to do convergence checks
24 cudaMemcpy(V1,d_V1,NX*Nmu*NSigma*sizeof(double),cudaMemcpyDeviceToHost);
25

26 // check convergence criteria for the policy function iteration if ip>=2
27 ...
28 // update value function, directly on the device
29 cudaMemcpy(d_V0,d_V1,NX*Nmu*NSigma*sizeof(double),cudaMemcpyDeviceToDevice);
30 // update value function on host as well
31 cudaMemcpy(V0,V1,NX*Nmu*NSigma*sizeof(double),cudaMemcpyHostToHost);
32 ...
33 }
34 ...
35 cudaFree(d_X);
36 ...

CUDA code requires separate memory spaces allocated on the host CPU and on the
graphics device, with explicit transfers between the two. It replaces entire loop with a call
to a kernel function (line 20). Kernel function is executed by each thread applying device
function to its own chunk of data. The number of threads and their organization into blocks
of threads is an important tuning parameter. More threads in a block hide memory latencies
better but it will also reduce resources available to each thread. For a rough guidance on the
tradeoff between the size and the number of blocks we used NVIDIA’s CUDA occupancy
calculator, a handy spreadsheet tool. Additionally, all the model parameters as well as fixed
quantities such as gridsizes or convergence tolerances were placed in constant memory to
facilitate local access to these values by each thread. No further optimizations were initially
applied. The final code snippet shows some internals of the kernel code but omits device
function. Internals of the device function are functionally identical to similar Fortran code
and perform Gauss-Hermite integration of tri-linearly interpolated value function.

Cuda kernel code

1 ...
2 __device__ inline double UpdateExpectedCTG(double u, double x, double mu, double Sigma,
3 double alpha, double gamma, double delta, double omega, double sigmasq_epsilon,
4 double xstar, double ustar, int NX,int Nmu, int NSigma, int NGH, double* XGrid,
5 double* muGrid, double* SigmaGrid, double* V, double* rno, double* wei);
6 __global__ void UpdateExpectedCTG_kernel(double* U,double* X,double* mu,
7 double* Sigma,double* V0,double* rno,double* wei,double* V1)
8 {
9

10 //Thread index
11 const int tid = blockDim.x * blockIdx.x + threadIdx.x;
12 const int NUM_ITERATION= dc_NX*dc_Nmu*dc_NSigma;
13 int ix,jmu,kSigma;
14

15 //Total number of threads in execution grid
16 const int THREAD_N = blockDim.x * gridDim.x;
17

18 //ech thread works on as many points as needed to update the whole array
19 for (int i=tid;i<NUM_ITERATION;i+=THREAD_N)
20 {
21 //update expected cost-to-go point-by-point
22 ix=i/(dc_NSigma*dc_Nmu);
23 jmu=(i-ix*dc_Nmu*dc_NSigma)/dc_NSigma;
24 kSigma=i-ix*dc_Nmu*dc_NSigma-jmu*dc_NSigma;
25 V1[i]=UpdateExpectedCTG(U[i],X[ix],mu[jmu],Sigma[kSigma],dc_alpha,
26 dc_gamma,dc_delta,dc_omega,dc_sigmasq_epsilon,dc_xstar,dc_ustar,
27 dc_NX,dc_Nmu,dc_NSigma,dc_NGH,X,mu,Sigma,V0,rno,wei);
28 }
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29

30 }
31 ...

4.3. Speed comparison. Table 2 documents initial timing results for GPU implementa-
tions in single and double precision in comparison to single-threaded and multi-threaded
CPU-based implementation. These are done for all three policies and across a range of grid-
sizes. As with CPU-based implementation, CUDA codes were time several time to reduce
measurement noise.

Several things are worth noticing in table 2. First is that across all cases, GPU wins
over single CPU in 86% of cases, and over four cores in 94% of cases. GPU only loses
for the smallest problem sizes, where multithreading, whether based on CPU or GPU,
is actually detrimental to performance due to thread creation and destruction overheads.
Second, the margin of victory is oftentimes quite substantial, in some more than factor
of 20. Third, single precision calculation on the GPU is generally faster than in double
precision, especially taking into consideration that dynamic programming algorithm takes
up to 50% more iterations to converge in single precision, with exactly ratio depending on
gridsize and policy type. In contrast, the speed of single precision calculation on the CPU
is only marginally different from double precision, after accounting for convergence effect.
This is because GPUs have separate units dedicated to double and single precision floating
point calculations but CPUs do not. Moreover, current generation of Nvidia GPUs has only
1/8 as many resources devoted to double precision as to single precision work. With this
in mind, it is actually surprizing how little difference there is between double and single
precision results on GPU. This is likely due to underutilization of floating point resources
in either case.

Policy Gridsize
Grid

Points

Single Precision Double Precision

CPU1 CPU4 GPU
CPU1
GPU

CPU4
GPU CPU1 CPU4 GPU

CPU1
GPU

CPU4
GPU

Inert
Uninfor-

mative

Policy

8x8x8 512 0.114 0.723 0.176 0.65 4.11 0.096 0.27 0.195 0.51 1.38

16x16x16 4,096 0.735 0.689 0.216 3.40 3.18 0.95 0.33 0.241 3.94 1.37

32x32x32 32,768 7.039 2.669 0.345 20.40 7.74 8.42 2.71 0.993 8.48 2.73

64x64x64 262,144 74.250 25.319 4.598 16.15 5.51 77.17 21.73 6.580 11.73 3.30

128x128x128 2,097,152 748.119 223.696 38.197 19.59 5.86 798.45 211.18 53.120 15.03 4.55

256x256x256 16,777,216 6,400.123 1,950.315 314.495 20.35 6.20 7,368.56 2,016.57 511.300 14.41 3.94

Cautionary
Myopic

Policy

8x8x8 512 0.09 0.521 0.172 0.52 3.02 0.094 0.22 0.197 0.48 1.12

16x16x16 4,096 1.100 0.806 0.222 4.95 3.63 1.01 0.35 0.238 4.24 1.47

32x32x32 32,768 11.397 4.056 0.869 13.12 4.67 9.72 3.01 1.091 8.91 2.76

64x64x64 262,144 124.663 40.941 6.935 17.98 5.90 94.07 26.14 7.181 13.10 3.64

128x128x128 2,097,152 1,218.964 383.088 78.809 16.36 4.87 962.46 270.37 75.592 12.09 3.40

256x256x256 16,777,216 13,739.599 4,161.66 1,494.84 9.19 2.78 9,880.06 2,855.14 1,188.635 8.31 2.40

Optimal

Policy

8x8x8 512 1.639 0.633 1.181 1.39 0.54 1.43 0.57 1.564 0.91 0.36

16x16x16 4,096 16.105 5.287 1.764 9.13 3.00 13.22 4.79 3.180 4.16 1.51

32x32x32 32,768 153.816 48.754 9.357 16.44 5.21 122.68 37.56 12.959 9.47 2.90

64x64x64 262,144 1,413.794 422.316 69.109 20.46 6.11 1,085.47 344.43 85.683 12.67 4.02

128x128x128 2,097,152 16,783.030 5,200.646 829.216 20.24 6.27 9,972.39 3,131.724 648.598 15.38 4.83

256x256x256 16,777,216 198,708.900 61,810.338 13,466.169 14.76 4.59 98,253.32 29,972.30 6,930.597 14.18 4.32

Table 2: Runtime comparison of CPU and GPU-based calculations.

To provide uniform basis for comparison we transform timing results for the double
precision case reported in table 2 into gridpoints per second speeds. The speeds are plotted
in figure 4.3 against the overall size of the grid, in log space. For all three policy types, the
performance of single-threaded code tends to fade with the problem size, most likely due
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to memory limitations. In contrast, the performance of two- and four-threaded versions of
the two suboptimal policies initially improves with problem size as fixed costs of multiple
threads are spread over longer runtime but starts to fall relatively early. More complex
calculation per grid point for the optimal policy causes the downward trend in performance
throughout the entire gridsize range. GPU performance, on the other hand, continues to
improve until moderately large grid size but still drops for the very large grids.
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Figure 1: Speed comparison of CPU and GPU-based approaches for double precision calcu-
lations.

Figure 4.3 distills performance numbers further by focusing on the GPU speedup ratio
relative to the single CPU. It emphasizes two things – somewhat limited applicability of GPU
speedups and substantial speed boost for moderately sized grids even for double precision.
Beyond the optimal problem size the drop in speed can be precipitous.12

To see if our code can benefit from further performance tuning we made use of CUDA
profiler tool. Results are reported in table 3.

Average occupancy of about 10-20% indicates that only 3-6 thousands of threads can
be launched simultaneously (out of 30 thousand) with enough resources. Potentially, a
speedup on the order of 5-10 factor remains unrealized. Specifically, the limiting resource
is the number of registers, a type of very fast on-chip memory used to store intermediate

12Additionally, if GPU is used simultaneously to drive graphic display, GPU threads are currently limited
to no more than 5 seconds of runtime each. Since lifetime of a thread in our implementation is one iteration

of dynamic programming algorithm, and it takes 90-100 iterations to convergence, the total runtime is
limited to about 500 seconds. To overcome this limitation one either has to use a dedicated graphics board

or run the program without windowing system present.
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Figure 2: Ratio of GPU and single CPU speeds for double precision calculations.

calculations. CUDA toolkit provides a compiler switch to limit the register use at a cost of
larger machine code. We will investigating the usefulness of the switch next.

Divergent branches refer to situations when different threads within the same groups for
threads called warp take different paths following a branch condition. Thread divergence
leads to performance degradation. Fortunately, for our code the incidence of divergent
branches is low.

5. Concluding Remarks

This paper offers qualified endorsement of data parallel massively multi-threaded com-
putation using CUDA for computational economics. With relatively little effort we were
able to achieve a factor of about 15 boost in performance relative to optimized single CPU
version. Yet effective writing massively multi-threaded programs is still a challenge. Over-
coming this challenge takes careful attention paid to the management of thread hierarchy
by balancing size and number of blocks, hiding memory latency by overlapping inter-GPU
communication and computation and explicitly optimizing memory access patterns across
different memory types and different memory locations. Debugging parallel code is equally
challenging because of potential resource contention, race conditions and deadlocks. While
triggering subtle synchronization bug in CPU-based may be extremely unlikely with small
number of concurrent threads, that same bug will have a much higher probability of occur-
rence in the parallel progam with tens of thousands of threads. Given enough tries, even
very unlikely event will likely occur. Yet finding and solving a bug in a parallel program
will not necessarily get easier the more likely the bug to occur. This is because effective
reasoning about parallel workflow is difficult even for seasoned programmers.
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Policy Computation GPU Time
Average
Occupancy

Memory
Transfer
Size

Registers
per
Thread

Non-coherent
Global Memory
Loads

Divergent
Branches

Inert
Policy

GPU→CPU
memory copy

0.148 2,097,152

Kernel
Execution

5.400 18.8% 71 0.75%

GPU→GPU
memory copy

0.000

CPU→GPU
memory copy

0.074 2,097,152

Cautionary
Myopic
Policy

GPU→CPU
memory copy

0.148 2,097,152

Kernel
Execution

5.950 18.8% 71 5.21%

GPU→GPU
memory copy

0.000

CPU→GPU
memory copy

0.074 2,097,152

Optimal
Policy

GPU→CPU
memory copy

0.050 2,097,152

Kernel
Execution

84.260 12.5% 122 3.83%

GPU→GPU
memory copy

0.007

CPU→GPU
memory copy

0.001 2,097,152

Table 3: CUDA Profiler report based on runs with 64x64x64 gridsize.

Development of parallel computing on GPU is bound to have an impact on high per-
formance computing industry as graphics cards are already inexpensive and ubiquitous.
Indeed, with peak performance of nearly one teraflop, the compute power of today’s graph-
ics processors dwarfs that of the commodity CPU while costing only a few hundred dollars.
If nothing else, emergence of GPU as a viable competitor to traditional CPU for high perfor-
mance computing will elicit a response by major CPU manufacturers, a duopoly of Intel and
AMD. Even though CPU development may appear positively glacial compared to quantum
performance leaps in GPUs, nothing prevents CPUs from adopting ideas of data parallel
processing. CPUs are growing to have more cores, capable of more threads, add special
units for streaming and vector computations. Already, many-core CPU and GPU hybrids
are in development. For example, Intel has publicly acknowledged working on Larrabee
project to compete in GPGPU and high performance computing markets (Seiler, Carmean,
Sprangle, Forsyth, Abrash, Dubey, Junkins, Lake, Sugerman, Cavin, Espasa, Grochowski,
Juan, and Hanrahan, 2008). This new architecture is promised to resemble the well known
programming model for x86 multi-core architectures, so that many C/C++ applications can
be simply recompiled for Larrabee and execute correctly with no code modification. This
application portability, together with ability to hide low-level details from programmer,13

could be produce large performance gains without extreme algorithmic effort. Whether this
promise is realized will be a subject of further research.

In the end, it doesn’t matter whether GPUS will merge into CPUs or vice versa. What
does matter is how to harness the raw power of data-parallel approach for general purpose
computations. Development of programming tools is essential here and the effort is already

13For example, unlike CUDA, Larrabee does not require direct management of data movement among

various levels of the memory hierarchy.
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well under way. Among other things, compiler vendors are working on inclusion of GPU
accelerator technology with their Fortan and C compilers. For example, using provisional
support by PGI Group (The Portland Group, 2008), programmers will be able to accelerate
Linux applications by adding OpenMP-like compiler directives that instruct the compiler
to analyze the whole program structure and data, split portions of the applications between
CPU and GPU as specified by user directives, and define and generate an optimized mapping
of loops to automatically use the parallel cores, hardware threading capabilities and SIMD
vector capabilities of modern GPUs.

The future of many computations belongs to parallel algorithms. Today’s era of tra-
ditional von Neumann sequential programming model (Backus, 1977) with its escalating
disparity between the high rate at which CPU can work and limited data throughput
between it and memory is nearly over. Modern processors are becoming wider but not
faster. The change in computational landscape presents both challenges and opportunities
for economists and financial engineers. Our paper is but a modest attempt to pick up low
hanging fruit.
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