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When is an investment opportunity attractive? In the standard set-up with frictionless,

complete markets, asset pricing theory says that the representative investor’s attitude

toward risk, and the desire to insure against variation of consumption across different states

of nature, determines the price of each asset. In this ideal world there is no opportunity to

arbitrage returns between any two assets (in risk-adjusted terms) if markets are efficient.

Reality is more complex. Investor’s preferences are unknown and possibly heteroge-

neous; markets are incomplete; trading frictions abound; and an asset’s risk and returns

can only be characterized with finite samples of data. This paper proposes nonparametric

statistical methods to evaluate zero-net investment strategies which build on the canoni-

cal notion of absence of arbitrage and allow returns to be risk-adjusted. These methods

turn out to have a natural connection to the concept of the gain-loss ratio introduced in

Bernardo and Ledoit (2000) in the context of asset pricing in incomplete markets, among

other features that we now briefly discuss.

Simple directional long-short designs are amongst the most basic trading strategies

and represent an important and widely used class of investment rules, the currency carry

trade being a classic example (see, e.g. Jordà and A. M. Taylor, 2009). At a theoretical

level, even if we cannot forecast returns as judged by the prediction’s mean squared error

(MSE), the ability to systematically sort the long-short direction might yield significant

excess returns and would be sufficient to reject the risk-neutral efficient markets hypothe-

sis. Moreover, when the statistical model is only an approximation, different loss functions

result in different models and parameter estimates, and therefore possibly different con-

clusions about the usefulness of a particular model (see Hand and Vinciotti, 2001). The

methods we propose here do not eliminate this dependence on the unknown loss function

for the investor, but go a long way to minimize its influence to facilitate comparability.

1 Accuracy, Direction, and Arbitrage

The problem of evaluating the risk-adjusted excess returns of an investment can be cast

as a zero-net investment strategy with respect to the risk-free rate. Fundamental mod-

els of consumption-based asset pricing in frictionless environments with rational agents

endowed with continuously differentiable von Neumann-Morgensten utility indicate that

risk-adjusted excess returns should be zero, that is

Et−1(mtxt) = 0, (1)
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where mt denotes the stochastic discount factor given by the investor’s intertemporal

marginal rate of substitution, and xt denotes ex-post excess returns (Cochrane, 2001).

An example of xt is a currency carry trade with xt = Δet + (i∗t−1 − it−1), and where et
denotes the logarithm of the (home) exchange rate and i∗t−1 − it−1 the one period interest
rate differential, ‘foreign’ minus ‘home.’ Another example of xt is an investment where

the trader arbitrages the expected returns of a risky asset with the risk-free rate by going

short/long in one and taking the opposite position in the other. For the moment, we

abstract from many well-known frictions, such as short-selling constraints, transactions

fees, and so on.

Under such conditions, one may presume that it would be difficult for an econometrician

to predict xt given information available up to time t − 1 and this seems to be generally

the case. For example, see Kilian and M. P. Taylor (2003) for a survey on currency trades,

or the seminal work of Meese and Rogoff (1983); and see Goyal and Welch (2008) for a

survey on equities. However, the trader faces a simpler problem, that of determining what

to short and what to go long in. Thus, the realized returns of the trading strategy based

on x̂t are:

μ̂t = sign(x̂t)xt. (2)

Notice then that x̂t may simultaneously be a poor forecast, as judged by mean squared

error, yet consistently determine the profitable direction of trade. This observation is one

more example of the interplay between forecasting and decision theory discussed in Granger

and Machina (2006) and references therein, that is, that the usefulness of a forecast depends

on the rewards associated with the actions taken by the agent as a result of the forecast.

A simple example illustrates this observation further. Table 1 summarizes a hypo-

thetical investment problem, a one-period currency return, say, which has four discrete

outcomes: percentage returns of -2, -1, +1, and +2, and each outcome is equiprobable.

Two trading signals are available to the investor. Signal A is perfectly accurate in predict-

ing the ±1 outcomes but has an additive white noise N(0, 10) error on the ±2 outcomes.
Signal B is just the opposite, it provides accurate predictions of the ±2 outcomes but has
the same additive N(0, 10) error as signal A for the ±1 outcomes. Which signal will the

investor prefer?

The statistical mean squared error criterion is completely uninformative: both signals

attain the same RMSE of 7.071. However, measuring the directional accuracy of each

signal may also be misleading since signal A predicts the correct direction of trade 78.96%
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Table 1: Mixed Signals: RMSE versus Direction versus Profitability

Signal type Outcome y Signal x RMSE Correct sign (%) Profit

A y = ±1 x = y 7.071 78.96 0.6585

y = ±2 x = y + ε

B y = ±1 x = y + ε 7.071 76.99 1.0398

y = ±2 x = y

Note: ε ∼ N(0, 10) is an i.i.d error. RMSE denotes root mean squared error of the prediction.

of the time, whereas signal B predicts the correct direction of trade 76.99% of the time,

although the difference is small. Yet a risk-neutral investor motivated by returns would

clearly find signal B (with a yield of 1.04) much more profitable than signal A (with a yield

of 0.66).

The purpose of this numerical example is simple. What matters to investors is not

predictive accuracy as usually measured by statisticians by RMSE type measures of fit.

What matters is the ability to get direction right, especially when big profits or losses are

at stake. If that is the right performance measure, we need to develop tools better suited

to the purpose of directional classification, with allowance for variable payoffs.

More generally, denote the ex post correct direction of trade as dt = sign(xt) ∈ {−1, 1},
with −1 denoting a long-side loss (trader should go short), and +1 a long-side gain (trader
should go long). Let δ̂t denote a scoring classifier for dt such that d̂t = sign(δ̂t − c) and

c ∈ (−∞,∞) is a threshold parameter. δ̂t can be set just to be x̂t, or even m̂tx̂t but more

broadly, it can denote a probability forecast from binary regression, a single-index from a

dimension reduction procedure, an ordinal variable generated from a discrete state-space

model, and so on. All that is required is for δ̂t to be a scalar that takes values in (−∞,∞).

In what follows we focus on evaluating the classification ability of δ̂t,. We concentrate

directly on the trader’s classification problem first, and then expand these methods to

introduce risk-weighted returns into the statistics that we present.1 We first explain some

advantages of our approach.

1 We do not focus on the best method to generate δ̂t itself, for which the literature offers numerous
alternatives. For example, Elliott and Lieli (2007) provide a formal treatment of how the estimator can be
tailored to the agent’s specific utility function.
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2 What’s New

In economics and finance, works by Henriksson and Merton (1981) and Merton (1981),

later formalized in Pesaran and Timmermann (1992), provide well known tests of direc-

tional accuracy. These tests were later extended to include raw returns by Anatolyev and

Gerko (2005). However, the problem of assessing classification in binary-outcome decision

problems has a much longer tradition in statistics, and it is within this tradition that we

craft some new methods and seek to build a tighter nexus to the economics of the problem.

This older tradition has its origin in the field of signal detection theory (Peterson

and Birdsall, 1953) with the introduction of the receiver operating characteristic (ROC)

curve. ROC-based methods are used extensively to evaluate diagnostic tests from different

biomarkers in medicine, as well as to rank radiological readings (see Pepe, 2003 for an

extensive monograph; and Zhou, Obuchowski and McClish, 2011 for a monograph on

diagnostic medicine). But these methods are also common in other fields of science, such

as in psychometrics (see Swets and Pickett, 1982), machine learning (see Spackman, 1989),

and atmospheric sciences, where ROC methods form part of the World Meteorological

Organization’s Standard Verification System for assessing the quality of weather forecasts

(see Stanski, Wilson and Burrows, 1989; and World Meteorological Organization, 2000).

The procedures that we examine are closely related to the theory of rank tests (see,

e.g. Hájek, Šidák, and Sen 1999) in that they essentially measure the distance between

two distributions, that is, the empirical distribution of the forecast signal for the long-short

direction versus the distribution for the short-long direction. There are many procedures

that measure the distance between two distributions, perhaps the best-known being the

Kolmogorov-Smirnov statistic.2 However, even in the simplest case, in which there are no

estimated parameters, no conditioning variables, and the data are i.i.d., the distribution

of the statistic is characterized by a function of a Brownian Bridge. The analysis of more

general cases requires an advanced toolkit from empirical process theory.3

2 See Kolmogorov (1933) and Smirnov (1939); a more modern reference is Shorack and Wellner (1986).
3 See Kosorok (2008) and Shorack and Wellner (1986). Some references are available in the economet-

rics literature. For example, Bai (1994) provides some weak convergence results for sequential empirical
processes of residuals in ARMA models; Andrews (1997) introduces conditional Kolmogorov-Smirnov tests
for parametric models with regressors; Bai (2003) uses the Khamladze transform (Khamaladze, 1981) to in-
troduce nonparametric tests for parametric conditional distributions of dynamic models. And if one thinks
of the problem in terms of stochastic dominance of the empirical distribution for the long-short direction
over the distribution for the short-long direction, one could apply Linton, Maasoumi and Whang’s (2005)
extended Kolmogorov-Smirnov resampling procedures, for example (see also references therein).
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Instead, the methods we propose build on the Mann-Whitney rank-sum statistic, whose

large-sample distribution has been shown to be Gaussian (Hsieh and Turnbull 1996). Thus,

if trading signals come from a conditional model with the usual
√
T parametric rate of con-

vergence to normality, the large-sample distribution remains Gaussian. Furthermore, Bickel

and Freedman (1981) provide justification for the bootstrap, and some of the inferential

procedures we discuss are based on the distribution-free permutation approach (see Mielke

and Berry, 2007). As a result, inference in our framework is fairly straightforward.

Simplicity of implementation aside, we structure the statistical problem as an economic

decision under uncertainty and for this purpose we introduce a variant of the ROC curve

that we call the correct classification (CC) frontier. The virtue of the CC frontier is that

it summarizes the space of all possible trade-offs implied by a particular set of preferences

over an investment strategy. Thus, a strategy that is more successful in correctly pre-

dicting long-short positions may nevertheless be particularly vulnerable to extreme events,

whereas a less successful strategy may still produce positive returns, but with better pro-

tection against catastrophic losses. Traditional statistics for the evaluation of binary deci-

sion problems (such as log and quadratic probability scores, Brier scores, Kuipers scores,

misclassification probabilities, and some of the tests we have discussed above) often lack

sufficient texture to frame the problem and are only appropriate as long as the implied loss

function coincides with that of the investor. Instead, our analysis of the CC frontier allows

one to visualize the regions in which these trade-offs take place.

Forcing the investor to continuously arbitrage the returns between two assets is some-

what restrictive, especially in more realistic situations where the expected returns to the

arbitrage are insufficient to cover transactions costs. For this reason, we also investigate

more complex multicategorical investment strategies, the simplest of which allows the in-

vestor to remain in a neutral “cash” position in addition to taking a long/short position.

This and many of the procedures that we discuss are illustrated with two empirical

applications. The first application is based on Goyal and Welch’s (2008) state-of-the-art

investigation of signals that help forecast U.S. equity returns. Our aim is to examine

the value of these signals in constructing profitable investment strategies where one bor-

rows/lends at the risk-free rate to purchase/sell U.S. equities. We find out-of-sample ev-

idence that several of these signals generate consistently profitable trades in contrast to

Goyal and Welch (2008), whose results are based on the conventional performance metric

of mean squared error loss (MSE), which may be relevant for statisticians, but not so much

for portfolio managers.
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A second application focuses on currency carry trades in which a speculator borrows

in one currency to invest in another, thus arbitraging the interest rate differential while

bearing the risk of a possibly adverse exchange rate movement. Berge, Jordà and A. M.

Taylor (2011) discuss four basic carry trade strategies where an investor’s only choices are

which currency to go short and which to go long. In practice though, transactions costs

and other considerations may make some of the trades unprofitable when predicted returns

before costs are small. Thus, we examine long/cash/short strategies using these four carry

trade investments and find that the more sophisticated methods rank the preferred strate-

gies somewhat differently compared to the case where only binary long/short strategies

were considered.

3 The Trader’s Classification Problem

The following contingency table summarizes the four conditional probabilities associated

with the {prediction,outcome} pair {δ̂t, dt} :

Prediction

Negative/Short Positive/Long

Outcome Negative/Short TN(c) = P
(
δ̂t < c|dt = −1

)
FP (c) = P

(
δ̂t > c|dt = −1

)
Positive/Long FN(c) = P

(
δ̂t < c|dt = +1

)
TP (c) = P

(
δ̂t > c|dt = +1

)

Here TN(c) and TP (c) refer to the true classification rates of negatives (dt = −1) and
positives (dt = 1); and FN(c) and FP (c) refer to the false classification rates of negatives

and positives. Clearly, TN(c) + FP (c) = 1 and FN(c) + TP (c) = 1. In statistics, TP (c)

is sometimes also called sensitivity and TN(c), specificity.

It may also be helpful to think of δ̂t as the value of a test statistic and c as its critical

value. Then FP (c) would refer to the Type I error rate or size of the test, and TP (c) its

power, or TN(c) as the Type II error. The probability measure P (.) can be conceived more

broadly as reflecting the risk-neutral measure or even as reflecting risk-adjusted probabili-

ties, as we shall see.
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The space of combinations of TP (c) and TN(c) for all possible values of c ∈ (−∞,∞)

summarizes a sort of “production possibilities frontier” (to use the traditional microeco-

nomics nomenclature in a market for two goods) for the classifier δ̂t, that is, the maximum

TP (c) achievable for a given value of TN(c). We will call the curve that summarizes all

possible combinations {TN(c), TP (c)} the correct classification frontier or CC frontier.

Of course, this is not the only way to summarize the performance of the classifier. Note

that FP (c) = 1− TN(c), so another curve that is widely used in statistics and that sum-

marizes all possible combinations {FP (c), TP (c)} is the receiver operating characteristic

(ROC) curve, as we discussed in the introduction. And combinations {FN(c), TN(c)} can
be collected in a plot that is called the ordinal dominance curve (ODC) as discussed in

Bamber (1975). Notice that the CC frontier and the ROC curve are the mirror image of

one another (if one were to place the mirror at the vertical axis).

A stylized plot of a CC frontier is presented in Figure 1. Notice that as c → −∞
then TP (c) → 1 and TN(c) → 0, and the limits are reversed as c → ∞. For this reason,

it is easy to see that the CC frontier lives in the unit square [0, 1] × [0, 1]. A perfect

classifier is one for which TP (c) = 1 for any TN(c) and this corresponds to the north

and east sides of the unit-square. An uninformative classifier on the other hand, is one

where TP (c) = FP (c) = 1 − TN(c) ∀c and this corresponds to the north-west/south-

east “chance” diagonal. Using the language of the pioneering statistician Charles Sanders

Peirce (1884), the classifiers corresponding to these two extreme cases would be referred

to as the “infallible witness” and the “utterly ignorant person” (Baker and Kramer 2007,

343). Most CC frontiers in practice live in-between these two extremes.

3.1 The Trader’s Decision Problem

The interaction of the CC frontier with the investor’s utility over the two choices short/long

provides a convenient decision framework with a long tradition that perhaps dates as far

back as Peirce’s (1884) ‘utility of the method.’ In modern parlance, Peirce’s (1884) concept

is akin to expected utility maximization and can be formulated in terms of the optimal

threshold parameter c as follows:

U(c) = UpPTP (c)π + UnP (1− TP (c))π + (3)

UpN (1− TN(c))(1− π) + UnNTN(c)(1− π).
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Figure 1: The Correct Classification Frontier

where π = P (d = 1), that is, the unconditional probability of a positive; and UaA for a ∈
{n, p} and A ∈ {N,P} is the utility associated with each of the possible four states defined
by the {classifier, outcome} pair. Notice that since TP (c)+FN(c) = 1 = TN(c)+FP (c),

everything can be expressed in terms of the true classification rate alone.

It is instructive to discuss a few special cases first to gain further intuition. For a

risk-neutral investor, it would be natural to normalize his utility symmetrically such that

UpP = UnN = 1 and UnP = UpN = −1. Further, if returns are themselves symmetric as
well (i.e. π = 1/2), then the investor’s utility is maximized where the marginal rate of

substitution between true positives and true negatives is −1.
It turns out that the vertical distance between this maximum point on the CC fron-

tier and the chance diagonal is the same distance that forms the basis of the well-known
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Kolmogorov-Smirnov (KS) statistic:

KS = max
c

∣∣∣∣2(TN(c) + TP (c)

2
− 1

2

)∣∣∣∣ ,
that is, the maximum difference between the average correct classification rate and the

average rate of an uninformative classifier for which TP (c) = 1 − TN(c) ∀c, scaled by 2

so that KS ∈ [0, 1]. We make a brief detour to discuss some of the salient features of this

special case before we introduce the methods that we propose.

Intuitively, the KS statistic measures the uniform distance between the empirical dis-

tribution of δ̂ when d = −1 and the empirical distribution of δ̂ when d = 1. For this reason,

the KS statistic is useful in determining the stochastic dominance features of two invest-

ment strategies (see, e.g., Linton, Maasoumi and Whang, 2005 and references therein).

In a sample with T observations, let TN and TP indicate the number of observations

for which d = −1, 1 respectively, using the mnemonics N for negative and P for positive.

For a given threshold c, the finite sample correct classification rates can be calculated

nonparametrically as:

T̂P (c) =

∑TP
i=1 I

(
δ̂i > c

)
TP

; T̂N(c) =

∑TN
j=1 I

(
δ̂j < c

)
TN

(4)

where the indices i, j relabel the original t subscript to keep the notation simple, and run

over two sets of re-numbered observations, with each one mapping to a unique t such that

dt = 1(−1), respectively and I(.) ∈ {0, 1} is the indicator function that takes on the value
of 1 when the argument is true and 0 otherwise. When δ̂ is i.i.d. and is not generated by

a fitted model with estimated parameters (such as the ‘momentum’ strategy in one of our

carry trade examples below), then:√
TNTP

T
K̂S → sup

t
|B(t)| (5)

where B(t) is a Brownian-bridge, that is, B(t) = W (t) − tW (1) where W (t) a Wiener

process (see e.g. Shorack and Wellner, 1986). Notice that KS ∈ [0, 1] and is equivalent to
the maximum of the Youden (1950) J index, which is defined as

J(c) = TP (c)− FP (c). (6)
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Under the symmetry assumption that P (d = −1) = P (d = 1) = π = 1
2 , a risk-neutral

investor will want to maximize the J index out of which one can identify the optimal

operating point as the threshold cKS where KS = J(cKS).

Several practicalities deserve comment. Investment strategies are often the result of

models with estimated parameters, in which case, the distribution of the KS statistic has

to be recalculated as shown by Rubin (1973). See also Andrews (1997) for conditional KS

asymptotic results which require the bootstrap. Linton, Maasoumi and Whang (2005) pro-

vide tests of stochastic dominance based on the KS statistic but these require resampling

procedures. Bai (2003) probably contains the most relevant results for tests of parametric

conditional distributions of dynamic models derived from empirical process theory using

the Khamaladze (1981) martingale transformation. However, the test’s critical values have

to be obtained by simulation in each case.

If instead one uses utility weights of 1 for correct calls and 0 for incorrect calls, then

expression (3) is just the accuracy rate:

A(c) = TP (c)π − TN(c)(1− π)

whereas exchanging these weights, we obtain the error rate:

E(c) = FN(c)π + FP (c)(1− π).

But the accuracy and error rates sum to one, so these are inversely related and attain their

respective maximum and minimum for the same choice of c.

We can now begin to see that the KS statistic is applicable only in a very special

case. If positive and negative outcomes are equiprobable and if the utility from correct

predictions (whether positive or negative) is normalized to be the same and equal to 1, and

conversely that the disutility from incorrect predictions (whether positive or negative) is

the same and equal to −1, expression (3) simplifies in such a way that U(c) = J(c), and

A(c) =
1 + J(c)

2
; E(c) =

1− J(c)

2
.

Thus, for this case only, all performance measures are monotonic in J(c), and on all per-

formance criteria, the same optimal c will be chosen.

In the seminal work of Peirce (1884), the expression for J(c) was referred to as “the

science of the method” and the general expression for U(c) as “the utility of the method”
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(Baker and Kramer 2007). In Peirce’s example, the applied problem was forecasting tor-

nadoes, and his hypothetical utility weights corresponded to the net benefits of lives saved

under true positives versus the costs of wasted resources or panic under false positives.

But in general, as Peirce understood, the choice of c that maximizes U need not be

the one that maximizes J (or the accuracy rate discussed previously). In what follows we

explore methods that allow π and Uij to be generic. In finance problems, for realism, we

want to allow the Uij to be unrestricted since payoffs vary continuously, and we also want

to allow for π �= 1
2 to admit the possibility of skewed payoff distributions.

Whether realized returns are systematically positive and significantly different from

zero is determined primarily by a classifier’s properties. In general settings, the utility

derived from a given classifier will depend on the investor’s attitude toward risk since

each investment strategy is characterized by different combinations of returns, volatility

and extreme events. Thus, the maximum of the Youden J index obtained from the KS

statistic in expression (5) insufficiently characterizes an investor’s choices—in other words,

the simplifying assumptions used to derive expression (5) may not hold in practice.

To sidestep this problem, the CC frontier allows us to make comparisons among classi-

fiers without specific assumptions about underlying preferences by considering all operating

points simultaneously. Given the CC frontier’s usefulness, it is helpful to develop some

further intuition about its shape and the properties of the optimal operating point.

The CC frontier can be defined in terms of two distributions. Let u denote values of δ̂

for which d = 1 and denote G its distribution and g its density so that TP (c) = 1−G(c).

Similarly, let v denote values of δ̂ for which d = −1 and denote F its distribution function

and f its density so that TN(c) = F (c).

We can now use the distributions F and G to define the CC frontier. Let us denote by

CC(r) the true positive rate corresponding to a true negative rate of r (since c uniquely

determines both rates, this mapping is one-to-one). Hence CC(r) = 1 − G(F−1(r)) with
r ∈ [0, 1]. Notice then that the maximum utility from expression (3) is achieved when

dCC(r)

dr
≡ g(F−1(r))

f(F−1(r))
= −1− π

π

(UnN − UpN )

(UpP − UnP )
(7)

so that it is easy to see that the slope of the CC frontier is the likelihood ratio between

the densities f and g. If this likelihood ratio is monotone, then the CC frontier is concave.

In practice, one can make parametric assumptions about f and g and hence construct

parametric models of the CC frontier. However, in the remainder of the paper we restrict
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our attention to nonparametric estimators because returns distributions are often poorly

characterized by conventional Gaussian assumptions. The reader is referred to Pepe (2003)

for an overview of parametric ROC models, which can be applied to CC frontier estimation.

The main point of the last equation is to show that, in general, the optimal operating

point is at a slope that is skewed away from −1 in a way that depends on the relative

probability of each outcome, and the utility weights. For example, in the last expression,

suppose P is the event “cancer of type X” and upon that signal surgery will occur. All

else equal, i.e., holding utility weights constant, if X gets very rare (π smaller, and the first

fraction is larger), then a more conservative classifier should be used, with CC frontier

steeper at the optimal point, typically nearer to (1,0) in Figure 1. On the other hand,

holding the probability π constant, if, say, X is a more dangerous type of cancer then the

costs of a false negative (UnP ) go up all else equal, then the second fraction gets smaller,

and a more aggressive classifier should be used, with CC frontier flatter at the optimal

point, typically nearer to (0,1) in Figure 1.

These results are very intuitive indeed, although again we caution that the utility space

is limited to four discreet outcomes, a restriction we shall seek to relax in a moment as we

adapt these techniques for applications with variable payoffs in economics and finance.

4 Building Blocks: The Area under the CC Frontier

In this section we introduce an alternative statistic to the KS that will form the basis for

the procedures that we discuss below. Several advantages will become apparent throughout

the discussion, among them, more convenient asymptotic properties and a tighter link to

the investor’s decision problem.

From Figure 1 it is clear that an arbitrage opportunity occurs for a perfect classifier.

In that case the CC frontier in Figure 1 is given by the north-east edges of the unit-square

and the tangent to the investor’s utility takes place at the (1,1) corner so that the investor’s

specific preferences become irrelevant. The area under this CC frontier, which we denote

AUC for area under the curve, is the area in the unit-square and therefore AUC = 1.

Conversely, an uninformative classifier given by the chance diagonal that bisects the unit-

square from (1,0) to (0,1) has AUC = 0.5.

In practice, the AUC for most investment strategies will be between these two values.

Values below 0.5 are possible in small samples but reversing the predictions would generate

an AUC ≥ 0.5.
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Formally, we have the definition

AUC =

∫ 1

0
CC(r)dr.

We note that the AUC defined here has the same properties as the area under the ROC

curve and the area under the ordinal dominance curve (see Hsieh and Turnbull 1996).

Given two investment strategies, A and B such that CCA(r) > CCB(r) ∀r then A

stochastically dominates B regardless of investor preferences and it will be the case that

KSA > KSB and AUCA > AUCB. However, the reverse is not a sufficient condition for

stochastic dominance since even if KSA > KSB and/or AUCA > AUCB, there could be

a crossing between the two CC frontiers and hence regions where CCA(r) < CCB(r). In

such a case, whether A is preferred to B or vice versa depends on what region are investor

preferences tangent to the CC frontier. We will discuss momentarily several inferential

procedures, including tests of the null: H0 : CCA(r) = CCB(r).

Before then though, we discuss several properties of the AUC. Green and Swets (1966)

provide a nice interpretation of the AUC as AUC = P [v < u] where v and u where

defined in the previous section as the δ̂ for which d = −1,+1 respectively. Thus, like the
KS statistic, the AUC measures the distance between the empirical distribution for v and

u, except that instead of a uniform norm, we use:

∫ 1

0
[F (c)−G(c)]dr =

∫ 1

0
[F (F−1(r))− 1 + CC(r)]dr =

∫ 1

0
CC(r)dr = AUC.

Not surprisingly, the AUC is related to the Wilcoxon-Mann-Whitney U -statistic (see Bam-

ber 1975; Hanley and McNeil 1982), which is a rank-sum statistic. The AUC can be

estimated nonparametrically and in the simplest form can be obtained as

̂AUC =
1

TNTP

TN∑
j=1

TP∑
i=1

{
I (vj < ui) +

1

2
I (ui = vj)

}
(8)

where the last term is used to break ties. However, we should point out that there are

alternative estimators based on making parametric assumptions for f and g, and other

kernel-weighted nonparametric estimators all of which are discussed, e.g., in Pepe (2003).
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Here we prefer to retain the simpler estimator presented in (8) for reasons that will become

clear momentarily.

The empirical AUC turns out to have convenient statistical properties. If TP /TN →
λ > 0 as T → ∞; F and G have continuous densities f and g respectively; and the slope

of the CC frontier is bounded on any subinterval (a, b) of (−1, 0), with −1 < a < b < 0;

then Hsieh and Turnbull (1996) show that:

√
T
(
̂AUC − P [v < u]

)
→ N

(
0, σ2

)
, (9)

and in the special case that F = G (which is the null case in which there is no classification

ability), then P [v < u] = 0.5 and:4

σ2 =
1

12

(
1

TN
+

1

TP

)
.

We make one final comment on the effect of estimated parameters on the large sample

results available for the AUC. The intuition is fairly straightforward to communicate: if

the estimated parameters converge in distribution to a normal at the same
√
T rate as the

AUC, the asymptotic result in expression (8) remains valid except that the variance of the

AUC would need to reflect parameter estimation uncertainty as well—an issue that can

be easily resolved in practice by using the bootstrap.5

4 The proof of this result can also be derived from the theory of empirical processes using lemma 12.3
and theorem 2.8 in Kosorok (2008), who also shows in theorem 12.1 that the delta method bootstrap is
applicable and can be used under more general hypotheses on F and G. The result hinges on CC(r) being
a Hadamard differentiable map, a convenient assumption which cannot be verified in practice.

Hanley and McNeil (1982) and Obuchowski (1994) provide a convenient approximation for the variance
of AUC under general conditions using the Mann-Whitney interpretation of the AUC. However, DeLong,
DeLong and Clarke-Pearson (1988) provide a more general formula that is available in SAS and STATA
and allows for correlated AUCs. Jackknife procedures are available in Hanley and Hajian-Tilaki (1997) and
Obuchowski and Lieber (1998) provide standard bootstrap results under a variety of assumptions, although
large sample approximations have been found to do well in relatively small samples (Pepe 2003).

5 Early proofs can be found in Darling (1955) and Durbin (1973), although Bai (2003) contains a more
modern treatment, and in particular, assumptions A1-A4 in theorem 1. Without repeating the assumptions
here, one needs the densities f and g and the score functions to be continuously differentiable with respect
to the parameter vector. The parameter estimates are assumed to converge in distribution at rate

√
T .

Bai’s fourth assumption ensures that, for dynamic models, past information becomes less relevant as time
progresses. For another treatment of the same problem the reader is referred to theorem 19.23 in van der
Vaart (1998).
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5 Inferential Procedures with AUCs

This section discusses four inferential procedures: (1) tests of the null that an investment

strategy picks profitable positions no better than random luck; (2) tests of he null that

two strategies have the same AUC (an overall comparison); (3) tests of the null that two

strategies have the same CC frontier at all operating points; and (4) confidence intervals

for the CC frontier at specific operating points.

To test against the random null, the large-sample results in the previous section provide

the sampling distribution of ̂AUC, which can be used to construct Wald tests for the null

that AUC = 1
2 . If the strategy is based on a model with estimated parameters, then

the bootstrap percentiles, bootstrap-z or the bootstrap bias-corrected accelerated method

discussed in Obuchowski and Lieber (1998) should be used.

For comparing the value of two AUCs, Hanley and McNeil (1983) suggest that a test

of H0 : AUCA = AUCB can be constructed using the z-ratio

z =
AUCA −AUCB√
σ2
A + σ2

B − 2ρσAσB

→ N(0, 1), (10)

where σ2
j for j ∈ {A,B} refers to the variance of the AUC for each investment strategy, and

ρ refers to the correlation between AUCA and AUCB. Hanley and McNeil (1983) propose

estimating ρ as the average of the correlation ρ(vA, vB) for the short positions and the

correlation ρ(uA, uB) for the long positions.

However, as discussed in the previous section, which investment strategy an investor

will prefer cannot be assessed with this type of null, nor can one test whether a strategy

dominates another, unless ĈCA(r) > ĈCB(r) ∀r andH0 : AUCA = AUCB can be rejected.

A more appropriate hypothesis is H0 : CCA(r) = CCB(r) ∀r. Venkatraman and Begg

(1996) provide a test of this null using distribution-free permutation methods from which

p-values can be easily constructed by simulation, as follows.

Let {SA
i }Ti=1 and {SB

i }Ti=1 denote the ranks of {δ̂
A

i }Ti=1 and {δ̂
B

i }Ti=1 respectively (the

signals from each investment strategy). Let the index k = 1, ..., T − 1. Then define the

empirical error matrix by

eik =

⎧⎪⎨⎪⎩
1 if (SA

i ≤ k, SB
i > k, di = −1) or (SA

i > k, SB
i ≤ k, di = 1),

−1 if (SA
i > k, SB

i ≤ k, di = −1) or (SA
i ≤ k, SB

i > k, di = 1),

0 otherwise,
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and the associated statistic

E =
T−1∑
k=1

∣∣∣∣∣
T∑
i=1

eik

∣∣∣∣∣ . (11)

It is easy to see that this statistic focuses on the differences in predictions at each kth oper-

ating point. To obtain the critical value for this statistic, one can obtain the percentile from

a large number of draws of the statistic (11) from randomly exchanging the ranks between

the two investment strategies and reranking them. To do this in practice, let (q1, ..., qN )

denote randomly drawn sequences of 0’s and 1’s and generate resamples {ŜA
i , Ŝ

B
i } using

ŜA
i = qiS

A
i + (1− qi)S

B
i and ŜB

i = qiS
B
i + (1− qi)S

A
i

with a random coin-toss rule to break ties introduced by the permutation process.

Finally, one may be interested in providing error bands for the CC frontier at a given

operating point (say the point that is tangent to the investor’s preferences). In principle,

such an interval can be constructed from the large sample results in Hsieh and Turnbull

(1996) as follows. For a given operating point r and a confidence level 1− α, then

S =
{
ĈC(r)± Φ−1

(
1− α

2

)
σ̂(r)

}
; P (CC(r) ∈ S) = 1− α

with:6

σ2(r) =
G

{
F−1(r)

} (
1−G

{
F−1(r)

})
TP

+

[
g
{
F−1(r)

}
f {F−1(r)}

]2
r(1− r)

TN
,

where one can substitute for all theoretical quantities with their empirical counterparts.

However, in more general situations than those contemplated in the assumptions in Hsieh

and Turnbull (1996) one would have to rely on straightforward bootstrap methods.

6 Pepe (2003) suggests that such intervals may be imprecise when r is close to 0 or 1 and proposes
instead a back-transformation of the interval generated by

logit
(
ĈC(r)

)
± Φ−1

(
1− α

2

) σ̂(r)

ĈC(r)
(
1− ĈC(r)

) .

When there is reason to fear that the asymptotic approximation is inadequate, one can construct the usual
t-percentile bootstraps although Hall, Hyndman and Fan (2004) caution that the theoretical properties
of the bootstrap in this type of problem are quite complex because of the different smoothing choices to
be made in calculating Ĝ, F̂ , ĝ, and f̂ . The reader is referred to their paper to notice the oversmoothing
bandwidths required to manage the coverage error rate to be o(T−2/3).
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6 Adjusting for Returns and Risk

As we have stressed in our discussion so far, correct classification alone is insufficient to

assess the appeal of an investment strategy: correctly picking 99-in-100 penny trades while

missing the 1-in-100 dollar trade results in a loss although the strategy has almost perfect

directional accuracy.7 And when there are transactions costs, it is reasonable to expect

that a trader may choose to sit on the sidelines when the expected returns of a position

are insufficient to cover transactions costs. In this section we show how such adjustments

can be made to the basic framework introduced in previous sections.

6.1 The Risk-and-Return-Adjusted CC Frontier: CC�

Risk-and-return-adjusted probability measures incorporate information about investor pref-

erences for consumption in different states. It would be natural to characterize the relative

trade-offs embodied in the CC frontier expressed in terms of risk-and-return-adjusted prob-

abilities. This can be done easily as follows. Define:

B =
∑
d=1

mtxt, C =
∑
d=−1

|mtxt|

where mt is the pricing kernel derived for a benchmark risk-averse investor. Under risk

neutrality, mt = 1 and B then becomes the in-sample gains of all the long positions and

C the in-sample gains of all the short positions. Here we assume that the positions are

normalized to $1 for convenience and therefore, we do not take into account how the

benchmark investor’s endowment may or may not affect his aversion to risk. B and C can

then be used to construct the following weights:

wi =
mixi
B if δ̂i > c and di = 1 for i = 1, ..., TP ,

wj =
|mjxj|

C if δ̂j < c and dj = −1 for j = 1, ..., TN ,

where, as before, it is understood that the indices i and j each map P and N outcomes

(respectively) to a unique observation t.

Using these weights, the risk-and-return-adjusted equivalent to (4) can be calculated

7 For example, see Anatolyev and Gerko (2005), who build on Pesaran and Timmermann (1992).
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as:

̂TN�(c) =

TN∑
j=1

wjI(δ̂j < c), T̂ P �(c) =

TP∑
i=1

wiI(δ̂i > c), (12)

so that the risk-and-return-adjusted CC∗ frontier, CC∗(r), is a map of all the combinations
{TN∗(c), TP ∗(c)} for c ∈ (−∞,∞). By construction, CC∗(r) still inhabits the unit-square,
with a CC∗ frontier hugging the north-east corner of the unit-square now representing

a perfect arbitrage opportunity and the ‘chance’ diagonal representing risk-and-return-

adjusted complete absence of arbitrage. Furthermore, now the slope of CC∗(r) represents
the likelihood ratio of the risk-and-return-adjusted densities f∗ and g∗ (the risk-and-return-
adjusted equivalents to f and g introduced earlier), weighted by returns.

Notice that the expected gains, Γ(c), and losses, Λ(c), under the risk-and-return-

adjusted probabilities and for a given threshold parameter c are:

E∗ (Γ(c)) = B.TP ∗(c) + C.TN∗(c) (13)

E∗(Λ(c)) = B.(1− TP ∗(c)) + C.(1− TN∗(c)),

where E∗ denotes the expectation under the risk-and-return-measure. Hence, the investor’s
expected profit ratio (that is, where we normalize expected profits by the maximally at-

tainable profits in the sample for cross comparability) can be expressed as:

E∗(Π(c)) =
E∗(Γ(c)− Λ(c))

B + C
=

B (2TP ∗(c)− 1) + C(2TN∗(c)− 1))

B + C
.

In the special case where B = C, then it is easy to see that

E∗(Π(c)) = 2× J∗(c)

where J∗(c) is the risk-and-return-adjusted Youden (1950) index. Hence, profit maximiza-
tion is achieved for c = c∗KS since

max
c

2× J∗(c) = 2×max
c
|TP ∗(c) + TN∗(c)− 1|,

the latter being twice the KS∗ statistic using risk-and-return-adjusted probabilities. In

this special case (B = C ), Bernardo and Ledoit’s (2000) gain-loss ratio can be simply
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calculated as:

α ≡ maxcE
∗(Γ(c))

maxcE∗(Λ(c))
=
1 +KS∗

1−KS∗
.

Note that the condition B = C is not saying that up and down moves are equally likely,

but that upside and downside cumulative returns are equal. This may be a very natural

assumption to make in some financial markets, even if there are substantial deviations from

fair price or efficient markets in the short run. For example, there is ample evidence that

long-run holding returns on different currencies are identical, even if short-run carry trade

strategies seem to make profits.8

We pause our discussion momentarily to elaborate on this last equivalence to the

Bernardo and Ledoit (2000) gain-loss ratio and its implications for asset pricing. First

notice that, in the above equation, α→∞ is an arbitrage opportunity: at least some gains

can be made without the possibility of any loss. This will happen when KS∗ = 1, the

maximum value the KS∗ can attain. Conversely, when KS∗ = 0 (the minimum possible

value), then expected gains and losses (under the risk-and-return-adjusted measure) are

the same and α = 1. Values in-between these two extremes are approximate arbitrage op-

portunities. Figure 2 shows the value of α in {TP ∗(c), TN∗(c)} to make the connection
with CC∗ space.

Moreover, theorem 1 in Bernardo and Ledoit (2000) provides an alternative charac-

terization of all pricing kernels that correctly price all portfolio pay-offs and hence is an

alternative to, for example, the duality result in Hansen and Jaganathan (1991), which

show that a bound on the variance of the pricing kernel is equivalent to a bound on the

maximum Sharpe ratio. Bernardo and Ledoit (2000) argue that, unlike the Sharpe ratio,

α characterizes the set of arbitrage (α → ∞) and approximate arbitrage opportunities

(α > 1) and propose that for a given bound 1 < α <∞, the benchmark model will be rea-

sonable if α ≤ α, but otherwise the model will be inconsistent with well functioning capital

markets. Therefore α controls the trade-off between the precision of a specific benchmark

pricing model and the robustness of no-arbitrage bounds. As an example, Bawa and Lin-

deberg (1977) showed that if returns are Gaussian, then there is a one-to-one mapping

with the Sharpe ratio under risk-neutrality so that, for example, a Sharpe ratio of 0.3 is

equivalent to α = 2. The reader is referred to Bernardo and Ledoit (2000) for more details.

In practice, several features of the data can disturb this nice connection between KS∗

and α, such as B �= C, asymmetry of returns, and so on. And in reality, the investor’s

8 On the evidence for the long run, see Alexius (2001), Fujii and Chinn (2001), and Sinclair (2005).
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Figure 2: The Gain-Loss Ratio in {TP ∗(c), TN∗(c)} Space

benchmark preferences are unknown. For these reasons and along the lines of the arguments

we used in previous sections, it is natural to compute an alternative to the KS∗ in the

spirit of the AUC, namely,

̂AUC� =

TN∑
j=1

wj

TP∑
i=1

wi

{
I(ui > vj) +

1

2
I(ui = vj)

}
.

As long as the risk-and-return-adjusted probabilities conform with standard measura-

bility conditions, nothing has changed with respect to the statistical properties previously

discussed for ̂AUC : the weighting simply re-ranks the observations within each empirical

distribution, f∗ or g∗, but no observations switch from one to the other as a result of the

weighting. Thus, the asymptotic results only require that the regularity conditions now

apply to f∗ and g∗. As a result, we will now require that B/C → β > 0 as T → ∞ and

that the densities of the returns in long/short positions be continuous so that the resulting

convolution of f and g into f∗ and g∗ is also continuous. Under this scenario, the inferential
and bootstrap procedures discussed in previous sections can be easily modified. It is useful

to refer back to Figures 1 and 2 since the CC∗ can now be seen as giving a map to α in

Figure 2, but under more general conditions.
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6.2 Multicategorical Positions

The excess returns of a continuously traded zero-cost strategy offer a natural benchmark

with which to assess the attractiveness of an investment opportunity. In reality, however,

investors face transactions costs or they may wish to place larger bets when risk-adjusted

returns are expected to be specially high in a given period. In the first example, one

would expect investors to take a neutral position if expected returns are insufficient to

cover transactions costs, thus expanding the decision space to long/neutral/short positions.

In the second example, an investor may consider doubling the bet when the expected

returns of a position are specially high and hence the decision space would expand to four

categories, say long(2)/long(1)/short(1)/short(2), or even five if one includes a neutral

category. In what follows we show how to extend the analysis of the previous sections using

the three category long/neutral/short example as our framework, although extensions to

more categories should be obvious from our discussion (see also Waegeman, De Baets and

Boullart, 2008).

Suppose that whether an investor goes short/neutral/long, that is, d = −1, 0, 1, is
determined by

dt = −1 if xt < ψ1,

dt = 0 if ψ1 ≤ xt ≤ ψ2,

dt = +1 if xt > ψ2,

(14)

where ψ = (ψ1, ψ2) are pre-determined thresholds known in advance. For example, if xt

represents excess returns, then ψ1 could represent the costs of a short position and ψ2 the

costs of a long position so that if ψ1 < xt < ψ2, the trader will choose to remain neutral.

Next, assume there is a model that generates a continuous signal δ̂t that determines

the investor’s positions according to:

d̂t = −1 if δ̂t < c1,

d̂t = 0 if c1 ≤ δ̂t ≤ c2,

d̂t = +1 if c2 < δ̂t,

for c1 < c2; c1, c2 ∈ (−∞,∞) with c ≡ (c1, c2).

The contingency matrix associated with each of the three states d = −1, 0,+1 means
that the CC frontier is now a surface in the three-dimensional space of the per category
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true positive rates:

T̂P h(c) =
1

Th

∑
dh=̂dh

I(δ̂t+1 ≤ c1) + I(c1 < δ̂t+1 ≤ c2) + I(c2 < δ̂t+1)

where Th refers to the number of observations in the sample that belong to category

h ∈ {N, 0, P} with N standing for negatives, 0 standing for neutrals, and P standing for

positives. The CC surface belongs in the [0, 1] × [0, 1] × [0, 1] cube and as with the CC

frontier, perfect classification implies a CC surface with unit volume, whereas the ‘chance’

simplex (rather than diagonal) bisects the cube at (1, 0, 0), (0, 1, 0), (0, 0, 1).

The equivalent statistic to the AUC in three dimensions becomes the volume under

the CC surface or VUS (for volume under the surface). A perfect classifier is one with

V US = 1, but now a chance classifier has V US = 1/6 because the probability of randomly

classifying any two categories, while still 1/2, has to be considered for any three possible

pairs. In general, classification problems with k categories result in a CC hypersurface in

k dimensions and a VUS for the chance classifier of 1/k!.

Although there is no comparable extension for the KS statistic, the VUS is a direct

generalization of the Wilcoxon-Mann-Whitney statistic (see Mossman, 1999). Let vj denote

the observations of δ̂ for which d = 1; zk when d = 0; and ui when d = 1, then the empirical

estimate of P [v < z < u] is readily seen to be

̂V US = P̂ [v < z < u] =
1

TNT0TP

TN∑
j=1

T0∑
k=1

TP∑
i=1

{I (vj < zk < ui) , } (15)

where we omit the rule to randomly break ties in the interest of keeping the notation

concise.

Dreiseitl, Ohno-Machado and Binder (2000) provide Gaussian large sample approxima-

tions for ̂V US and analytic formulas for the variance, as well as formulas for the covariance

between the ̂V US of two competing models. These can be used to craft inferential pro-

cedures along the lines described in the previous sections. More generally, concerns with

the small sample properties of asymptotic approximations and/or models with O(T 1/2)

estimated parameters, are good reasons to rely on bootstrap procedures instead.

Consider now V US calculations using risk-and-return-adjusted probabilities. For this

derivation, notice that in the neutral position, xt = 0 and hence all observations within

this category receive equal weight of 1/T0. Recall that we previously defined:
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B =
∑
d=1

mtxt; and C =
∑
d=−1

|mtxt|

and hence we can define the following weights:

wi =
mixi
B if δ̂ > c2 and d = 1 for i = 1, ..., TP

wk =
1
T0

if c1 ≤ δ̂ ≤ c2 and d = 0 for k = 1, ..., T0

wj =
|mjxj |

C if δ̂ < c1 and d = −1 for j = 1, ..., TN

where the indices i, j, k are a shorthand device to denote the observations t belonging to

each category.

The empirical counterpart to the AUC∗ for three categories now becomes:

V US� =

TP∑
i=1

wi

T0∑
k=1

wk

TN∑
j=1

wjI(vj < zk < ui).

Notice now that expected gains, Γ(c), and losses, Λ(c), under the risk-and-return-adjusted

probabilities and for a given vector of thresholds c = (c1, c2), c1 < c2 is similar to those

calculated in expression (13), namely:

E∗(Γ(c)) = B.TP ∗P (c) + C.TPN (c)

E∗(Λ(c)) = B(1− TPP (c)) + C(1− TPN (c))

since in our example the neutral position offers no returns (xt = 0). Similarly, the investor’s

normalized expected profits are:

E∗(Π(c)) =
B (2TP ∗P (c)− 1) + C (2TPN (c)− 1)

B + C
; c1 < c2.

In the special case B = C then E∗(Π(c)) = 2× J∗(c) but where now J∗(c) is a version of
the Youden index constructed with TP ∗P (c) and TPN (c).

However, because now there is a neutral position, choosing e.g., c1 → −∞ so that

TPN (c) → 0 does not now imply that TPP (c) → 1 since one could maintain c2 fixed. In

fact, if c1 → −∞ and c2 →∞, then TPN (c), TNP (c)→ 0 and TP0(c)→ 1.

Therefore the profit maximization problem is a little different and the maximum can
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be calculated from the simplified problem

max
c1,c2

2 (TP ∗N (c1, c2) + TP ∗P (c1, c2)− 1)

s.t. c1 < c2.

In contrast to the binary case, there are three empirical distributions resulting from the

values of δ̂ assigned to d = −1, 0, 1, say f∗, h∗, and g∗ respectively. For profit maximization
the key is to determine the distance between f∗ and g∗ as before, but now there is the

intervening distribution h∗. Although the connection between Bernardo and Ledoit’s (2000)
gain-loss ratio α and the KS∗ statistic breaks down, the intuition for the result does not:
the distance between f∗ and g∗ is still the critical element in calculating α, for which ̂V US

∗

offers a useful measure.

7 Empirical Application I: Risk-and-Return Adjusted Ex-

cess Returns of Equities

For our first application, we turn to one of the holy grails of financial economics, the

problem of forecasting equity returns. In this section we will scrutinize the performance

of stock trading rules drawn from a veritable kitchen sink of signals, following the most

recent and state-of-the-art treatment by Goyal and Welch (2008).9 As these authors have

shown, at first sight many signals may appear to be useful based on in-sample performance

(IS), only to fail when confronted with the “gold standard” of predictive tests—the ability

to provide an informative out-of-sample forecast (OOS).

The strategy to be evaluated is based on a long-short trading strategy for U.S. equities

for 1927:1 to 2008:12. The monthly excess return is defined as the return on the S&P 500

including dividends, minus the “risk-free rate” defined as the 3-month treasury bill rate.

The investor’s long/short positions are then determined by any one of the following 15

indicators used individually:10 (1) the dividend price ratio, dp, computed as the difference

between the log of dividends and the log of prices; (2) the dividend yield ratio, dy, computed

as the difference between the log of dividends and the log of lagged prices; (3) the earnings

9 We use the new dataset of Goyal-Welch extended through 2008, available on Goyal’s website:
www.bus.emory.edu/AGoyal/Research.html. Their published paper uses data through 2005.

10 All data are taken from Goyal and Welch (2008) and the 2009 vintage updates on Goyal’s website:
www.bus.emory.edu/AGoyal/Research.html
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price ratio, ep, computed as the difference between the log of earnings and the log of

prices; (4) the dividend payout ratio, de, computed as the difference between the log of

dividends and the log of earnings; (5) the stock variance, svar, computed as the sum of

squared daily returns on the S&P 500; (6) the cross-sectional beta premium, csp, which

measures the relative valuations of high- and low-beta stocks; (7) the book to market ratio,

bm; (8) the net equity expansion, ntis, which is one of two measures of corporate issuing

activity; (9) the long term yield, lty, on government bonds; (10) the long term return, ltr,

on government bonds; (11) the term spread, tms, computed as the difference between the

yield on long-term government bonds and the T-bill rate; (12) the default yield spread,

dfy, computed as the difference between BAA- and AAA-rated corporate bond yields; (13)

the default return spread, dfr, computed as the difference between returns on long-term

corporate bonds and returns on long-term government bonds; (14) the inflation rate, linfl,

based on the CPI and lagged one month to allow for publication lags; and (15) tbl the

short-term return on the 6-to-3 month T-Bill rate.

These signals are used for IS prediction over the full period, and OOS prediction using a

long window from 1970:1 to 2008:1.11 The latter window is chosen to be roughly consistent

with the OOS windows used by Welch and Goyal (2008), who find that the inclusion or

exclusion of the 1970s oil shock period can dramatically affect the performance of prediction

strategies. We now report our results and compare our findings to those of Goyal and Welch

(2008). The key difference to remember is that we will be using directional and realized

profit criteria to judge the presence of unexploited arbitrage opportunities, and not the

prevailing mean squared error (MSE) fit-based criterion. Again, this turns out to be

significant as some methods that have high accuracy, may have low profit (and vice versa),

so we can draw attention to whether a particular strategy can “fit where it matters”.

Briefly, at a monthly frequency Goyal and Welch (2008, section 5) found a handful of

strategies whose IS predictive power surmounted conventional significance tests. Under

their MSPE criterion eight strategies were judged successful. However, once these eight

strategies were subjected to a further OOS prediction test, only one, the eqis signal, was

found to have superior IS and OOS performance relative to the null of using the historical

mean return. The term spread tms was found to have marginal IS significance, but OOS

significance. A few more signals were found to be promising when various truncations were

applied to the data.

11 The data for csp are only available from May 1937 to December 2002, so the sample sizes for this
variable are slightly smaller in what follows.
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In addition to IS and OOS statistical inference based on the MSPE criteria, Goyal and

Welch (2008) also consider the profitability of the candidate strategies by constructing a

certainty-equivalent gain after postulating a utility function (Brennan and Xia 2005; Camp-

bell and Thompson 2008). They note that (p. 1488–89) “This allows a conditional model to

contribute to an investment strategy not just by increasing the mean trading performance,

but also by reducing the variance....” They found that “In order, among the IS reason-

ably significant models, those providing positive CEV gains were tms (14 bps/month), eqis

(14 bps/month), tbl (10 bps/month), csp (6 bps/month), cay3 (6 bps/month), and ntis

(2 bps/month).” However, the authors also indicate the dearth of available tests geared

towards evaluating such improvements, since “we know of no better procedure to judge the

economic significance of forecasting models,...” One of the goals of this paper is to provide

just such a procedure, and one that can not only measure the economic significance of any

gains, but also their statistical significance.

With these preliminaries, we now turn to our results. Our IS predictions are shown

in Table 2 using the CC-based evaluation tools: the AUC and AUC� using a risk-neutral

returns adjustment only (in Table 4 below we examine stochastic discount factor adjust-

ments with coefficients of risk aversion up to 80 for power utility). We also report the

KS and KS � as well as the Bernardo and Ledoit (2000) gain-loss ratio based on KS � and

under the assumption of symmetry. According to the directional AUC test, only two sig-

nals surmount the conventional 5% significance level: csp and linfl, although tbl, lty, and

tms come very close (the lower bound of the 95% confidence interval calculated with 1,000

bootstrap replications is just at the null value of 0.50). Of these only csp was found to be

significant IS in the Goyal-Welch findings. However, when we turn to the AUC� test based

on profits, the picture is a bit different. First, the AUC� is noisier and this is reflected in

95% confidence intervals that are slightly wider than with the raw AUC. Now only two

signals do well by this yardstick: ep and csp of which the first was not significant without

the adjustment. Only csp performs well in both cases.

Yet, as we have noted, in-sample performance alone will not convince an appropriately

skeptical reader. We therefore repeat our exercise and compute the OOS performance of

the signals, as shown in Table 3. Using the directional AUC test four signals are significant

at the 5% level, namely: tbl, lty, tms and csp. Note that only one of these was statistically

significant in the IS tests using AUC, namely csp. Turning to the returns-based AUC�

test, only one signal is significant at the 5% level: csp, which is the only signal to achieve

statistical significance in all four of our tests.
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Table 2: AUC, KS, and Gain-Loss Ratio, and Risk-Neutral AUC�, KS�, and Gain-Loss
Ratio for Equity Strategies. In-sample Predictions: 1927:1–2008:12

Signal Statistic Value 95% Conf. Interval Statistic Value 95% Conf. Interval 
dp AUC 0.51 0.48 0.55 AUC* 
 KS 0.05 0.01 0.10 KS* 
 g/l 1.12 1.02 1.22 g/l* 

dy AUC AUC* 
 KS KS* 
 g/l g/l* 

ep AUC AUC* 
 KS KS* 
 g/l g/l* 

de AUC AUC* 
 KS KS* 
 g/l g/l* 

svar AUC AUC* 
 KS KS* 
 g/l g/l* 

bm AUC AUC* 
 KS KS* 
 g/l g/l* 

ntis AUC AUC* 
 KS KS* 
 g/l g/l* 

tbl AUC AUC* 
 KS KS* 
 g/l g/l* 

lty AUC AUC* 
 KS KS* 
 g/l g/l* 

ltr AUC AUC* 
 KS KS* 
 g/l g/l* 

tms AUC AUC* 
 KS KS* 
 g/l g/l* 

dfy AUC AUC* 
 KS KS* 
 g/l g/l* 

dfr AUC AUC* 
 KS KS* 
 g/l g/l* 

linfl AUC AUC* 
 KS KS* 
 g/l g/l* 

csp AUC AUC* 
 KS KS* 
 g/l g/l* 

Notes: 95% confidence interval calculated with 1,000 bootstrap replications.
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Table 3: AUC, KS, and Gain-Loss Ratio, and Risk-Neutral AUC�, KS�, and Gain-Loss
Ratio for Equity Strategies. Out-of-sample Predictions: 1970:1–2008:12

Signal Statistic Value 95% Conf. Interval Statistic Value 95% Conf. Interval 
dp AUC 0.51 0.48 0.55 AUC* 
 KS 0.05 0.01 0.10 KS* 
 g/l 1.12 1.02 1.22 g/l* 

dy AUC AUC* 
 KS KS* 
 g/l g/l* 

ep AUC AUC* 
 KS KS* 
 g/l g/l* 

de AUC AUC* 
 KS KS* 
 g/l g/l* 

svar AUC AUC* 
 KS KS* 
 g/l g/l* 

bm AUC AUC* 
 KS KS* 
 g/l g/l* 

ntis AUC AUC* 
 KS KS* 
 g/l g/l* 

tbl AUC AUC* 
 KS KS* 
 g/l g/l* 

lty AUC AUC* 
 KS KS* 
 g/l g/l* 

ltr AUC AUC* 
 KS KS* 
 g/l g/l* 

tms AUC AUC* 
 KS KS* 
 g/l g/l* 

dfy AUC AUC* 
 KS KS* 
 g/l g/l* 

dfr AUC AUC* 
 KS KS* 
 g/l g/l* 

linfl AUC AUC* 
 KS KS* 
 g/l g/l* 

csp AUC AUC* 
 KS KS* 
 g/l g/l* 

Notes: 468 out-of-sample observations except for csp, which has 397. 95% confidence interval calculated
with 1,000 bootstrap replications.
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Table 4 expands on these results by computing the risk-and-return-adjusted AUC�

using a power utility function and benchmark U.S. consumption time-series data. For

the purposes of illustration, we explore risk-adjustment using a standard, simple constant

relative risk aversion (CRRA) utility function u(c) = c1−γ/(1 − γ). We then weight each

period’s returns (x) using the empirical next-period relative marginal utility weight (to get

the stochastic discount factor m). We take the relevant consumption stream to be U.S. real

per capita consumption, with growth rate gt.
12 Each period, we treat real consumption

“this period” as being normalized to 1 and then the random real consumption draw “next

period” is given by c = (1 + gt), and for the case of CRRA utility the appropriate risk-

weight to be applied to each return observation is then m = u′(c) = (1 + gt)
−γ . That is,

investment returns that deliver high payoffs in low consumption states are weighted more

highly, as expected.

We utilize a wide range of coefficients of risk aversion, γ, from 1 (log utility) all the

way to 80. Strikingly, the main lesson from Table 3 endures: only csp appears to provide

consistently significant risk-adjusted returns (confidence intervals in Table 4 are omitted for

brevity). The gain-loss ratio is around 1.35 (as low as 1.27 and as high as 1.39 depending

on whether we look in-sample or out-of-sample with a coefficient of risk aversion, γ = 80),

which roughly means that risk-adjusted expected gains are 35% larger than risk-adjusted

expected losses. Moreover, a cursory look at Table 4 reveals another interesting feature

worth highlighting: although we present a wide variation in risk aversion (including risk-

neutral behavior), the AUC� does not change very much at all. The main adjustment

appears to come from returns relative to the pure directional signal in AUC, but once

adjusted for returns, further adjustment for risk appear to make little difference. We will

leave for a different paper a more detailed investigation of this attractive feature, but the

bottom line here is that no matter what the risk aversion parameter γ, the stochastic

discount factor is orthogonal to returns and consumption risk (with standard preferences)

does not appear to have any ability to price equity returns.

To sum up, our CC-based tests provide a different way of judging the performance of

equity trading signals, as compared to the more usual reliance on MSPE based criteria.

Comparing the results of our tests to the state-of-the-art methods in Goyal and Welch

12 We follow Burnside et al. (2011) and construct U.S. real consumption growth as the expenditure-
weighted sum of the real growth of nondurable goods and services consumption (SAAR series from BEA),
and we subtract the monthly population growth (series from BLS) to obtain a monthly per capita growth
rate g.
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Table 4: Risk-Adjusted AUC�, KS�, and Gain-Loss Ratio for Equity Strategies: Various
Coefficients of Risk Aversion and Power Utility. Out-of-sample Predictions: 1970:1–2008:12

 Coefficient of Risk Aversion 
Signal   
dp AUC* 0.498 0.498 0.498 0.498 0.498 0.497 0.495 0.492 0.487 
 KS* 0.092 0.092 0.092 0.092 0.092 0.093 0.094 0.095 0.099 
 G/L 1.202 1.202 1.203 1.203 1.203 1.204 1.207 1.210 1.219 
dy AUC* 0.505 0.505 0.505 0.505 0.505 0.504 0.502 0.499 0.493 
 KS* 0.090 0.090 0.090 0.090 0.090 0.090 0.091 0.093 0.097 
 G/L 1.197 1.197 1.197 1.197 1.198 1.198 1.201 1.205 1.214 
ep AUC* 0.516 0.516 0.516 0.516 0.515 0.515 0.513 0.509 0.501 
 KS* 0.103 0.103 0.103 0.103 0.102 0.102 0.100 0.097 0.088 
 G/L 1.229 1.229 1.229 1.229 1.228 1.226 1.222 1.214 1.193 
de AUC* 0.433 0.433 0.433 0.434 0.434 0.434 0.435 0.437 0.439 
 KS* 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.020 0.024 
 G/L 1.034 1.034 1.034 1.034 1.034 1.035 1.037 1.040 1.049 
svar AUC* 0.501 0.502 0.502 0.502 0.502 0.502 0.504 0.506 0.509 
 KS* 0.057 0.057 0.057 0.057 0.057 0.058 0.059 0.060 0.062 
 G/L 1.121 1.121 1.121 1.121 1.122 1.122 1.124 1.128 1.132 
bm AUC* 0.491 0.491 0.491 0.490 0.490 0.489 0.485 0.480 0.470 
 KS* 0.073 0.073 0.073 0.073 0.072 0.071 0.069 0.065 0.059 
 G/L 1.157 1.157 1.157 1.156 1.155 1.153 1.148 1.139 1.125 
ntis AUC* 0.512 0.512 0.512 0.512 0.512 0.512 0.511 0.511 0.512 
 KS* 0.074 0.074 0.074 0.075 0.075 0.075 0.076 0.078 0.083 
 G/L 1.161 1.161 1.161 1.161 1.161 1.162 1.165 1.170 1.182 
tbl AUC* 0.523 0.523 0.523 0.523 0.523 0.524 0.525 0.526 0.530 
 KS* 0.109 0.109 0.109 0.109 0.109 0.109 0.110 0.112 0.117 
 G/L 1.244 1.244 1.244 1.244 1.245 1.245 1.247 1.251 1.266 
lty AUC* 0.528 0.528 0.528 0.528 0.528 0.528 0.529 0.531 0.534 
 KS* 0.079 0.079 0.079 0.079 0.079 0.078 0.077 0.080 0.084 
 G/L 1.171 1.171 1.171 1.171 1.170 1.169 1.167 1.173 1.184 
ltr AUC* 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.563 0.564 
 KS* 0.137 0.137 0.137 0.137 0.137 0.137 0.136 0.136 0.140 
 G/L 1.317 1.317 1.317 1.316 1.316 1.316 1.315 1.314 1.325 
tms AUC* 0.528 0.528 0.528 0.528 0.529 0.529 0.530 0.531 0.533 
 KS* 0.086 0.086 0.086 0.086 0.087 0.087 0.089 0.091 0.096 
 G/L 1.188 1.188 1.189 1.189 1.189 1.191 1.194 1.201 1.213 
dfy AUC* 0.485 0.485 0.485 0.485 0.485 0.485 0.486 0.488 0.493 
 KS* 0.087 0.087 0.087 0.087 0.087 0.087 0.086 0.086 0.085 
 G/L 1.191 1.190 1.190 1.190 1.190 1.190 1.188 1.187 1.187 
dfr AUC* 0.477 0.477 0.477 0.477 0.477 0.477 0.476 0.474 0.469 
 KS* 0.082 0.082 0.082 0.083 0.083 0.083 0.083 0.083 0.082 
 G/L 1.180 1.180 1.180 1.180 1.180 1.180 1.181 1.182 1.178 
linfl AUC* 0.530 0.530 0.530 0.530 0.529 0.529 0.527 0.524 0.517 
 KS* 0.105 0.105 0.105 0.105 0.104 0.103 0.100 0.094 0.081 
 G/L 1.235 1.235 1.235 1.234 1.233 1.230 1.222 1.208 1.176 
csp AUC* 0.576 0.577 0.577 0.577 0.577 0.577 0.577 0.578 0.579 
 KS* 0.147 0.147 0.147 0.147 0.148 0.149 0.151 0.156 0.164 
 G/L* 1.344 1.344 1.345 1.345 1.347 1.349 1.357 1.369 0.393 

Notes: 468 observations except for csp strategy, with 397. csp is the only strategy with statistically
significant AUC and KS (using the bootstrap), although standard errors not reported here for brevity. We
use boldface to highlight this finding.
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(2008), we find important differences in the relative merits of different signals, which mostly

appear when we adjust for returns and to a lesser extent, risk.

Among equity trading signals, even when we switch to a criterion like AUC� specifically

designed to make precise inferences on the relative profitability of different strategies, we

tend to find no evidence of a robust and stable relationship across IS and OOS predic-

tions for most of the mainstream proposed trading signals. The single exception to this

generalization applies to our findings for the csp signal (the cross-section premium), which

we found to be highly statistically significant in all of our CC-based tests, thus lending

support to the findings of Polk et al. (2006).

However, this support is still subject to two caveats. The first is conceptual, for as

Goyal and Welch (2008, p. 1494) note, “[w]hat we call OOS performance is not truly OOS,

because it still relies on the same data that was used to establish the models. (This is

especially applicable to eqis and csp, which were only recently proposed.)” The second

is qualitative, and based on the potential profitability of a csp-based strategy. Suppose

a hypothetical investor went long when the OOS forecast was positive, short otherwise,

their excess return, assuming no transaction costs or margin costs, would have been 27

bps/month (s.d. = 460 bps); or, on annualized basis 3.3 percent per year with a Sharpe

Ratio of 0.20. So whilst there may have been predictable returns that could be judged

statistically significant, not everyone would judge them economically significant.

8 Empirical Application II: Currency Carry Trades with

Long/Cash/Short Positions

Berge, Jordà and A. M. Taylor (2011) examine the returns from bilateral currency carry

trade strategies in which a trader borrows in one currency and lends in another while bear-

ing the risk of appreciation. Four benchmark trading signals are examined in that paper.

The first three are based on simple strategies commonly found in a variety of exchange

traded funds (ETFs) and investible indices, such as the Deutsche Bank currency ETFs

and Goldman Sachs’ FX Currents. The fourth signal is based on a vector error correction

model (VECM). We provide a brief description below but encourage the interested reader

to refer to the original source for more details.

The Carry Signal c is computed as the interest differential between the local currency

(LC) and the U.S. dollar (US). Under this strategy, the presumption is that high yield
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currencies will deliver profits despite the risk of depreciation. In this case uncovered interest

parity either fails, or holds ex-ante but suffers ex-post from systematic and exploitable

expectational errors. Thus ct = iLCt − iUS
t , and the trader using this signal uses the model

x̂t+1 = ct for each currency.

The Momentum Signal m is computed as rate of appreciation of the local currency

exchange rate against the U.S. dollar ELC/US in the previous month. Under this strategy,

the presumption is that appreciating currencies will have a tendency to keep appreciating

on average. Thus mt = ΔlogE
US/LC
t , and the trader using this signal uses the model

x̂t+1 = mt for each currency.

The Value Signal v is computed as the undervaluation of the country’s log CPI-

index-based real exchange rate level against the U.S. (IFS data) in the prior period q =

ln[ELC/USPUS/PLC ], using deviation from average lagged levels q̄ computed using a trailing

window (to avert look-ahead bias). Under this strategy, the presumption is that currencies

will have a tendency to return to their historic PPP value in the long run. Thus v = q− q̄,

and the trader using this signal uses the model x̂t+1 = vt for each currency.

Finally, the vecm signal is based on a panel VECM forecasting model for the holding

return for each currency, where the dynamic interactions between nominal exchange rates,

inflation and nominal interest rate deviations are its constituent elements.

The data include the nine currencies EUR, GBP, JPY, CHF, AUS, CAD, NZD, NOK,

and SEK, with the USD as the base home currency (i.e., the “G-10” currencies), in a

sample from 1986 to 2008 observed at monthly frequency. Table 5 presents the out-of-

sample (OOS) AUC/AUC �, KS/KS � statistics and gain-loss ratios where we adjust for

returns and then risk-adjust as in the equity example by considering values of γ = 2, 4,

8, 20, 40 and 80, associated to each of these four strategies for the 648 currency-month

observations in our chosen OOS sample window from 2003:1 to 2008:12.

The results reported in Table 5 (with country-clustered bootstrap standard errors)

highlight once more the difference between good classification ability, profitability and

risk-adjusted profitability. For example, the value strategy does not classify direction

significantly better than a coin-toss, but when trades are adjusted for return, clearly the

value strategy outperforms a coin-tosser. Measured by this metric, the vecm strategy has

the highest AUC� at 0.622, well above the 0.5 null and highly statistically significant,

although momentum and value are both close with AUC� = 0.604 and 0.600 respectively.

And as was the case for the equity strategies, adjusting for risk (even with risk-aversion

jacked up to 80) does not alter this ranking significantly. The evidence here shows that
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Table 5: Out-of-sample AUC, KS, and Gain-Loss: Raw, Risk-Neutral, and Risk-Adjusted
for Several Values of the Risk Aversion Coefficient. Currency Strategies: 2003:1–2008:12

Signal Stat. Raw RN   
Carry AUC 

 KS 

 G/L 
Moment. AUC 

 KS 

 G/L 
Value AUC 

 KS 

 G/L 1.164 1.164 
VECM AUC 

 
 KS 0.183** 

(0.040) 
0.241** 
(0.058) 

 G/L 1.448 1.633 

Notes: 648 out-of-sample observations. Raw refers to the un-weighted versions of the statistics; RN refers
to the risk-neutral weighted version (i.e., weighted by returns); γ refers to the values of the coefficient of
risk-aversion in a power utility function. Standard errors in parenthesis calculated with 1,000 clustered
bootstrap replications to allow for country-level correlation. Notice the distribution of the KS statistic
is not normal (see text). G/L refers to the gain-loss ratio calculated from the KS statistic under the
assumption of symmetry.

allowance for standard consumption risk is unable to help price the returns from carry

trades or other currency strategies.

Indeed, the trading profits delivered by the vecm strategy (returns-adjusted) are not

trivial. If a trader faced no transaction costs and could go long or short each currency at

will, then a portfolio based on the signs of the signals from the OOS vecm model would have

generated average returns of 24 bps per month on each position, with each trade having

a standard deviation of 315 bps. Thanks to diversification, the returns on the portfolio

of 9 currencies had a standard deviation of 161 bps. Annualized, the strategy would have

delivered 2.9 percent per year compounded with a Annualized Sharpe Ratio of 0.46.

Often times the signal generated by a strategy may be weak and the investor may prefer

staying in a cash position, especially if there are transactions costs associated with each

trade. In order to showcase how VUS/VUS � statistics can be used in such situations, we

redo the previous analysis but now allowing for long/cash/short positions. When the deci-
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Figure 3: Sharpe Ratio as a Function of Threshold
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sion space is binary, there is no ambiguity in determining the ex-post profitable long/short

direction. However, by now adding a cash position, we need some criterion to determine

the ex-post correct choice of long/cash/short positions.

Absent good data on transactions costs, we decided to calculate a minimum symmetric

return threshold φ beyond which a long/short perfect-foresight trade would be triggered,

but otherwise the trader would remain in the cash position. In order to find such a

threshold, we used a grid-search of values of φ that would maximize the ex-post Sharpe ratio

for a $1 investment. This is reported in Figure 3 and shows that the ex-post Sharpe ratio is

maximized for φ = 1.91%. This results in a mean monthly return of 3.7% and an annualized

Sharpe ratio of 1.45. These numbers may appear wildly optimistic but we remind the

reader that they refer to the perfect foresight returns. With this choice of threshold, the

investor would stay in the cash position about 50% of the time, and the other 50% of the

time he would go long/short in equal proportion. Given this ex-post classification of the

data, we can now ask how would the four benchmark carry trade strategies reported in

Table 5 fare if one allowed for a cash position and for this we calculated each strategy’s
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Table 6: Out-of-sample V US, and Risk-Adjusted V US� for Several Values of the Risk
Aversion Coefficient. Currency Strategies: 2003:1–2008:12

Signal VUS VUS* - RN VUS*:
 

VUS*:
 

VUS*:
 

Carry 

Momentum 

Value 

VECM 

Notes: 648 out-of-sample observations. V US refers to the un-weighted volume under the CC surface
statistic; V US� - RN refers to the risk-neutral weighted version (i.e., weighted by returns); γ refers to the
values of the coefficient of risk-aversion in a power utility function. 95% confidence interval in brackets
calculated with 1,000 clustered bootstrap replications to allow for country-level correlation. The chance
value for the VUS statistic is 1/6 = 0.16667.

VUS/VUS � statistics, the results of which are reported in Table 6. (Recall that this is for

the risk-neutral case, so unlike our equity analysis, no consumption data are used for this

analysis.)

Recall that the null of no classification ability (the equivalent of the coin-toss null in

CC-space) is now V US = 1/6 � 0.167. By this metric, all signals fail to beat this simple null

(95% confidence intervals are calculated with the country-clusterered bootstrap) although

we remark that these are estimated somewhat imprecisely (the confidence intervals are a

bit larger than their analytic large-sample counterparts). However, it is interesting to see

that when weighing by returns in V US�, the momentum signal now appears to do better

than the vecm signal (the AUCs reported in Table 5 are indeed close) although not by a

statistically significant amount (using bootstrapped confidence 95% confidence intervals).

One explanation for this result is that, while vecm may be more consistent at picking the

correct direction of a carry trade, it may be missing some of the high-profit trades that

momentum is picking up. And in our VUS setup, the high profit trades take on even

greater importance: remember that given our imposed thresholds, ex-post we remain in

the cash position about 50% of the time and only trade when we can beat a 2% monthly

return, which is rather conservative. Just as in the results for the AUCs reported in Table

5, adjusting for risk did not change these conclusions substantively.
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9 Conclusions

The presence of excess returns in a zero net-investment strategy does not per se violate

the efficient markets hypothesis. But Bernardo and Ledoit (2000) construct bounds to

these arbitrage opportunities, using the gain-loss ratio, that have implications for asset

pricing in incomplete markets that are robust yet with sufficient texture to be economically

compelling. Our paper is a compendium of statistical methods designed to investigate this

sort of problem from a variety of angles interesting to academic researchers and investors

alike.

We design techniques that allow one to compare alternative predictive models on the

basis of profitability in a manner that is robust to variation in investor preferences. But

our methods go beyond providing simple summary statistics, they also provide a complete

description of an investor’s choices. Formal inferential procedures are designed to test the

null of absence of arbitrage; to test the relative overall profitability of competing investment

strategies; to test whether a strategy is stochastically dominated by another; and to provide

confidence bounds on optimal operating points.

In practice, specially (but not exclusively) when there are transaction costs, it is im-

portant to allow the investor to adopt a neutral position during those times when the

expected return from the risky position is low. Allowing for such an extension can greatly

enhance the overall profitability of a zero net-investment strategy and change the perceived

opportunities to arbitrage. Hence we develop extensions for such a case and along the way

generalize our framework for more complex strategies involving multiple categories. We

also show how these more sophisticated strategies can be related to Bernardo and Ledoit’s

(2000) gain-loss ratio.

We illustrate our methods with applications to the stock market and the carry trade.

On the former, we show how Welch and Goyal’s (2008) results based on the MSE yardstick

fare under our framework and show that there is perhaps one strategy with statistically

significant returns. Our application to the carry trade is based on the data in Berge, Jordà

and A. M. Taylor (2011) and identifies a strategy that generates a statistically significant

departure from no arbitrage, that is later shown to be dominated by another strategy if

one allows the investor to adopt a neutral position.

The framework that we propose is nonparametric but simple to implement and makes

explicit the connection between the statistical properties of the returns of investment po-

sitions, and the investor’s preferences over such positions. Moreover, we show how this
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framework connects with a well established benchmark of asset pricing in incomplete mar-

kets, the gain-loss ratio. For these reasons we think our methods represent a viable set of

standards to analyze an important class of problems in empirical finance.

References

Alexius, Annika. 2001. Uncovered Interest Parity Revisited. Review of International Economics

9:505–517.

Anatolyev, Stanislav, and Alexander Gerko. 2005. A Trading Approach to Testing Predictability.

Journal of Business and Economic Statistics, 23(4): 455–461.

Andrews, Donald W. K. 1997. A Conditional Kolmogorov Test. Econometrica, 65(5): 1097–1128.

Bai, Jushan. 1994. Weak Convergence of the Sequential Empirical Processes of Residuals in ARMA

Models. The Annals of Statistics, 22(4): 2051–2061.

Bai, Jushan. 2003. Testing Parametric Conditional Distributions of Dynamic Models. The Review

of Economics and Statistics, 85(3): 531–549.

Baker, Stuart G., and Barnett S. Kramer. 2007. Pierce, Youden, and Receiver Operating Charac-

teristics Curves. The American Statistician, 61(4): 343–346.

Bamber, Donald. 1975. The Area Above the Ordinal Dominance Graph and the Area Below the

Receiver Operating Characteristic Graph. Journal of Mathematical Psychology, 12: 387–415.
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