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Risk preference based option pricing in a fractional
Brownian market

Stefan Rostek and Rainer Schöbel ∗

Abstract

We focus on a preference based approach when pricing options in a market driven
by fractional Brownian motion. Within this framework we derive formulae for fractional
European options using the traditional idea of conditional expectation. The obtained
formulae – as well as further results – accord with classical Brownian theory and confirm
economic intuition towards fractional Brownian motion. Furthermore the influence of the
Hurst parameter H on the price of a European option will be analyzed.

JEL Classification: G13
Key Words: Fractional Brownian motion, Conditional expectation, Risk preference based
option pricing, Fractional option pricing, Fractional Greeks.

1 Introduction

Fractional Brownian motion as a model of a self-similar process with stationary increments

was originally introduced by Mandelbrot and van Ness (1968), who also suggested its usage in

financial models in order to easily capture long-range dependencies or persistence.

After the success of riskneutral valuation in the Markovian models of Black, Scholes and Merton,

it was hoped to extend the famous option pricing formula and make it usable in a fractional

context. In the course of the 90s however, it turned out, that arbitrage-free pricing in the

fractional market model based on pathwise integration should not be possible (see Rogers

(1997) or Shiryayev (1998)).

The research interest in this field was re-encouraged by new insights in stochastic analysis

using a definition of integration with respect to fractional Brownian motion based on the Wick

product. In the last years many of the useful tools applied in the classical Markovian case
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could be translated to the fractional, Wick-calculus based world, like a fractional Itô theorem,

a fractional Girsanov theorem or a fractional Clark-Ocone formula, to name only the most

important results (for a detailed survey see Bender (2003)). As a consequence, efforts on

deriving no-arbitrage based valuation methods have been reinforced and several arbitrage-free

models have been proposed.

However, Delbaen and Schachermayer (1994) proved for the continuous case, that irrespective

of the choice of integration theory a weak form of arbitrage called free lunch with vanishing risk

can only be excluded if and only if the underlying stock price process S is a semimartingale. It

is though easy to verify that, due to their persistent character, processes driven by fractional

Brownian motion are not semimartingales. For a motivating access to this topic, see the

discussion of the discrete framework of Sottinen (2001). Moreover, Cheridito (2003) constructs

explicite arbitrage strategies in a fractional Black-Scholes market.

Actually, the above statement of Delbaen and Schachermayer (1994) holds true as long as the

definitions of the fundamental concepts as arbitrage, self-financing properties and admissibility

remain unchanged. Hence, concepts have been proposed to overcome the existing difficulties by

modification of the underlying definitions, among them the approaches due to Hu and Øksendal

(2003) and Elliot and van der Hoek (2003). They extended the idea of Wick calculus beyond

integration theory and changed the definitions of the portfolio value and/or the property of

being self-financing, incorporating the Wick product. As Bjørk and Hult (2005) showed recently,

these concepts lead to some problems concerning economic interpretation.

Cheridito (2003) proposes a different modification of the framework: He shows, that – when

postulating the existence of an arbitrarily small minimal amount of time that must lie between

two consecutive transactions – all kinds of arbitrage opportunities can be excluded. But, while

the assumption of non-continuous trading strategies doesn’t seem to be too restrictive when

thinking of real markets, it entails one problem: Though excluding arbitrage, no arbitrage

option pricing approaches continue to fail, as now the possibility of a continuous adjustment of

the replicating portfolio is no longer given.

In this paper we link the modified framework of Cheridito (2003) – which by absence of arbitrage

makes sure that the financial model in general and option pricing in particular make sense –

with a switch-over to a preference based pricing approach. This introduction of risk preferences
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allows us to renounce continuous tradability.

The advantages of a transition to a preference based pricing approach will turn out to be the

following: The use of conditional expectation in its traditional sense will make it possible to

point out the problems arising in valuation models when dealing with path-dependent processes.

Moreover, advances in stochastic analysis will be used to plausibly illustrate the features of

fractional Brownian motion and to make fractional option pricing comparable to the classical

Brownian model. Especially, the consequences of the existence of long-range-dependence on

option pricing should be clarified.

The rest of the paper is organized as follows: After giving a short review about some important

results with respect to fractional Brownian motion in section 2, we’ll go into details concerning

conditionality of distributional forecasts, in particular, we will recall and interpret the results

of Gripenberg and Norros (1996). Section 3 will be devoted to this. In the sequel, we’ll focus

in section 4 on a risk preference based option pricing approach exemplified by the assumption

of risk-neutral market participants. The derived pricing formulae will be interpreted in order

to underline the necessity of capturing memory in models using fractional Brownian motion.

Moreover, we’ll examine the effect of the Hurst parameter on the option price deriving its

partial derivative with respect to H. The main results will be summarized in the conclusion at

the end of the paper.

2 The setup of the fractional Brownian market

We use the definition of fractional Brownian motion via its original presentation as a moving

average of Brownian increments. For 0 < H < 1, fractional Brownian motion {BH
t , t ∈ R} is

the stochastic process defined by:

BH
0 (ω) = 0 ∀ω ∈ Ω

BH
t (ω) = cH

[∫
R

(
(t− s)

H− 1
2

+ − (−s)H− 1
2

+

)
dBs(ω)

]
where {Bs, s ∈ R} is a two-sided Brownian motion, H is the so-called Hurst parameter and

cH =

√
2HΓ(3

2
−H)

Γ(1
2

+H)Γ(2− 2H)
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is a normalizing constant. Note that for t > 0, BH
t can be rewritten by

BH
t = cH

[∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dBs +

∫ t

0

(t− s)H− 1
2 dBs

]

Obviously, for H = 1
2
, B

1
2
t coincides with classical Brownian motion. On the other hand, the

cases 0 < H < 1
2

and 1
2
< H < 1 can be identified with the occurence of anti-persistence and

persistence respectively. To account for the latter phenomenon, regard a fractional increment

∆BH(t) = BH
t+∆t −BH

t

= cH

∫ t+∆t

t

(t+ ∆t− s)H− 1
2 dBs

+ cH

∫ t

−∞

[
(t+ ∆t− s)H− 1

2 − (t− s)H− 1
2

]
dBs

As can be seen, in the case 1
2
< H < 1, a fractional Brownian increment positively depends

on all historical increments of its generating Brownian motion, where recent changes have a

greater influence than older ones. Throughout this paper we’ll focus on this persistent case,

however, drawing from time to time comparisons to the classical Brownian theory.

This kind of memory of the process can also be illustrated using the covariance properties of

fractional Brownian motion. It is easy to verify (see Mandelbrot/ van Ness (1968)) that BH
t is

the unique Gaussian process satisfying

E(BH
t ) = 0 ∀ t ∈ R

E(BH
t B

H
s ) =

1

2

[
|t|2H + |s|2H − |t− s|2H

]
∀ t, s ∈ R.

Again, in the limit case H = 1
2
, the moment properties of classical Brownian motion can be

obtained. For H > 1
2
, define the sequence

rn = E
(
BH

1 (BH
n+1 −BH

n )
)

As easily follows from the covariance property, we observe that
∑∞

n=1 rn = ∞, which justifies

the use of the term long-range dependence.

Based on the definition of fractional Brownian motion, we look at a fractional Brownian market

consisting of a riskless asset or bond A(t) with dynamics

(1) dA(t) = rA(t)dt
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as well as of a risky asset or stock S(t) with dynamics

(2) dS(t) = µS(t)dt+ σS(t)dBH
t .

The process satisfying the latter equation is called geometric fractional Brownian motion. The

parameters r and σ are assumed to be constant, symbolizing the interest rate and the volatility

respectively. The drift parameter µ may be varying over time, but has to satisfy the condition of

integrability. The mathematical interpretation of equation (2) depends on the assumed integra-

tion theory, by name pathwise integration or Wick-based integration respectively. Throughout

this paper we’ll focus on the latter concept.

Based on the Wick product, Duncan (2000) introduced a fractional Itô theorem using Malliavin

calculus. Bender (2003) pointed out the limitations of the derived results and generalized the

theorem by using a concept called S-transform. In the special case needed for our purposes,

the result reads as follows (see Bender (2003), Theorem 2.6.5):

Theorem 2.1 Let St be a geometric fractional Brownian motion as above. Let F (t, St) be

once continuously differentiable with respect to t and twice with respect to St. Under certain

regularity conditions it holds:

F (T, ST ) = F (t, St) +

∫ T

t

∂

∂s
F (s, Ss) ds+

∫ T

t

∂

∂x
F (s, Ss)µsSs ds

+ σ

∫ T

t

∂

∂x
F (s, Ss)Ss dB

H
s +Hσ2

∫ T

t

s2H−1 ∂
2

∂x2
F (s, Ss)S

2
s ds

(3)

For the limit H → 1
2

the well-known Itô formula can be obtained. We’ll need a version of this

theorem in section 4, slightly modified to the case of a conditional stochastic process.

3 The conditional distribution of fractional Brownian motion

3.1 Prediction based on an infinite knowledge about the past

In this section we focus on the distribution of fractional Brownian motion given all informa-

tion concerning the history of the path. Specially we regard E[BH
T |FH

t ], T > t, where FH
t =

σ(BH
s , s ≤ t) is the σ-field generated by all BH

s , s ≤ t. In the first instance E[BH
T |FH

t ], T > t
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is a random variable, a coarsening of BH
T , yielding in each case the expected value over all

ω ∈ Ω having the same path on (−∞, t]. Knowing this kind of equivalence class [ω1]t = {ω ∈

Ω|BH
s (ω) = BH

s (ω1),∀s ∈ (−∞, t]} from the observance of the past, as we will see, the distri-

bution of future realizations will again be normal. Furthermore, we’ll be able to specify the

distribution by use of the available information yielding an adjustment of the expected value

as well as a variance reduction. As a first step, the following theorem gives a representation

formula for conditional expectation.

Theorem 3.1 Let BH
s , s ∈ R be a fractional Brownian motion with 1

2
< H < 1. For each

T > t > 0, the conditional expectation of BH
T based on FH

t can be represented by:

B̂H
T,t = E[BH

T |FH
t ] = BH

t +

∫ t

−∞
g(T − t, s− t)dBH

s(4)

where

g(v, w) =
sin(π(H − 1

2
))

π
(−w)−H+ 1

2

∫ v

0

xH− 1
2

x− w
dx

=
sin(π(H − 1

2
))

π

(
1

H − 1
2

(
−w
v

)−H+ 1
2 − βv/(v−w)

(
H − 1

2
,
3

2
−H

))
and β·(·, ·) is the incomplete Beta function.

The result is due to Nuzman and Poor (2000) and is an extension of the result of Gripenberg

and Norros (1996) who proved the theorem for the case t = 0. Note that for technical reasons we

translated the formula of Nuzman and Poor (2000) to the original notation of Gripenberg and

Norros (1996). The proof uses both the self-similarity and the Gaussian character of fractional

Brownian motion.

For prediction purposes we are interested in the conditional distribution of BH
T within its

equivalence class resulting of the observation of the historical path. Let ω1 be a representative

of this equivalence class. We state the following theorem:

Theorem 3.2 The conditional distribution of BH
T based on the observation [ω1]t is normal

with the following moments:

E[BH
T |FH

t ](ω1) = BH
t +

∫ t

−∞
g(T − t, s− t)dBH

s (ω1) := BH
t + µ̂T,t(5)

V ar
[
BH

T |FH
t

]
(ω1) = E

[
(BH

T − B̂H
T,t)

2|FH
t

]
(ω1) = ρH(T − t)2H := σ̂2

T,t(6)
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with

(7) ρH =
sin(π(H − 1

2
))

π(H − 1
2
)

Γ(3
2
−H)2

Γ(2− 2H)

For the proof, see Appendix A.

0

 

t

µ(
t)

Figure 3.1: The concavity of µ̂T,t

0   
   

 

 

t
σ2  (

t)

Figure 3.2: The convexity of σ̂2
T,t

The dependence of the first moment on the forecasting horizon τ = T − t is qualitatively of

order τH− 1
2 and therefore implies concavity, whereas the relation between τ and σ̂2

T,t apparently

is of order τ 2H which yields a convex curve (see Figure 1 and Figure 2).

Figure 3 shows the shape of ρH for 1
2
< H < 1. Obviously, the factor is between 0 and 1,

confirming the narrowing of conditional variance mentioned above. Note that as H tends to 1
2
,

ρH tends to 1 as well as g(T − t, u − t) and therefore µ̂T,t equals zero, yielding N(BH
t , T − t)

as limit distribution. So, again the limit of the fractional case coincides with the results of the

Markovian case where conditional equals unconditional distribution and the present value is

the best forecast of the future. On the other hand, as H tends to 1, ρH nears zero, suggesting

a deterministic process in the limit of perfect dependence.

We also point out, that, whereas the conditional variance only depends on H, the conditional

mean is really path-dependent and has to be calculated by means of equation (5) which actually

means evaluating the past. However, it seems to be quite difficult to make observations of an

infinite past. In the next section we focus on a finite observation interval.
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3.2 Prediction based on a partial knowledge about the past

For practical purposes it is desirable to make predictions that are based on only a part of

the past and to go back only to a finite point of time t − a, that is we restrict ourselves

to a finite observation interval of length a and regard the distribution of BH
T conditional on

FH
t,a = σ(BH

s , t− a ≤ s ≤ t) which is the σ-field generated by all BH
s , t− a ≤ s ≤ t.

We state the following theorem concerning this kind of conditional expectation, denoted by

B̂H
T,t,a:

Theorem 3.3 Let BH
s , s ∈ R be a fractional Brownian motion with 1

2
< H < 1. For all

T, t, a > 0, the conditional expectation of BH
T based on FH

t,a can be represented as follows:

B̂H
T,t,a = E[BH

T |FH
t,a] =

∫ t

t−a

ga(T − t, s− t)dBH
s(8)

where

ga(u, v) =
sin(π(H − 1

2
))

π
(−v)−H+ 1

2 (a+ v)−H+ 1
2

∫ u

0

xH− 1
2 (x+ a)H− 1

2

x− v
dx

Again, we can derive statements concerning conditional distribution of fractional Brownian mo-

tion, this time based on limited knowledge about the past, which is expressed by the restriction

to the equivalence class [ω1]
a
t = {ω ∈ Ω|BH

s (ω) = BH
s (ω1),∀t− a ≤ s ≤ t}:
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Theorem 3.4 The conditional distribution of BH
T based on the observation [ω1]

a
t is normal

with the following moments:

µ̂T,t,a = E[BH
T |FH

t,a](ω1) =

∫ t

t−a

ga(T − t, s− t)dBH
s (ω1)(9)

σ̂2
T,t,a = V ar

[
BH

T |FH
t,a

]
(ω1) := E

[
(BH

T − B̂H
T,t,a)

2|FH
t,a

]
(ω1)

= (T − t)2H(1− ρH,a)(10)

with

ρH,a := 1−H

∫ a
T−t

0

g a
T−t

(1,−s)
(
(1 + s)2H−1 − s2H−1

)
ds

The proof of theorem 4, can be seen in Nuzman and Poor (2000), however in a different

notation, as we used again a representation referring to that of Gripenberg and Norros (1996),

who derived the result for t = 0. The argumentation of the proof of theorem 5 is equivalent to

the case of infinite historical information and can be omitted at this point.

It’s worth noting that Gripenberg and Norros (1996) showed that as soon as the observation

interval becomes as large as the interval that should be predicted, ρH,a tends to ρH or σ̂2
T,t,a

to σ̂2
T,t respectively. So, concerning the variance, a limited historical observation interval is

justified, whereas the influence of additionally observed historical increments on the conditional

mean won‘t vanish, yet is decreasing.

4 Risk preference based option pricing in a fractional Brownian market

4.1 Fractional European option prices

In this section we look again at the fractional Brownian market presented in section 2. In the

sequel we are further interested in the price at time t of a European call on S with maturity T

and strike K.

As mentioned above, the existence of a minimal amount of time lying between two consecutive

transactions, takes it toll in regard to the feasibility of pricing approaches based on no-arbitrage

arguments with a continuously adjusted replicating portfolio. Therefore it seems to be natural

to focus on preference based equilibrium pricing approaches. We do this in a very simple but all

9



the more illustrative way, assuming risk-neutral investors, yet possessing and using information

about the past. We hence regard the discounted conditional expected value of a contingent

claim based on the observation of [ω1]t:

CT,H(t) = e−r(T−t)E
[
max(ST −K)|FH

t

]
The calculation is an analogon to the case of Brownian motion, however using the respective

tools of fractional calculus. First we want to consider the conditional distribution of ST given

[ω1]t = {ω ∈ Ω|BH
s (ω) = BH

s (ω1),∀s ∈ (−∞, t]}. For that purpose we introduce the notation

of the conditional process S̃s = Ss|[ω1]t, that is we restrict the process to a part of the prob-

ability space (Ω,A, P ), namely to the space generated by the equivalence class [ω1]t, which is

([ω1]t, σ([ω1]t), P̃ ). The probability measure P̃ of course equals the conditional probability P̂

so that for any process X the accordance of Ẽ(X̃T ) and E[XT |FH
t ](ω1) immediately follows.

We further look at the dynamics of ln(S̃T ), applying a conditional version of the fractional Itô

theorem 1:

Theorem 4.1 For s > t let S̃s be the conditional process of geometric fractional Brownian

motion as above. For F (s, S̃s) once continuously differentiable with respect to s and twice with

respect to S̃s we obtain under certain regularity conditions:

F (T, S̃T ) = F (t, S̃t) +

∫ T

t

∂

∂s
F (s, S̃s) ds

+

∫ T

t

µ(s)
∂

∂x
F (s, S̃s)S̃s ds+ σ

∫ T

t

∂

∂x
F (s, S̃s)S̃s dB̃

H
s

+ ρHHσ
2

∫ T

t

(s− t)2H−1 ∂
2

∂x2
F (s, S̃s)S̃

2
s ds

For the proof, see the Appendix B. With F (s, S̃s) = ln S̃s we get

ln
(
S̃T

)
= ln S̃t +

∫ T

t

µ(s) ds− 1

2
ρHσ

2(T − t)2H + σ(B̃H
T − B̃H

t )

The first three terms being deterministic at time t, we obtain the distribution of ln
(
S̃T

)
by means of the foregoing considerations and application of theorem 3. We deduce that the

logarithm of the conditional process S̃T is normally distributed with the following moments:

m = Ẽ
(
ln

(
S̃T

))
= E

[
ln

(
S̃T

)
|FH

t

]
(ω1)(11)

= lnSt +

∫ T

t

µ(s) ds− 1

2
ρHσ

2(T − t)2H + σµ̂T,t

v = Ẽ
(
ln(S̃T )−m

)2

= E
[
(ln

(
S̃T

)
−m)2|FH

t

]
(ω1)(12)

= ρHσ
2(T − t)2H

10



where µ̂T,t and ρH are as in section 3.

From now on, the necessary steps for the derivation of the pricing formulae are well-known. We

assert that, ln(S̃T ) being N(m, v) distributed on ([ω1]t, σ([ω1]t), P̃ ), S̃T must be log-normally

distributed thereon with moments

M = exp(m+
1

2
v) = Ste

∫ T
t µ(s) ds+σµ̂T,t

V = exp(2m+ 2v)− exp(2m+ v) = S2
t e

2
∫ T

t µ(s) ds
(
eρHσ2(T−t)2H − 1

)
For equilibrium reasons, a risk-neutral investor should be indifferent between buying the stock

and holding the amount St of the riskless asset. That is, expectations must be equal, or more

formally

E(S̃T |FH
t ) = E(Ste

r(T−t)) or

Ste
∫ T

t µ(s) ds+σµ̂T,t = Ste
r(T−t).

This leads to ∫ T

t

µ(s) ds = r(T − t)− σµ̂T,t.(13)

The latter equation can be interpreted in the following way: The expected return of the stock

can be split up into a deterministic part
∫ T

t
µ(s) ds and one that is due to the stochastics of

fractional Brownian motion, which is the historically induced shift of the distribution σµ̂T,t. For

instance, a positive historical trend results in a distributional upward shift, that is an increased

mean for the stochastic part of geometric fractional Brownian motion. But, as we assumed the

interest rate r to be constant over time, in equilibrium, this effect will be compensated by a

converse adjustment of the deterministic part of the stock process. So the sum of
∫ T

t
µ(s) ds

and σµ̂T,t must always equal the riskless interest rate.

In combination with equations (11) and (12) we obtain

m = lnSt + r(T − t)− 1

2
ρHσ

2(T − t)2H(14)

v = ρHσ
2(T − t)2H .(15)

Note that as H → 1
2

the limits of these moments are

m = lnSt + (r − 1

2
σ2)(T − t)

v = σ2(T − t)

11



So, as expected, in the Brownian case, the conditional distribution coincides with the uncondi-

tional one.

The associated density of the conditional process S̃T – which naturally is the conditional density

of ST based on the observation [ω1]t– is as follows:

f(x)|[ω1]t =
1

x
√

2πv
e−

1
2

(lnx−m)2

v I[x>0]

The well-known calculations lead to the following presentation for the price of the European

call:

CT,H(t) = e−r(T−t)E
[
max(ST −K)|FH

t

]
= Ste

m+ 1
2
v−r(T−t)Φ(d1)−Ke−r(T−t)Φ(d2)

where

dH
1 =

m+ v − lnK√
v

dH
2 =

m− lnK√
v

= d1 −
√
v

Inserting the terms for m and v of equations (14) and (15) we obtain the pricing formula for

the fractional European call:

Theorem 4.2 The price of a fractional European call with strike K and maturity T valued

by a risk-neutral investor is given by the following formula:

CT,H(t) = StΦ(dH
1 )−Ke−r(T−t)Φ(dH

2 )(16)

where

dH
1 =

ln(St

K
) + r(T − t) + 1

2
ρHσ

2(T − t)2H

√
ρHσ(T − t)H

dH
2 =

ln(S0

K
) + r(T − t)− 1

2
ρHσ

2(T − t)2H

√
ρHσ(T − t)H

= dH
1 −√

ρHσ(T − t)H

Following the same arguments as in the derivation of theorem 7, we receive the price of the

appropriate European put:

PT,H(t) = Ke−r(T−t)Φ(−dH
2 )− StΦ(−dH

1 )(17)

Again, consider the limit as H → 1
2
, where the familiar risk-neutral valuation formulae are

obtained.
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We take a first look at the values of the fractional European call option for different Hurst

parameters H. Apparently in the case displayed in Figure 4, an increase of dependence comes

along with a decrease of the option value. But that is only half the truth as will be shown in

the following subsection.
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Figure 4.4: Price of the fractional European call with varying Hurst parameter H (chosen

parameters: r = 0.02, K = 100, σ = 0.2, T − t = 0.25)

4.2 The fractional Greeks

As we showed in the preceding section, in the course of our simplified analysis assuming risk-

neutral investors, the equilibrium condition rules out the influence of the conditional mean on

the fractional call price, that is we can focus on the variance effects. Table 1 gives an overview

of the partial derivatives of the call price formula, the so-called fractional Greeks.

The proof of the formulae is straightforward. We underline that as H → 1
2
, (T − t)H becomes

√
T − t, ρH tends to 1 and dH

1 becomes d1 and the well-known parameters of the Markovian

case are obtained. So again, the fractional solution in the limit also yields the results of classical

13



Table 4.1: The fractional Greeks

∆H = ∂CH

∂S
Φ(dH

1 )

ΓH = ∂2CH

∂S2

ϕ(dH
1 )

St
√

ρHσ(T−t)H

ΘH = ∂CH

∂t
−H Stϕ(dH

1 )
√

ρHσ

(T−t)1−H − rKe−r(T−t)Φ(dH
2 )

%H = ∂CH

∂r
KTe−r(T−t)Φ(dH

2 )− (T − t)StΦ(dH
1 )

ΛH = ∂CH

∂σ
Stϕ(dH

1 )
√
ρH(T − t)H

Brownian theory.

By means of these partial derivatives it is furthermore possible to illustrate that also a special

case of the Feynman- Kac formula can be translated to the fractional context. At time t, the

price V (t, St) of a derivative – conditional mean of a payoff function p(T, ST ) discounted under

risk-neutrality–

V (t, St) = e−r(T−t)E
[
p(T, ST )|FH

t

]
(ω1)

is the solution of the partial differential equation

rStVS(t, St) + Vt(t, St) +HρHσ
2S2

t (T − t)2H−1VSS(t, St)− rV (t, St) = 0

The proof is similar to the classical case, using the conditional version of the fractional Itô

Theorem. Insertion of the derived partial derivatives and the formula of the call price confirms

the validity of equation (16).

The preceding results confirm the high degree of transferability of the classical concepts into the

fractional framework. However, an aspect of additional interest arises from the consideration

of the partial derivative with respect to the Hurst parameter H, which will be denoted by

η. To get an ex ante idea of what we examine, recall that the Hurst parameter indicates the

process-immanent level of persistence. While H = 1
2

ensures independent increments and hence

a Markovian process, larger values of H exhibit a certain extent of dependence. The question

is, in which manner such an increase of dependence influences the price of the fractional call.
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We thus differentiate equation (16) with respect to H and get

η =
∂C

∂H
= Stϕ(dH

1 )
∂dH

1

∂H
−Ke−r(T−t)ϕ(dH

2 )
∂dH

2

∂H

= Stϕ(dH
1 )
∂

(√
ρHσ(T − t)H

)
∂H

= Stϕ(dH
1 )
∂
√
v

∂H

(18)

We further look at ∂v
∂H

and obtain

∂v

∂H
= ρHσ

2(T − t)2H

(
ψ0(1−H)− ψ0(H +

1

2
) + 2 ln 2 + 2 ln(T − t)

)
(19)

where ψ0 denotes the digamma function. For the proof of the latter equality see Appendix C.

Note that the digamma function ψ0(x) for x > 0 is strictly monotonic increasing but concave,

the negative axis of ordinates being vertical asymptote as x tends to zero (see Figure 5).

Therefore the difference ψ0(1−H)−ψ0(H + 1
2
) is strictly monotonic decreasing for 1

2
< H < 1

and its maximum is received for H → 1
2
. In this case we get

lim
H→ 1

2

[
ψ0(1−H)− ψ0(H +

1

2
)

]
= ψ0(

1

2
)− ψ0(1)

= −γ − (2 ln 2 + γ) = −2 ln 2

where γ denotes the Euler-Mascheroni constant.

15



Summarizing we can state the following theorem, denoting by τ the time to maturity, that is

τ = T − t.

Theorem 4.3 The partial derivative of the fractional call price C with respect to the Hurst
parameter H is given by

η = Stϕ(dH
1 )
√
ρHσ(T − t)H

(
ψ0(1−H)− ψ0(H + 1

2
) + 2 ln 2 + 2 ln(T − t)

)
2

and has the following properties:

1. For a fix τ ≤ 1, it holds:

∂C

∂H
(H) < 0 ∀ 1

2
< H < 1

2. For a fix τ > 1, there exists a critical Hurst parameter 1
2
< H̄ < 1, so that:

∂C

∂H
(H̄) = 0

∂C

∂H
(H) > 0 ∀ 1

2
< H < H̄

∂C

∂H
(H) < 0 ∀ H̄ < H < 1

The results are immediate consequences of the preceding observations as well as of the properties

of the natural logarithm. In order to be able to explain this phenomenon we recall that according

to equation (19) the main effect arises from the product ρH(τ)2H , which is the variance v of

the normal distribution of the conditional logarithmic stock price. But, with increasing H, the

factors of v generate converse effects. The factor ρH concentrates the distribution – what we

from now on call narrowing effect –, whereas the higher exponent of τ for τ > 1 tends to enlarge

the variance – which is further referred to as the power effect. The resulting effect thus depends

on the scale of τ . For small τ , which means nearby distributional forecasts, both effects have a

variance-reducing character so the call price decreases. On the other hand for τ > 1, starting

from the classical case H = 1
2
, the call price increases with higher level of persistence due to

the power effect, but only up to the critical parameter H̄, where this effect is fully compensated

by the narrowing effect caused by ρH . With a further increase of H this confining character of

ρH overbalances the power effect and the call price decreases.

Figure 6 illustrates these characteristics graphically, showing the relation between the Hurst

parameter H and the call price for a fix initial price St.
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Figure 4.6: Maturity effect on the relation between Price of the fractional European call and Hurst
parameter H (chosen parameters: r = 0.02, S = 100, K = 100, σ = 0.2).

A brief look at the limit of the call price as H tends to 1 provides another fact that confirms

our intuition with regards to fractional Brownian motion. With an increasing Hurst parameter,

we obtain an increasing level of dependence, that is, the future price of the underlying becomes

less volatile or uncertain. In the limit, we distinguish between two cases. For S > e−r(T−t)K,

dH
1 and dH

2 tend to infinity and for the call price we actually receive the difference between the

initial stock price and the discounted strike price. On the other hand, if we have S < e−r(T−t)K,

dH
1 and dH

2 tend to −∞, and the call price tends to zero. So in the case of perfect dependence,

either the contracts value is zero right from the beginning or we get a simple forward contract

under certainty.

5 Conclusion

The nature of fractional Brownian motion, especially its non-martingale property, doesn’t allow

for no arbitrage pricing methods within the common framework. Albeit restricting trading

strategies to be non-continuous ensures absence of arbitrage, this non-continuity of trading

strategies still rules out the common arbitrage pricing approach. In this paper we suggest a

preference based pricing approach which allows us to renounce continuous tradability. This

approach makes it reasonable and necessary to evaluate the historical information from the

path of the stock price process.

The derived formulae draw their attractiveness from the fact, that the fractional pricing model

includes the traditional Markovian case, so that the existing parallels enhance the understanding

of fractional option pricing. Moreover the analysis of the partial derivative with respect to the

Hurst parameter made it possible to point out the fractional particularities of the formulae.

By name, these are the variance-based narrowing and power effects, which accord with the
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economic intuition concerning the phenomenon of persistence.

Appendix A: Proof of Theorem 3

The normality of the conditional distribution is an immediate consequence of the Gaussian

character of the process BH
t . It is well known that Gaussian processes like multivariate normal

distributions assure the normality of all kinds of conditional densities. Intuitively, the mean of

the conditional distribution should be defined by
∫

ω∈[ω1]t
BH

T (ω)dP̂ (ω) where P̂ (ω) = P (ω)
P ([ω1]t)

is

the conditional probability of ω. The characterization of the conditional mean given in theorem

3 then easily follows from theorem 2 and the fact that the conditional expectation by definition

satisfies: ∫
ω∈[ω1]t

BH
T (ω)dP (ω) =

∫
ω∈[ω1]t

B̂H
T (ω)dP (ω)

as [ω1]t ∈ FH
t . B̂H

T being constant on [ω1]t we can rewrite this by∫
ω∈[ω1]t

BH
T (ω)dP (ω) = B̂H

T (ω1)P ([ω1]t)

or

B̂H
T (ω1) =

∫
ω∈[ω1]t

BH
T (ω)d

(
P (ω)

P ([ω1]t)

)
=

∫
ω∈[ω1]t

BH
T (ω)dP̂ (ω)

Respectively, the conditional variance should be defined by

σ̂2
T,t =

∫
ω∈[ω1]t

[
BH

T (ω)− B̂H
T (ω)

]2

dP̂ (ω)

which can be rewritten – applying the same argument as above – by

σ̂2
T,t = E

[
(BH

T − B̂H
T (ω1))

2|FH
t

]
(ω1)

But B̂H
T is the orthogonal projection of BH

T on the span of {BH
s , s ≤ t}. So the coprojec-

tion (BH
T − B̂H

T ) or ((BH
T − BH

t ) − µ̂T,t) respectively as well as the squared terms are or-

thogonal to and therefore independent of {BH
s , s ≤ t}, so that the conditional expectation

E
[
(BH

T − B̂H
T (ω1))

2|FH
t

]
is non-random. Hence we can omit the argument ω1 in the sequel,

add expectation operators and write:

σ̂2
T,t = E

[
(BH

T − B̂H
T )2|FH

t

]
= E

(
E

[
((BH

T −BH
t )− µ̂T,t)

2|FH
t

])
= E

(
E

[
(BH

T −BH
t )2|FH

t

]
− 2E

[
(BH

T −BH
t )µ̂T,t|FH

t

]
+ E

[
µ̂2

T,t|FH
t

])
= E(BH

T −BH
t )2 − 2E(µ̂T,t)

2 + E(µ̂T,t)
2 = E(BH

T −BH
t )2 − E(µ̂T,t)

2
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We now look at

E(µ̂T,t)
2 = E

(∫ t

−∞
g ((T − t), (s− t)) dBH

s

)2

=

∫ t

−∞

∫ t

−∞
g ((T − t), (v − t)) g ((T − t), (w − t))φH(v, w)dvdw

=

∫ ∞

0

∫ ∞

0

g ((T − t), (−x)) g ((T − t), (−y))φH(x, y)dxdy

= (T − t)2H(1− ρH),

where φH(a, b) = H(2H − 1)|a− b|2H−2 and where we used Proposition 2.2 of Gripenberg and

Norros (1996) and then substituted x = t0 − v and y = t0 − w. The correctness of the last

equality is carried out in the proof of Corollary 3.2 of Gripenberg and Norros (1996) where we

refer to for more details.

With that and

E((BH
T −BH

t )2) = E(BH
T )2 − 2E(BH

T B
H
t ) + E(BH

t )2

= T 2H − (T 2H + t2H − (T − t)2H) + t2H = (T − t)2H

we get

σ̂2
T,t = (T − t)2H − (T − t)2H(1− ρH) = ρH(T − t)2H

which completes the proof.

Appendix B: A conditional version of the fractional Itô Theorem

We sketch the derivation of theorem 6 modifying the proof of Bender (2003) for the uncondi-

tional case. For 1
2
< H < 1, the Riemann-Liouville fractional integrals are defined by

I
H− 1

2
− f(x) =

1

Γ(H − 1
2
)

∫ ∞

x

f(s)(s− x)H− 1
2 ds

I
H− 1

2
+ f(x) =

1

Γ(H − 1
2
)

∫ x

−∞
f(s)(x− s)H− 1

2 ds.

The operators MH
± are defined by

MH
± f = KHI

H− 1
2

± f

where KH = Γ(H +
1

2
)

√
2HΓ(3

2
−H)

Γ(H + 1
2
)Γ(2− 2H)

.

The fractional Girsanov formula reads as follows:
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Theorem B.1 Let 1
2
< H < 1 and BH

s be a fractional Brownian motion with respect to the

measure P . Furthermore let Qf be the measure with
dQf

dP
= exp(

∫
R f(u) dBu − 1

2

∫
R f(u)2 du),

where Bu is the generating Brownian motion. Then B̆H
s , defined via

B̆H
s = BH

s −
∫ s

0

MH
+ f(u) du

is a fractional Brownian motion with respect to Qf .

Using this formula and according to section 4, we obtain the distribution of the [ω1]t - restricted

process B̃H
T with respect to Qf to be normal with mean m̆T,t +

∫ t

0
MH

+ f(s) ds and variance

ρH(T − t)2H , where m̆T,t = B̆H
t +

∫ t

−∞ g(T − t, s − t)dB̆H
s (ω1) is the conditional mean of the

fractional Brownian motion B̆H
s abd B̆s is the generating Brownian motion of B̆H

s . Knowing

this, we can replace the moments of the unconditional case by those of the conditional case and

successively modify theorems 1.2.8, 2.6.3 and 2.6.5 of Bender (2003). In particular we can take

theorem 2.6.5 and replace the unconditional variance term |MH
− (1[0,s])σ|20 – which as expected

for a constant σ equals σ2s2H – by the conditional variance ρHσ
2(s− t)2H . We obtain theorem

6.

Appendix C: The partial derivative ∂vT

∂H

Recall that vT = σ2ρH(T − t)2H . We first look at ∂ρH

∂H
and differentiate the nominator n(H) =

sin(π(H − 1
2
))Γ(3

2
−H)2 and the denominator d(H) = π(H − 1

2
)Γ(2− 2H) separately. For that

purpose, note that Γ′(x) = Γ(x)ψ0(x) where ψ0 denotes the digamma function. We get

∂n

∂H
= π cos(π(H − 1

2
))(Γ(

3

2
−H))2

− sin(π(H − 1

2
))2Γ(

3

2
−H)Γ(

3

2
−H)ψ0(

3

2
−H)

= (Γ(
3

2
−H))2 sin(π(H − 1

2
))

[
π cot(π(H − 1

2
))− 2ψ0(

3

2
−H)

]
∂d

∂H
= πΓ(2− 2H)− 2π(H − 1

2
)Γ(2− 2H)ψ0(2− 2H)

= πΓ(2− 2H) [1− (2H − 1)ψ0(2− 2H)]

Using the quotient rule, we obtain

∂ρH

∂H
= ρH

[
π cot(π(H − 1

2
))− 2ψ0(

3

2
−H)− 1

H − 1
2

+ 2ψ0(2− 2H)

]
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We further make use of the following properties of the digamma function (see Abramowitz and

Stegun (1972), section 6.3):

π cot(πx) = ψ0(1− x)− ψ0(x)

ψ0(x+ 1) = ψ0(x) +
1

x

ψ0(2x) =
1

2

(
ψ0(x) + ψ0(x+

1

2
) + 2 ln 2

)
Thus we can write

∂ρH

∂H
= ρH

(
ψ0(

3

2
−H)− ψ0(H − 1

2
)− 2ψ0(

3

2
−H)

+ψ0(1−H) + ψ0(
3

2
−H) + 2 ln 2

)
= ρH

(
ψ0(1−H)− ψ0(H − 1

2
)− 1

H − 1
2

+ 2 ln 2

)
= ρH

(
ψ0(1−H)− ψ0(H +

1

2
) + 2 ln 2

)
.

Finally we can calculate ∂vT

∂H
:

∂vT

∂H
=

∂σ2ρH(T − t)2H

∂H

= σ2

(
ρH(ψ0(1−H)− ψ0(H +

1

2
)

+2 ln 2)(T − t)2H + ρH2 ln(T − t)(T − t)2H
)

= ρHσ
2(T − t)2H

(
ψ0(1−H)− ψ0(H +

1

2
) + 2 ln 2 + 2 ln(T − t)

)
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