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Abstract

Two main approaches are commonly used to empirically evaluate linear factor pricing

models: regression and SDF methods, with centred and uncentred versions of the latter.

We show that unlike standard two-step or iterated GMM procedures, single-step estimators

such as continuously updated GMM yield numerically identical values for prices of risk,

pricing errors, Jensen’s alphas and overidentifying restrictions tests irrespective of the model

validity. Therefore, there is arguably a single approach regardless of the factors being traded

or not, or the use of excess or gross returns. We illustrate our results by revisiting Lustig

and Verdelhan’s (2007).empirical analysis of currency returns.
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1 Introduction

Asset pricing theories are concerned with determining the expected returns of assets whose

payoffs are risky. Specifically, these models analyse the relationship between risk and expected

returns, and address the crucial question of how to value risk. The most popular empirically

oriented asset pricing models effectively assume the existence of a common stochastic discount

factor (SDF) that is a linear function of some risk factors, which discounts uncertain payoffs

differently across different states of the world. Those factors can be either the excess returns on

some traded securities, as in the traditional CAPM of Sharpe (1964), Lintner (1965) and Mossin

(1966) or the so-called Fama and French (1993) model, non-traded economy wide sources of

uncertainty related to macroeconomic variables, like in the Consumption CAPM (CCAPM) of

Breeden (1979), Lucas (1978) or Rubinstein (1976), or a combination of the two, as in the exact

version of Ross’ (1976) APT.

There are two main approaches to formally evaluate linear factor pricing models from an

empirical point of view. The traditional method relies on regressions of excess returns on factors,

and exploits the fact that an asset pricing model imposes certain testable constraints on the

intercepts. More recent methods rely on the SDF representation of the model instead, and

exploit the fact that the corresponding pricing errors should be zero. There are in fact two

variants of the SDF method, one that demeans the factors and another one that does not.

Although the initial asset pricing tests tended to make the assumption that asset returns and

factors were independently and identically distributed as a multivariate normal vector, nowadays

these approaches are often implemented by means of the generalized method of moments (GMM)

of Hansen (1982), which has the advantage of yielding valid inferences even if the assumptions

of serial independence, conditional homoskedasticity or normality are not totally realistic in

practice (see Campbell, Lo and MacKinlay (1996) or Cochrane (2001a) for advanced textbook

treatments).

Unfortunately, though, each approach typically yields different estimates of prices of risk,

pricing errors and Jensen’s alphas, and different values for the overidentifying restrictions test.

This begs the question of which approach is best, and there is some controversy surrounding the

answer. For example, Kan and Zhou (2000) advocated the use of the regression method over the

uncentred SDF method because the former provides more reliable risk premia estimators and

more powerful specification tests than the latter. However, Cochrane (2001b) and Jagannathan

and Wang (2002) criticised their conclusions on the grounds that they did not consider the

estimation of factor means and variances. Specifically, Jagannathan and Wang (2002) showed

that once one takes the sampling uncertainty of those estimators into account, the regression
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approach and the (uncentred) SDF approach are asymptotically equivalent in terms of standard

errors and power if excess returns and factors are independently and identically distributed as

a multivariate normal random vector.

More recently, Burnside (2007) and Kan and Robotti (2008) have also pointed out that

in certain cases there may be dramatic differences between the results obtained by applying

standard two-step or iterated GMM procedures to the centred and uncentred versions of the SDF

approach. At the same time, Kan and Robotti (2008) prove the numerical equivalence of the

continuously updated GMM (CU-GMM) of Hansen, Heaton and Yaron (1996) implementation of

the overidentification tests associated to the centred and uncentred versions of the SDF approach

(see their footnote 3). As is well known, CU-GMM is a single-step method that integrates the

heteroskedasticity and autocorrelation consistent (HAC) estimator of the long-run covariance

matrix as part of the objective function.

In this context, the main contribution of our paper is to show the more subtle result that the

application to both the regression and SDF approaches of single-step GMM methods, including

CU-GMM, gives rise to numerically identical estimates of prices of risk, pricing errors, Jensen’s

alphas and overidentifying restrictions tests irrespective of the validity of the asset pricing model.

Therefore, one could argue that there is effectively a single method to empirically evalu-

ate asset-pricing models. Although the rationale for our results is the well-known functional

invariance of maximum likelihood estimators, our results do not depend on any distributional

assumption, and remain true regardless of whether or not the asset pricing restrictions hold, the

factors are traded or non-traded, or the researcher works with excess returns or gross returns.

To ease the exposition, we centre our discussion on models with a single priced factor. Never-

theless, our numerical equivalence results do not depend in any way on this simplification. In

fact, the proofs of our main results explicitly consider the general multifactor case. Similarly,

our empirical application includes both single and multifactor models.

Importantly, our results apply to optimal GMM inference procedures. In particular, we do

not consider sequential GMMmethods that fix the factor means to their sample counterparts. We

do not consider either procedures that use alternative weighting matrices such as the uncentred

second moment of returns. Although the choice in Hansen and Jagannathan (1997) is reasonable

in SDF contexts when one wants to compare several misspecified models, it does not have a

natural regression counterpart. In any case, those suboptimal GMM estimators fall outside the

realm of single-step methods such as CU-GMM, and therefore they would typically give rise to

numerically different statistics.

While single-step methods are not widespread in empirical finance applications, this situation
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is likely to change in the future because they do not require to arbitrarily choose the number

of iterations, and they often yield more reliable inferences in finite samples.1 In fact, the

recent papers by Julliard and Gosh (2008), Almeida and Garcia (2009) or Campbell, Gilgio

and Polk (2010) attest their increasing popularity. However, the CU-GMM estimator and other

single-step methods such as empirical likelihood or exponentially-tilted methods are often more

difficult to compute than two-step estimators, particularly in linear models. For that reason, we

also develop simple, intuitive consistent parameter estimators that can be used to obtain good

initial values, and which will be efficient for elliptically distributed returns and factors.

We illustrate our results by revisiting the empirical analysis of currency returns in Lustig

and Verdelhan (2007). Our findings confirm that the conflict among criteria for testing asset

pricing models that we have previously mentioned is not only a theoretical possibility, but a hard

reality. Nevertheless, such a conflict disappears when one uses single-step methods. A different

issue, though, is the interpretation of the restrictions that are effectively tested. In this sense,

our results also confirm Burnside’s (2007) findings that the favourable empirical evidence on

the asset pricing models with non-traded factors that Lustig and Verdelhan (2007) considered

should be interpreted with some care because their consumption-based pricing factors seem to

be uncorrelated to currency returns. We also find that if we force the models with traded factors

to price those factors, and in particular the US market portfolio, then we reject the asset pricing

restrictions.

The rest of the paper is organised as follows. We study the case of traded factors from the

theoretical and empirical perspectives in section 2, while in section 3 we analyse the case of

non-traded factors in an analogous manner. In section 4 we show that our results hold not only

for excess returns but also for gross returns. Finally, we summarise our conclusions in section 5.

A brief description of CU-GMM as an example of single-step methods, multifactor models and

formal proofs are gathered in appendices A, B and C, respectively.

2 Traded factors

Let r be an n × 1 vector of excess returns. Standard arguments such as lack of arbitrage
opportunities or the first order conditions of a representative investor imply that

E (mr) = 0

for some random variable m called SDF, which discounts uncertain payoffs in such a way that

their expected discounted value equals their cost.
1Newey and Smith (2004) highlight the finite sample advantages of CU and other generalised empirical likeli-

hood estimators over two-step GMM by going beyond the usual first-order asymptotic equivalence results.
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The standard approach in empirical finance is to model m as an affine transformation of

some risk factors, even though this ignores that m must be positive with probability 1 to avoid

arbitrage opportunities (see Hansen and Jagannathan (1991)). With a single factor f , we can

express the pricing equation as

E [(a+ bf) r] = 0 (1)

for some real numbers (a, b).

Although r only contains assets with 0 cost, which leaves the scale and sign of m undeter-

mined, we would like our candidate SDF to price other assets with positive prices. Therefore,

we require a scale normalisation to rule out the trivial solution (a, b) = (0, 0) (see Cochrane

(2001a), pp. 256-258). For example, we could choose the popular asymmetric normalisations

a = 1 or E(m) = a + bµ = 1, where µ = E(f). Alternatively, we could choose the symmetric

normalisation a2+ b2 = 1, together with a sign restriction on one of the nonzero coefficients. As

we shall see below, this seemingly innocuous issue may have important empirical consequences.

In this section we assume that the pricing factor f is itself the excess return on another

asset, such as the market portfolio in the CAPM.2 As forcefully argued by Farnsworth et al.

(2002) and Lewellen, Nagel and Shanken (2009) among others, the pricing model applies to f

too, which means that

E [(a+ bf) f ] = 0. (2)

Following Chamberlain (1983b) we also know that a+ bf will constitute an admissible SDF

if and only if f lies on the mean-variance frontier generated by f and r. Then, the well-

known properties of mean-variance frontiers imply that the least squares projection of r onto

a constant and f should be proportional to f . As result, we can equivalently write the above

pricing equations as

E

⎡⎣⎛⎝ 1

f

⎞⎠ (r− βf)
⎤⎦ =

⎛⎝ 0

0

⎞⎠ , (3)

where the parameter vector β represents the slopes of the projection.

2.1 Existing approaches

Equations (1) and (2) are particularly amenable to GMM estimation once we choose a

normalisation for (a, b). As we mentioned before, there are two widespread asymmetric choices

in empirical finance: a = 1 and a+ bµ = 1, with the corresponding SDFs typically expressed as

m = 1− fλ and m = 1− (f − µ) τ , respectively. Kan and Zhou (2000), Cochrane (2001b) and

2It is important to mention that our assets could include managed portfolios. Similary, the factor could also
be a scaled version of a primitive excess return to accommodate conditioning information; see the discussion in
chapter 8 of Cochrane (2001a).
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Jagannathan and Wang (2002) only study the first variant, but the second one is also widely

used in the literature (see e.g. Parker and Julliard (2005) or Yogo (2006)). Burnside (2007)

refers to the first approach as the a-normalisation and to the second one as the ξ-normalisation.

We will refer to them instead as the uncentred and centred SDF parametrisations since they

differ in their use of either E (rf) or Cov (r, f) in explaining the cross-section of risk premia.

Specifically, the uncentred SDF test relies on the overidentified n+ 1 moment conditions

E

⎡⎣ r (1− fλ)

f (1− fλ)

⎤⎦ = 0, (4)

where the only unknown parameter is λ. Given that the last moment condition implies that

E (f) = E
¡
f2
¢
λ, we will have that

λ =
µ

γ
, (5)

where γ is the second moment of the factor, which allows us to interpret λ as a “price of risk”

for the factor. Under standard regularity conditions, the overidentifying restrictions (J) test

will follow an asymptotic chi-square distribution with n degrees of freedom (χ2n) when (4) is

correctly specified.

In contrast, the centred SDF test relies on the n+ 2 overidentified moment conditions

E

⎡⎢⎢⎢⎣
r (1− (f − µ) τ)

f (1− (f − µ) τ)

f − µ

⎤⎥⎥⎥⎦ = 0, (6)

where the additional moment condition allows the estimation of µ. The two unknown parameters

are (µ, τ). Once again, we can use the middle moment condition to show that:

τ =
µ

σ2
, (7)

where σ2 = γ − µ2 denotes the variance of f , which means that τ also has a “price of risk”

interpretation. Not surprisingly, the corresponding J test also converges in distribution to a χ2n

under correct specification.

The regression (or beta) representation of the pricing model is also amenable to GMM

estimation. In particular, we can follow MacKinlay and Richardson (1991) in regarding (3) as

2n overidentified moment conditions, where the n unknown parameters are the slope coefficients

β, which under the null coincide with both E(rf)/E(f2) and Cov(r,f)/V (f). Therefore, the J

test will be asymptotically distributed as χ2n under the null.

The regression method identifies µ with the expected excess return of a portfolio whose

“beta” is equal to 1. Hence, this parameter may also be interpreted as an alternative “price of

risk”. To estimate it, we can add f − µ to (3) as in (6), and simultaneously obtain β and µ.
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The overidentification tests are regularly complemented by three standard evaluation mea-

sures, which correspond to the value of the different moment conditions when the linear factor

pricing model is incorrect. In this way, we define Jensen’s alpha:

α = E (r)− βE (f) (8)

for the regression method, the pricing errors obtained from the uncentred SDF representation:

π = E (r)−E (rf)λ,

or from the centred SDF representation:

ψ = E (r)−E (r (f − µ)) τ .

Under the null hypothesis these three measures should be simultaneously 0, but otherwise their

values will be different.

2.2 Numerical equivalence results

As we mentioned in the introduction, Kan and Zhou (2000), Cochrane (2001b), Jagan-

nathan and Wang (2002), Burnside (2007) and Kan and Robotti (2008) compare some of the

aforementioned approaches when researchers rely on traditional, two-step or iterated GMM

procedures.

In contrast, our main result is that all the aforementioned methods coincide if one uses

instead single-step procedures such as CU-GMM. More formally

Proposition 1 If we apply single-step procedures to the uncentred SDF method based on the
moment conditions (4), the centred SDF method based on the moment conditions (6), and the
regression method based on the moment conditions (3), then for a common choice of HAC
weighting matrix the following numerical equivalences hold:
1) The three overidentification restrictions (J) tests.
2) The direct estimate of the “price of risk” λ from (4), the indirect estimate

λ =
σ2

γ
τ,

from (6) extended to include γ, and the indirect estimate

λ =
µ

γ

from (3) extended to include (µ, γ). Analogous results apply to τ and µ.
3) The estimates of Jensen’s alphas in (8) obtained by replacing E (·) by an unrestricted sample
average and β by their direct estimates obtained from the regression method, or the indirect
estimates obtained from SDF methods extended to include β. Analogous results apply to the
alternative pricing errors π and ψ.
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In order to provide some intuition for the numerical equivalence between all the CU-GMM

J tests that we have discussed, imagine that for estimation purposes we assumed that the joint

distribution of r and f is i.i.d. multivariate normal. In that context, we could test the mean-

variance efficiency of f by means of a likelihood ratio (LR) test. We could then factorise the

joint log-likelihood function of r and f as the marginal log-likelihood of f , whose parameters

µ and σ2 would be unrestricted, and the conditional log-likelihood of r given f . As a result,

the LR version of the original Gibbons, Ross and Shanken (1989) test would be numerically

identical to the LR test in the joint system irrespective of the chosen parametrisation. The CU-

GMM overidentification test, which implicitly uses the Gaussian scores as influence functions,

inherits the invariance of the LR test. The advantage, though, is that we can make it robust to

departures from normality, serial independence or conditional homoskedasticity.

Alternatively, we could understand the CU-GMM procedure as being based on the original

moment conditions (1) and (2), which are valid for any normalisation of the SDF scale of the

form a2 + b2 6= 0. In this light, the SDF result in footnote 3 of Kan and Robotti (2008) is a

direct consequence of the fact that single-step procedures are numerical invariant to normalisa-

tion, while the additional, less immediate results relating the regression and SDF approaches in

Proposition 1 follow from the fact that those GMM procedures are also invariant to parameter

dependent linear transformations of the moments and reparametrisations(see Appendix A).

One drawback of CU-GMM procedures, though, is that they induce a non-linearity in the

GMM objective function. In this sense, the numerical equivalence of the three approaches gives

a non-trivial computational advantage to the uncentred SDF method, which only contains a

single unknown parameter.3

Still, it is convenient to have consistent initial parameter values. For that reason, we propose

a computationally simple intuitive estimator that is always consistent, but which would be-

come efficient for i.i.d. elliptical returns, a popular assumption in finance because it guarantees

the compatibility of mean-variance preferences with expected utility maximisation regardless of

investors’ preferences (see Chamberlain (1983a) and Owen and Rabinovitch (1983)). For the

uncentred SDF model in particular:

Lemma 1 If (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments, and the
null hypothesis of linear factor pricing holds, then the most efficient estimator of λ obtained
from (4) will be given by

λ̇T =

PT
t=1 ftPT
t=1 f

2
t

. (9)

3This advantage becomes more relevant as the number of factors k increases because the centred SDF method
requires the additional estimation of k factor means, while the regression method the estimation of n× k factor
loadings.
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Intuitively, this means that under those circumstances (2), which is the moment involving f ,

exactly identifies the parameter λ, while (1), which are the moments corresponding to r, provide

the n overidentification restrictions to test. Although the elliptical family is rather broad (see

e.g. Fang, Kotz and Ng (1990)), and includes the multivariate normal and Student t distribution

as special cases, it is important to stress that λ̇T will remain consistent under linear factor pricing

even if the assumptions of serial independence and ellipticity are not totally realistic in practice.

2.3 Empirical application

Over the last thirty years most empirical studies have rejected the hypothesis of uncovered

interest parity, which in its basic form implies that the expected return to speculation in the

forward foreign exchange market conditioned on available information should be zero. Specifi-

cally, many of those studies find support for the so-called the “forward premium puzzle”, which

implies that, contrary to the theory, high domestic interest rates relative to those in the for-

eign country predict a future appreciation of the home currency. In fact, the so-called “carry

trade”, which involves borrowing low-interest-rate currencies and investing in high-interest-rate

ones, constitutes a very popular currency speculation strategy developed by financial market

practitioners to exploit this “anomaly” (see Burnside et al. (2006)).

One of the most popular explanations among economists is that such a seemingly anomalous

pattern might reflect a reward to the exposure of foreign currency positions to certain systematic

risk factors. To study this possibility, Lustig and Verdelhan (2007) constructed eight portfolios

of currencies sorted at the end of the previous year by their nominal interest rate differential

to the US dollar, creating in this way annual excess returns (in real terms) on foreign T-Bill

investments for a US investor over the period 1953-2002. Then they tested if some popular

empirical asset pricing models that rely on certain domestic US risk factors were able to explain

the cross-section of risk premia.

Table 1 reports some simple descriptive statistics for those portfolios. Interestingly, the

broadly monotonic relationship between the level of interest rates differentials and risk premia

provides informal evidence on the failure of uncovered interest rate parity.

(TABLE 1)

Given that so far we have only considered traded factors in our theoretical analysis, we

initially focus on the CAPM and the three-factor Fama-French model. Following Lustig and

Verdelhan (2007), in the first case we take the pricing factor to be the US market portfolio
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(MK), which we identify with the CRSP value-weighted excess return. In contrast, in the

second model we add two additional factors labelled SMB and HML that capture the so-called

size and value effects. Specifically, SMB reflects the returns on small cap firms in excess of the

returns on large cap firms, while HML measures the returns on value firms in excess of the

returns on growth firms.

Table 2 contains the results of applying the different inference procedures previously discussed

to this data set. In all cases, we estimate the asymptotic covariance matrix of the relevant

influence functions by means of its sample counterpart, as in Hansen, Heaton and Yaron (1996),

except for the first-step estimators, for which we use the identity matrix as initial weighting

matrix.4 The first thing to note is that while the two-step and CU-GMM estimates of λ and µ

are fairly similar, the CU-GMM estimate of τ is higher than its two-step counterpart, although

the t-ratio is lower. In addition, there are marked numerical differences between the three two-

step versions of the overidentification restrictions tests. In particular, the centred SDF yields a

much higher J statistic. Nevertheless, all tests reject the null hypothesis of linear factor pricing,

including the single CU-GMM statistic that we have introduced.

(TABLE 2)

Panel B of Table 2 presents the different pricing errors, with the α of a traded factor being

computed as the difference between its sample mean and its GMM estimate. As can be seen,

there are very few statistically significant values of α, π or ψ for the 8 currency portfolios in

the two GMM versions. Only the CU-GMM estimates of α for the 7th portfolio are significant

at the 1% level, while the corresponding two-step GMM estimates are significant at the 5%.

In contrast, all three pricing errors for MK are highly significant. Therefore, in this empirical

application the failure of the CAPM to price the market portfolio provides the clearest source

of model rejection, thereby confirming the relevance of the recommendation in Farnsworth et al.

(2002) and Lewellen, Nagel and Shanken (2009).

Finally, Table 3 extends the analysis to the multifactor model of Fama-French. Once again,

there are marked numerical differences between the three two-step approaches (see Panel A).

Specifically, the estimates of λ, τ and µ differ between two-step and single-step methods, espe-

cially in the case of the centred SDF. As for the overidentification tests, the centred SDF also

yields a much higher J statistic. Nevertheless, the three two-step GMM approaches reject the

null hypothesis of linear factor pricing, and CU-GMM confirms the result.
4We have also considered another two-step GMM procedure that uses (9) as the first-step estimator, but the

results are qualitatively similar.
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(TABLE 3)

Panel B of Table 3 displays the pricing errors. Once again, there are very few statistically

significant values of α, π or ψ for the 8 currency portfolios in the two GMM versions. The

main exception is the 7th portfolio, whose two-step GMM pricing errors are significant at the

1% level. As in the case of the CAPM, the main reason behind the rejection seems to be the

failure of the model to price the factors, and in the particular the market portfolio.

3 Non-traded factors

Let us now consider a situation in which f is a scalar non-traded factor, such as the growth

rate of per capita consumption. The main difference with the analysis in section 2 is that the

factor may not satisfy the pricing equation (2), so that the SDF is simply defined by (1).

As in the case of a traded factor, we can equivalently write this pricing condition as a

restriction on the least squares projection of r onto a constant and f . Specifically, if we define

φ = E(r)− βµ

and

β = Cov (r,f) /σ2 (10)

as the vectors of intercepts and slopes in that projection, respectively, then (1) is equivalent to

E [(a+ bf) (φ+ βf)] = cφ+ dβ = 0, (11)

where c and d are two scalars not simultaneously equal to 0, so that the projection and the SDF

should be orthogonal. Intuitively, (1) implies that we can find a non-trivial linear combination of

E(r) and E(rf) (or Cov(r, f)) that is zero, which in turn implies that we can find a non-trivial

linear combination of φ and β that is zero too.5

In practice, we can easily impose the implicit constraint (11) by writing the moment condi-

tions that define the projection as

E

⎡⎣⎛⎝ 1

f

⎞⎠ (r−ϕ (d− cf))

⎤⎦ =
⎛⎝ 0

0

⎞⎠ , (12)

where ϕ is some n× 1 vector such that φ = dϕ and β = −cϕ. This moment condition closely
resembles (3), except for the fact that when f is traded, the additional condition (2) implies

that φ = 0 and d = 0. More generally, we need to solve the scale indeterminacy of c and d by

5Note that c = a+ bµ is the mean of the SDF, while d = aµ+ bγ would be the price of f if it was traded.
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choosing either the popular asymmetric normalisation c = −1, so that β = ϕ, or the symmetric

normalisation c2+d2 = 1. As we shall see below, this seemingly innocuous issue may once again

have important empirical consequences.

3.1 Existing approaches

As we mentioned in the case of traded factors, some normalisation is required to identify

(a, b) from (1). Specifically, the uncentred SDF approach implicitly sets a = 1, and relies on the

n overidentified moment conditions

E
h
r (1− fλ)

i
= 0, (13)

where the only parameter to estimate is λ. This parameter still has a “price of risk” interpreta-

tion, as in (5), but this time in terms of factor mimicking portfolios. In particular

λ =
E(r+)

E(r+2)
, (14)

where

r+ = E(fr0)E−1(rr0)r (15)

is the uncentred least squares projection of f on r. As expected, the asymptotic distribution

of the J test will be χ2n−1 under the null. For that reason, in what follows we assume that the

number of assets exceeds the number of factors to ensure that the linear factor pricing model

imposes testable restrictions on asset returns.

In contrast, the centred SDF test implicitly sets a + bµ = 1, and relies on the n + 1 overi-

dentified moment conditions

E

⎡⎣ r (1− (f − µ) τ)

f − µ

⎤⎦ = 0, (16)

where the two parameters to estimate are (µ, τ). Once again, τ has a “price of risk” interpretation

as in (7), but in terms of factor mimicking portfolios. Specifically

τ =
E(r++)

V (r++)
, (17)

where

r++ = cov(f, r0)V −1(r)r

is the centred least squares projection of f on r. The link to the uncentred “price of risk”

parameter is simply

τ =
λ

1− λµ
,
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which effectively divides λ by the SDF mean since the centred SDF approach normalises that

mean to 1. As before, the J test will asymptotically converge to a χ2n−1 when the asset pricing

model is correct.

On the other hand, if we normalise c = −1 then we can write (12) as the following 2n
overidentified moment conditions:

E

⎡⎣⎛⎝ 1

f

⎞⎠ (r− β(κ + f))

⎤⎦ = 0, (18)

where the n+ 1 parameters to estimate are (κ,β), with κ = δ − µ, so that we can interpret δ

as the expected excess return of a portfolio whose “beta” is equal to 1.6 Given that the risk

premium of r++ is τV (r++) and its beta is V (r++)/σ2, there is again a simple connection to

the “price or risk” of the centred SDF. Specifically,

δ = σ2τ ,

which simply re-scales τ by the factor variance. This is the usual regression (or beta) test of the

pricing model, which implicitly exploits the restrictions that the model imposes on the regression

intercepts (see Campbell, Lo and MacKinlay (1996, chap. 5)).

Finally, the centred and uncentred pricing errors ψ and π are defined as in section 2, while

Jensen’s alpha is now defined as

α = E (r)− βδ. (19)

Unfortunately, the existing approaches may run into difficulties in those cases in which their

implicit normalisations are invalid. For instance, if E (rf) = 0 so that the true SDF would

be proportional to f and r+ = 0, then the normalisation of (1) with a = 1 in the uncentred

SDF approach (13) is not well defined in population terms. Similarly, if Cov (r,f) = 0 so that

the true SDF would be proportional to (f − µ) and r++ = 0, then neither the normalisation

of (1) with a + bµ = 1 in the centred SDF approach (16), nor the normalisation of (12) with

c = −1 in the centred regression approach (18) are properly defined. In contrast, the symmetric
normalisations a2 + b2 = 1 and c2 + d2 = 1 continue to be well defined in those circumstances.

We shall return to this issue in the empirical application.

3.2 Numerical equivalence results

As in the case of traded factors, we can show that all the approaches discussed in the

previous subsection coincide if one uses single-step methods such as CU-GMM. More formally
6Jagannathan and Wang (2002) use δ−µ instead of κ, and add the influence functions f−µ and (f − µ)2−σ2

to estimate µ and σ2 too. The addition of these moments is irrelevant for the estimation of κ and the J test
because they exactly identify µ and σ2. Consequently, we will ignore them for the time being to simplify the
exposition, although we will use them in our proofs to link the regression and SDF approaches.
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Proposition 2 If we apply single-step procedures to the uncentred SDF method based on the
moment conditions (13), the centred SDF method based on the moment conditions (16), and
the regression method based on the moment conditions (18), then for a common choice of HAC
weighting matrix the following numerical equivalences hold:
1) The three overidentification restrictions (J) tests.
2) The direct estimate of the “price of risk” λ from (13), the indirect estimate

λ =
τ

1 + τµ

from (16), and the indirect estimate of

λ =
δ

σ2 + δµ

from (18) parametrised in terms of δ and extended to include γ, provided that 1 + τµ =¡
σ2 + δµ

¢
/σ2 6= 0. Analogous results apply to τ and δ.

3) The estimates of Jensen’s alphas in (19) obtained by replacing E (·) by an unrestricted sample
average and β and δ by their direct estimates obtained from the regression method or the indirect
estimates obtained from SDF methods extended to include β, γ and µ. Analogous results apply
to the pricing errors π and ψ.

It is important to distinguish this proposition from the results in Jagannathan and Wang

(2002). These authors showed that if (r, f) were i.i.d. normal, then the centred regression

and uncentred SDF approaches would lead to asymptotically equivalent inferences. Although it

would be fairly straightforward to show that their results would continue to be true under more

general distributional assumptions, Proposition 2 shows that in fact both SDF approaches and

the regression method yield numerically identical conclusions if we work with one-step GMM

procedures such as CU-GMM.7

As we mentioned before, though, one drawback of CU-GMM is that it induces a non-linearity

in the GMM objective function. In this sense, the numerical equivalence of the three approaches

gives once more a non-trivial computational advantage to the uncentred SDF method, which

only contains the single unknown parameter λ.8

Still, it is convenient to have consistent initial values. For that reason, we propose a compu-

tationally simple intuitive estimator that is always consistent, but which would become efficient

when the returns and factors are i.i.d. elliptical, which nests the joint Gaussian assumption in

Jagannathan and Wang (2002). For the uncentred SDF model, in particular:

7Kan and Robotti (2008) also show that CU-GMM versions of the SDF approach are numerically invariant to
affine transformations of the factors with known coefficients, which is not necessarily true of two-step or iterated
GMM methods. Not surprisingly, it is easy to adapt the proof of Proposition 2 to show that the regression
approach is also numerically invariant to such transformations.

8This advantage becomes more relevant as the number of factors k increases because the centred SDF method
requires the additional estimation of k factor means, while the regression method the estimation of n× k factor
loadings if we use the parametrisation in terms of κ, and even more elements if we use the parametrisation in
terms of δ.
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Lemma 2 If (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments, and the
null hypothesis of linear factor pricing holds, then the most efficient estimator of λ obtained
from (13) will be given by

λ̊T =

PT
t=1 r

+
tPT

t=1 r
+2
t

(20)

where r+t is the uncentred factor mimicking portfolio defined in (15), whose sample counterpart
would be

r̃+t =

Ã
TX
t=1

rtr
0
t

!−1Ã TX
t=1

rt

!
.

Once again, it is important to stress that the feasible version of λ̊T will remain consistent

under linear factor pricing even if the assumptions of serial independence and a multivariate

elliptical distribution are not totally realistic in practice.

3.3 Empirical application

We look again at the eight currency portfolios in Lustig and Verdelhan (2007), but this

time we focus on linear factor pricing models with non-traded factors. Specifically, we consider

a linearised version of the CCAPM, which defines the US aggregate consumption growth of

nondurable as the only pricing factor, as well as an extension (DCAPM) along the lines of Yogo

(2006), which adds the consumption growth of durables as a second pricing factor.

Table 4 displays the results from the application of the different inference procedures previ-

ously discussed to this data set for the purposes of testing the CCAPM. The computation of the

weighting matrix in two-step and CU-GMM is the same as we explained for the case of traded

factors.

Not surprisingly, there are again numerical differences between the standard two-step GMM

implementation of the three existing approaches. Unlike what happened in the case of traded

factors, though, in this case the numerical differences lead to different conclusions at conventional

significance levels. Specifically, while the centred SDF approach rejects the null hypothesis, the

uncentred SDF and the regression approach do not. In turn, the single-step GMM version of

the J test does not reject the null hypothesis implicit in (1) and (12), which is in agreement

with the empirical results in Lustig and Verdelhan (2007). Similarly, the two-step and CU-GMM

estimates of λ and δ are fairly close, while the CU-GMM estimate of τ is higher than its two-step

counterpart, although the t-ratio is much lower.

The numerical differences between the three two-step overidentification tests are substantially

reduced but not eliminated if we use these GMM estimates to compute a new weighting matrix,

which we then use to obtain three-step parameter estimates, and so on and so forth.9 In
9As Hansen, Heaton and Yaron (1996) show, though, such iterated GMM estimators do not generally coincide

with the CU ones.
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particular, after just a few iterations the uncentred SDF method converges to an estimate of λ

of 0.49 and a J statistic of 5.69, which are very similar to their CU-GMM counterparts. In turn,

the regression method converges to an estimate of δ of 5.61 and a J statistic of 5.68, which are

again rather close to their CU-GMM counterparts. However, the centred SDF converges after

many iterations to an estimate of τ of 1.15 and a J statistic of 16.92, whose p-value is 2%.

(TABLE 4)

Panel B of Table 4 shows the pricing errors. Once again, there are few statistically significant

values of α, π or ψ for the 8 currency portfolios in the two GMM versions. The main exception

is the two-step GMM estimates of ψ, with 3 significant pricing errors at the 5% level.

The evidence on the DCAPM shown in Table 5 is broadly similar to the evidence on the

CCAPM in Table 4. Specifically, the numerical differences across two-step implementations

reported in Panel A yield different conclusions at conventional significance levels: while the cen-

tred SDF approach rejects the null hypothesis, the uncentred SDF and the regression approach

do not. In turn, the single-step GMM test does not reject the null hypothesis implicit in (1) and

(12). Similarly, Panel B shows that there are not significant values at the 5% level for α or π

for the 8 currency portfolios in the two GMM versions. However, we can find 4 portfolios with

two-step GMM estimates of ψ that are significant at 1%. In contrast, none of the CU-GMM

estimates of those pricing errors are significant at the 5% level.

(TABLE 5)

Burnside (2007) argues that the usual two-step implementation of the uncentred SDF ap-

proach has no power against potentially misspecified SDFs when the population covariance of

the pricing factors with the excess returns on the assets is 0. Similarly, one could easily modify

his arguments to say that the usual two-step implementation of the centred SDF approach would

have no power if the cross moment between pricing factors and excess returns were 0, and the

same would apply to the centred regression approach.

Given the numerical equivalence of the single-step implementation of the three approaches

in Proposition 2, in our view the focus should not be on the statistical properties of the different

estimators and tests, but rather, on the interpretation of the restrictions that are effectively

tested in those two special cases.
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For the sake of clarity, let us study these issues with a single factor. Specifically, when

Cov(r, f) = 0 but E(r) 6= 0, (12) will be satisfied with c = 0 and ϕd = E(r), while the moment

conditions (1) will be satisfied by any affine transformation of f such that a+bµ = 0. Therefore,

the value of λ given by (14) will trivially satisfy (13), as Burnside (2007) shows. In contrast, one

cannot find any finite value of τ that will satisfy (16) because the centred mimicking representing

portfolio r++ will be 0. Likewise, one cannot find any finite value of κ that will satisfy (18)

because β = 0.

Similarly, when E(rf) = 0 but E(r) 6= 0, (12) will be satisfied with dµ − cγ = 0 and

ϕd
¡
σ2/γ

¢
= E(r), while the moment conditions (1) will be satisfied by any SDF which is

exactly proportional to f (so that a = 0). Therefore, the value of τ given by (17) will trivially

satisfy (16), and the same applies to (18) with (10) and κ = −γ/µ. In contrast, one cannot find
any finite value of λ that will satisfy (13) because the uncentred mimicking portfolio r+ will be

0.

From an economic point of view those solutions are clearly unsatisfactory, but strictly speak-

ing the corresponding SDF’s correctly price the vector of excess returns at hand. In our view,

the best way to solve these problems would be to add a risky or riskless asset whose cost is not

0, which would implicitly fix the scale of the SDF by fixing its mean; see e.g. Hodrick and Zhang

(2001) and Farnsworth et al. (2002). For that reason, we devote the next section to this case.

Unfortunately, most empirical studies do not include such an asset.

From an econometric point of view, though, the truly problematic case arises when (1) and

(12) hold but E(r) = 0, in which case both Cov(r, f) and E(rf) must be 0 too. In this situation,

the SDF parameters a and b and the projection parameters c and d are underidentified even

after normalisation, which renders standard GMM inferences invalid.10

To investigate whether these theoretical situations are empirically relevant, we perform

single-step GMM overidentification tests of the following null hypotheses:

(a) the mean excess return is 0, i.e.

E(r) = 0,

(b) the cross moment between excess returns and factors are 0, i.e.

E(rf) = 0,

and (c) the covariance between excess returns and factors are 0, i.e.

E [(r−ϕ) f ] = 0,
10See Khan and Zhang (1999) or Burnside (2007) for the implications that identification failures have for

two-step GMM procedures.
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where ϕ is a vector of parameters to estimate. We do so for each of the two consumption factors

separately, and also perform a joint test.

Hypothesis (a) is clearly rejected with a J statistic of 39.97, whose p-value is essentially 0.

Therefore, there are statistically significant risk premia in search of pricing factors to explain

them. The next step is to investigate if the consumption factors considered by Lustig and

Verdelhan (2007) can play such a role.

Table 6 shows that hypothesis (b) is clearly rejected, but there is not much evidence against

hypothesis (c) for non-durable consumption, durable consumption or both factors together.

Thus, we cannot reject that those factors are jointly uncorrelated with the currency portfolios,

which indicates that the seemingly positive evaluation of the consumption based asset pricing

models in Tables 4 and 5 must be interpreted with some care.

(TABLE 6)

The last column of Table 6 shows that the joint hypothesis (a)+(b), or equivalently (a)+(c),

is rejected for each factor, which confirms that the parameters appearing in (1) and (12) are

point identified in a single factor model.11 Interestingly, this test coincides with a simple version

of the underidentification test of Arellano, Hansen and Sentana (2009) adapted to linear factor

pricing models by Manresa (2008). In this sense, it is worth noting that once again CU-GMM

proves useful to unify the empirical results because we obtain the same J test whether we regress

r on f or f on r.

In summary, our empirical results with non-traded factors indicate that although we cannot

reject the overidentification restrictions implicit in (1) and (12), the main reason seems to be

that the aggregate consumption growth of nondurable and the consumption growth of durables

are uncorrelated to the eight portfolios of currencies in Lustig and Verdelhan (2007).

In fact, we find similar results with the traded factors MK, HML and SMB if we treat them

as non-traded by discarding the moment condition (2). In particular, the CAPM would give rise

to a CU-GMM J test with a p-value of 42%, while the p-value of the test of the Fama-French

model would become 74%.

4 Evaluation with gross returns

Let us define R as an n× 1 vector of gross returns, which are such that their cost is given
by the n × 1 vector of ones cn. We focus again on the case of a single factor f to simplify the
11However, a zero covariance of both consumption factors with the currency portfolios implies that the multi-

factor DCAPM is not identified.
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exposition, and relegate the general multifactor case to Appendix B.

In this context, the analogue to the SDF pricing equation (1) is

E ((a+ bf)R) = cn (21)

for some real numbers (a, b). As we mentioned in the previous section, there is no longer any

need to normalise (a, b), unlike in the case of excess returns.

Not surprisingly, we can equivalently write this pricing condition as a restriction on the least

squares projection of R onto a constant and f . Specifically, if we define φ and β as the vectors

of intercepts and slopes in that projection, respectively, then (21) is equivalent to

cφ+ dβ = cn, (22)

where c is the SDF mean and d is the shadow price of the factor, or its actual price when is

traded.

4.1 Traded Factors

When the factor is a gross return, it will also satisfy

E ((a+ bf) f) = 1. (23)

Therefore, the moments of the uncentred SDF method will be (21) and (23). Since the only

parameters are (a, b), the J test will have n− 1 degrees of freedom under correct specification.

We can also reparametrise the SDF in terms of c instead of a and rely on the moment

conditions

E

⎡⎢⎢⎢⎣
R (c− (f − µ) τ)− cn

f (c− (f − µ) τ)− 1
f − µ

⎤⎥⎥⎥⎦ = 0,
whose parameters are (c, τ , µ), which are analogous to (6).

Regarding the regression approach, the fact that the factor is traded implies that d = 1,

which simplifies the least squares constraint to

φ = κ (cn − β) , κ = 1/c,

when c 6= 0.12 The parameter κ is usually referred to as the zero-beta return since it corresponds

to the expectation of returns uncorrelated with f .
12The case c = 0 is such that f is equal to the minimum variance portfolio, whose return R∗∗ satisfies

Cov (R, R∗∗) = V ar (R∗∗) cn.

It is well known that this asset is the only element of the mean-variance frontier that cannot be used as a
benchmark in beta pricing.
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Therefore, the moments associated to the regression method will be

E

⎡⎣⎛⎝ 1

f

⎞⎠ ((R− κcn)− β (f − κ))

⎤⎦ = 0,
with parameters (β, κ).

We show in Appendix C that there is a direct counterpart to Proposition 1 for gross returns

too, so that all the approaches are numerically equivalent when implemented by single-step

GMM methods.

4.2 Non-traded Factors

If the factor is not traded then we cannot rely on the additional constraint of its own pricing.

The moments of the SDF method are simply (21) with parameters (a, b). Consequently, the J

test has n− 2 degrees of freedom under correct specification.

Once again, we can also reparametrise the SDF in terms of c instead of a and rely on the

moment conditions

E

⎡⎣ R (c− (f − µ) τ)− cn

f − µ

⎤⎦ = 0
with parameters (c, τ , µ), which are analogous to (16).

On the other hand, when c 6= 0 we can re-express the least squares constraint as

φ = κcn + βκ, κ = 1/c, κ = −d/c.

Therefore, the moments of the regression method are

E

⎡⎣⎛⎝ 1

f

⎞⎠ ((R− κcn)− β (f + κ))
⎤⎦ = 0,

with parameters (β,κ,κ).

We show in Appendix C that there is a direct counterpart to Proposition 2 for gross returns

too, so that all the approaches are numerically equivalent when implemented by single-step

GMM methods.

Finally, it is worth explaining the advantages of working with gross returns in the situation

discussed in section 3.3 in which the factor is uncorrelated with excess returns. For simplicity, let

us assume that the reference asset used in computing r is a portfolio whose gross return has zero

variance, so that Cov(R, f) = 0 if and only if Cov(r, f) = 0. As we mentioned in that section,

the moment condition (1) will hold with a = −bµ regardless of E (r), which corresponds to a
valid but economically unsatisfactory SDF. In contrast, (21) cannot be satisfied unless E (R) is

proportional to cn. If this “risk neutral” condition does not hold, then the J test based on R
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will reject with probability 1 in large samples, while the rejection probability of the J test based

on r will coincide with its size.

On the other hand, an unsatisfactory SDF that will satisfy (21) would be one in which the

factor is correlated with returns but cannot discriminate across assets, so that Cov(R, f) = kcn

for some scalar constant k 6= 0. Similar arguments apply to E(Rf).

5 Conclusions

There are two main approaches in empirical finance to evaluate linear factor pricing models.

The oldest method relies on regressions of excess returns on factors, while the other more recent

methods rely instead on the SDF representation of the model. There are two variants of the

SDF approach, one that subtracts the mean of the factors and another one which does not.

Given that these different procedures may lead to different empirical conclusions, it is perhaps

not surprising that there has been some controversy about which approach is most adequate.

In this context, our paper shows that if we use single-step methods such as CU-GMM instead

of standard two-step or iterated GMM procedures, then all these procedures provide the same

estimates of prices of risk, overidentifying restrictions tests, pricing errors, and Jensen’s alphas

irrespective of the validity of the model. Thus, we would argue that in effect the regression

and SDF approaches are different representations of a single method to empirically evaluate

asset-pricing models.

We prove our numerical equivalence results for both traded and non-traded factors irre-

spective of their number, and also for excess returns and gross returns. For the benefit of

practitioners, we also develop simple, intuitive consistent parameter estimators that can be

used to obtain good initial conditions for CU-GMM, and which will be efficient for elliptically

distributed returns and factors.

We illustrate our results by revisiting the empirical analysis of currency returns in Lustig

and Verdelhan (2007). Our findings clearly point out that the conflict among criteria for testing

asset pricing models that we have previously mentioned is not only a theoretical possibility, but

a hard reality. Nevertheless, such a conflict disappears when one uses single-step methods.

A different issue, though, is the interpretation of the restrictions that are effectively tested. In

this sense, our results confirm Burnside’s (2007) findings that the favourable empirical evidence

on the asset pricing models with non-traded factors that Lustig and Verdelhan (2007) considered

should be interpreted with some care because their consumption-based pricing factors seem to

be uncorrelated to currency returns. We also find that if we force the models with traded factors

to price those factors, and in particular the US market portfolio, then we reject the asset pricing
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restrictions.

Given that our results are not specific to CU-GMM, it might be worth comparing the prop-

erties in finite samples of different members of the generalised empirical likelihood family of

estimators. An alternative application of our numerical equivalence results would be the perfor-

mance evaluation of mutual and hedge funds. This literature can also be divided between papers

that rely on regression methods, such as Kosowski et al. (2006), and papers that rely on SDF

methods, such as Dahlquist and Soderlind (1999) and Farnsworth et al. (2002). Undoubtedly,

these topics constitute interesting avenues for further research.
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Appendices

A Single-step methods: Continuously Updated GMM

Let {xt}Tt=1 denote a strictly stationary and ergodic stochastic process, and define h(xt;θ)
as a vector of known functions of xt, where θ is a vector of unknown parameters. The true

parameter value, θ0, which we assume belongs to the interior of the compact set Θ ⊆ Rdim(θ),
is implicitly defined by the (population) moment conditions:

E[h(xt;θ
0)] = 0,

where the expectation is taken with respect to the stationary distribution of xt. In our context of

asset pricing models, xt = (r0t, f 0t)
0 represents data on excess returns and factors, and θ represents

the parameters of the specific model under evaluation.

GMM estimators minimise a specific norm h̄0T (θ)ΥT h̄T (θ) of the sample moments h̄T (θ) =

T−1
PT

t=1 h(xt;θ) defined by some weighting matrix ΥT . In overidentified cases such as ours,

Hansen (1982) showed that if the long-run covariance matrix of the moment conditions S(θ0) =

avar[
√
T h̄T (θ

0)] has full rank, then S−1(θ0) will be the “optimal” weighting matrix, in the sense

that the difference between the asymptotic covariance matrix of the resulting GMM estimator

and a GMM estimator based on any other norm of the same moment conditions is positive

semidefinite. Therefore, the optimal GMM estimator of θ will be

θ̂T = argmin
θ∈Θ

JT (θ),

where

JT (θ) = h̄
0
T (θ)S

−1 ¡θ0¢ h̄T (θ).
This optimal estimator is infeasible unless we know S(θ0), but under additional regularity

conditions, we can define an asymptotically equivalent but feasible two-step optimal GMM esti-

mator by replacing S(θ0) with an estimator ST (θ) evaluated at some initial consistent estimator

of θ0, θ̇T say. There is an extensive literature on heteroskedasticity and autocorrelation consis-

tent (HAC) estimators of long-run covariance matrices (see for example DeJong and Davidson

(2000) and the references therein). In practice, we can repeat this two-step procedure many

times to obtain iterated GMM estimators.

An alternative way to make the optimal GMM estimator feasible is by explicitly taking into

account in the criterion function the dependence of the long-run variance on the parameter

values, as in the single-step CU-GMM estimator of Hansen, Heaton and Yaron (1996), which is

defined as

θ̃T = argmin
θ∈Θ

J̃T (θ),
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where

J̃T (θ) = h̄
0
T (θ)S

−1
T (θ)h̄T (θ).

Peñaranda and Sentana (2010) discuss how to express the CU-GMM criterion in terms of

OLS output, which facilitates its optimisation. Although this estimator is often more difficult

to compute than two-step and iterated estimators, particularly in linear models, an important

advantage is that it is numerically invariant to normalisation, bijective reparametrisations and

parameter-dependent linear transformations of the moment conditions, which will again prove

useful in our context. In contrast, these properties do not necessarily hold for two-step or iterated

GMM.

Newey and Smith (2004) highlight other important advantages of CU- over two-step GMM by

going beyond the usual first-order asymptotic equivalence results. They also discuss alternative

generalised empirical likelihood (GEL) estimators, such as empirical likelihood or exponentially-

tilted methods. In fact, Antoine, Bonnal and Renault (2006) study the Euclidean empirical

likelihood estimator, which is numerically equivalent to CU-GMM as far as θ is concerned. Im-

portantly, it is straightforward to show that these GEL methods share the numerical invariance

properties of CU-GMM.

Our empirical application will consider two-step, iterated and CU-GMM. Under standard

regularity conditions (see Hansen (1982)),
√
T (θ̂T −θ0) and

√
T (θ̃T −θ0) will be asymptotically

distributed up to first-order as the same normal random vector with zero mean and varianceh
D0(θ0)S−1

¡
θ0
¢
D(θ0)

i−1
,

where D(θ0) denotes the probability limit of the Jacobian of h̄T (θ) evaluated at θ0. In our

empirical application, we replace D(θ0) by ∂h̄T (θ̂T )/∂θ
0 in the case of two-step and iterated

GMM estimators. In contrast, for the CU-GMM estimator θ̃T we compute a consistent estimator

of D(θ0) that takes into account that the weighting matrix S−1T (θ) is not fixed in the criterion

function. Specifically, we estimate the asymptotic variance of θ̃T ash
D0T (θ̃T )S−1T (θ̃T )DT (θ̃T )

i−1
,

where

DT (θ̃T ) =
∂h̄T (θ̃T )

∂θ0
− 1
2

h
h̄0T (θ̃T )S

−1
T (θ̃T )⊗ Idim(h)

i ∂vec³ST (θ̃T )´
∂θ0

.

Similarly, we estimate the asymptotic variance of
√
T h̄T (θ̃T ) as

ST (θ̃T )−DT (θ̃T )
h
D0T (θ̃T )S−1T (θ̃T )DT (θ̃T )

i−1D0T (θ̃T ),
while we replace DT (θ̃T ) by ∂h̄T (θ̂T )/∂θ

0 when we consider h̄T (θ̂T ). Finally, T · JT (θ̂T ) and
T · J̃T (θ̃T ) will be asymptotically distributed as the same chi-square with dim (h) − dim (θ)
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degrees of freedom if E[h (x;θ)] = 0 holds, so that we can use those statistics to compute

overidentifying restrictions (J) tests.

B Multifactor models

In what follows we represent a set of k factors by the vector f , and their mean vector, second

moment and covariance matrix by µ, Γ and Σ = Γ− µµ0, respectively. In this multifactor
context, the connection between the SDF and regression approaches is given by

E(r)a+E(rf 0)b = E(r)(a+ b0µ) + Cov(r, f)b = φ(a+ b0µ) +Bµ(a+ b0µ) +BΣb

= φ(a+ b0µ) +B (aµ+ Γb) = φc+Bd = 0, (B1)

where c is the mean of the SDF, d is the shadow price of f (or its actual price if it is a vector

of traded payoffs) and

B =
³
β1 · · · βk

´
is the n × k matrix of regression slopes. We can interpret condition (B1) as reflecting the

orthogonality between the SDF and the projection of r onto a constant and f because φc+Bd =

E [(a+ b0f) (φ+Bf)] = 0.

Traded factors

If the factors are excess returns themselves then condition (B1) is equivalent to φ = 0

because c = a + b0µ 6= 0 and the price of f must satisfy d = aµ+ Γb = 0. Therefore, we can

evaluate the corresponding asset pricing model by means of the SDF influence functions

hS (r, f ; a,b) =

⎡⎣ r (a+ f 0b)
f (a+ f 0b)

⎤⎦ , (B2)

or the regression influence functions

hR (r, f ;B) =

⎡⎣ r−Bf
vec ((r−Bf) f 0)

⎤⎦ . (B3)

The SDF functions require some normalisation in their implementation. A symmetrically

normalised version of the SDF approach would use the normalisation a2+b0b = 1 but asymmetric

normalisations are more common in empirical work. The uncentred SDF method imposes a = 1

and relies on the influence functions ⎡⎣ r (1− f 0λ)
f (1− f 0λ)

⎤⎦
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with parameters λ, while the influence functions of the centred SDF method impose a+µ0b = 1,

and become ⎡⎢⎢⎢⎣
r
¡
1− (f −µ)0 τ¢

f
¡
1− (f − µ)0 τ¢
f − µ

⎤⎥⎥⎥⎦
with parameters (µ, τ ). The link between both sets of parameters is

µ = Γλ = Στ .

In all these methods the degrees of freedom of the corresponding J tests are n regardless of

the number of factors k. The Jensen’s alphas and pricing errors of excess returns r are defined

by

α = E (r)−BE (f) ,
π = E (r)−E

¡
rf 0
¢
λ,

ψ = E(r)−E¡r (f − µ)0¢ τ .
Non-traded factors

If the factors are not traded payoffs then we need n > k so that there are some overidenti-

fying restrictions to test. As in the case of traded factors, the condition (B1) holds for a valid

asset pricing model. Such a constraint is equivalent to both φ and B belonging to the span of

some n× k matrix that we can denote as

P =
³
ϕ1 · · · ϕk

´
.

Assuming that B has full column rank, we can impose this implicit constraint on the intercepts

and slopes of the regression of r on a constant and f as follows:

φ = Pd = ϕ1d1 + ...+ϕkdk,

B =
³
β1 · · · βk

´
=
³
−cϕ1 · · · −cϕk

´
= −cP.

Therefore, we can evaluate the corresponding asset pricing model by means of the SDF

influence functions

gS (r, f ; a,b) =
£
r
¡
a+ f 0b

¢¤
, (B4)

or the regression influence functions

gR (r, f ;P, c,d) =

⎡⎣ r−P (d− cf)

vec ((r−P (d− cf)) f 0)

⎤⎦ . (B5)
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The SDF functions require some normalisation in their implementation. A symmetrically

normalised version of the SDF approach would use the normalisation a2 + b0b = 1, while the

regression would rely on the normalisation c2 + d0d = 1, but asymmetric normalisations are

more common in empirical work. The uncentred SDF method imposes a = 1 and relies on the

influence functions £
r
¡
1− f 0λ¢¤

with parameters λ. The influence functions of the centred SDF method impose a+µ0b = 1 and

they are ⎡⎣ r ¡1− (f −µ)0 τ¢
f − µ

⎤⎦
with parameters (µ, τ ). The usual regression imposes c = −1 and relies on the influence func-
tions ⎡⎣ r−B (f + κ)

vec ((r−B (f + κ)) f 0)

⎤⎦ ,
with parameters (κ,B). Alternatively we can define the vector δ of factor risk premia as

E (r) = Bδ, so that δ = κ + µ, and add the estimation of µ. This yields⎡⎢⎢⎢⎣
r−B (f − µ+ δ)

vec ((r−B (f − µ+ δ)) f 0)

f − µ

⎤⎥⎥⎥⎦ .
Assuming that B has full column rank, the link between these parameters is

δ =
£
Σ+ δµ0

¤
λ = Στ .

In any case, the degrees of freedom of the J test will be n − k. Regarding Jensen’s alphas

and pricing errors, they are defined by

α = E (r)−Bδ,
π = E (r)−E

¡
rf 0
¢
λ,

ψ = E(r)−E
¡
r (f − µ)0¢τ .

Evaluation with gross returns

The SDF pricing equation is

E
¡¡
a+ b0f

¢
R
¢
= cn,

where R is an n× 1 vector of gross returns and cn is an n× 1 vector of ones. Therefore, we find

E (R) a+E
¡
Rf 0

¢
b = E (R) c+ Cov (R, f)b = cn,
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where c = a+ b0µ is the SDF mean. We can also relate the pricing of R to a constraint on the

least squares intercepts φ and slopes B. Specifically,

E (R) c+Cov (R, f)b = φc+Bd = cn,

where d = µc+Σb is the shadow price of the factors, or their actual prices if they are traded.

When the factors are gross returns themselves, they also satisfy

E
¡¡
a+ b0f

¢
f
¢
= ck, (B6)

where ck is a k × 1 vector of ones, which implies that

d = µa+ Γb = µc+Σb = ck.

In that case, the least squares constraint simplifies to

φc+Bck = cn,

which can also be expressed as

φ = κ (cn −Bck) , κ = 1/c,

when c 6= 0.
The influence functions of the SDF and regression methods with traded factors are

hS (R, f ; a,b) =

⎡⎣ R (a+ f 0b)− cn

f (a+ f 0b)− ck

⎤⎦ ,
hR (R, f ;B,κ) =

⎡⎣ (R− κcn)−B (f − κck)

vec (((R− κcn)−B (f − κck)) f
0)

⎤⎦ ,
and the J tests have n− 1 degrees of freedom.

If the factors are not traded then we discard the moment condition (B6) that prices the

factors. At the same time, we can re-express the least squares constraint as

φ = κcn +Bκ, κ = 1/c, κ = −d/c.

when c 6= 0.
In this context, the influence functions of the SDF and regression approaches with non-traded

factors are

gS (R, f ; a,b) =
£
R
¡
a+ f 0b

¢− cn
¤
,

gR (R, f ;B,κ,κ) =

⎡⎣ (R− κcn)−B (f + κ)
vec (((R− κcn)−B (f + κ)) f 0)

⎤⎦ ,
and the J tests will have n− (k + 1) degrees of freedom.
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C Proofs

All proofs consider the multifactor context of Appendix B instead of the simplifying single

factor set up in the main text. In addition, the proofs of Proposition 1 and 2 do not rely on

any particular normalisation since they are irrelevant for single-step methods, even though the

proposition statements in the main text refer to the usual normalisations in empirical work.

Proposition 1:

Let us define an extended regression system that adds the estimation of (µ,Γ) to hR (r, f ;B)

defined in (B3). Specifically

hR (r, f ;B,µ,vech (Γ)) =

⎡⎢⎢⎢⎣
hR (r, f ;B)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

r−Bf
vec ((r−Bf) f 0)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ .

Importantly, by adding the exactly identified parameters (µ,vech (Γ)), hR (r, f ;B,µ,vech (Γ))

will be numerically equivalent to hR (r, f ;B) in terms of both the estimates of the original

parameters B and the J test.

If we choose (a,b) such that

aµ+ Γb = 0,

then we can carry out the following transformations of the system hR (r, f ;B,µ,vech (Γ))

h
aIn b0 ⊗ In aB (b0 ⊗B)D

i
⎡⎢⎢⎢⎢⎢⎢⎣

r−Bf
vec ((r−Bf) f 0)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ =
£
r
¡
a+ b0f

¢¤−B [aµ+ Γb] = r ¡a+ b0f¢ ,
where the matrix D denotes the appropriate duplication matrix, that is, the matrix such that

vec (·) = Dvech (·) (see Magnus and Neudecker (1990)). Similarly

h
0 0 aIk (b0 ⊗ Ik)D

i
⎛⎜⎜⎜⎜⎜⎜⎝

r−Bf
vec ((r−Bf) f 0)

f − µ
vech

¡
ff 0 − Γ¢

⎞⎟⎟⎟⎟⎟⎟⎠ =

£
f
¡
a+ f 0b

¢¤− [aµ+ Γb] = f ¡a+ f 0b¢ .
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As we mentioned before, single-step methods are numerically invariant to normalisation, bi-

jective reparametrisations and parameter-dependent linear transformations of the moment con-

ditions. Therefore, for a given choice of HAC weighting matrix CU-GMM renders the extended

regression system hR (r, f ;B,µ,vech (Γ)) and the system

hS (r, f ; a,b,B, vech (Γ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
r (a+ f 0b)

f (a+ f 0b)

vec ((r−Bf) f 0)
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦
numerically equivalent. In particular, the estimates of B and vech (Γ) are the same, the implied

µ = −Γb/a is the same, and the J test is the same.
Given the definition of hS (r, f ; a,b) in (B2), the last system can also be expressed as

hS (r, f ; a,b,B, vech (Γ)) =

⎡⎢⎢⎢⎣
hS (r, f ; a,b)

vec ((r−Bf) f 0)
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎦ ,
where the influence functions added to hS (r, f ; a,b) are exactly identified for (B, vech (Γ)). Thus

hS (r, f ; a,b,B, vech (Γ)) is numerically equivalent to relying on the first block hS (r, f ; a,b) in

terms of both the original parameters (a,b) and the J test. Therefore, single-step methods

render the systems hR (r, f ;B) and hS (r, f ; a,b) numerically equivalent. ¤

Lemma 1:

We assume that the vector y = (f 0, r0)0 follows an elliptical distribution, and denote the

corresponding coefficient of multivariate excess kurtosis as κ, which is equal to κ = 2/(υ − 4)
in the case of Student t with υ degrees of freedom, and κ = 0 under normality (see Fang, Kotz

and Ng (1990) and the references therein for further details).

Let us order the estimating functions in (4) for a multifactor model as

h (y;λ) =

⎡⎣ f (1− f 0λ)
r (1− f 0λ)

⎤⎦ =
⎡⎣ h1(f ;λ)

h2(r, f ;λ)

⎤⎦ .
Thus, we can define the relevant Jacobian as

D = E

∙
∂h (y;λ)

∂λ0

¸
=

⎛⎝ Γ

E
¡
rf 0
¢
⎞⎠ =

⎛⎝ D1

D2

⎞⎠ ,

and similarly we can decompose the relevant asymptotic covariance matrix as

S = avar

"
1√
T

TX
t=1

h (yt;λ)

#
=

⎛⎝ S11 S12

S21 S22

⎞⎠ .
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If we apply Lemma D1 in Peñaranda and Sentana (2010), then we find

S11 = ω1Γ+ ω2µµ
0,

ω1 = (1−H) (1 + κH) , ω2 = −2 (1−H)2 +
¡
3H2 − 5H+ 2¢κ,

where H = E (y)0E−1 (yy0)E (y), and similarly

S21 = ω1E
¡
rf 0
¢
+ ω2E (r)µ

0.

Thus, we only need to check that condition (C1) in Lemma C1 in Peñaranda and Sentana

(2010) holds, which in our context becomes

D2D
−1
1 S11 = S21.

This restriction will be satisfied because

D2D
−1
1 S11 = E

¡
rf 0
¢
Γ−1

£
ω1Γ+ ω2µµ

0¤ = ω1E
¡
rf 0
¢
+ ω2E

¡
rf 0
¢
Γ−1µµ0

and, since E (r) = E
¡
rf 0
¢
Γ−1µ under the null of tangency,

ω1E
¡
rf 0
¢
+ ω2E

¡
rf 0
¢
Γ−1µµ0 = ω1E

¡
rf 0
¢
+ ω2E (r)µ

0 = S21.

Therefore, the linear combinations of the moment conditions in E (h (y;λ)) = 0 that provide

the most efficient estimators of λ will be given by

E(ff 0λ− f) = 0.

¤

Proposition 2:

Let us define a extended regression system that adds the estimation of (µ,Γ) to the influence

functions gR (r, f ;P, c,d) defined in (B5),

gR (r, f ;P, c,d,µ,vech (Γ)) =

⎡⎢⎢⎢⎣
gR (r, f ;P, c,d)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

r−P (d− cf)

vec ((r−P (d− cf)) f 0)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ .

We are adding exactly identified parameters (µ,vech (Γ)), and hence gR (r, f ;P, c,d,µ,vech (Γ))

is numerically equivalent to the influence functions in gR (r, f ;P, c,d) in terms of both the

original parameter estimates and the J test.
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If we choose (a,b) such that⎛⎝ a

b

⎞⎠ =

⎛⎝ 1 µ0

µ Γ

⎞⎠−1⎛⎝ c

d

⎞⎠ =

⎛⎝ c
¡
1 + µ0Σ−1µ

¢− µ0Σ−1d
Σ−1 (d− cµ)

⎞⎠
then we can compute the following n× 1 transformation of gR (r, f ;P, c,d,µ,vech (Γ)) :

h
aIn b0 ⊗ In P

¡
acIk + db

0¢ −c (b0 ⊗P)D i
⎡⎢⎢⎢⎢⎢⎢⎣

r−P (d− cf)

vec ((r−P (d− cf)) f 0)

f −µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ =
£
r
¡
a+ f 0b

¢¤−P £d ¡a+ b0µ¢− c (aµ+ Γb)
¤
= r

¡
a+ f 0b

¢
,

where the matrix D denotes the corresponding duplication matrix.

Accordingly, we can also reparametrise (c,d) in terms of the other parameters in the second

block of influence functions and then construct the system

gS (r, f ; a,b,P,µ,vech (Γ)) =

⎡⎢⎢⎢⎢⎢⎢⎣
r (a+ f 0b)

vec ((r−P (d− cf)) f 0)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ⎛⎝ c

d

⎞⎠ =

⎛⎝ 1 µ0

µ Γ

⎞⎠⎛⎝ a

b

⎞⎠ .

Under CU-GMM, and a specific choice of HAC estimator, gS (r, f ; a,b,P,µ,vech (Γ)) pro-

vides the same estimates and J test as gR (r, f ;P, c,d,µ,vech (Γ)) because single-step proce-

dures are numerically invariant to normalisation, bijective reparametrisations and parameter-

dependent linear transformations of the moment conditions. As a result, the estimator of (c,d)

obtained from gR (r, f ;P, c,d,µ,vech (Γ)) and (a,b) from gS (r, f ; a,b,P,µ,vech (Γ)) coincide

with their implied counterparts in the other system.

This last system can be related to the influence function gS (r, f ; a,b) defined in (B4), where

the influence functions that are added are exactly identified for (P,µ,vech (Γ)) given (a,b).

Thus gS (r, f ; a,b,P,µ,vech (Γ)) is numerically equivalent to relying on r (a+ b0f) in terms of

both the estimates of the common parameters (a,b) and the J test. Therefore, single-step

methods render the systems gR (r, f ;P, c,d) and gS (r, f ; a,b) numerically equivalent. ¤
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Lemma 2:

We extend the results in Appendix D in Peñaranda and Sentana (2010) for elliptical dis-

tributions to the case of nontraded factors. The optimal moments are given by the linear

combinations D0S−1h̄T (θ). The uncentred SDF method has the following long-run variance

under the null

avar

"
1√
T

TX
t=1

gU (rt, ft;λ)

#
=
(1 + κ)H1 + 1

(H2 + 1)
2 E

¡
rr0
¢− κH1 + 2 (1− κ)

(H2 + 1)
2 E (r)E (r)0 ,

where H1 = δ0Σ−1δ and H2 = δ0Σ−1µ. This asymptotic variance represents a multifactor and

elliptical extension of the Gaussian computations in Jagannathan and Wang (2002).

Given that D = − E
¡
rf 0
¢
for the uncentred SDF method, the optimal moments are then

proportional to the linear transformation

E
¡
fr0
¢ £
E
¡
rr0
¢− ωE (r)E (r)0

¤−1
, ω =

κH1 + 2 (1− κ)

(1 + κ)H1 + 1
.

Computing the inverse, we obtain

E
¡
fr0
¢ ∙

E−1
¡
rr0
¢
+

ω

1− ωE (r)0E−1 (rr0)E (r)
E−1

¡
rr0
¢
E (r)E (r)0E−1

¡
rr0
¢¸

and imposing the null hypothesis E (r) = E
¡
rf 0
¢
λ, we get

E
¡
fr0
¢ "

E−1
¡
rr0
¢
+

ω

1− ωλ0E
¡
fr0
¢
E−1 (rr0)E

¡
rf 0
¢
λ
E−1

¡
rr0
¢
E
¡
rf 0
¢
λλ0E

¡
fr0
¢
E−1

¡
rr0
¢#

=

"
Ik +

ω

1− ωλ0E
¡
fr0
¢
E−1 (rr0)E

¡
rf 0
¢
λ
E
¡
fr0
¢
E−1

¡
rr0
¢
E
¡
rf 0
¢
λλ0

#
E
¡
fr0
¢
E−1

¡
rr0
¢
.

Since the k× k matrix in brackets has full rank, we can conclude that the optimal estimator

of λ solves the sample moments

1

T

TX
t=1

£
r+t
¡
1− f 0tλT

¢¤
= 0,

with

r+t = E
¡
fr0
¢
E−1

¡
rr0
¢
rt.

Finally, note that to implement this optimal estimator in practice, we need a consistent estima-

tion of E
¡
fr0
¢
and E (rr0), which we can easily obtain from their sample counterparts. ¤

Counterpart to Proposition 1 with gross returns:

We can obtain the SDF influence functions as a transformation and reparametrisation of

the regression influence functions augmented with exactly identified moment conditions. In
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particular, if we choose (a,b) such that

a+ b0µ = 1/κ,

µa+ Γb = ck,

when κ 6= 0, then h
aIn b0 ⊗ In aB+ κ (cn −Bck)b0 (b0 ⊗B)D

i

×

⎡⎢⎢⎢⎢⎢⎢⎣
(R− κcn)−B (f − κck)

vec (((R− κcn)−B (f − κck)) f
0)

f −µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦
=
£
R
¡
a+ b0f

¢¤− £κ (cn −Bck) ¡a+ b0µ¢+B (µa+ Γb)¤
=
£
R
¡
a+ b0f

¢¤− [(cn −Bck) +Bck] = R ¡a+ b0f¢− cn,

where the matrix D denotes the appropriate duplication matrix, and

h
0 0 aIk (b0 ⊗ Ik)D

i
⎡⎢⎢⎢⎢⎢⎢⎣

(R− κcn)−B (f − κck)

vec (((R− κcn)−B (f − κck)) f
0)

f − µ
vech

¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦ =
£
f
¡
a+ f 0b

¢¤− [aµ+ Γb] = f ¡a+ f 0b¢− ck.

Given these relationships, we can apply similar arguments to those in the proof of Proposition

1. ¤

Counterpart to Proposition 2 with gross returns:

We can obtain the SDF influence functions as a transformation and reparametrisation of

the regression influence functions augmented with exactly identified moment conditions. In

particular, if we choose (a,b) such that

a+ b0µ = 1/κ,

µa+ Γb = −κ/κ,
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when κ 6= 0, then h
aIn b0 ⊗ In aB+ (κcn +Bκ)b0 (b0 ⊗B)D

i

×

⎡⎢⎢⎢⎢⎢⎢⎣
(R− κcn)−B (f + κ)

vec (((R− κcn)−B (f + κ)) f 0)
f −µ

vech
¡
ff 0 − Γ¢

⎤⎥⎥⎥⎥⎥⎥⎦
=
£
R
¡
a+ b0f

¢¤− £(κcn +Bκ) ¡a+ b0µ¢+B (µa+ Γb)¤
=
£
R
¡
a+ b0f

¢¤− [cn +B (κ/κ) +B (−κ/κ)] = R ¡a+ b0f¢− cn,

where the matrix D denotes the appropriate duplication matrix. Given this relationship, we can
apply similar arguments to those in the proof of Proposition 2. ¤
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Table 1: Descriptive statistics in annual % terms, 1953-2002

1 2 3 4 5 6 7 8
Mean -2.336 -0.873 -0.747 0.329 -0.151 -0.213 2.988 2.031
SD 6.346 6.628 6.614 8.415 7.443 8.121 8.090 12.417
Sharpe ratio -0.368 -0.132 -0.113 0.039 -0.020 -0.026 0.369 0.164

Real excess returns on the 8 currency portfolios in Lustig and Verdelhan (2007) for a US investor. Portfolio

1 contains currencies with the lowest interest rates, while portfolio 8 contains currencies with the highest

interest rates.
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Table 2: Empirical evaluation of the CAPM

A. Risk prices and J-tests
Uncentred SDF (λ) Centred SDF (τ) Regression (µ)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
MK 0.038 0.043 0.026 0.122 14.627 14.974

(0.004) (0.005) (0.009) (0.070) (2.071) (1.694)

J test 28.068 21.375 46.046 21.375 28.202 21.375
(0.000) (0.006) (0.000) (0.006) (0.000) (0.006)

B. Pricing errors
Uncentred SDF (π) Centred SDF (ψ) Regression (α)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
1 -1.084 -0.929 -1.908** -2.622 -1.817** -1.369*
2 -0.342 -0.277 -0.670 -0.781 -0.511 -0.421
3 -0.609 -0.592 -0.789 -1.671 -0.882 -0.784
4 1.384 1.514 1.108 4.271 0.548 0.461
5 -0.270 -0.284 -0.260 -0.802 -0.449 -0.310
6 -0.259 -0.265 -0.283 -0.748 -0.335 -0.368
7 2.664** 2.624* 3.311** 7.404* 2.479** 2.156***
8 0.819 0.670 1.575 1.889 0.815 0.928
MK -7.435*** -9.216*** -1.581** -26.002*** -7.652*** -7.999***

Panel A displays estimates of “prices of risk” (λ, τ or µ) with standard errors in parenthesis, and the J

test with p-values in parenthesis. We implement each method by both two-step and CU-GMM. Panel B

displays the corresponding estimates of “pricing errors” (π, ψ or α) for each of the 8 currency portfolios

and the pricing the factor, with their significance level (*: 10%, **: 5%, ***: 1%). The α of the traded

factor is computed as the difference between its sample mean and its GMM estimate.
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Table 3: Empirical evaluation of the Fama-French model

A. Risk prices and J-tests
Uncentred SDF (λ) Centred SDF (τ ) Regression (µ)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
MK 0.027 0.076 0.031 0.380 12.449 9.105

(0.005) (0.018) (0.009) (0.261) (2.261) (2.577)
SMB 0.010 -0.014 0.005 -0.071 4.732 3.394

(0.008) (0.012) (0.010) (0.071) (1.794) (1.760)
HML 0.034 0.041 0.033 0.205 9.614 3.926

(0.007) (0.014) (0.011) (0.144) (1.772) (1.982)

J test 27.917 21.528 60.635 21.528 27.335 21.528
(0.000) (0.006) (0.000) (0.006) (0.001) (0.006)

B. Pricing errors
Uncentred SDF (π) Centred SDF (ψ) Regression (α)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
1 -0.296 0.852 -1.200 4.278 -1.140 0.606
2 -0.645 0.160 -0.892 0.805 -0.352 -0.116
3 0.544 0.571 0.186 2.870 -0.169 0.804
4 1.796* 2.499* 1.869 12.551* 1.157 1.520*
5 1.125 0.536 0.905 2.691 0.154 0.764
6 1.308 0.974 1.092 4.893 0.301 0.968
7 3.034*** 2.621 4.121*** 13.163 2.919*** 1.238
8 1.646 -0.229 2.211 -1.151 1.812 2.032*
MK -4.278*** -20.484*** -2.601*** -102.897*** -5.474*** -2.130
SMB -1.856*** -1.116 -0.282 -5.606 -2.300*** -0.962
HML -2.053*** -3.487* 0.240 -17.515* -3.940*** 1.748***

Panel A displays estimates of “prices of risk” (λ, τ or µ) with standard errors in parenthesis, and the J

test with p-values in parenthesis. We implement each method by both two-step and CU-GMM. Panel B

displays the corresponding estimates of “pricing errors” (π, ψ or α) for each of the 8 currency portfolios

and the three pricing factors, with their significance level (*: 10%, **: 5%, ***: 1%). The α of a traded

factor is computed as the difference between its sample mean and its GMM estimate.
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Table 4: Empirical evaluation of the (linearised) CCAPM

A. Risk prices and J-tests
Uncentred SDF (λ) Centred SDF (τ) Regression (δ)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
Non-dur. 0.488 0.495 1.201 4.388 5.308 5.566

(0.043) (0.042) (0.181) (5.727) (1.483) (2.056)

J test 5.711 5.663 91.624 5.663 5.627 5.663
(0.574) (0.580) (0.000) (0.580) (0.584) (0.580)

B. Pricing errors
Uncentred SDF (π) Centred SDF (ψ) Regression (α)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
1 -0.667 -0.645 -1.191* -5.715 -0.337 -0.368
2 -0.992* -0.994* -2.272*** -8.809* -0.885 -0.900
3 -0.450 -0.446 -0.963 -3.952 -0.909 -0.935
4 -0.108 -0.114 -0.330 -1.012 -0.548 -0.567
5 -0.689 -0.696 -1.664** -6.166 -0.389 -0.440
6 -0.319 -0.320 -0.743 -2.838 -0.734 -0.732
7 -0.416 -0.462 -1.598** -4.091 -0.689* -0.743*
8 0.399 0.377 0.590 3.340 -1.230 -1.170

Panel A displays estimates of “prices of risk” (λ, τ or δ) with standard errors in parenthesis, and the J

test with p-values in parenthesis. We implement each method by both two-step and CU-GMM. Panel B

displays the corresponding estimates of “pricing errors” (π, ψ or α) for each of the 8 currency portfolios,

with their significance level (*: 10%, **: 5%, ***: 1%).
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Table 5: Empirical evaluation of the (linearised) DCAPM

A. Risk prices and J-tests
Uncentred SDF (λ) Centred SDF (τ ) Regression (δ)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
Non-dur. -0.081 -0.028 -1.134 -0.285 4.146 3.101

(0.272) (0.091) (0.345) (0.977) (2.559) (2.256)
Durables 0.275 0.266 0.894 2.724 9.266 8.775

(0.131) (0.051) (0.230) (2.733) (5.464) (5.633)

J test 2.841 4.458 16.986 4.458 5.220 4.458
(0.829) (0.615) (0.009) (0.615) (0.516) (0.615)

B. Pricing errors
Uncentred SDF (π) Centred SDF (ψ) Regression (α)

2S-GMM CU-GMM 2S-GMM CU-GMM 2S-GMM CU-GMM
1 -0.730 -0.607 -1.742*** -6.221 -0.034 -0.095
2 -0.608 -0.628* -0.417 -6.438* 0.024 -0.010
3 -0.837 -0.803 -2.098** -8.224 0.370 0.134
4 -0.925 -0.931 -2.740*** -9.538 0.435 -0.009
5 -0.553 -0.597 -0.610 -6.112 0.216 0.174
6 -0.796 -0.788 -2.072*** -8.076 0.672 0.252
7 -0.696 -0.934* -0.816*** -9.567* 0.506 0.039
8 -0.348 -0.443 -1.363 -4.542 0.034 -0.189

Panel A displays estimates of “prices of risk” (λ, τ or δ) with standard errors in parenthesis, and the J

test with p-values in parenthesis. We implement each method by both two-step and CU-GMM. Panel B

displays the corresponding estimates of “pricing errors” (π, ψ or α) for each of the 8 currency portfolios,

with their significance level (*: 10%, **: 5%, ***: 1%).
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Table 6: Non-traded factor loadings and risk premia

Zero uncentred Zero centred Zero second moments
second moments second moments and risk premia

Non-dur. 34.851 8.390 53.039
(0.000) (0.396) (0.000)

Durables 31.363 6.714 55.934
(0.000) (0.568) (0.000)

Joint 49.373 14.124 77.742
(0.000) (0.590) (0.000)

Each column provides the single-step GMM overidentification tests of the following null hypotheses: first

column, E(rf) = 0; second column, E [(r−ϕ) f ] = 0, where ϕ is a parameter to estimate; third column,
any of the two previous hypothesis jointly with E(r) = 0. The tests are computed for each consumption

factor and also for both of them jointly.

43


