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Abstract

We show that the Heston volatility or equivalently the Cox-Ingersoll-
Ross process satisfying

dvt = κ (θ − vt) dt + ν
√

vtdWt

is Malliavin differentiable and give an explicit expression for the deriv-
ative. This result assures the applicability of Malliavin calculus in
the framework of the Heston stochastic volatility model and the Cox-
Ingersoll-Ross model for interest rates.
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1 Introduction

In recent years, Malliavin calculus has appeared as a major tool in both
theoretical and computational mathematical finance. This fact is document
by the large amount of published work in this area, see [1], [3], [11], [16], [19]
for contributions on the theoretical aspects and [2],[4], [5],[6], [8],[10], [12],
[13], [14] for computational aspects. In all these publications, the assumption
on the possibly multidimensional diffusion process (Xt) which determines the
factors of the model, are very strict. In fact, the classical results assume that
the coefficient functions β and σ in

dXt = β(Xt, t)dt + σ(Xt, t)dWt

have bounded derivatives of all orders and have linear growth at infinity. In
some publications the assumption are even more strict. These assumptions
work fine with the standard Black-Scholes model. Problems occur however
when one uses more advanced models, like the Heston stochastic volatility
model. In this model the stock price is given by the equation

dSt = St(bdt +
√

vtdBt) (1)

where (Bt) denotes a Brownian motion but in contrast to the standard Black-
Scholes model the volatility vt is itself a diffusion process, satisfying the
stochastic differential equation

dvt = κ (θ − vt) dt + ν
√

vtdWt (2)

where Wt denotes a possibly correlated second Brownian motion. As one
can see on first glance, the coefficient functions of this model do not satisfy
the standard assumptions. The square root function does not have bounded
derivatives. However the Heston stochastic volatility model is one of the
most popular among the stochastic volatility models, both from the theo-
retical and empirical point of view. Malliavin calculus in the framework of
the Heston stochastic volatility model has been considered in [10], but in this
article a direct application of the Malliavin derivative operator on the Heston
volatility has been avoided. Among the experts there was widely speculation
about whether the Heston volatility is Malliavin differentiable. In this article
we give an answer to this longstanding and significant question. We give a
direct proof of the Malliavin differentiability of the Heston volatility and its
square root and give explicit expressions for their derivatives. This is a key
result, as it justifies the applicability of Malliavin calculus in the framework
of the Heston stochastic volatility model and the Cox-Ingersoll-Ross interest
rate model. Our result turns out to be a powerful tool, many application can
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be found in the literature mentioned in the beginning of this introduction.
Given our result, these application can now be directly adapted to the Hes-
ton stochastic volatility model. This is the reason why we omit any explicit
application in this article. The same process as in equation (2) but classically
denoted with rt rather than vt has been used in interest rate theory in the
framework of the famous Cox-Ingersoll-Ross model [7]. Our results therefore
directly apply to this model too. However, here we leave this by side. In
our proof we use a result by Detemple et al. [9] which allows to represent
the Malliavin derivative of a diffusion in an elegant and computational ad-
vantageous way. Though Detemple’s result also uses strict assumptions such
as boundedness of all derivatives of the coefficient functions, we are able to
generalize Detemple’s formula for the case of the Heston volatility.

2 The Heston volatility model and an ap-

proximating sequence

As mentioned in the introduction, the Heston stochastic volatility model
consists of a bond, which we do not specify in this article, a stock (St)
and the volatility process (vt) with dynamics specified in (1) and (2) in the
introduction. It is assumed that κ, θ and ν are positive constants. This
model was first used by Heston in [15]. Heston computed explicit formulas
for the value of European calls in this model. In the following we consider
one fixed probability space (Ω,F , P) on which there is defined a Brownian
motion (Wt) and which is filtered by the augmented and completed Brownian
filtration. We also fix an interval [0, T ]. A standard assumption, when using
the Heston model is

2κθ ≥ ν2. (3)

This is often called the Novikov condition. Given that v0 > 0 this condition
guarantees that the volatility process is always positive, i.e.

P ({vt > 0 ∀ t > 0}) = 1. (4)

We assume that v0 > 0 and that the Novikov condition holds. It is then
possible to consider the square root process σt :=

√
vt. It follows from the

Itô formula that this process satisfies

dσt =

(
κθ

2
− ν2

8

)
1

σt

− κ

2
σt +

ν

2
dWt. (5)
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We note that the Novikov condition implies in particular that the factor(
κθ
2
− ν2

8

)
appearing in the drift term of σt is positive. This will play a role

later. We will need the following Lemma to compare processes and to apply
the dominated convergence theorem in our approximation of the process σt.
The Lemma is a special case of the Comparison Lemma as it can be found
in [17], Chapter 5, Proposition 2.18.

Lemma 2.1. Consider the two Itô processes

X1
t = X0 +

∫ t

0

β1(X
1
s )ds + kWt, (6)

X2
t = X0 +

∫ t

0

β2(X
2
s )ds + kWt, (7)

where β1, β2 : R → R are two measurable functions and k is a positive con-
stant. Assume that (6) and (7) have a strong solution and suppose that β1 ≥
β2and at least one of them satisfies a Lipschitz condition. Then X1

t ≥ X2
t

for all t, a.s.

In order to show in section 4, that σt is Malliavin differentiable we now
define an approximating sequence. This sequence shows to be useful in other
aspects of the Heston model as well. Let ε > 0 and Φε (x) be a continuously
differentiable function satisfying

Φε (x) =


1 if x ≥ 2ε

0 if x < ε

as well as Φε (x) ≤ 1 for all x ∈ R. We note that

Φ′
ε (x) =


0 if x ≥ 2ε

0 if x < ε

Furthermore we define the function

Λε(x) = Φε(x)
1

x

with Λε(0) = 0. The function Λε(x) is bounded and continuously differen-
tiable with

Λ′
ε (x) = Φ′

ε (x)
1

x
− Φε (x)

1

x2
=


− 1

x2 if x ≥ 2ε

0 if x < ε
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Let us now define our approximations σε
t as the solutions of the stochastic

differential equations

dσε
t =

(
κθ

2
− ν2

8

)
Λε (σε

t )−
κ

2
σε

t +
ν

2
dWt, (8)

with σε
0 = σ0 for all ε > 0.

Proposition 2.1. For each t ∈ [0, T ] the sequence σε
t converges to σt in

L2(Ω).

Proof. We use the dominated convergence theorem in order to obtain this
result. Let us first prove that σε

t converges to σt point wise. This follows
from a standard localization argument. For each ε > 0 define a stopping
time τε via

τε(ω) := inf{t|σt(ω) ≤ ε}. (9)

Letting ε go to zero, the sequence of stopping times (τε) defines an increasing
sequence of stopping times, and it follows from equation (4) that limε→0 τε =
∞ a.s. Denoting with στε the process obtained from σ by stopping at τε,
then it follows from the choice of the function Λε(x) and equations (5) and
(8), that

στ2ε
t = σε

t ∀ t ≤ τ ε.

Now, for fixed t ∈ [0, T ] letting ε go to zero one obtains that

lim
ε→0

σε
t = σt a.s.

Let us now prove that for each t ∈ [0, T ] σε
t converges to σt in L2 (Ω). For

this let us consider the Ornstein-Uhlenbeck process ut satisfying u0 = σ0 and

dut = −κ

2
ut +

ν

2
dWt.

The Novikov condition as well as 0 ≤ Φε(x) ≤ 1 for all choices of ε and x
imply that

−κ

2
≤ −κ

2
+

(
κθ

2
− ν2

8

)
Λε (x) ≤ −κ

2
+

(
κθ

2
− ν2

8

)
1

x
.

It therefore follows from Lemma 2.1 that

ut ≤ σε
t ≤ σt
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and hence |σε
t | ≤ |ut|+ |σt|. The dominated convergence theorem implies the

desired convergence.

Corollary 2.1. For each t ∈ [0, T ] the sequence vε
t = (σε

t )
2 converges to the

Heston volatility vt in L1(Ω).

3 A short review on Malliavin calculus

Let us consider the cylindrical functional F : Ω → R given by

F = f (Wt1 , ...,Wtl)

where f ∈ C∞
b

(
Rl

)
is a smooth function with bounded derivatives of all

orders. Given h ∈ L2([0, T ], R) we have that
∫ ·

0
h(s)ds ∈ C0([0, T ], R) where

the dot indicates that the upper bound of the integral is taken as a variable.
The directional derivative of F in direction

∫ ·
0
h(s)ds at ω is given by

DhF (ω) :=
d

dε

∣∣∣∣
ε=0

f

(
Wt1(ω) +

∫ t1

0

h(s)ds, ...,Wtl(ω) +

∫ tl

0

h(s)ds

)
=

m∑
i=1

∂

∂xi

f (Wt1(ω), ...,Wtl(ω)) ·
∫ ti

0

h(s)ds.

Now for fixed ω consider the linear bounded functional on L2([0, T ]) given
by

h 7→ DhF (ω).

By the Riesz-representation theorem there is an element DF (ω) in
L2([0, T ], R) such that

DhF (ω) =

∫ T

0

DF (ω)(s)h(s)ds , ∀h ∈ L2([0, T ]).

In the following we denote DF (ω)(s) with DsF (ω). Let us now consider ω
as a variable. The assumption that f has bounded derivatives of all orders
ensures that for all p ≥ 1 we have DF ∈ Lp (Ω, L2([0, T ])) when considered
as an L2([0, T ]) valued functional in ω

Assume now that the functional F is not necessarily cylindrical but there
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exists a sequence of cylindrical functionals Fi such that (Fi) converges to F
in Lp(Ω) and (DFi) converges to G in Lp(Ω, L2([0, T ])). Then we define

DF := G = lim
i→∞

DFi.

The Cameron-Martin Theorem shows that this is indeed well defined and
that the operator

D : Lp(Ω) → Lp(Ω, L2([0, T ]))

defined on the cylindrical functionals is closable. The closure is called the
Malliavin derivative operator and is denoted by D. The domain of D is the
closure of the cylindrical functionals under the norm

‖F‖1,p := ‖F‖Lp(Ω) + ‖DF‖Lp(Ω,(L2[0,T ])).

It is denoted with D1,p. In this article we concentrate on the case p = 2. We
will later make use of the following chain-rule ( see [19], Lemma 2.1 ) :

Proposition 3.1. Let φ : R → R be a continuously differentiable function
and F ∈ D1,2. Then φ(F ) ∈ D1,2 if and only if φ(F ) ∈ L2(Ω) and φ′(F )DF ∈
L2(Ω× [0, T ]) and in this case

Dtφ(F ) = φ′(F ) ·DtF.

The following formula for the Malliavin derivative of a diffusion is due to
Detemple et al. [9]

Proposition 3.2. Consider a diffusion process (Xt) satisfying the SDE

dXt = µ(Xt) + σ(Xt)dWt

and assume that the coefficient functions satisfy µ ∈ C1(R) and σ ∈ C2(R)
as well as a linear growth condition and Lipschitz condition. Furthermore
assume that σ is positive and bounded away from zero. Then Xt ∈ D1,2 and
for θ ≤ t one has

DθXt = σ(Xt) exp

(∫ t

θ

µ′(Xs)−
µ(Xs)σ

′(Xs)

σ(Xs)
− 1

2
σ′′(Xs)σ(Xs)ds

)
.
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4 The Malliavin derivative of the Heston volatil-

ity

In this section we will show that both the Heston volatility vt as well as it’s
square root σt belong to D1,2. To do this we use our approximating sequence
σε

t from section 2. We have the following lemma :

Lemma 4.1. σε
t ∈ D1,2 and Dθσ

ε
t = ν

2
exp

{∫ t

θ

[
−κ

2
+

(
κm
2
− ν2

8

)
Λ′

ε (σε
s)

]
ds

}
Proof. This follows directly from Proposition 3.2.

We are now ready to proof our main result.

Theorem 4.1. We have σ ∈ D1,2 and Dθσt = ν
2
exp

{∫ t

θ

[
−κ

2
−

(
κm
2
− ν2

8

)
1
σ2

t

]
ds

}
.

Proof. We know from Proposition 2.1 that for each t ∈ [0, T ] the sequence
σε

t converges to σt in L2(Ω). Since this convergence is also point wise, we
conclude by using the properties of the function Λε(x) that

Dθσ
ε
t =

ν

2
exp

{∫ t

θ

[
−κ

2
+

(
κθ

2
− ν2

8

)
Λ′

ε (σε
t )

]
ds

}
converges point wise to

G :=
ν

2
exp

{∫ t

θ

[
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ2
t

]
ds

}
.

It follows from the Novikov condition, that the exponent in Dθσ
ε
t is negative

for all choices of ε and therefore that |Dθσ
ε
t | ≤ ν

2
for all ε. It then follows

from the bounded convergence theorem that Dθσ
ε
t converges to G in L2(Ω).

Finally it follows from Lemma 1.2.3 in [18] that σt ∈ D1,2 and Dθσt = G.

Corollary 4.1. The Malliavin derivative of σt is bounded and satisfies |Dθσ
ε
t | ≤

ν
2
. Furthermore σt ∈ L1,2.

Proof. This result follows from the proof above. It directly implies that
σt ∈ L1,2 ( see Definition 1.3.2 ) in [18].

Corollary 4.2. The Heston volatility process vt is in L1,2 and

Dθvt = ν exp

{∫ t

θ

[
−κ

2
−

(
κθ

2
− ν2

8

)
1

vt

]
ds

}
√

vt
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Proof. For fixed t ∈ [0, T ] we have vt ∈ L2(Ω) and

ν exp

{∫ t

θ

[
−κ

2
−

(
κθ

2
− ν2

8

)
1

vt

]
ds

}
√

vt ∈ L2 (Ω) .

It then follows from Lemma 2.1 in [19] that vt ∈ D1,2. As in Corollary 4.1
one concludes from the explicit expression, that (vt) ∈ L1,2.

Remark 4.1. Note that due to the Novikov condition, the expressions
∫ t

θ
1
vt

ds

(and then
∫ t

θ

[
−κ

2
−

(
κm
2
− c2

8

)
1
vt

]
ds) are well defined a.s.

5 Conclusion

We have proved that the Heston stochastic volatility or alternatively the Cox-
Ingersoll-Ross process and their square roots are Malliavin differentiable and
have given compact formulas for their derivatives. This is a key result in
so far as that it opens the door for applications of Malliavin calculus in the
framework of the Heston stochastic volatility model. The results underlines
the role of the Heston stochastic volatility model, both under a theoretical
and computational aspects.
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