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1 Introduction 

Simple correspondence analysis (CA) is primarily applicable to a two-way contingency 

table, leading to a map that visualizes the association between two categorical variables.   

Multiple correspondence analysis (MCA) tackles the more general problem of associations 

among a set of more than two categorical variables.  We shall see that the generalization to 

more than two variables is neither obvious nor well-defined.  In other areas of multivariate 

analysis, such as regression and loglinear modelling, the situation is less complicated: for 

example, the transition from the regression of a response variable on a single predictor 

variable to the case of several predictors is quite straightforward.   The main problem we 

face here is that the notion of association between two categorical variables is already a 

complex concept and there are several ways to generalize this concept to more than two 

variables.    

Of the many different ways that exist to define MCA, we shall consider two 

approaches: first, the definition which is perhaps the easiest to understand, namely that of 

correlation between sets of variables, known as canonical correlation, and second, the 

geometric approach, which is directly linked to data visualization, and which has many 

similarities to Pearson-style principal component analysis.   In the explanation of each 

approach, we will consider the case of two variables and then describe possible 

generalizations to more than two variable s.    

As an illustration of the theory, we shall use a data set from the International Social 

Survey Program on environment (ISSP, 1993), looking specifically at questions on attitudes 

towards science.  The survey questions that we consider will be the following: 

 How much do you agree or disagree with each of these statements? 

A. We believe too often in science, and not enough in feelings and faith. 

B. Over all, modern science does more harm than good. 

C. Any change humans cause in nature – no matter how scientific – is likely to 
make things worse. 



D. Modern science will solve our environmental problems with little change to our 
way of life.     

Each question has five possible response categories: 1. agree strongly, 2. agree , 3. neither 

agree nor disagree, 4. disagree, 5. disagree strongly.   To avoid the issue of cross-cultural 

differences we use data for the West German sample only (the ISSP surveys still 

distinguish between former West and East Germany).  We shall also show how to relate the 

MCA results to the external demographic variables sex, age and education, also coded as 

categorical variables as follows: 

 Sex:  male, female 

Age:  six groups, 16-24, 25-34, 35-44, 45-54, 55-64, 65 and older 

Education: six groups, primary incomplete, primary completed, secondary 

incomplete, secondary completed, tertiary incomplete, tertiary completed 

A listwise deletion of respondents with missing data has been performed, since we do not 

want to deal with the further complicating issue of missing data here (see Greenacre and 

Pardo, 2005).  This reduces the original West German sample by about 14% to leave n = 

871 respondents with complete data, which forms the data set used in this study.  

  

2 Canonical correlation analysis 

2.1  Two variables  

We start by considering just the first two variables, A (concerning belief in science) 

and B (concerning harm caused by science), both worded unfavourably towards science, so 

that disagreement indicates a favourable attitude towards science.  Because there are only 

two variables, all 871 responses to these questions can be coded, with no loss of 

information, in the form of a cross-tabulation, given in Table 1.  The correlational approach 

investigates how to measure the association between these two categorical variables.  

Several measures of association already exist for categorical data, some of which depend on 

whether the variables are measured on a nominal or ordinal scale, or whether we are trying 

to predict one variable from the other.   In the following we shall be interested rather in the 

classical product-moment correlation coefficient applicable to metric data, and in the 

quantification of the categories, that is how to achieve numerical values for the response 



categories in order to calculate a correlation coefficient between the variables. Since the 

categories are ordered, a simple way out would be to use the existing values 1 to 5, as they 

are coded in the data file, thereby assuming that there is an equal interval difference 

between adjacent points on each scale.  But notice that such a choice would be incorrect if 

one of the variables were nominal, for example “province of residence” or “religious 

denomination”. 

There are two ways to calculate the correlation coefficient; one is from the original 

respondent-level data, which are the 871 pairs of responses to the two questions, or – more 

compactly – directly from Table 1, since this table gives the frequencies of occurrence of 

all pairs of categories.   Suppose that the responses to questions A and B are coded in the 

indicator matrices Z1  and Z2 respectively, whose columns are zero-one dummy variables: 

that is Z1 and Z2 are both 916×5 matrices.  Then Table 1 is the cross-product Z1
TZ2 of the 

two indicator matrices.  Furthermore, suppose that the proposed scale values for the 

categories of the two variables are contained in the vectors s1 and s2, so that the individual 

quantified responses are in the vectors Z1s1 and Z2s2.  To simplify greatly the notation, it is 

convenient to consider the quantified responses as initially mean-centred: 1TZ1s1 = 1TZ2s2 = 

0, so that the covariance s12 between the two variables and their variances 2
1s  and 2

2s  can be 

written as: 

s12 = (1/n)s1
TZ1

TZ2s2 = s1
TP12s2,  

2
1s  = (1/n)s1

TZ1
TZ1s1 =  s1

TD1s1  and 2
2s  = (1/n)s2

TZ2
TZ2s2 = s2

TD2s2,  

where P12 = (1/n)Z1
TZ2 is called the correspondence matrix, containing the relative 

frequencies, that is Table 1 divided by its grand total of n = 871.  D1 and D2 are diagonal 

matrices of the marginal relative frequencies, or masses, of the two variables.    Hence the 

correlation is equal to: 
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which can be calculated directly from Table 1 and its margins.   Since this calculation 

involves some important concepts in CA, we shall go through it in detail, using the values 1 

to 5 for the categories of each variable.    



• From Table 1 we have the values of the marginal relative frequencies for the 

categories of the two variables: 

    (1/n)1TZ1 = (1/871)[ 119  322  204  178  48 ] 

                    = [ 0.137  0.370  0.234  0.204  0.055 ]   

    (1/n)1TZ2 = (1/871)[ 71  174  205  281  140 ] 

                                = [ 0.082 0.200  0.235  0.323  0.161 ] 

 In CA these are called the masses of each of the two variables. 

• Assuming the equal interval scales 1,2, 3, 4, 5 for the two variables, their averages 

are: 

          (0.137 × 1) +  (0.370 × 2) + ··· + (0.055 × 5) = 2.672  

          (0.082 × 1) +  (0.200 × 2) + ··· + (0.161 × 5) = 3.281 

      and the centred vectors  s1 and  s2 are: 
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• The correspondence matrix is the matrix of relative frequencies (we only give some 

elements of the matrix): 
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and the diagonal matrices of masses,  D1 and D2, contain the marginal relative 

frequencies (masses) computed above. 

• Hence, the covariance, variances and correlation are: 

          s12 =  s1
TP12s2  = (0.03100 × -1.672 × -2.281) + ··· + (0.03330 × 2.328 × 1.719) 

                                   =  0.4988 



          2
1s  =  s1

TD1s1   = 0.137 × (-1.672)2 + ··· + 0.055 × (2.328)2 

                                   =  1.233 

          2
2s  =  s2

TD2s2   = 0.082 × (-2.281)2 + ··· + 0.161 × (1.719)2 

                                   =  1.412 

           r  = 3780.0
412.1233.1

4988.0

21

12 =
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All the above calculations clearly depend on the equal-interval scale values in s1 and 

s2 assumed at the start.  We now consider these scale values as unknowns to be determined, 

and pose the following question: what scale values for s1 and s2 will give the highest 

correlation (1) between the two variables?   This is exactly the problem of canonical 

correlation between the five dummy variables in Z1 and the five dummy variables in Z2.   

Since the correlation remains the same if any linear transformations of s1 and s2 are made, 

we need to introduce identification conditions that fix the scale of a1 and a2 in order to find 

the optimal solution.  The usual identification conditions are that the two variables are 

standardized, that is that the means are zero, as before: (1/n)1TZ1s1 = (1/n)1TZ2s2 = 0 and, 

furthermore, that the variances are 1: s1
TD1s1  = s2

TD2s2  =  1.   Under these conditions, we 

now show that the optimal solution coincides exactly with the so-called standard 

coordinates of the response categories on the first principal dimension of a simple CA of 

the original cross-tabulation. 

Consider the singular value decomposition (SVD) of the following normalized 

matrix: 

                             IVVUUVUSDPD ===−− TTT  where     2/1
212

2/1
1                                (2)    

where Σ  is the diagonal matrix of singular values, and U and V the matrices of left and right 

singular vectors as columns.  Then writing the equation (2) for one pair of left and right 

vectors, u and v , corresponding to a singular value σ, we ha ve, after multiplying on the left 

by uT and on the right by v , and using the orthogonality of the singular vectors : 

σ=−− vDPDu 2/1
212

2/1
1

T  



So if we let vDsuDs 2/1
22

2/1
11   and  −− ==  then σ=2121 sPsT , which is the formula for the 

covariance.  Furthermore, the identification conditions 1 222111 == sDssDs TT  are satisfied 

since the singular vectors have length 1: uTu = vTv = 1, so it seems that the correlation is 

given by the singular value σ.   However, the centring conditions have not been imposed, 

and these can be introduced by first centring the matrix to be decomposed as follows, 

subtracting the product of the row and column margins from each element of the 

correspondence matrix: 

TTT VUSDP11PPD =− −− 2/1
2121212

2/1
1 )(                                            (3)     

where P121 is the (column) vector of row margins of P12, that is the row masses (denoted 

usually by r in simple CA), and TT
12P1  is the (row) vector of column margins, the column 

masses (denoted by c).  In the parlance of CA this is known as “removing the trivial 

solution”, since the uncentred matrix (2) has a trivial maximal solution with a singular 

value of 1 for s1 and s2 equal to 1 (thus, U, V and Σ in (2) all have this one extra trivial 

singular component which is eliminated by the centring in (3)).    

We thus have the following result: each singular value is a correlation between 

variables A and B, based on the scale values from the transformed singular vectors s1 and 

s2, and so the maximum correlation is attained for the first (i.e., the largest) singular value 

of (3), or equivalently the second largest singular value of the uncentred matrix (2).   The 

solutions s1 and s2 are exactly the vectors of standard coordinates in CA on the first 

principal axis.  The largest singular value σ1 of (3), also called the first canonical 

correlation, is equal to 0.4106 in our example, compared to the value of 0.3780 obtained 

with the equal-interval (1-to-5) scales.  The scale values are:  

 s1
T = [ -1.017   -0.560   -0.248   1.239   2.741 ]   

 s2
T = [ -1.571   -0.667   -0.606  -0.293   1.926 ] 

These scale values are standardized, but since any linear transformation leaves the 

correlation unchanged, it is convenient to transform them so that the endpoints also have 

values 1 and 5, with a range of 4, in order to compa re with the previous equal-interval 

scales.   For example, for the first variable, the range of values is 2.741-(-1.017) = 3.758, so 



in order to make the range exactly 4 units, we should multiply all the values by 4/3.758 = 

1.064, in which case the lowest value is now  -1.017 × 1.064 = -1.083.  Then the addition of 

2.083 to all the values will bring the scale to have lowest and highest values equal to 1 and 

5 respectively.  This procedure gives the following rescaled values for the two sets of 

response categories: 

 rescaled row values = [ 1   1.486   1.818   3.402   5 ]   

 rescaled column values = [ 1   2.034   2.103   3.132   5 ] 

The scale points do emerge in their expected order in both cases, but it is interesting to 

study their relative spacings.  Compared to the equal-interval values considered previously, 

these rescaled values show that the categories “disagree” and “disagree strongly” for 

question A are further spaced out, with relatively small differences between scale values 

assigned to the categories “strongly agree”, “agree” and “neither/nor”.  For question B the 

difference between “disagree” and “disagree strongly” is even larger, almost two full units.  

For both questions the neutral “neither/nor” category is not in the centre of the scale but 

close to the agreement category.   

 Before moving onto the case of several variables, we remark that in the above only 

one set of scale values has been derived for each variable, corresponding to the first 

singular value σ1.  Further sets of scale values can be determined in a stepwise manner by 

maximizing the correlation between another pair of subject scores based on different scale 

values, say 21
~  and ~ ss , where the subject scores are uncorrelated with those already 

obtained., i.e. 0  ~  ~
222111 == sDssDs TT .  The solution is given by the second set of singular 

vectors of (3), transformed as before to standard coordinates, corresponding to the second 

singular value, σ2, which is the second canonical correlation.  For a table of order I × J this 

process can be continued to obtain a total of min{I–1, J–1} canonical correlations and 

associated scale values: in our 5 × 5 example four sets of scale values and canonical 

correlations can be calculated.  The canonical correlations are the square roots of the  

principal inertias usually reported on the axes of the map (see Section 3 below). 

 



2.2  Several variables 

To make the transition to the case of several variables, notice that the problem is almost 

identical if we reformulate it as maximizing the correlation between the two variables and 

their average (or their sum).  In general, for two variables z1 and z2 with correlation ρ , the 

correlation between either of them and their average ½(z1 +z2) (or their sum z1+z2) is equal 

to 2/)1( ?+ , so that maximizing ρ is equivalent to maximizing the correlation between 

the variables and their average (or sum).  The only real difference is the value of the 

maximum found: in the latter formulation this will be 2/)1( ?+  and not the value of ρ  

itself.  The average of two categorical variables leads us to consider the matrix of the two 

indicator matrices [Z1   Z2 ], where the average of the two quantifications of the variables, 

based on s1 and s2 respectively, is equal to  
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Consider now what happens when we apply the standard CA algorithm to the super-

indicator matrix Z = [Z1  Z2].  Since Z has total sum 2n , with each of the n rows summing 

to a constant 2 and column sums equal to the marginal frequencies of each variable, the 

correspondence matrix is (1/2n)Z, the row mass matrix is (1/n)I and the column mass 

matrix is D = ½ diag(D1,D2), where diag(D1 ,D2) is the diagonal matrix formed by the two 

diagonal matrices D1 and D2 defined.   Hence the SVD to compute the CA solution of Z is 

(in its uncentred form – cf. (2)): 
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Z

===− TTT  where     
2
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n
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which –  in one of its symmetric eigenvalue formulations – can be written as: 

 IVVVVGZDZDD
Z

D
Z

=== −−−− TTTT  where     
4
1

)
2

()
2

( 22/12/12/12/1

nn
n

n
n   

that is 
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                                               (4) 



where C = ZTZ and  Λ = Γ2.   The matrix C, called the Burt matrix , is an important data 

structure in MCA: it is the matrix of all two-way cross -tabulations of the categorical 

variables, which in this case two categorical variables can be written: 
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We use the notation Λ = Γ2, that is the squares γ 
2 of the singular values, or principal inertias 

of Z that appear on the diagonal of Γ2, are denoted by λ, on the diagonal of Λ. Writing (4) 

for a single eigenvector v , partitioned into two subvectors v1 and v2 (one corresponding to 

the rows of the original table, the other to the columns) and multiplying as before on the left 

by vT and on the right by v , defining s = D-1/2v similarly partitioned into s1 and s2, we obtain 

the eigenequation:  
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that is: 

 ¼(s1
TD1s1+s1

TP12s2+s2
TP21s1+s2

TD2s2) = γ 
2 = λ                 (5) 

The maximum value of (5), given by the largest nontrivial eigenvalue λ1 = γ 1
2, coincides 

with the solution of simple CA of the single two-way table with correspondence matrix P12, 

except that its maximum is now equal to ¼(1+σ 1+σ 1+1) = ½(1+σ 1), where σ 1 is the max-

imized canonical correlation in simple CA.  According to our previous remarks  

λ1=½(1+σ1) is exactly the square of the correlation between either of the two (quantified) 

categorical variables and their average (or sum).  Hence s1 and s2 derived above are 

identical to the s1 and s2 of simple CA, and what we have derived are the standard 

coordinates of the columns of the indicator matrix Z.   Notice that the eigenvalue λ1 above 

is also the singular value of C, since C is symmetric: in the language of geometric CA (see 

Section 3 below) λ1 is the square root of the principal inertia of the Burt matrix C. 

The alert reader will have noticed that in (4) the identification condition on s 

implied by the standardization of v in the SVD is that its weighted sum of squares is equal 

to 1, that is ½(s1
TD1s1 + s2

TD2s2) = sTDs  = 1, and not that the subvectors s1 and s2 are 



individually normalized to be 1.   It can be shown, however, that if s1 and s2 constitute a 

solution corresponding to an eigenvalue ½(1+σ), then  s1 and  –s2 constitute another 

solution corresponding to the eigenvalue ½(1–σ) (see, for example, Greenacre, 1984: 

Section 5.1).   The orthogonality of these eigenvectors, s1
TD1s1 – s2

TD2s2 = 0, together with 

the overall normalization constraint, imply the individual normalizations s1
TD1s1 = s2

TD2s2 = 

1.  As far as the individual centring constraints are concerned, these are automatic since 

each set of dummy variables (columns of Z1 and Z2) has the same sum, equal to 1 , the 

vector of ones, so that each set has the same centroid, equal to the overall centroid (1/n)1. 

The scene is now set for one possible generalization of CA to the multivariable case, 

where there are Q categorical variables, coded in indicator matrices Z1, Z2 ,…, ZQ.  The 

problem can be defined as finding a set of scale values s1, s2,…, sQ for the variables so that 

an overall measure of correlation is maximized.  To generalize the two-variable case, the 

measure of choice is the sum of squared correlations of the individual scores Z1s1, Z2s2,…, 

ZQsQ with the summated score Zs, where Z and s are the concatenations of the Zq’s and sq’s 

respectively.  We specify an overall identification constraint sTDs = 1, where D = 

(1/Q)diag(D1, D2, …,  DQ).   This overall constraint does not imply that individual 

variances sq
TDqsq will be 1 in the final solution – in contrast to the case Q = 2 described in 

the previous paragraph. 

Again there are two ways to achieve the solution, one way by performing a CA of 

the super-indicator matrix Z = [ Z1   Z2 …ZQ ], alternatively a CA of the Burt matrix  C, 

which is now a  block matrix with Q blocks row-wise and column-wise.   We denote the 

number of categories for the q-th categorical variable by Jq , and let J = Σq Jq be the total 

number of categories.  Then Z is of order n × J and C is of order J × J.   Since Z has total 

sum nQ, with row sums equal to a constant Q and column sums equal to the marginal 

frequencies of each variable, the correspondence matrix is (1/Qn)Z, the row mass matrix is 

(1/n)I and the column mass matrix is D.  Hence the SVD to compute the CA solution of Z 

is (in its uncentred form – see (2)): 

   IVVUUVUGD
Z

===− TTT  where     2/1

Qn
n                            (6) 



To eliminate the trivial solution the matrix to be decomposed is (see (3)): 

2/11 −








− DD11
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nQn
n  where (1/n)1 is the vector of row masses and 1TD is the vector of 

column masses of the indicator matrix (denoted by cT in simple CA).   The SVD for the CA 

of the Burt matrix C (uncentred) is:  

   IVVVV?VVGD
C

D ===−− TTT  where    22/1
2

2/1

nQ
                   (7) 

and C = ZTZ.   Once again, the centred form of the matrix on the left hand side of (7) 

removes the trivial solution in the form of the expected relative frequencies: 

2/1
2

2/1 −−








− DDD11CD T

nQ
. 

The right singular vectors, which give us the scale values for the Q variables, are 

identical in the two problems.  The maximum value of the average squared correlation is 

given by the square of the first singular value in the (centred) analysis of Z, that is the first 

singular value in the (centred) analysis of C.  Notice that, as in the two-variable case, the 

singular values in the analysis of C are also eigenvalues, since the matrix being 

decomposed is positive definite symmetric.  The standard coordinates x which provide the 

scale values, partitioned into x1, x2 , …, xQ for the Q variables, are given by the usual 

transformation of the singular vectors:     2/1 vDx −= where v is the first right singular 

vector, that is the first column of V.  Only the principal coordinates are slightly different in 

the two problems, since the singular values differ. 

We now apply the above theory to the four variables described in Section 2.1.  In 

terms of our notation: Q = 4, Jq = 5 for all q, J = 20, Z is 871 × 20 and C is 20 × 20.   The 

full Burt matrix is reproduced in Table 2.    In Table 3 we reproduce the standard 

coordinates for the first and second optimal solutions, along with their corresponding 

correlation measures.  In addition, the squared correlation of each quantified variable with 

the total score is given, showing that the correlation measure is equal to their average.  The 

first and optimal set of scale values, with an average squared correlation of 0.457, are 

monotonically increasing for questions A, B and C, but question D has a quite different 

pattern, with the extreme poles opposing the intermediate categories.  This is evidence that 



there is a possible problem with the responses to question D, which was worded in the 

reverse sense compared to the other questions.  The second set of scale values captures an 

axis of “polarisation” where all four questions have the pattern of the extreme categories 

opposing the intermediate ones, and here question D fits in more with the others.  This 

interpretation is supported by the squared correlations, which show a low value for question 

D in the first solution.  MCA thus effectively acts as an item analysis and this results shows 

us that question D has degraded the reliability of the total score based on the second 

optimal solution, and should preferably be removed.   

To clarify the link between MCA and reliability theory, consider the Q variables as 

items measuring an underlying construct.  Using the average squared correlation of 0.457, 

that is 0.676 in the square root, as a measure of the reliability is an overestimate, because 

even for random data we would find positive correlation between items and their sum (in 

fact the average squared correlation between Q uncorrelated items and their sum is equal to 

1/Q).   Cronbach’s alpha is a measure of reliability that compensates for this and is 

classically defined as: 
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where sq
2 is the variance of the q-th item score and s2 is the variance of the summated score.  

In MCA the sum of item score variances ( Σq  sq
2) is equal to aTDa, which from the 

identification conditions described above is a fixed value, equal to Q.  The variance of the 

summated score (s2) is equal to Q2 times the variance of the average score z, that is Q2 times 

the λ that we are maximizing.   Hence, we can write the maximum value of (8) as: 
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so that maximum λ (the first singular value of C in (7), which is also an eigenvalue as we 

have said before) corresponds to maximum reliability.  Hence, the maximum value of 

Cronbach’s α for the first two solutions is, respectively (see Table 3):  
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If question D is removed, as would be suggested by its low item correlation with the total, a 

recomputation of the solution gives a much higher value, 0.602, of the maximum average 

squared correlation, and an increase in Cronbach’s alpha to 0.669 (we do not report the 

complete results here). 

 Table 4 shows all the squared intercorrelations as well as the variances and 

covariances of the four quantified questions, according to the first optimal solution.  This 

table also demonstrates empirically that the optimal λ can be computed either as (i) the 

variance of the total score, or (ii) the average of the four squared correlations of the 

respective questions with the total, or (iii) the average of all the elements of the full 

variance-covariance matrix between the four questions. 

2.3  Homogeneity analysis 

An alternative but equivalent definition of the correlational definition of MCA is 

based on Guttman’s criterion of “internal consistency” (see, for example, Nishisato, 1994).  

The idea is to look for scale values  s1, s2, …, sQ  which give individual scores Z1s1, Z2s2, 

…, ZQsQ  that are as close to one another (i.e., homogeneous ) as possible.  Lack of closeness 

can be measured by the sum of squares of the differences of each individual’s Q scale 

values from the corresponding mean score in the vector (1/Q)(Z1s1+Z2s2+…+ZQsQ) = 

(1/Q)Zs , which we shall again denote by z.  The overall objective is thus to minimize in this 

case the following function of s, which is the average of the Q squared differences for each 

individual, averaged in turn over all n individuals: 

  [ ])()()()()()(
1

22221111 zsZzsZzsZzsZzsZzsZ −−++−−+−− QQQQnQ
TTT L         (10) 

This approach is known as homogeneity analysis (Gifi, 1990) and the objective function 

(10) is called the loss function.    Here “loss” refers to loss of homogeneity, since perfect 

homogeneity would be when all the differences Zqsq – z are zero.  Once more an 

identification condition on s is required, otherwise the trivial solution when all elements of 

s are constant will be found, giving a loss of 0.  With the same quadratic constraint sTDs = 1  



as before, it can be shown that minimum loss is achieved by the same optimal scale values 

described above, and the value of the minimum is equal to 1 minus the value of the 

corresponding largest eigenvalue of the super-indicator matrix Z.  In our example, the 

successively maximized eigenvalues of 0.457 and 0.431 (see Table 4) correspond to 

minimum losses of 0.543 and 0.569 respectively. 

 

3   Geometric approach 

The geometric approach to CA (see, for example, Greenacre, 1993a), turns out to be 

slightly more problematic to generalize to the multivariable case.  A lot of the controversy 

about CA stems from this difficulty, and here we shall clarify the issues involved in MCA 

as a graphical method as well as propose a specific version of MCA that acceptably 

addresses these problems.   We shall approach the geometry from both the chi-square 

distance scaling perspective and the biplot perspective.   

 Figure 1 shows the usual CA map of the contingency table in Table 1.  The map is 

established using the theory described in Section 2.1, namely the SVD of the matrix of 

standardized residuals, followed by the calculation of the principal coordinates to represent 

the points in a map.  The principal coordinates are the standard coordinates multiplied by 

the respective singular values.   Since standard coordinates have unit normalization, 

principal coordinates are normalized to have (weighted) sum of squares equal to the 

respective squared singular value of the associated solution.  The squared singular value σ 
2 

is called the principal inertia , corresponding to a principal axis, or dimension.  Figure 1 

shows the points represented by their principal coordinates calculated for the first two 

principal axes. 

3.1  Chi-square distance scaling  

Simple CA is justified mainly by its use of the chi-square (χ2) distance as a measure of 

dissimilarity between row profiles and between column profiles of a two-way table.  In 

Figure 1, where both rows and columns are displayed in principal coordinates, distances 

between row points optimally approximate the χ2 distances between row profiles and the 

distances between column points optimally approximate the χ2 distances between column 



profiles.  Recall that the squared χ2 distance between the row profiles, for example, has this 

form: 
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so that every j-th squared difference between the profile elements is weighted inversely by 

the column margin cj.   

MCA is the application of CA to either the super-indicator matrix Z or the Burt 

matrix C.  While the χ2 distance makes sense for a two-way contingency table, it has less 

justification when applied to the rows and to the columns of the super-indicator matrix or 

the Burt matrix.  As an illustration of this problem consider the same four-variable example 

on attitudes to science in the environmental context.   As shown in (11) the χ2 distances 

between rows and between columns are calculated between their profiles – in the case of 

distances between row profiles the column masses of the correspondence matrix are used 

inversely as weights in the calculation of distance.  The row profiles of the super-indicator 

matrix Z = [Z1  Z2  Z3  Z4]  are vectors with elements equal to 0 apart from four values of  

¼  in the positions of the categories selected by the corresponding case.   When calculating 

the distance between two rows, differences between coincident zero values and coincident 

values of  ¼ are zero, thus making no contribution to the distance measure, and so it is only 

differences between non-coincident categories that count in the distance function.  These 

nonzero squared differences (each equal to 1/16 in this case), arising from disagreements 

between respondents, are then weighted by the inverses of the corresponding column 

masses, proportional to the respective categories’ marginal frequencies, and added up to 

give the χ2 distances.  For the rows this distance measure appears fairly reasonable, and the 

weighting is in accordance with the χ2 concept that the contribution of categories with low 

frequency needs to be boosted since their variance is inherently lower.   

The situation for the column profiles of Z, however, is quite different and difficult, 

if not impossible, to justify.  Here we make the distinction between calculating (i) distances 

between two categories of the same variable and (ii) distances between two categories of 

different variables.  Let us denote the relative frequency of the j-th column category by cj 



(that is, for a particular variable, the quantities cj sum to 1).   As shown by Greenacre 

(1989), the squared χ2 distances between two column categories of a super -indicator matrix 

is in the two cases: 

i. 1/cj +1/cj' between categories j and j' of the same variable q   

ii. 1/cj +1/cj' – 2pjj'/(cjcj') between categories j and j' of different variables q and q'   

where pjj' is the relative frequency of occurrence of categories j and j' (in fact the above 

formulas are the same, since the frequency of co-occurrence of  categories j and j' of the 

same variable is zero).  The former “within-variable” distance makes little sense since it 

depends only on the marginal frequencies, no matter what the relationship with the other 

variables is.  The latter “between-variable” distance has at least a slight justification in that 

the distance decreases as association between categories j and j' increases, but again the 

dominant role played by the marginal frequencies is hard to defend. 

 The situation improves if we consider inter-category distances calculated on the 

Burt matrix rather than the indicator matrix.  Since the Burt matrix is symmetric it makes 

no difference whether we calculate the χ2 distances between rows or between columns.  

The squared distance between categories can be described verbally as follows: 

i. between categories j and j' of the same variable  q: this within-variable squared 

distance is the average of the (Q-1) squared χ2 distances between categories j 

and j' calculated in the cross-tabulations of variable q with all the other variables 

q' ≠ q, but also including an unnecessary term from the cross-tabulation of  q 

with itself (this term involves the distance between two unit profiles in a 

submatrix on the diagonal of C and is thus a large component of the overall 

distance, tending to inflate the distance); 

ii. between categories j and j' of different variables q  and q':  this between-variable 

squared distance is an average of (Q-2) squared χ2 distances between profiles of 

categories j and j' across variables not equal to q or q', but also including two 

additional terms which can also be considered unnecessary (these measure 

distances between a profile and a unit profile again on the diagonal of C, again 

tending to inflate the between-category distance). 



 In spite of the above theoretical difficulties to justify the full-space chi-square 

geometry, MCA as regularly applied – that is, the CA of Z or of C – successfully recovers 

interesting patterns of association between the variables.   It seems that the low-dimensional 

projections of the points are more valid than their full-dimensional counterparts, which is a 

paradox from the multidimensional scaling viewpoint.  Another worrying aspect is the 

inflation of the total inertias of Z and of C, which leads to all percentages of inertia on the 

principal axes being artificially low.  This inflation can also be understood by considering 

the calculation of total inertia for the Burt matrix C and the high contributions made by the 

diagonal matrices on its block diagonal.  It is clear that MCA of a two-variable data set will 

not give the same results as a CA – the standard coordinates will be the same, but the 

principal inertias (and hence the principal coordinates) and their percentages of inertia will 

be different.  In Section 3.3 below we define another variant of MCA, called joint 

correspondence analysis, which resolves all these issues to a certain extent.  We shall also 

show that a simple adjustment of the scale in the MCA solution dramatically improves the 

fit from a multidimensional scaling viewpoint. 

3.2  Biplot  

The biplot is concerned with data reconstruction in a joint map of the rows and columns, 

rather than distance reconstruction.  In the simple case of a two-way table one can think of 

reconstructing different variants of the table depending on the way we think of the table: 

either as a set of rows, or a set of columns, or just a two-way table of entries where rows 

and columns are symmetric entities. As an illustration of this approach we consider a two-

way table as a set of rows, for example Table 5(a) shows the row profiles of the two-way 

table in Table 1, that is conditional on each response category of question A, the 

proportions of respondents falling into the response categories of question B.  The biplot 

can be thought of as a way to reconstruct these row profiles in a map.  Greenacre and 

Hastie (1987) and (1993a, 1993b) show how the asymmetric map of CA, with row points in 

principal coordinates and column points in standard coordinates, is a biplot of these 

profiles.  The direction vector defined by each column point, called a biplot axis, can be 

calibrated in profile units, and the approximate value of the profile can be read off the map 

by simply projecting the row points onto the column axis (Figure 2).  The success of the 



reconstruction of the data from the biplot in this way is measured by the percentage of 

inertia explained by the map: in this case it is 95.6%, so the reconstruction has an error of 

only 4.4%.   Table 5(b) reports the estimated values from the biplot of Figure 2, testifying 

to the high accuracy of the data reconstruction.   

Interpreting Figure 2 we can see, for example, a direction opposing the categories 

B2 and B3 pointing bottom left and category B5 top right.  If we project A1, A2 and A3 

onto this diagonal “dimension”, it is clear that they project more or less at the same 

position, showing that their profile values on B2, B3 and B5 are similar, with profile values 

on B2 and B3 above average, and those on B5 below average (the origin of the biplot 

always represents the average profile values exactly).  This deduction from the map can be 

confirmed in Table 5(a), and it is only for categories A4 and A5 that there are distinct 

changes along this direction, increasing in percentage response to B5 and decreasing on B2 

and B3.   Likewise, with respect to the other diagonal “dimension” from top left to bottom 

right, which opposes B1 and B4, we see that A3, A4 and A5 project at the same positions 

and thus are estimated to have similar profile values on B1 and B4.  This can be mostly 

verified in Table 5(a), the only exception being the profile of A5 on B4, which has an 

observed frequency much lower than the corresponding values for A3 and A4 – this error 

of approximation would be part of the 4.4% unexplained inertia. 

 Thinking about the joint map in this way is sheds light on the problematic aspects of 

the CA of the indicator matrix Z or the Burt matrix C.   In the case of Z it is futile to expect 

a good approximation of a matrix of zeros and ones in a two-dimensional map of points.  

Another measure of quality is needed, for example one could deduce from a joint map the 

most likely set of responses of each case (row) and then count how many of these are 

correct predictions (see Gower, 1993; Gower and Harding, 1998; Greenacre, 1998).  The 

situation is similar for the Burt matrix C: any attempt to approximate the diagonal matrices 

down the diagonal of the Burt matrix is clearly in conflict with the approximation of the 

more interesting and relevant contingency tables in the rest of the matrix.  In both cases the 

percentages of inertia will be artificially low because of the structurally high-dimensional 

nature of the matrices being analyzed. 



Figure 3 shows the CA of the Burt matrix of Table 3, and notice that it only 

represents 35.1% of the total inertia.  Yet its interpretation is clear: we can see the same 

pattern of association for questions A and B already seen in Figure 1, along with a similar 

pattern of association with question C.  But the response categories for question D are not 

at all in line with the other three.  The categories D1 and D5 of strong agreement and strong 

disagreement lie within the arch formed by the other questions, quite close together even 

though they are at opposite ends of the scale.  This shows clearly the incompatibility of this 

question with the others. 

Notice how different the scale of Figure 3 is compared to Figure 1, and how the 

points have been pulled outwards in the analysis of the Burt matrix.  Most of the problem 

of low percentages of inertia is due to this scale change, and can be rectified by a simple 

scale adjustment of the solution.  This is best explained after an account of joint 

correspondence analysis. 

3.3  Joint correspondence analysis  

As we have just seen, when applying CA to the Burt matrix the diagonal submatrices on the 

“diagonal” of the block matrix C inflate both the chi-square distances between profiles and 

the total inertia by artificial amounts.  In an attempt to generalize simple CA more naturally 

to more than two categorical variables, joint correspondence analysis (JCA) accounts for 

the variation in the “off-diagonal” tables of C only, ignoring the matrices on the block 

diagonal.  Hence, in the two-variable case (Q = 2) when there is only one off-diagonal 

table, JCA is identical in all respects to simple CA (which is not the case for MCA of Z or 

C, which give different principal inertias).   

The solution can no longer be obtained by a single application of the SVD and 

various algorithms have been proposed by Greenacre (1988), Boik (1996) and Tateneni and 

Browne (2000).  For example, Greenacre (1988) describes an alternating least-squares 

algorithm that treats the matrices on the block diagonal as missing values.  The algorithm 

proceeds in the following steps: 

1. Perform MCA by applying CA to the Burt matrix C, and choose the dimensionality 

S* of the solution (e.g., S* =2 is the most typical). 



2. Optionally perform an adjustment of the solution along each of the S* dimensions to 

improve the approximation to the off-diagonal block matrices (see Section 3.4 

below). 

3. From the resulting map, reconstruct the values in the diagonal blocks of C in the 

same way as the data were reconstructed in the biplot, using the reconstruction 

formula.   Replace the original values in the diagonal blocks by these estimates, 

calling this the modified Burt matrix C* 

4. Perform another CA on the resultant matrix C* with modified block diagonal. 

5. Repeat steps 3 and 4, that is substituting the diagonal blocks from the reconstructed 

values in the new solution, performing again the CA to obtain another solution, and 

so on, until the process converges.  Convergence can be measured by the maximum 

absolute difference between the values substituted into the diagonal blocks at the 

present iteration and their corresponding values substituted during the previous 

iteration. 

Figure 4 shows the results of a two-dimensional JCA applied to the Burt matrix of 

Table 3, using a stopping criterion of ε=0.0001, where we have again left the scale exactly 

as in Figure 3.  Comparing these two figures we can see the high degree of similarity in the 

pattern of the response categories, but mainly a change in the scale, with the JCA map 

being reduced in scale on both axes, but especially on the second.  Most of the properties of 

simple CA carry over to JCA, most importantly the reconstruction of profiles with respect 

to biplot axes (Greenacre, 1993a, chapter 16).    

Compared to regular CA and MCA there are two aspects to remember in order to 

compute the percentage of inertia explained by the map.  First, the percentage has to be 

calculated for the two dimensions of the solution together, not separately, since the 

dimensions in JCA are not nested.  Second, in the final solution (the CA of the modified 

Burt matrix at the final iteration) the usual way of calculating the proportion of explained 

inertia, involves the ratio between the sum of the first two principal inertias and the total 

inertia, but both the numerator and denominator of this sum include an amount due to the 

modified diagonal blocks, which are fitted exactly by the solution.  This amount, which can 

be calculated in various ways (for example, by direct calculation on the modified blocks), 



needs to be discounted from both the numerator and denominator to obtain the percentage 

of (off-diagonal) inertia explained.  In this particular example, the first two principal 

inertias of the modified Burt matrix are 0.09909 and 0.06503 respectively, and the total 

inertia including the part on the modified diagonal blocks is 0.18242.  The part on the 

modified diagonal blocks can be computed to be equal to 0.05474, so that after discounting 

this amount from both numerator and denominator, we obtain the proportion of inertia 

explained by the two-dimensional JCA solution as  

8567.0
12768.0
10938.0

05474.018242.0
05474.006503.009909.0

==
−

−+  

Hence 85.7% of the (off-diagonal) inertia is explained by the JCA solution, much higher 

than the 35.1% explained in the MCA map based on the Burt matrix.  The value of 85.7% 

appropriately measures the success of approximating the off-diagonal blocks relative to the 

total inertia of these blocks only, unaffected by the diagonal blocks.  This would be the 

quality of the map considered as a MCA biplot as well: that is, express all six off-diagonal 

blocks as profiles (rows or columns profiles, in upper or lower triangle of the Burt matrix), 

then the quality of reconstructing these profiles as described in Section 3.2 would be 

85.7%, and the error of reconstruction, or residual, would be 14.3%. 

3.4  Adjustment of the inertias in MCA  

Since main difference between MCA and JCA in Figures 3 and 4 is a change in scale, it is 

possible to remedy partially the percentage of inertia problem in a regular MCA by a 

compromise between the MCA solution and the JCA objective, using simple scale re-

adjustments of the MCA solution.  In this approach the total inertia is measured (as in JCA) 

by the average inertia of all off-diagonal blocks of C, calculated either directly from the 

tables themselves or by adjusting the total inertia of C by removing the fixed contributions 

of the diagonal blocks as follows:   

 average off-diagonal inertia = 
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Parts of inertia are then calculated from the principal inertias λs
2 of C (or from the principal 

inertias λs of Z) as follows: for each λs ≥ 1/Q, calculate the adjusted inertias: 
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and then express these as percentages of (12).  Although these percentages underestimate 

those of a JCA, they dramatically improve the results of a MCA and are recommended in 

all applications of MCA.  A further property of the adjusted principal inertias adj
sλ is that 

they are identical to the principal inertias 2
sσ  of simple CA in the case of two categorical 

variables, where Q = 2: adj
sλ = 4(λs – ½)2, since we have shown earlier in Section 2.2 the 

relationship sλ = ½ (1+ sσ ). 

In our example the total inertia of C is equal to 1.1138 and the first seven pr incipal 

inertias are such that λs ≥ 1/Q , that is λs
2

 ≥ 1/Q2 = 1/16.  The average off-diagonal inertia is 

equal to 0.17024, as shown in Table 6 along with the different possibilities for inertias and 

percentages of inertia.  Thus what appears to be a percentage explained in two dimensions 

of 22.2% (=11.4+10.8) in the analysis of the indicator matrix Z, or 35.1% (=18.6+16.5) in 

the analysis of the Burt matrix C, is shown to have a lower bound of 79.1% (=44.9+34.2) 

when the principal inertias are adjusted.   Compared to the adjusted MCA solution, the JCA 

solution for this example (Figure 4) gives an additional benefit of 6.4 percentage points in 

the explained inertia, with a percentage explained of 85.7%.  We stress again that in JCA 

the solutions are not nested, so the percentages are reported for the whole solution (in this 

case, a two-dimensional one), not for individual dimensions. 

We propose the adjusted solution as the one to be routinely reported: not only does 

it considerably improve the measure of fit, but it also removes the inconsistency about 

which of the two matrices to analyse, indicator or Burt.  The adjusted solution is given in 

Figure 5, and has the same standard coordinates as Figure 3 but uses the adjusted principal 

inertias to calculate the principal coordinates, leading to the improved quality of display.  

Again we have left the scale identical to Figures 3 and 4 for purposes of comparison.   

Benzécri (1979) has proposed the same adjusted inertias (14), but expresses them as 

percentages of their own sum over the dimensions s for which λs ≥ 1/Q.  This approach 

goes to the opposite extreme of giving an overly optimistic expression of explained inertia, 

since it explains a 100% in the space of the dimensions for which λs ≥ 1/Q (there are six 



dimensions in our example – see Table 6) when in fact the data are not exactly 

reconstructed in the map.  

 

4   Supplementary points 

Up to now we have described three different ways to perform MCA: 

Variant 1.   CA of the indicator matrix 

Variant 2.   CA of the Burt matrix 

Variant 3.   An adjusted version of variants 1 or 2 that unifies and rectifies the scaling 

issue, giving a single solution irrespective of which matrix is considered, with highly 

improved measures of explained inertia 

In all these variations, the standard coordinates of category points remain the same, only the 

principal inertias change.   Furthermore, we have introduced an alternative method, JCA, 

which has a different solution from the above variants and which is analogous to least-

squares factor analysis in that it concentrates on between-variable associations only.   In all 

of these cases it is possible to display supplementary points in the usual way to enrich the 

interpretation (see Le Roux and Rouanet, 2004, where this aspect is discussed at length in 

the context of MCA).  Here we define a way of displaying supplementary points that does 

not depend on the variant of the method used.  In our illustration, we will consider three 

supplementary demographic variables: gender, age and education – full category 

descriptions are given in  Section 1.  

 To motivate our approach we consider the case of the indicator matrix, where 

supplementary categories can be thought of as either row or column points.  For example, 

male and female categories can be added as two supplementary column dummy variables, 

or as two supplementary rows containing the frequencies for males and for females across 

the response categories.  These two alternatives are equivalent up to scale factors, as we 

now explain.  To position a supplementary column category, using the so-called transition, 

or barycentric, relationship between rows and columns (see, for example, Greenacre, 1984), 

we have to consider all the respondent points (rows) in standard coordinate positions in the 

map.  Then any column category, active or supplementary, is situated (in principal 



coordinates) at the average of the respondents who fall into that category.  Alternatively, to 

position a supplementary row, for example “male”, we have to consider all the active 

column categories in standard coordinate positions, then the “male” row point will be at the 

weighted average of column points, using the profile of “male” across the active columns.  

Remember that the “male” frequency profile sums to 1 across the Q questions, so its 

position is an average of averages: for each question the group “males” has an average 

position according to male frequencies across the categories of that particular question, and 

the final position of “male” is a simple average of these averages.  We can show that the 

position of a supplementary point as a row is the same as the supplementary column 

dummy but shrunk on each dimension by the corresponding singular value, that is by the 

same scale factor that links principal to standard coordinates on each dimension (see 

Greenacre, 1984: Chapter 5.1 for a proof of this result).  Thus a simple way to unify the 

representation of supplementary points in all situations would be to think of supplementary 

categories always as the averages of the principa l coordinate positions of respondents, in 

which case both approaches will give exactly the same results. 

 Our proposal is thus the following: using the principal coordinates of respondent 

points, calculate average positions for supplementary categories, for example the average 

position for male points, female points, etc.  Since it is only for the indicator matrix (variant 

1 listed above) that we (automatically) have respondent points in the CA, we need to make 

precise what we mean by respondent points in the case of the Burt matrix and the adjusted 

analysis (variants 2 and 3 above, respectively).  In these last cases, respondent points are 

displayed, at least theoretically, as supplementary points, that is as averages of the column 

categories, in standard coordinates, according to their respective response patterns.  Since 

in all three variants of MCA these standard coordinates are identical, respondent points will 

have exactly the same positions in all three cases.   Thus when we average their positions 

according to a supplementary variable, showing for example average male and average 

female points, the results will also be identical.  But notice that to obtain these average 

positions we do not actually have to calculate all the original respondent points: the 

calculations can be made much more efficiently, thanks to transition relationships, by 

simply adding cross-tabulations as supplementary rows or columns.   The following 

summarizes the calculations in each case, assuming that a supplementary variable is  coded 



in indicator form as Zs, so that Zs
TZ denotes the concatenated set of cross-tabulations of the 

supplementary variable with the Q active variables: 

1. in the case of the indicator matrix Z, we would already have the principal 

coordinates of the responde nts, so we can either make the calculation of averages 

directly or add as supplementary row points the cross-tabulations Zs
TZ of the 

supplementary variable with the active variables;  

2. in the case of the Burt matrix C, we do not need to calculate the positions of 

respondents (if required for other reasons, this would be done by adding Z as 

supplementary rows to the Burt matrix C) – we can simply add the cross-tabulations 

Zs
TZ as supplementary rows (or ZTZs as supplementary columns), which leads to 

the same positions for the supplementary categories as in variant 1; 

3. in the case of the adjusted analysis, we do as in variant 2, since it is only a 

posteriori that we adjust the eigenvalues, and this adjustment only affects the 

positions of the principal coordinates of the active category points, not the 

supplementary categories which – we repeat – are defined as averages of the 

respondent points; 

4. in the case of JCA, it is again a simple addition of supplementary rows or columns, 

as in variants 2 and 3, to the modified Burt matrix C* at the final iteration of the 

algorithm. 

Table 7 shows the cross-tabulations Zs
TZ and Figure 6 shows the positions of the 

supplementary points in the adjusted MCA (variant 3, that is the supplementary points are 

superimposed on Figure 5).   Here we can see that the age groups and education groups 

show a horizontal trend, with younger respondents on the right moving over to older 

respondents on the left, and lower education groups on the left moving over to higher 

education groups on the r ight.  In addition, we can see that the three upper education groups 

(from secondary education completed upwards) separate out at the right towards the strong 

disagreement poles of the questions, indicating they are particularly strongly in favour of 

science.  We also find the average male point on the right hand side and average female 

point on the left hand side.  Remember that these supplementary variables have been added 

separately to the map and not in combination – that is, the fact that male is on the right and 



higher education groups on the right does not imply that it is only higher -educated males 

that are more favourable towards science.  To see the positions of higher-educated females, 

for example, interactive coding of the demographic variables would have to be performed: 

for example, coding the six education groups for males and for females separately, giving 

12 combinations of gender and education, each represented as a separate supplementary 

point. 

 

5   Discussion and conclusions 

We have shown that extending CA of two variables to the case of several variables is not a 

simple issue, especially in the geometric case.  Simple CA is typically applied to situations 

where two different types of variables are cross-tabulated, for example country of residence 

by responses to a survey question.  MCA is applied to one set of variables, preferably all 

with the same response scales, which revolve around a particular issue, and where we are 

interested in the association patterns amongst the variables.  Putting this in another way, in 

simple CA we are interested in associations between two variables or between two sets of 

variables, while in MCA we are interested in associations within a set of variables.  This is 

an important difference between the two methods that permeates both the data analysis and 

interpretation of results. 

Although the geometric concepts of simple CA do not carry over easily to the 

multiple-variable case, adjustment of the principal inertias and alternative methods such as 

JCA partially rectify the situation.  Since MCA has attractive properties of optimality of 

scale values thanks to achieving maximum intercorrelation and thus maximum reliability 

(in terms of Cronbach’s alpha), the compromise offered by the adjusted MCA solution is 

the most sensible one and the one that we recommend.  The adjustment, described in 

Section 3.4, is easy to calculate and simply changes the scale on each dimension of the map 

to best approximate the two-tables of association between pairs of variables, leaving 

everything else in the solution intact.   Thanks to this adjustment we obtain estimates of the 

explained inertias that are much closer to the true values than the pessimistic values 

obtained in MCA – for this reason we propose the adjusted MCA solution as the one to be 

used as a matter of course in all (graphical) MCA applications.  The adjusted solution also 



has the nice property that it is identical to simple CA of a cross-tabulation in the case of two 

variables.   JCA also perfectly reproduces simple CA in the two variable case, since is is 

also focused exclusively on the on the single off -diagonal cross -tabulation.   JCA has the 

additional advantage in the multivariable case of optimizing the fit to all the off-diagonal 

cross-tabulations of interest.   

Categorical supplementary points can be added to any of the variants of MCA, as 

well as JCA, as averages of respondents that fall into the corresponding categories.  This 

amounts to simply adding the cross-tabulations of the supplementary variables with the 

active variables as supplementary rows or columns.  The JCA and adjusted MCA solutions 

have the advantage that the active points are reduced in scale compared to the solutions for 

the indicator and Burt matrices, thus leading to a greater relative dispersion of the 

supplementary points in the joint map of the active and supplementary points.  

 

 

Software note 

The analyses of this chapter were performed using XLSTAT (www.xlstat.com) written 

by Thierry Fahmy, and cross-checked using the R functions for CA, MCA and JCA written 

by Oleg Nenadic.  Both implementations include the adjustment of inertias described in this 

paper.   
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Table 1 
 
Cross-tabulation of 871 West German respondents with respect to two questions on 
attitudes to science. 

 

 
 

 

B1-agree B2-agree B3-neither / B4-disagree B5-disagree

strongly nor strongly SUM

We believe A1-agree strongly 27 28 30 22 12 119

too often in A2-agree 38 74 84 96 30 322

science, not A3-neither/nor 3 48 63 73 17 204

enough in A4-disagree 3 21 23 79 52 178

feelings & faith A5-disagree strongly 0 3 5 11 29 48

SUM 71 174 205 281 140 871

Overall, modern science does more harm than good



Table 2 
 
Data on attitudes to science and the environment, showing the complete Burt matrix of all 

pairwise crosstables of the four variables.  Table 1 is the A × B block of this matrix. 

 
      A1  A2  A3  A4  A5   B1  B2  B3  B4  B5   C1  C2  C3  C4  C5   D1  D2  D3  D4  D5   

A1  119   0   0   0   0   27  28  30  22  12   49  40  18   7   5   15  25  17  34  28 
A2    0 322   0   0   0   38  74  84  96  30   67 142  60  41  12   22 102  76  68  54 

A3    0   0 204   0   0    3  48  63  73  17   18  75  70  34   7   10  44  68  58  24 

A4    0   0   0 178   0    3  21  23  79  52   16  50  40  56  16    9  52  28  54  35 

A5    0   0   0   0  48    0   3   5  11  29    2   9   9  16  12    4   9  13  12  10 

B1   27  38   3   3   0   71   0   0   0   0   43  19   4   3   2    9  17  10  10  25 

B2   28  74  48  21   3    0 174   0   0   0   36  88  34  15   1   16  51  42  45  20 

B3   30  84  63  23   5    0   0 205   0   0   37  90  57  19   2   10  53  63  51  28 

B4   22  96  73  79  11    0   0   0 281   0   27  88  75  74  17    6  66  70  92  47  

B5   12  30  17  52  29    0   0   0   0 140    9  31  27  43  30   19  45  17  28  31 

C1   49  67  18  16   2   43  36  37  27   9  152   0   0   0   0   25  24  15  38  50 

C2   40 142  75  50   9   19  88  90  88  31    0 316   0   0   0   15  97  67  89  48 

C3   18  60  70  40   9    4  34  57  75  27    0   0 197   0   0    5  51  83  41  17 

C4    7  41  34  56  16    3  15  19  74  43    0   0   0 154   0    6  44  30  51  23 

C5    5  12   7  16  12    2   1   2  17  30    0   0   0   0  52    9  16   7   7  13 

D1   15  22  10   9   4    9  16  10   6  19   25  15   5   6   9   60   0   0   0   0 

D2   25 102  44  52   9   17  51  53  66  45   24  97  51  44  16    0 232   0   0   0 

D3   17  76  68  28  13   10  42  63  70  17   15  67  83  30   7    0   0 202   0   0 

D4   34  68  58  54  12   10  45  51  92  28   38  89  41  51   7    0   0   0 226   0 

D5   28  54  24  35  10   25  20  28  47  31   50  48  17  23  13    0   0   0   0 151 

 

 



Table 3 
 
Results of CA of 871 × 20 indicator matrix Z, or equivalently of Burt matrix C in Table 2, 

showing standard coordinates (scale values) for the four variables on the first two 

dimensions of the solution (F1 and F2); “sq.corr.” is the squared correlation of the 

quantified variable with the total score, and “rho” is the corresponding singular value of C, 

i.e. the squared singular value (or principal inertia) of Z, which is the arithmetic average of 

the four corresponding squared correlations.  Cronbach’s alpha is the measure of reliability 

discussed in Section 2.2. 

 

 

 

 

         F1           F2
A1 -1.837 0.727
A2 -0.546 -0.284
A3 0.447 -1.199
A4 1.166 0.737
A5 1.995 2.470
sq.corr. 0.510 0.382
B1 -2.924 1.370
B2 -0.642 -0.667
B3 -0.346 -0.964
B4 0.714 -0.280
B5 1.354 2.108
sq.corr. 0.579 0.517
C1 -2.158 0.909
C2 -0.247 -0.592
C3 0.619 -1.044
C4 1.349 0.635
C5 1.468 3.017
sq.corr. 0.627 0.488
D1 -1.204 1.822
D2 0.221 -0.007
D3 0.385 -1.159
D4 0.222 -0.211
D5 -0.708 1.152
sq.corr. 0.113 0.337

rho 0.457 0.431
Cronbach's alpha 0.605 0.560



Table 4 
 
In the upper triangle, in italics: the squared correlations between the four variables A, B, C 

and D, quantified by their scale values on the first dimension, as well as their squared 

correlations with the total score (cf. column F1 of Table 3).  In the diagonal and lower 

triangle: the variances and covariances respectively, with the average covariance of each 

variable with itself and the others in the last line in boldface (e.g., 0.5793 = 

(0.4440+1.2666+0.5697+0.0369)/4).  Notice that these average covariances are identical to 

the squared correlations with the total. Hence, the variance of the average score (the 

quantity maximized by MCA, underlined) is both the average of the four squared 

correlations of the question scores with the total score, and the average of the four average 

covariances, in other words the average of the full 4×4 variance-covariance matrix.  Notice 

further that the sum of the variances of the four variables 1.1151+1.2666+1.3716+0.2467 = 

4, which is the identification condition on the scale values.   (To calculate variances and 

covariances, divide by n=871, not n–1.) 

 

 
 

squared 
correlation

  A   B   C   D with total
A 1.1151 0.1396 0.1270 0.0059 0.5100
B 0.4440 1.2666 0.1868 0.0059 0.5793
C 0.4406 0.5697 1.3716 0.0480 0.6273
D 0.0403 0.0369 0.1274 0.2467 0.1129

average 
covariance

0.5100 0.5793 0.6273 0.1129 0.4574



Table 5 

 
(a) Row profiles of Table 1, including average row profile; (b) Approximate row profiles 

estimated from biplot of Figure 2 (the average profile is always represented exactly by the 

origin of the map).   The difference between the two tables is the error of biplot 

approximation, measured as 100-95.6% = 4.4% of the total inertia of the table. 

 
 
(a)   Original profiles 
 
 
 
 
 
 
 
 
 
 
 
(b)  Estimated profiles 
 
 
 

B1 B2 B3 B4 B5 Sum
A1 0.227 0.235 0.252 0.185 0.101 1
A2 0.118 0.230 0.261 0.298 0.093 1
A3 0.015 0.235 0.309 0.358 0.083 1
A4 0.017 0.118 0.129 0.444 0.292 1
A5 0.000 0.063 0.104 0.229 0.604 1
Average 0.075 0.176 0.211 0.303 0.235 1

B1 B2 B3 B4 B5 Sum
A1 0.226 0.239 0.253 0.181 0.102 1
A2 0.117 0.229 0.265 0.294 0.094 1
A3 0.024 0.226 0.283 0.393 0.074 1
A4 0.002 0.135 0.169 0.387 0.307 1
A5 0.026 0.034 0.034 0.329 0.578 1

Average 0.075 0.176 0.211 0.303 0.235 1



Table 6 
 
Eigenvalues (principal inertias) of Burt matrix, their percentages of inertia, the adjusted 

inertias and their lower bound estimates of the percentages of explained inertia for the off-

diagonal tables of the Burt matrix.  The average off-diagonal inertia on which these latter 

percentages are based is equal to 17024.012768.1
16

16

3

4
=






 − , where 1.12768 is the total 

inertia of the Burt matrix (that is the average of the inertias of all its submatrices, including 

those on the block diagonal).  Notice that the sum of explained inertia over these six 

dimensions must be less than 100% in the case of the adjusted eigenvalues, since the 

percentages are lower bound estimates and, in any case, the six-dimensional MCA solution 

does not fully explain all pairwise cross-tabulations. 

 

 
     Dimension      Eigenvalue    Percentage      Eigenvalue    Percentage        Adjusted    Percentage 
                                 of Z           explained             of B           explained        eigenvalue    explained 

 
 1     0.4574     11.4%             0.2092             18.6%         0.07646     44.9% 

2     0.4310  10.8%             0.1857             16.5%         0.05822     34.2% 
3     0.3219    8.0%            0.1036               9.2%         0.00920       5.4% 

4     0.3065       7.7%             0.0939               8.3%         0.00567        3.3% 
5     0.2757    6.9%            0.0760               6.7%         0.00117        0.7% 
6     0.2519    6.3%            0.0635             5.6%         0.00001        0.0% 

 



 Table 7 
 
Supplementary rows added to the indicator matrix Z, Burt matrix C or modified Burt 

matrix C* to represent the supplementary variables sex, age and education.  These are the 

cross-tabulations of the three variables with the four active variables A, B, C and D. The 

supplementary categories are M: male, F: female, age1: 16-24 years, age2: 25-34 years, 

age3: 35-44 years, age4: 45-54 years, age5: 55-64 years, age6: 65 years and older, 

edu1: no or some primary education, edu2: primary education completed, edu3 : some 

secondary education, edu4: secondary education completed, edu5: some tertiary 

education, edu6 : tertiary education completed. 

 
       A1  A2  A3  A4  A5   B1  B2  B3  B4  B5   C1  C2  C3  C4  C5   D1  D2  D3  D4  D5   

M     43 144 120  92  28   25  75 104 146  77   58 157 105  82  25   25 136  92 101  73 
F     76 178  84  86  20   46  99 101 135  63   94 159  92  72  27   35  96 110 125  78 

age1   9  34  17  25   6    5  21  16  33  16   13  32  22  19   5    7  26  19  30   9 

age2  33  68  45  51  13   15  30  52  76  37   35  60  57  43  15   10  46  48  56  50 

age3  18  63  40  26  11   15  27  31  62  23   24  61  35  25  13   12  39  42  35  30 

age4  19  45  47  27   8   13  29  34  41  29   24  57  33  26   6   10  39  38  38  21  

age5  18  43  33  25   5   10  26  35  37  16   21  45  26  24   8    9  48  23  28  16 

age6  22  69  22  24   5   13  41  37  32  19   35  61  24  17   5   12  34  32  39  25 

edu1   7  15   7   8   1    6  10  11   7   4    7   8  11  12   0    5   9  12   8   4 

edu2  59 155  84  68  12   34  93  95 112  44   79 156  73  54  16   28 110  90  95  55 

edu3  29  84  65  54  10   19  47  55  82  39   34  90  68  36  14   11  69  58  63  41 

edu4  11  27  18  26  12    6  12  18  37  21   18  24  18  28   6    7  13  23  29  22 

edu5   5  20  11   8   5    4   5  11  16  13    6  14  14   9   6    4  12   7  14  12 

edu6   8  21  19  14   8    2   7  15  27  19    8  24  13  15  10    5  19  12  17  17 

 

 



Figure 1 

 
Symmetric CA map of Table 1.   Percentage of inertia displayed in the map is 95.6%.  

Categories for questions A and B are from (1) agree strongly to (5) disagree strongly.  
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Figure 2 

 
Asymmetric CA map of Table 1, showing biplot axes.   The categories of the row points A1 

to A5 can be projected onto each biplot axis to read off approximations of corresponding 

profile values.  The accuracy of this approximation is as good as the percentage of inertia 

displayed, which is 95.6%, hence it is excellent. 
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Figure 3 

 

Multiple correspondence analysis map of the Burt matrix of Table 3.  The percentage of 

explained inertia is 35.1%. 
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Figure 4 
 

Joint correspondence analysis map of the Burt matrix of Table 3.   The percentage of 

explained inertia is 85.7%. 
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Figure 5 
 

Multiple correspondence map of Table 3 with adjustment of the principal inertias (and thus 

the scale of the principal coordinates) along each dimension.  The percentage of explained 

inertia is at least 79.1%.  Notice the change in scale compared to Figure 3. 
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Figure 6 
 

Adjusted MCA solution, showing positions of supplementary categories of sex, age and 

education.  
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