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Abstract

How much information does an auctioneer want bidders to have in a private value environment?
We address this question using a novel approach to ordering information structures based on the
property that in private value settings more information leads to a more disperse distribution of
buyers’ updated expected valuations. We define the class of precision criteria following this approach
and different notions of dispersion, and relate them to existing criteria of informativeness. Using
supermodular precision, we obtain three results: (1) a more precise information structure yields
a more efficient allocation; (2) the auctioneer provides less than the efficient level of information
since more information increases bidder informational rents; (3) there is a strategic complementarity
between information and competition, so that both the socially efficient and the auctioneer’s optimal
choice of precision increase with the number of bidders, and both converge as the number of bidders
goes to infinity.
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1 Introduction

There are numerous situations in which a seller controls the information available to potential

buyers: a government agency soliciting bids to execute a public project, a company wanting to sell

a subsidiary (or go public), internet auctions, etc. Such situations raise important questions, such

as: should the seller make information available to bidders? How much should he make available?

As much as possible? Are his incentives to provide information aligned with social ones? How does

his choice depend on the number of potential buyers in the market?

We address these questions in a standard independent private values auction setting: an auc-

tioneer wants to sell an object to n risk-neutral bidders whose valuations are independently drawn

from a common and known distribution. Initially, bidders know the distribution but are uncertain

about their valuations. The auctioneer, prior to the auction, can supply information (in the form

of private signals) to help them obtain a more accurate estimate of their valuations. Each bidder

receives a private signal which conveys information only about his private valuation and is private

information to him. Effectively, the auctioneer chooses the information structure, i.e. the joint

distribution of the private signals and valuations, so as to maximize his expected revenue from

the auction. This choice can be interpreted either as the auctioneer producing information or as

controlling access to existing information.

In order to analyze the auctioneer’s problem generally, without recourse to specific families of in-

formation structures, we need a criterion of informativeness. A natural candidate is Lehmann (1988)’s

criterion of effectiveness which has been used in Persico (2000) and Bergemann and Välimäki (2002)

to order information structures in the related problem where bidders choose how much information

to acquire. But, Lehmann’s, as well as other commonly used criteria of informativeness, such as

Blackwell (1955)’s, are not well suited for analyzing the auctioneer’s incentives to provide informa-

tion to bidders, since they do not pose specific constraints on the distribution of bidders expected

valuations, which is central in our problem. We propose a new family of criteria of informativeness,

that we refer to as precision criteria, and are defined via the effect of information on the distribu-
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tion of expected valuations. Precision criteria allow us to obtain robust results on the auctioneer’s

incentives for the provision of information and how they change with the number of bidders in the

auction.

The common characteristic of precision criteria is that they are defined by the property that in

private value settings more information leads to a more spread out distribution of buyers’ updated

expected valuations. In our model, the auctioneer controls the informativeness of the signals but

does not observe their realizations. He knows that bidders use these signals to update their expected

valuations so that to him updated expected valuations are random draws from a distribution which

he can influence by choosing the degree of informativeness of the signals. Further, he knows that

due to the heterogeneity in bidder preferences an increase in the informativeness of the signals will

have an asymmetric effect on bidder’s expected valuations, raising some while reducing others. So

that by increasing the informativeness of signals, the auctioneer makes the distribution of updated

expected valuations more spread out.

Precision criteria are defined by this effect: an information structure will be more informative

than another if its distribution of updated expected valuations is more disperse. As there are differ-

ent ways in which one random variable may be more disperse than another, we will provide corre-

spondingly different precision criteria. The main criterion used in this paper is that of supermodular

precision (sm-precision), which is defined using the dispersive order of Bickel and Lehmann (1976).1

Using weaker notions of dispersion, we construct several alternative (and weaker) precision criteria,

and show that commonly used informativeness criteria only imply the weakest precision criterion

and correspondingly limited comparative static results.

Returning to the auctioneer’s problem, we suppose the auctioneer can choose at some cost from

a general class of information structures ranked in terms of their informativeness. We show that

if information structures are ordered by precision criteria, we can also order the total surplus they

1In addition to defining supermodular-precision, in the Appendix we identify a condition stated in terms of in-
formation structures (rather than the distribution of expected valuations) that is sufficient to order information
structures in terms of supermodular-precision. This condition is the mirror image of Lehmann (1988)’s characteriza-
tion of greater effectiveness.
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generate and, in certain cases, the expected price. Moreover, the link between precision criteria

and the outcome of the auction allows us to analyze the incentives of the auctioneer to provide

information. We will now present the three main results obtained using supermodular precision. At

the end, we introduce weaker precision criteria and discuss how they affect these results. Until then,

to improve readability, we use the generic term ‘precision’ in the text to also refer to supermodular

precision whenever it does not generate ambiguity.

The first result is that more precision raises the efficiency of the allocation. We show that

increasing the precision of the information structure increases the surplus of the allocation summa-

rized by the expected valuation of the winning bidder. Hence, if granting access to information is

costless, then it is efficient to give full access to all available information. If granting access is costly,

then there is a trade-off between increasing the surplus from the allocation versus increasing costs.

The second result is that private and social incentives for the provision of information are

not aligned. The auctioneer faces two opposing forces when deciding the precision of the signals:

more precision improves the efficiency of the allocation, which increases expected revenues, while

also increasing informational rents, which reduces them. Informational rents increase the cost of

providing information, and the auctioneer optimally chooses an inefficient level of sm-precision.

The third result is that information and competition are complements in the following sense:

total surplus and the auctioneer’s expected revenue are supermodular in the number of bidders

and the informativeness of the information structure in terms of sm-precision. This implies that

the socially efficient and the auctioneer’s optimal choice of sm-precision are increasing in the level

of competition measured in terms of the number of bidders in the auction. We now provide the

intuition behind this complementarity.

Total surplus is determined by the expenditure on information and the match between the

characteristics of the object and bidder preferences. An extra bidder increases the marginal value

of information since for any level of expenditure this extra bidder can generate additional efficiency

gains from the information.

Expected revenue is total surplus minus informational rents of the winning bidder. Private
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incentives to provide information increase with competition, because competition increases the

benefits of information (the efficiency of the allocation) and reduces its costs (informational rents).

This complementarity does not imply that providing information to the market is always valuable to

the auctioneer. With two bidders, the negative effect of information (increased informational rents)

overwhelms the gains from a better match, and the value of providing information is negative. As

the number of bidders increases, information eventually becomes valuable. Thereafter, the precision

of the information structure chosen by the auctioneer increases with competition. Finally, we show

that as the number of bidders goes to infinity, informational rents disappear. Consequently total

surplus and expected revenues converge and so do the optimal and the efficient levels of information.

1.1 Related Literature

The problem of information revelation by the auctioneer has been studied by Milgrom and We-

ber (1982) in an affiliated values setting. They establish the celebrated linkage principle. According

to the linkage principle, the expected-revenue-maximizing policy for the auctioneer is to commit to

fully and publicly announce all information he has. Ottaviani and Prat (2001) extend the logic of

the linkage principle to a market setting. A price-discriminating monopolist would like to commit to

publicly announce information that is affiliated with buyer valuations. Our results are very different

since in the affiliated values setting bidders react symmetrically to information, while in the private

value setting bidders react asymmetrically to information—valuations instead of moving together,

become more disperse.

The basic idea that information in private value settings increases the differences between bid-

ders, which generates informational rents, already appears in Lewis and Sappington (1994)’s pio-

neering study of information revelation by a monopolist. In Lewis and Sappington (1994), buyers’

preferences over the monopolist’s product are heterogenous. The monopolist chooses how much

information to provide to buyers using a simple family of information structures. The information

provided spreads out the distribution of consumer valuations, increasing the valuation of high-value

buyers and informational rents. This leads the monopolist to select an all-or-nothing information
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strategy.

While Johnson and Myatt (forthcoming) study the problem of a monopolist’s advertising and

marketing decisions in a market setting, we consider their methodological approach to be the one

closest to ours. As in this paper, Johnson and Myatt (forthcoming) focus on the link between the

seller’s supply of information and the shape of the distribution of buyers’ expected valuations. In

Johnson and Myatt, if consumers react asymmetrically to information (advertising) provided by the

monopolist, the distribution of consumer valuations becomes more disperse, generating a rotation of

the demand curve. They show that these rotations generate a convexity in the monopolist’s profits

which explains the optimality of the monopolist’s extreme choices in Lewis and Sappington (1994).

Our paper provides a general analysis of the link between information and dispersion. In particular,

we present three novel informativeness criteria based on different notions of dispersion, one of which

(SC-dispersion) is akin to Johnson and Myatt’s notion of a rotation. SC-dispersion provides the

basis for an informativeness criterion, single-crossing precision. We show that, as a rotation is useful

in understanding the problem of costless provision of information in a market setting, single-crossing

precision is useful in an auction setting. Moreover, we determine that single-crossing precision is not

implied by the standard informativeness criteria, and that in order to obtain comparative statics

results with costly provision of information we need a stronger precision criterion.

The findings of Lewis and Sappington (1994) have their counterpart in private value auctions.

Recently, Bergemann and Pesendorfer (2003), Ganuza (2004) and Board (2005) show that the

asymmetric reaction of bidders to information in private value settings may lead the auctioneer

to optimally withhold information.2,3 Our informativeness criteria could be used to extend previ-

ous analysis of the seller’s information revelation decision with a much larger set of information

structures. We use it to provide a general treatment of the auctioneer’s problem in the symmetric

2Board (2005) shows that even if bidders react symmetrically to information but with different sensitivities, the
possibility that the ranking of bidders may change can lead the auctioneer to prefer not to release any information.

3An alternative approach, pursued in Eső and Szentes (2005), is to assume that the auctioneer can fully commit to
provide any given level of information precision and charge bidders for it, prior to actually revealing any information.
Thus, the auctioneer can extract all the informational rents ex-ante and the tradeoff in Lewis and Sappington (1994)
vanishes.
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case.

In the current paper, the auctioneer provides information symmetrically—bidders receive pri-

vate signals with the same precision. In contrast, Bergemann and Pesendorfer (2003) consider the

possibility of discriminating between bidders and find that some degree of discrimination may be

optimal. Another difference with Bergemann and Pesendorfer (2003) is that in that paper the

auctioneer designs the optimal information structure, which turns out to be representable by asym-

metric partitions, that are difficult to rank in terms of informativeness. In contrast, we have the

usual setup where the auctioneer chooses from a family of indexed information structures ordered in

terms of informativeness, as in Bergemann and Välimäki (2006)’s survey of the role of information

in mechanism design, as well as in Persico (2000) and Bergemann and Välimäki (2002).

The current paper uses the standard approach to modeling the provision of information, i.e. via

private signals correlated with uncertain valuations. As Bergemann and Pesendorfer (2003) point

out, this way of modeling is consistent with situations where the seller publicly reveals information

about the characteristics of the object/product and buyers combine it with their preferences to

determine their valuations. These valuations are private information to buyers, because they are

the only ones who know how what is known about the object matches with their preferences.

Ganuza (2004) follows this approach in a Salop setting where an auctioneer sells a good to bidders

who are located on a circle according to a uniform distribution, and he finds similar comparative

static results to ours.

The paper proceeds as follows: Section 2 formulates the model. Section 3 discusses our approach

to ordering information structures and introduces the notion of supermodular-precision. Section 4

contains the main economic results concerning information revelation and competition in private

value auctions. In Section 5 we study the link between information and dispersion: alternative preci-

sion criteria are presented and their relationship with existing informativeness criteria is established.

This section is followed by the conclusion. All proofs are relegated to a technical appendix.
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2 The Model

An auctioneer wants to sell an object he values at zero to one of n (ex-ante) identical risk-neutral

bidders (indexed by i = 1, . . . , n). Bidders’ valuations of the object are private and uncertain.

Bidder i’s realized valuation after the auction is described by a random variable, Vi. For all i =

1, . . . , n, Vi is independently distributed on V = [0, 1] according to a common distribution H(v) =

Pr(Vi ≤ v) with mean µ.

The utility obtained by bidder i from winning the auction is linear. If the realized valuation is

vi and he makes a monetary payment of ti, the utility obtained is given by

ui(vi, ti) = vi − ti.

All bidders start with identical priors, described by H, and no other information on the object.

Hence, their expected valuations of the object will be the same and equal to µ.

The auctioneer can supply information prior to the auction. The production of information is

costly. By paying an amount δ ∈ [0,∞) the auctioneer will generate information which bidders

receive in the form of private signals (Xi)
n
i=1. A higher δ generates more informative signals and δ

is public information to all bidders.

Signals are independent and identically distributed random variables. We assume that these

signals are drawn from the space of signals, X ⊆ R, and for each i = 1, . . . , n, Xi is informative

only about bidder i’s own true and uncertain valuation of the object, vi, and bidder i observes the

private signal Xi and no other.

By choosing how much to spend on supplying information, the auctioneer determines the infor-

mation structure, where an information structure is a joint distribution, Fδ, over signals, (Xi)
n
i=1

and valuations (Vi)
n
i=1, indexed by δ—we postpone until the next section, Section 3, exactly how a

greater expenditure on supplying information translates into greater informativeness.

By symmetry and independence, the joint distribution can be characterized using the distribution
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Fδ(v, x) = Pr(V ≤ v,X ≤ x) as follows:

Fδ (V1 ≤ v1, . . . , Vn ≤ vn, X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

Fδ(vi, xi)

We leave out the i subscripts on signals and valuations whenever they are clear from the context.

With a slight abuse of notation, let Fδ(x) denote the marginal distribution of X. As priors have to

be consistent with the joint distribution, the marginal distribution of V is equal to the prior H(v).

We will be comparing the effect of different levels of investment on information, and this requires

that the signals generated by different information structures be comparable. This is done by

transforming the realized signal Xi into a new random variable, Πi, using the probability integral

transformation: Πi = Fδ(Xi). Then, Xi = F−1
δ (Πi), where F−1

δ is the right-continuous inverse of

the marginal distribution Fδ(x). We will assume that all random variables are non-trivial. The

new signal, Πi, has the same informational content as Xi so that we can use Πi’s instead of Xi’s.

More importantly, the marginal distribution of Πi has a very useful property: it is the uniform

distribution on [0, 1] and independent of δ. Let Fδ(π|v) and Fδ(v|π) be the conditional distributions,

where Fδ(v|π) = Pr(V ≤ v|X = F−1
δ (π)).

After the auctioneer has released the information, the awarding process takes place. To partic-

ipate in this process, each bidder combines his knowledge of δ and the realization of the private

signal, πi, to update his expected valuation of the object E[vi|πi, δ] (also referred to as the interim

valuation and denoted Wi(πi, δ)) using Bayes’ rule. The auctioneer sells the object using a second-

price sealed-bid auction. The choice of the second price auction as the awarding mechanism is done

without loss of generality as long as the conditions for the revenue equivalence theorem are present.

We abstract from reserve prices and assume that the object is always sold, so that the second price

auction (as well as all standard auctions) is the optimal mechanism.4 Summarizing, the model is

structured as follows:

1. Everyone starts with common priors over bidders’ uncertain valuations for the object.

4Ganuza and Penalva (2004) study the introduction of a reserve price using a parameterized family of information
structures. The possibility of using a reserve price gives the auctioneer an additional tool to control bidders infor-
mational rents. This raises his incentives to provide information and the optimal level of informativeness increases.
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2. Prior to the auction, the auctioneer, knowing the number of bidders, n, chooses δ. This

decision becomes public information.

3. Given δ, each bidder receives a private signal πi over his valuation, and updates his valuation

of the object.

4. The second-price sealed-bid auction takes place.

We now define and discuss what it means for the auctioneer to provide more information.

3 Supermodular Precision

Given any δ > 0, signals are informative about valuations, V . We formalize this by assuming that

given two (transformed) signals π′, π ∈ [0, 1], such that π > π′, receiving the larger signal, π, is good

news in the sense of Milgrom (1981).5 We assume that this condition holds for all pairs of signals

and in every information structure throughout the paper. This implies that the agent’s interim

(expected) valuations, Wi(π, δ), are a nondecreasing function of the realization of the signal, π.

Having established that for δ > 0 signals are informative about valuations we now turn to for-

malize how a higher δ leads to more informative signals. The primary approach to defining the

informativeness of a structure, Fδ, is based on the pioneering work of Blackwell. Blackwell (1951)

considers the decision problem of an individual who has to choose an action based on the realiza-

tion of the signal. He defines a signal structure, Fδ, to be more informative than another, Fδ′ ,

if every decision maker prefers Fδ to Fδ′ , and shows it is equivalent to the statistical notion of

sufficiency. Subsequently weaker informativeness criteria (Lehmann (1988), Jewitt (1997), Athey

and Levin (2001)) focus on when all decision makers in a particular class (those with supermodular

payoff functions, with single-crossing incremental returns, etc.) prefer Fδ to Fδ′ . Our problem is dif-

ferent. The auctioneer will take no additional actions after choosing the information structure—the

auction mechanism takes over. The auctioneer cares about how changes in δ affect the distribution

5For all π > π′, the posterior distribution of v conditional on π, Fδ(v|π), dominates the posterior distribution of
v conditional on π′, Fδ(v|π′), in the sense of First Order Stochastic Dominance (FOSD): Fδ(·|π) ≥st Fδ(·|π′), (that
is Fδ(v|π) ≤ Fδ(v|π′) for all v ∈ V).
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function of updated expected valuations, which will determine price and allocations through the

auction mechanism.

Let Π be a random variable uniformly distributed on [0, 1]. The random variable W (Π, δ)

represents bidders’ updated expected valuations after having observed a signal from an information

structure indexed by δ. By choosing an information structure with more informative signals (a

higher δ), the distribution of W (Π, δ) will become more spread out.6 Intuitively, this is because the

updated expected valuation combines the realization of the signal with the prior and assigns more

weight to the signal if it is a more accurate estimate of the true valuation. Then, more informative

signals lead to updated expected valuations which are more sensitive to the realization of the signal,

and hence, to a more spread out distribution of W (Π, δ).

While all previous informativeness criteria lead to a more spread out distribution of W (Π, δ),

our informativeness criteria are defined by requiring that this spreading out takes place in a specific

way. The first of such criteria, supermodular-precision, orders information structures when the

distribution of expected valuations generated by each of the information structures can be ordered

according to Bickel-Lehmann dispersion:

Definition 1 (Bickel-Lehmann (1976)) A random variable X with cumulative distribution func-

tion F is said to be more Bickel-Lehmann disperse than another random variable Y with cumulative

distribution function G, if for all q, p ∈ [0, 1], q > p

F−1(q)− F−1(p) ≥ G−1(q)−G−1(p).

Bickel-Lehmann dispersion defines an ordering over distribution functions which implies further

orderings of the distributions of their first and second order statistics, two crucial variables in our

analysis.7,8

6Consider extreme cases: with no information the distribution of expected valuations is concentrated at the
expected value, µ; if valuations were revealed perfectly, the distribution of expected valuations would be the true
distribution of valuations.

7For an overview of results relating dispersion and order statistics see Shaked and Shantikumar (1994).
8Despite the importance of dispersion in statistics, Bickel-Lehmann dispersion has been used rarely in eco-

nomics. An interesting application of this concept to the problem of income inequality can be found in Eckwert
and Zilcha (2005).
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Then, an information structure, Fδ, is more informative, in the sense of supermodular-precision

(sm-precision), than another, Fδ′ , if the distribution of updated expected valuations from Fδ is

more Bickel-Lehmann disperse than that from Fδ′ . The criterion of supermodular precision owes

its name to the fact that its definition can be most conveniently expressed using the familiar notion

of supermodularity:

Definition 2 (SM-Precision) The information structure Fδ is more informative in terms of sm-

precision than Fδ′ iff ∀π, π′ ∈ [0, 1], π > π′,

W (π, δ)−W (π′, δ) ≥ W (π, δ′)−W (π′, δ′),

The intuition is that more information in terms of sm-precision increases the slope of expected

valuations as a function of π (as depicted in Figure 1).

π

V W(π,δ')

W(π,δ)

Figure 1: Precision and expected valuations

When comparing two signals from the same information structure, we said that a higher signal

is better news than a low signal because it raises bidder’s expected valuations. As W (π, δ) and

W (π, δ′) cross, we can think of increasing sm-precision as making low signals worse news and high
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signals better news.9

Economists are more familiar with a different and yet related notion of ‘spread out’ distributions:

Second Order Stochastic Dominance (SOSD).10 Dispersion is a stronger condition than SOSD:

Remark 1 Let Fδ be more informative in terms of sm-precision than Fδ′, then W (Πi, δ) is domi-

nated by W (Π′
i, δ

′) in the sense of SOSD.

To illustrate our concept, we look at two families of information structures that are ordered

according to sm-precision and are commonly used in the existing literature.

Example 1: Let V be normally distributed with mean µ and variance σ2
v, and let the distribution

of the signal, X, conditional on the true valuation, v, be the realization of the valuation v plus a

noise term, εδ, which is normally distributed with mean zero and variance σ2
δ . The variance of the

noise term orders these information structures in the usual way: the information structure with

lower variance of the noise term is more informative in terms of sm-precision.

Example 2: Let V be distributed according to the prior distribution H(v) with mean µ. The

signal, X, represents the bidder’s valuation V , but the signal reveals the truth, i.e. v = x, with

probability δ, and with the complementary probability the signal is false. We assume that when the

signal is false it is pure noise, distributed according to the prior, H(v), and independently of v. Thus,

for all values of δ, the signal, X, is distributed according to H(v). An increase in δ, the probability

that the signal reveals the truth, leads to greater informativeness in terms of sm-precision.

In the Appendix, we characterize sm-precision further by providing a sufficient condition for

greater informativeness in terms of sm-precision based on the properties of the joint distribution

function of signals and valuations. In the next section, we use sm-precision to study the auctioneer’s

information revelation problem.

9The law of iterated expectations implies E[W (Π, δ)] = E[W (Π, δ′)] = µ, so that if W (π, δ) and W (π, δ′) were
differentiable, they would cross at a single point (as in Figure 1). In general, W (π, δ)−W (π, δ′) is monotone increasing
and changes sign once.

10In section 5, we use SOSD to characterize a novel informativeness criterion (integral-precision). The formal
definition of SOSD is presented there.
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4 Releasing Information

In this section, we will use the sm-precision criterion to study social and private incentives to release

information, and how they are affected by competition.

4.1 The Efficient Release of Information

The efficient level of sm-precision is that which maximizes total surplus at the time of the information

release. In our setup, total surplus is defined as the sum of the auctioneer’s revenue and the expected

interim utility of the bidder with the highest expected valuation at the time of the auction. As the

price paid for the object is a pure transfer from the auctioneer to the winning bidder, total surplus is

the expected valuation of the object by the winning bidder minus the cost of providing information.

We first focus on the expected valuation of the winning bidder.

Denote the highest realization of the signal by x1, so that π1 ≡ Fδ(x1). The winner of the auction

will be the bidder receiving π1 so that his expected valuation is: V1(n, δ) = E[W (Π1, δ)]—the

notation makes explicit the number of bidders as we shall be studying the effect of changing n. Let

U1:n(p) be the cumulative distribution function of the first order statistic of n independent uniform

random variables on [0, 1]. Because the transformed signals Πi are independent and uniformly

distributed on [0, 1], U1:n(p) is the cumulative distribution function of Π1 and

V1(n, δ) =
∫ 1

0
W (p, δ)dU1:n(p)

As the auctioneer increases the precision of the information structure this expectation increases:

Theorem 1 The expected valuation of the winning bidder is nondecreasing in the informativeness

of the information structure in terms of sm-precision, δ.

Hence, we can compare the expected surplus generated from the allocation (the expected val-

uation of the winning bidder) under two different structures ordered in terms of sm-precision: the

more precise information structure generates greater surplus. In Section 5 we will consider weaker

precision criteria, the weakest of which (based on SOSD) is implied by all standard informativeness
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criteria. Theorem 1 holds using the weakest precision criterion. The intuition behind this result is

that more information improves the matching between the features of the object and the preferences

of the winning bidder (and hence the expected surplus).

Theorem 1 implies that if the provision of information is costless, it is efficient to release all

available information. With costly information, the trade-off faced when choosing the efficient level

of precision, δE, is between increasing the efficiency of the allocation and increasing the costs of

providing information:

δE ∈ argmax
δ

V1(n, δ)− δ (1)

The next theorem states the relationship between the efficient level of sm-precision and the level

of competition.

Theorem 2 Total surplus is supermodular in the informativeness of the information structure in

terms of sm-precision, δ, and the number of bidders, n.

Theorem 2 states that the difference in terms of expected surplus between two information

structures ordered in terms of sm-precision is larger the larger the number of bidders. So that

the larger the number of bidders, the larger the social value of information. The intuition is that

having more draws from the pool of bidder preferences increases the social incentives to improve the

matching between the object and bidder preferences by increasing precision. Consequently, with

fiercer competition it is efficient to spend more on the provision of information.

Corollary 1 The efficient level of sm-precision, δE, is nondecreasing in the number of bidders.

4.2 The Auctioneer’s Optimal Information Release

Having characterized the efficient level of sm-precision, we now turn to the auctioneer’s problem:

choosing the level of precision so as to maximize expected revenue from the auction.

Let x2 denote the second-highest signal, so that π2 ≡ Fδ(x2). The price in the second-price auc-

tion is determined by the bidder receiving π2. Thus, the expected price is: V2(n, δ) = E[W (Π2, δ)].
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Let U2:n(p) be the cumulative distribution function of the second order statistic of n independent

uniform random variables on [0, 1]. U2:n(p) is the cumulative distribution function of Π2. The

expected price in the auction is:

V2(n, δ) =
∫ 1

0
W (p, δ)dU2:n(p),

Theorem 1 shows that increasing the precision of the information structure always improves effi-

ciency. The effect of increasing precision on the expected price depends on the level of competition.

Proposition 1 Suppose δ > δ′, (i) for n = 2, the expected price is nonincreasing in the informa-

tiveness of the information structure in terms of sm-precision, V2(2, δ) ≤ V2(2, δ
′). On the other

hand, (ii) for all δ′ < δ, there exists n′ such that for all n > n′, the expected price is nondecreasing

in the informativeness of the information structure in terms of sm-precision, V2(n, δ) ≥ V2(n, δ
′).

Notice that if the number of bidders is small enough, increasing the precision of the information

structure can reduce the expected price. Then, even if information is costless, the auctioneer

prefers not to release any information. Eventually, when the number of bidders is sufficiently high,

information becomes valuable to the auctioneer.11 The intuition behind this result comes from

two effects of increasing precision on the price: it increases the willingness to pay by the winning

bidder, which increases the price, but it also increases informational rents, which lower the price.

We proceed to demonstrate this second effect.

The expected informational rents of the winning bidder, Rw(n, δ), are the difference between the

expected valuation of the winning bidder and that of the bidder with the second highest realization

of the private signal:

Rw(n, δ) = V1(n, δ)− V2(n, δ)

Proposition 2 The expected informational rents of the winning bidder are nondecreasing in the

informativeness of the information structure in terms of sm-precision, δ.

11A related result can be found in Board (2005). He shows that the auctioneer, when deciding whether or not
to provide information an additional piece of information, will always choose not to reveal it if there are only two
bidders. He also shows that as the number of bidders goes to infinity, the information will be revealed.
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Greater sm-precision makes the distribution of expected valuations more disperse, i.e. it makes

bidders more heterogeneous, which translates into higher informational rents for the winning bid-

der.12

The auctioneer’s problem is to choose the level of precision, δA, that maximizes his expected

revenue, i.e. the difference between the expected price and the cost of providing more information:

δA ∈ argmax
δ

V2(n, δ)− δ, (2)

We find that, as in the problem of maximizing total surplus, there is a complementarity between

the level of sm-precision and the number of bidders.

Theorem 3 The auctioneer’s expected profits are supermodular in the informativeness of the in-

formation structure in terms of sm-precision, δ, and the number of bidders, n.

The difference between the expected profits generated by two information structures ordered in

terms of sm-precision is larger the larger the number of bidders. Therefore, more bidders increase

the incentives of the auctioneer to provide information.

Corollary 2 The optimal level of sm-precision, δA, is nondecreasing in the number of bidders, n.

4.3 Optimal vs. Efficient Provision of Information

Finally, we compare private incentives to provide information with social ones.

Theorem 4 The optimal level of informativeness of the information structure, in terms of sm-

precision, is lower than the efficient level: δA ≤ δE. The difference between the efficient and the

optimal level converges to 0 as the number of bidders goes to infinity.

12Our results are linked to the relationship between the Bickel-Lehmann dispersive order and order statistics. In
particular, Proposition 2 can be proven using Theorem 2.B.15 in Shaked and Shantikumar (1994), which says that
if one random variable, X, is more Bickel-Lehmann disperse than another, Y , the difference between the first and
second order statistic from a sample of n independent draws of X stochastically dominates the same difference from
a sample of n draws of Y . Our strategy for proving results on information in auctions does not make explicit use of
the properties of the dispersive order over order statistics. This allows us to explore weaker dispersion criteria and to
obtain results related to the relationship between Bickel-Lehmann dispersive order and the distribution of first and
second order statistics, that as far as we know, cannot be found in the statistics literature.
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To better understand this result, rewrite the auctioneer’s problem:

δA ∈ argmax
δ

V1(n, δ)− δ −Rw(n, δ)

This formulation clarifies the trade-off faced by the auctioneer when providing information to the

market. On the one hand, when the auctioneer increases precision, the efficiency of the allocation

goes up (V1(n, δ) is nondecreasing in δ – Theorem 1). On the other hand, the increase in precision

also raises the informational rents of the winning bidder (Rw(n, δ) is nondecreasing in δ—Proposition

2). The optimal balance of these two opposing effects leads the auctioneer to provide lower precision

than would be efficient. In other words, the auctioneer will restrict the information released to

the market in order to make bidders more homogeneous, with the underlying goal of intensifying

competition and increasing his expected revenue.

Competition increases the positive effect of precision on expected revenues, increasing the effi-

ciency of the allocation, while it reduces the negative effect, informational rents. The compounded

effect is to increase the incentives of the auctioneer to reveal information so that as the number of

bidders increases so does the optimal amount of precision. In the limit, as the number of bidders

goes to infinity, informational rents disappear and with them the difference between the efficient

and the optimal level of sm-precision.

5 Weaker Precision Criteria

In this section, we introduce weaker precision criteria, compare them with standard informativeness

criteria, and discuss how previous results are affected by using informativeness criteria other than

sm-precision.

Precision criteria establish that an information structure is more informative than another

if it leads to a more disperse distribution of expected valuations. Our central criterion, sm-

precision, requires that the distribution of expected valuations must be ordered in the sense of

Bickel-Lehmann dispersion. To define additional informativeness criteria we consider alternative

dispersive orders. We concentrate on: single-crossing dispersion (related to the idea of ‘more dan-
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gerous’13 random variables), and Second Order Stochastic Dominance (SOSD).

Consider two random variables, X with cumulative distribution function F , finite mean and

support on A ⊆ R, and Y with cumulative distribution function G, finite mean and support on

B ⊆ R.

Definition 3 (SC-Dispersion) X is dominated in terms of single-crossing dispersion by Y, if for

all z and z′ ∈ R, z > z′

F (z′)−G(z′) ≤ (<) 0 =⇒ F (z)−G(z) ≤ (<) 0

Definition 4 (SOSD) X is dominated in terms of second order stochastic dominance (SOSD) by

Y , if the expected value of X is the same as that of Y and for all z ∈ R

∫ z

−∞
F (x)dx ≥

∫ z

−∞
G(x)dx.

In the same way we have used Bickel-Lehmann dispersion to define sm-precision, we can de-

fine single-crossing precision and integral-precision using single-crossing dispersion and SOSD: an

information structure, Fδ, is more single-crossing precise (integral-precise) than another, Fδ′ , if the

distribution of updated expected valuations from Fδ dominates according to single-crossing disper-

sive order (SOSD) that from Fδ′ . As with sm-precision, sc-precision and integral precision can be

most conveniently expressed using the expected valuation function:14

Definition 5 (SC-Precision) The information structure Fδ is more informative in terms of single-

crossing precision than Fδ′ iff ∀π, π′ ∈ [0, 1], π > π′,

W (π′, δ)−W (π′, δ′) ≥ (>) 0 =⇒ W (π, δ)−W (π, δ′) ≥ (>) 0.

13The concept of dispersion based on cumulative distribution functions that cross once appears in Karlin and
Novikoff (1963). The concept is very seldom used and the nomenclature comes from actuarial science (where the
notion was introduced by Ohlin (1969)). The notion of a rotation introduced in Johnson and Myatt (forthcoming)
is a smooth version of single-crossing cdf’s. .

14The relationship between dispersive orders and differences in expected valuation functions is based on the the
fact that if we let F be the cumulative distribution functions of W (Π, δ), then F (v) is the inverse of W (π, δ), i.e.
F (v) = π iff v = W (π, δ). Based on this fact, one can derive the equivalence between using dispersive orders on the
distributions of expected valuations and using properties of the expected valuation function.

18



Definition 6 (Integral-Precision) The information structure Fδ is more informative in terms

of integral-precision than Fδ′ iff ∀π ∈ [0, 1]

∫ π

0
(W (p, δ)−W (p, δ′)) dp ≤ 0

Just by simple inspection of the definitions of sm-precision and sc-precision, we can conclude

that sm-precision is a stronger order than sc-precision. Given that E[W (Π, δ)] = E[W (Π, δ′)] = µ,

we obtain
∫ 1
0 (W (p, δ)−W (p, δ′)) dp = 0, which leads to the conclusion that sc-precision implies

SOSD. Hence, our informativeness criteria are ordered: sm-precision implies sc-precision, which

implies integral-precision-15

5.1 Precision and Standard Informativeness Criteria

As discussed above, standard informativeness criteria are based on the value of information for an in-

dividual decision maker (Blackwell (1951), Lehmann (1988), Jewitt (1997), Athey and Levin (2001)).

Athey and Levin (2001) present necessary and sufficient conditions for all decision makers with dif-

ferent classes of payoff functions to prefer one information structure over another. If we restrict

attention to the class of decision makers with nondecreasing incremental returns, the necessary

and sufficient condition is denoted the MIO-ND condition.16 Blackwell’s notion is sufficient for

information to be valuable for all decision makers which makes it stronger than both Athey and

Levin’s and Lehmann’s. Also, for two information structures to be ordered in terms of Lehmann’s

informativeness criterion they have to satisfy the condition:

γ̂(v, π) = F−1
δ (Fδ′(π|v)|v) is nondecreasing in v, for each π,

15We could obtain this result also by comparing the dispersion orders. In our setting in which we can concentrate
in comparing random variables with the same mean, it can be shown that Bickel-Lehmann dispersion implies single-
crossing dispersion, which implies SOSD.

16We use the following version of the MIO-ND condition in Athey and Levin (2001):

Definition 7 (MIO-ND) The information structure Fδ is more informative than Fδ′ according to MIO-ND if for
all v ∈ V and π ∈ [0, 1], Fδ′(v|X ≤ F−1

δ′ (π)) ≤ Fδ(v|X ≤ F−1
δ (π))
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and this implies the MIO-ND condition, which makes Athey and Levin’s the weakest informativeness

criterion.17

We can now relate these notions of information with the conditions stated above.

Proposition 3 (i) Blackwell’s informativeness criterion does not imply signals are more sc-precise,

and (ii) MIO-ND implies signals are more integral-precise.

Hence, none of the standard notions of informativeness imply sc-precision, and all standard

notions of informativeness imply integral-precision.

5.2 Weakening Informativeness and PV Auctions

We have assumed that the provision of information is costly. Then we know (from Milgrom and

Shannon (1994)) that to ensure the quasisupermodularity of total surplus and expected revenue,

we need supermodularity of the functions V1(n, δ) and V2(n, δ). Among our three precision criteria

(sm-precision, sc-precision and integral-precision), only the strongest one, sm-precision, ensures

the supermodularity of V1(n, δ) and V2(n, δ). However some comparative static results can be

obtained using sc-precision and integral-precision in a framework where the provision of information

is costless.

If a higher δ only implies the information structure is more integral-precise, Theorem 1 holds.

Hence, in a setup with costless provision of information, the efficient policy is full information

disclosure. The results of Proposition 1 are also valid: if the number of bidders is two, information

has a negative value, and eventually, when there is sufficient competition, information becomes

valuable. Also, Theorem 4 holds: as the efficient information revelation strategy is full disclosure,

and information may lower the expected price the incentives of the auctioneer to provide information

will be weakly lower than the efficient ones. Furthermore, from the second part of Proposition 1

it follows that both the efficient and the optimal level of information converge as the number of

bidders goes to infinity.

17The proof is in Athey and Levin (2001), in the proof of Proposition 3.
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The notion of sc-precision adds on integral-precision. With sc-precision the optimal amount of

information provided by the auctioneer is weakly monotonic in the number of bidders—this follows

from the property that with sc-precision, for δ > δ′, V2(n, δ)− V2(n, δ
′) is single-crossing.

6 Conclusions

This paper provides a novel approach to ordering information structures which is specially suited

to problems of information revelation in private value settings. In such settings, new information

will be perceived differently by different people, raising the valuations of some while reducing that

of others, which leads to a more spread out distribution of expected valuations. The core idea of

the paper is to use this fact to build a family of informativeness criteria: an information structure

is more informative than another if it leads to a more disperse distribution of expected valuations.

More stringent notions of dispersion will lead to stronger informativeness criteria.

We focus on three ordered concept of dispersion (Bickel-Lehmann dispersion � single-crossing

dispersion� SOSD) and use them to characterize three ordered informativeness criteria (Supermodular-

precision � Single-crossing precision � Integral precision). We then apply this family of informa-

tiveness criteria to the auctioneer’s information revelation problem.

The weakest of our criteria, integral-precision, which is defined using second order stochastic

dominance, has the important feature that it is implied by all standard informativeness criteria. In

addition, integral-precision allows us to obtain two important comparative static results with costless

provision of information: (i) if an information structure is more integral-precise than another, it will

generate a greater surplus, and (ii) if there are two bidders, the auctioneer obtains a lower expected

price when choosing a more integral-precise information structure, and greater integral-precision

leads to a greater expected price if there is enough competition. Hence, if providing information is

costless, integral-precision implies that the auctioneer’s incentives to provide information are lower

than the social ones since the efficient policy is full information disclosure and information may

reduce the price. If there is enough competition, the incentives to provide information will be

positive and, in the limit, social and private incentives will coincide.
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The criterion of single-crossing precision is not implied by any of all standard informativeness

criteria. This criterion adds to the results obtained with integral-precision by establishing that the

incentives of the auctioneer to provide information increase with the number of bidders.

Our central notion of informativeness and the strongest one, sm-precision, allows us to obtain

comparative statics results with costly provision of information. Information increases bidders’

informational rents, and leads the auctioneer to optimally provide information to the market below

that which is efficient. We also show that there is a strategic complementarity between information

and competition, so that both the efficient level of investment in providing information to the market

and the auctioneer’s optimal investment increase with the number of bidders. We can also show

that both converge as the number of bidders goes to infinity.
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A Appendix

A.1 A Sufficient Condition For Greater Supermodular-Precision

Supermodular-precision is based on the shape of the distribution of updated expected valuations. In

some cases this condition can be verified directly but at times, such as when looking at parameterized

families of bivariate distributions, one might prefer to use an informativeness condition based on

some property of the joint distribution function of signals and valuations.

In this section we identify one such condition that implies sm-precision. This condition is a mirror

image of Lehmann (1988)’s notion of effectiveness and can be found in the statistics literature on

positive dependence:18

Definition 8 (Capéraà and Genest (1990)) Let Fδ and Fδ′ be two joint distribution functions

with posterior distribution functions Fδ(v|π) and Fδ′(v|π). The distribution function Fδ is more

stochastically increasing in π than Fδ′, if the function:

γ(v, π) = F−1
δ (Fδ′(v|π)|π) is nondecreasing in π. (3)

If Fδ(v|π) and Fδ′(v|π) are continuous in v for all π, then γ(v, π) is increasing in π and is

equivalent 19 to the following single-crossing condition: for all π′ < π, v, v′ ∈ V ,

Fδ′(v|π′) ≥ Fδ(v
′|π′) ⇒ Fδ′(v|π) ≥ Fδ(v

′|π)

Notice that Condition (3) appears in Lehmann (1988)’s definition of effectiveness but with

valuations and signals interchanged.20

If, in addition, Fδ(v|π) is differentiable in δ and v, then greater sm-precision is also equivalent

18Positive dependence between two variables is the property that larger realizations of one variable are probabilis-
tically associated with larger realizations of another.

19See Fang and Joe (1992).
20Lehmann’s definition of effectiveness also includes the requirement that both Fδ and Fδ′ have the monotone

likelihood ratio property.
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to the Spence-Mirrlees type condition:21

∂Fδ(v|π)/∂δ

∂Fδ(v|π)/∂v
is nondecreasing in π. (4)

Proposition 4 Suppose Fδ(v|π) and Fδ′(v|π) are differentiable in δ and v. If Fδ is more stochas-

tically increasing in π than Fδ′, then Fδ is more informative, in terms of sm-precision, than Fδ′.

Proof:

If Fδ is more stochastically increasing in π than Fδ′ , then the Spence-Mirlees type condition (4)

holds (Jewitt(1997), Section 5.4). Following an argument presented in LiCalzi (2005):

∂

∂δ
W (π, δ) =

∂

∂δ

∫
V
(1− Fδ(v|π))dv

= −
∫
V

∂

∂δ
Fδ(v|π)dv

= −
∫
V

∂Fδ(v|π)/∂δ

∂Fδ(v|π)/∂v
dFδ(v|π)

As ∂Fδ(v|π)/∂δ
∂Fδ(v|π)/∂v

is decreasing in π, ∂W (π, δ)/∂δ is increasing in π, i.e. W (π, δ) is supermodular.

Summarizing, condition (3) can be interpreted as a mirror image of Lehmann’s effectiveness

condition, and is sufficient to ensure that two information structures are ordered in terms of the

sm-precision of their signals.

A.2 Definitions and Preliminary Result

We make repeated use of the following very well-known result, which we state as a lemma: if

X ≥st Y , then for all nondecreasing functions ψ, E[ψ(X)] ≥ E[ψ(Y )].

Lemma 1 Let X and Y be real-valued random variables with cumulative distribution functions F

and G respectively, such that F (z) ≤ G(z) for all z ∈ R. For all bounded real-valued nondecreasing

functions ψ : R → R, ∫
R
ψ(z)dF (z) ≥

∫
R
ψ(z)dG(z)

21Jewitt (1997) gives a detailed comparison of different notions of informativeness and illustrates the connection
between the standard Spence-Mirrlees condition and Lehmann’s notion of effectiveness, which we use in the proof of
Proposition 4.
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We also use the following notation: Ui:j(x) is the cumulative distribution function (cdf) of a

random variable Y such that Ui:j(x) = Pr(Y ≤ x). This random variable is the ith order statistic

from a sample of j independently and identically uniform distributed random variables over [0, 1],

where U1:j refers to the cdf of the maximum of the sample, U2:j to the cdf of the second highest

realization in the sample and so on until Uj:j, which is the cdf of the minimum realization in the

sample. We will also make use of the functional form of U1:n, U1:n(π) = πn, π ∈ [0, 1].

A.3 Proofs

Proof of Remark 1:

Applying the law of iterated expectations: µ = E[E[v|X]] = E[W (Π, δ)] and µ = E[E[v|X ′]] =

E[W (Π′, δ′)]. IfX and Y , two random variables, have the same mean andX is more disperse than Y ,

then X is dominated by Y in terms of SOSD (Shaked and Shantikumar (1994), Theorem 2.B.10).

Proof of Theorem 1: We want to show that if δ > δ′ then V1(n, δ) ≥ V1(n, δ
′). This is equivalent

to showing ∫ 1

0
(W (π, δ)−W (π, δ′)) dU1:n(π) ≥ 0

By the law of iterated expectations, the expected valuation of the distribution of expected valuations,

E[W (π, δ)] = µ, must not depend on the information structure. Let U1:1(π) = π denote the

cumulative distribution function of the uniform. We can now write∫ 1

0
(W (π, δ)−W (π, δ′))dπ =

∫ 1

0
(W (π, δ)−W (π, δ′))dU1:1(π) = 0

Define the function ψ(π) ≡ (W (π, δ)−W (π, δ′)). By the definition of sm-precision, ψ(π) is nonde-

creasing in π. As U1:n(π) = πn ≤ U1:1(π) for all n ≥ 1 and π ∈ [0, 1], and ψ(π) is nondecreasing, we

can apply Lemma 1 and the result follows.

Proof of Theorem 2: It suffices to show that V1(n+ 1, δ)− V1(n, δ) ≥ V1(n+ 1, δ′)− V1(n, δ
′).

This is equivalent to showing

V1(n+ 1, δ)− V1(n+ 1, δ′) ≥ V1(n, δ)− V1(n, δ
′)
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⇔
∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n+1(π1) ≥
∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n(π1)

As W (π, δ)−W (π, δ′) is nondecreasing in π and U1:n+1(π) = πn+1 ≤ U1:n(π) = πn for all π ∈ [0, 1],

we can apply Lemma 1.

Proof of Corollary 1: Immediate from the results of Milgrom and Shannon (1994) and Theo-

rem 2.

Proof of Proposition 1:

Part (i): We want to show that if δ > δ′ then V2(2, δ) ≤ V2(2, δ
′). With two bidders and prior to

their receiving their private signals, both have the same probability (1
2
) of being the bidder with

the highest valuation. By the law of iterated expectations, the ex ante (before receiving the signal)

expected valuation of bidders must not depend on the information structure. We can conclude that

V1(2, δ) + V2(2, δ)

2
=
V1(2, δ

′) + V2(2, δ
′)

2
= µ

Hence, V1(2, δ)− V1(2, δ
′) = −(V2(2, δ)− V2(2, δ

′)). From Theorem 1, V1(2, δ)− V1(2, δ
′) ≥ 0, which

implies V2(2, δ)− V2(2, δ
′) ≤ 0.

Part (ii): We want to show that there exists n′ such that for n ≥ n′, V2(n, δ)−V2(n, δ
′) ≥ 0. It

suffices to show first that for all n, V2(n, δ)−V2(n, δ
′) is nondecreasing in n and then to demonstrate

that limn→∞ V2(n, δ)− V2(n, δ
′) > 0.

To show V2(n, δ) − V2(n, δ
′) is nondecreasing in n for all n we follow the same logic as in the

proof of Theorem 2:

V2(n+ 1, δ)− V2(n+ 1, δ′) ≥ V2(n, δ)− V2(n, δ
′)

⇔
∫ 1

0
(W (π, δ)−W (π, δ′))dU2:n+1(π) ≥

∫ 1

0
(W (π, δ)−W (π, δ′))dU2:n(π)

As W (π, δ)−W (π, δ′) is nondecreasing in π and U2:n+1(π) ≤ U2:n(π) for all π ∈ [0, 1], we can apply

Lemma 1.
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Finally, as n goes to infinity, U2:n converges to a distribution with mass only at π = 1. Thus,

V2(δ, n)− V2(δ
′, n) =

∫ 1

0
ψ(π)dU2:n(π)

converges to ψ(1) > 0.

Proof of Proposition 2:

We want to show that for δ > δ′, Rw(n, δ) ≥ Rw(n, δ′), i.e.

V1(n, δ)− V2(n, δ) ≥ V1(n, δ
′)− V2(n, δ

′)

This is equivalent to

V1(n, δ)− V1(n, δ
′) ≥ V2(n, δ)− V2(n, δ

′)

i.e., ∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n(π1) ≥
∫ 1

0
(W (π2, δ)−W (π2, δ

′))dU2:n(π2)

Again, using W (π, δ)−W (π, δ′) is nondecreasing in π and the stochastic dominance of the first

order statistic over the second, U1:n(π) ≤ U2:n(π) for all π ∈ [0, 1], we can apply Lemma 1.

Proof of Theorem 3: As in the proof of Theorem 2, it suffices to show that V2(n+1, δ)−V2(n, δ) ≥

V2(n+ 1, δ′)− V2(n, δ
′), and we have demonstrated this in the proof of Proposition 1, part (ii).

Proof of Corollary 2: Immediate from the results of Milgrom and Shannon (1994) and Theorem 3.

Proof of Theorem 4: The auctioneer’s problem is

δA ∈ argmax
δA

{V2(n, δ)− δ}

This problem is equivalent to

δA ∈ argmax
δA

{V1(n, δ)− δ −Rw(n, δ)}

where Rw(δ) is as defined in the text.
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Compare the formulation of the auctioneer’s problem to the formulation of the social welfare

maximization problem (equation (1)). As δA solves the auctioneer’s optimization problem

E[W (Π1, δ
A)− δA −Rw(δA)] ≥ E[W (Π1, δ

E)− δE −Rw(δE)]

Rw(δ) is nondecreasing (Proposition 2) so that if δA > δE, then this last equation would imply

E[W (Π1, δ
A)− δA] ≥ E[W (Π1, δ

E)− δE]

but this contradicts the fact that δE maximizes social surplus, so that δA ≤ δE.

To establish the second part of the Theorem, consider the informational rents, Rw(n, δ).

Rw(n, δ) = V1(n, δ)− V2(n, δ)

=
∫ 1

0
W (π, δ)dU1:n(π)−

∫ 1

0
W (π, δ)dU2:n(π)

=
∫ 1

0
W (π, δ)d(U1:n(π)− U2:n(π))

We know U1:n(π) = πn and U2:n(π) = nπn−1 − (n− 1)πn.

U1:n(π)− U2:n(π) = n(πn − πn−1)

⇒ lim
n→∞

U1:n(π)− U2:n(π) = 0

As W (π, δ) is bounded and monotone in π, and (U1:n(π)−U2:n(π)) converges to zero then Rw(n, δ)

also converges to zero

lim
n→∞

Rw(n, δ) = lim
n→∞

∫ 1

0
W (π, δ)d(n(πn − πn−1)) = 0

As information eventually becomes valuable, the objective function of the auctioneer approaches

total surplus as n goes to infinity.

Proof of Proposition 3:

Part (i): We proceed by constructing an example of two information structures ordered in the

sense of Blackwell (1951) which are not ordered in the sense of sc-precision.
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Let V be uniformly distributed on [0, 1]. Let X be equal to 0 if v ∈ [0, 1/2) and equal to 1 if

v ∈ [1/2, 1]. Similarly, let Y distributed as follows

Y =


0 if v ∈ [0, 1/4)
1 if v ∈ [1/4, 1/2)
2 if v ∈ [1/2, 3/4)
3 if v ∈ [3/4, 1]

Clearly Y is more informative than X in the sense of Blackwell so that the information structure for

(V, Y ), denoted Fδ, is more informative than that for (V,X), denoted Fδ′ , in the sense of Blackwell.

Nevertheless, E[v|X = 0] = 1/4 and E[v|X = 1] = 3/4, while

E[v|Y ] =


1/8 if Y = 0
3/8 if Y = 1
5/8 if Y = 2
7/8 if Y = 3

So that if X is the signal from Fδ′ and Y Fδ, then ψ(π) ≡ W (π, δ)−W (π, δ′) from equals

ψ(π) =


−1/8 if v ∈ [0, 1/4)
1/8 if v ∈ [1/4, 1/2)
−1/8 if v ∈ [1/2, 3/4)
1/8 if v ∈ [3/4, 1]

and Fδ and Fδ′ are not SC-ordered.

Part (ii): Let δ > δ′. We want to rewrite W (π, δ) − W (π, δ′) to show MIO-ND implies

integral-precision. Using the properties of Riemann-Stieltjes integrals:

W (π, δ)−W (π, δ′) =
∫
V
v dFδ(v|F−1

δ (π))−
∫
V
v dFδ′

(
v|F−1

δ′ (π)
)

Integrating by parts

W (π, δ)−W (π, δ′) = −
∫
V
(Fδ(v|F−1

δ (π))− Fδ′

(
v|F−1

δ′ (π)
)
)dv

Then ∫ π

0
(W (p, δ)−W (p, δ′))dp = −

∫ π

0
(
∫
V
(Fδ(v|F−1

δ (p))− Fδ′

(
v|F−1

δ′ (p)
)
)dv)dp

Interchanging the integration limits on the RHS

∫ π

0
(W (p, δ)−W (p, δ′))dp = −

∫
V

∫ π

0
((Fδ(v|F−1

δ (p))− Fδ′

(
v|F−1

δ′ (p)
)
)dp)dv
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If δ < δ′ implies that the corresponding information structure is more informative according to

MIO-ND (Definition 7) then:

∫ π

0
(Fδ

(
v|F−1

δ (p)
)
− Fδ′

(
v|F−1

δ′ (p)
)
)dp ≥ 0, ∀π ∈ [0, 1] (5)

Hence, ∫ π

0
(W (p, δ)−W (p, δ′))dp ≤ 0, ∀π ∈ [0, 1]

A.4 Other Results

In this section we prove several claims stated informally in the text.

A.4.1 Our two examples of precision

Example 1(normal distribution): Consider δ > δ′ and let Φ(x) be the cumulative distribution

of a standard normal distribution, φ(x) the distribution function:

E[v|x] = µ+ (x− µ)
σ2

v

σ2
v + σ2

δ

Fδ(x) = π = Φ

 x− µ√
σ2

v + σ2
δ


⇔ F−1

δ (π) = µ+ Φ−1(π)
(√

σ2
v + σ2

δ

)

So that

W (π, δ) = E[v|F−1
δ (π)]

= µ+ Φ−1(π)
σ2

v√
σ2

v + σ2
δ

⇒ W (π, δ)−W (π, δ′) = E[v|F−1
δ (π)]− E[v|F−1

δ′ (π)]

= Φ−1(π)

 σ2
v√

σ2
v + σ2

δ

− σ2
v√

σ2
v + σ2

δ′


As σ2

δ < σ2
δ′ then

A(δ, δ′) :=

 σ2
v√

σ2
v + σ2

δ

− σ2
v√

σ2
v + σ2

δ′

 > 0
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so that

∂

∂π
(W (π, δ)−W (π, δ′)) =

A(δ, δ′)

φ(π)
> 0

Example 2:

Given the structure of the signal, the bidders’ expected valuation is

w(x, δ) = E [v|x]

= xiδ + (1− δ)µ

⇒ w(x, δ)− w(x′, δ) = δ(x− x′)

⇔ W (π, δ)−W (π′, δ) = δ
(
H−1(π)−H−1(π′)

)
So that for π > π′, ∂(W (π, δ)−W (π′, δ))/∂δ > 0.

A.4.2 Further Discussion of Section 5.2

In this section we provide a more detailed discussion of the statements made in Section 5.2.

Theorem 1 holds under weaker notions of precision, such as integral-precision. Using similar

arguments as those used in the proof of Theorem 1,

V1(n, δ) ≥ V1(n, δ
′) ⇔

∫ 1

0
ψ(π)dU1:n(π) ≥ 0

where ψ(π) ≡ (W (π, δ) −W (π, δ′)) and let Ψ(b) =
∫ b
0 ψ(π)dπ. Greater integral precision implies

Ψ(π) ≤ 0,∀π ∈ [0, 1].

Using U1:n(π) = πn and integrating by parts, V1(n, δ) ≥ V1(n, δ
′) holds as:∫ 1

0
ψ(π)nπn−1dπ = −

∫ 1

0
Ψ(π)n(n− 1)πn−2dπ ≥ 0

where the last inequality holds as Ψ(π) ≤ 0, ∀π ∈ (0, 1).

Then, if information provision is costless, the efficient policy is to fully disclose all information—

and the first part of Theorem 4 holds trivially.

Also, note that the proof of part (i) of Proposition 1 only makes use of Theorem 1. As this latter

result extends to the case where information structures are ordered by integral-precision, then under

this condition the value of information is also negative with only two bidders.
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As for the second part of the proposition, with integral-precision we can show that given any

δ′ < δ, there exists a n̂ such that for all n > n̂, V2(n, δ) > V2(n, δ
′). Let φ(n) ≡ V2(n, δ)− V2(n, δ

′),

φ(n) = n(n− 1)
∫ 1

0
ψ(π)(1− π)πn−2dπ

Because Fδ is more integral-precise than Fδ′ , then

∀p ∈ [0, 1],
∫ p

0
ψ(π)dπ ≤ 0

This and the fact that
∫ 1
0 ψ(π)dπ = 0 implies ∀p ∈ [0, 1],

∫ 1
p ψ(π)dπ ≥ 0. Let A = {p ∈ [0, 1]|ψ(p) <

0} and p̂ the highest p in the closure of A. Ignoring the trivial case that ψ(π) ≡ W (π, δ)−W (π, δ′)

is equal to zero for all π, integral-precision implies that p̂ ∈ (0, 1) and there exists p1, p2 ∈ (p̂, 1]

such that ∀π ∈ [p1, p2], ψ(π) > 0. Let c1 = minπ∈[0,p1) ψ(π)(1−π), and c2 = minπ∈[p1,p2] ψ(π)(1−π).

Notice that c1 < 0 and c2 > 0. Then

φ(n) ≥ n[pn−1
1 c1 + (pn−1

2 − pn−1
1 )c2]

= npn−1
2 [(p1/p2)

n−1(c1 − c2) + c2]

Let

n̂ ≡ 1 +
ln

(
c2

c2−c1

)
ln

(
p1

p2

)
As p1/p2 < 1, then for all n > n̂, (p1/p2)

n−1(c1 − c2) + c2 > 0, and φ(n) > 0.

Integral-precision provides limit results but it does not give us any predictions as to the mono-

tonicity of the optimal release of information. On the other hand, sc-precision does provide a

sufficient condition for the optimal release of information to be monotone in the number of bidders.

The reason is as follows: by sc-precision, W (π, δ) is single-crossing in (π, δ) (in the sense that for all

δ > δ′, W (π′, δ)−W (π′, δ′) ≥ (>)0 implies for all π > π′, W (π, δ)−W (π, δ′) ≥ (>)0). The family

of distributions {U2:n(p)}n is ordered by n in the likelihood-ratio order. As

V2(n, δ) =
∫ 1

0
W (π, δ)dU2:n(π)

then, by the results in Athey (2002), V2(n, δ) is single-crossing in (n, δ) and the optimal choice of δ

is monotone in n.
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[11] Eső, P. and Szentes, B. (2006) “Optimal Information Disclosure in Auctions and the

Handicap Auction”, mimeo, March 2006.

33



[12] Fang Z. and H. Joe (1992) “Further Developments on some dependence orderings for continuous

bivariate distributions” Ann. Inst. Statist. Math. 44(3), 501-517.

[13] Ganuza, J-J. (2004) “Ignorance promotes competition. An auction model of endogenous private

valuations”, Rand Journal of Economics, 35, 583-598.

[14] Ganuza, J-J. and J.S. Penalva (2004) “Optimal Information Transmission in Private Value

Auctions”, mimeo.

[15] Jewitt, I. (1997) “Information and Principal Agent Problems”, University of Bristol Discussion

Paper No. 97/414.

[16] Johnson, J.P. and D.P. Myatt (forthcoming) “On the Simple Economics of Advertising, Mar-

keting, and Product Design”, American Economic Review, forthcoming.

[17] Karlin, S. and A. Kovikoff (1963) “Generalized Convex Inequalities”, Pacific J. Math., 13,

1251-1279.

[18] Lehmann, E. (1988) “Comparing Location Experiments,” The Annals of Statistics, 16, 521-533.

[19] Lewis, T.R. and D.E.M. Sappington (1994) “Supplying Information to Facilitate Price Di-

crimination ”, International Economic review, 35, 309-327.

[20] LiCalzi, M. (2005) “A Sufficient Condition for All-or-nothing Information Supply in Price

Discrimination”, Rendiconti per gli Estudi Economici e Quantitative, 163-177.

[21] Milgrom, P. (1981) “Good News and Bad News: Representation Theorems and Applications”,

Bell Journal of Economics, 12, 380-391.

[22] Milgrom, P. and C. Shannon (1994) “Monotone comparative statics”, Econometrica, 62, 157-

180.

[23] Milgrom, P. and R. Weber (1982) “A theory of auctions and competitive bidding”,

Econometrica, 50, 1089-1122.

34



[24] Ohlin, J. (1969) “On a Class of Measures of Dispersion with Application to Optimal Reinsur-

ance”, ASTIN Bulletin, 5(2), 249-266.

[25] Ottaviani, M. and A. Prat (2001) “The value of public information in monopoly”,

Econometrica, 69, 1673-1683.

[26] Persico, N. (2000) “Information acquisition in auctions”, Econometrica, 68, 135-149.

[27] Shaked, M. and J.G. Shantikumar (1994) Stochastic Orders and their Applications, Academic

Press.

35


