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Abstract

The well-known lack of power of unit root tests has often been attributed to the short

length of macroeconomic variables and also to DGP’s that depart from the I(1)-I(0)

alternatives. This paper shows that by using long spans of annual real GNP and GNP

per capita (133 years) high power can be achieved, leading to the rejection of both the

unit root and the trend-stationary hypothesis. This suggests that possibly neither model

provides a good characterization of these data. Next, more flexible representations are

considered, namely, processes containing structural breaks (SB) and fractional orders

of integration (FI). Economic justification for the presence of these features in GNP is

provided. It is shown that the latter models (FI and SB) are in general preferred to the

ARIMA (I(1) or I(0)) ones. As a novelty in this literature, new techniques are applied

to discriminate between FI and SB models. It turns out that the FI specification is

preferred, implying that GNP and GNP per capita are non-stationary, highly persistent

but mean-reverting series. Finally, it is shown that the results are robust when breaks

in the deterministic component are allowed for in the FI model. Some macroeconomic

implications of these findings are also discussed.

KEYWORDS: GNP, unit roots, fractional integration, structural change, long mem-

ory, exogenous growth models.
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1. Introduction

Questions about the nature of the trend component and the persistence of shocks in macroe-

conomic series and, in particular, in GNP have occupied a very important place in economics

and have given rise to a vast literature on the subject. In spite of this fact, important issues

remain unclear. Until the early 80’s, movements in output were traditionally viewed as

representing temporary fluctuations about a stable linear time trend (the so-called trend-

stationary models, T-ST henceforth). According to this view, innovations have no im-

pact on long-run forecasts of GNP. Nevertheless after the influential article of Nelson and

Plosser (1982) many economists argued that GNP was better characterized as a differenced-

stationary model (D-ST) given by the sum of a stochastic trend that shifts every period

(a unit root component) and a transitory term. Under this characterization, there is not

reversion to a deterministic trend path because any stochastic shock has a permanent effect

on the process and therefore, they will affect output forecasts into the indefinite future.

The widespread acceptance of the unit root hypothesis that followed Nelson and Plosser’s

article was mainly due to the fact that unit root tests could not reject the latter hypothesis.

However, various explanations not related with the existence of a unit root in the process

were soon put forward to account for such phenomenon. Firstly, some authors claimed that

the main difference between these models is basically of an asymptotic character and, given

the relative short length of the available macroeconomic data, unit root tests lack power

to distinguish between T-ST and D-ST models (see Christiano and Eichenbaum (1990) ,

Rudebusch (1993) , etc.). Moreover, this is not only true when the models are close (local

alternatives) but also when the hypotheses are distant. In particular, Rudebusch (1993)

used quarterly real GNP per capita to show that the best-fitting T-ST and D-ST models

implied very different medium and long term dynamics. Then, he computed the small

sample distributions of the Dickey-Fuller (DF henceforth) test corresponding to both best-

fitting models and showed that they were very similar despite the very different dynamics

of these processes. This finding contributed to the “we don’t know” literature initiated by

Christiano and Eichenbaum (1990), since it implied that the DF test has very low power
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to distinguish between the relevant hypotheses.

Secondly, other group of authors considered the T-ST and D-ST models as two extreme

possibilities that in some circumstances were not suitable. The former implies that all

shocks are transitory and that the trend component is always the same (deterministic) while

the latter has the opposite predictions: all shocks are permanent and the trend component

shifts every period. Thus, models different from the D-ST or T-ST were postulated as DGPs

and it was shown that the classical unit root tests have very low power under these new

formulations. Among the processes departing from the traditional models those containing

structural breaks and fractionally orders of integration (as opposed to integer ones) have

attracted a great deal of attention (see Banerjee and Urga (2005) for a recent survey on

both topics).

Perron (1989) initiated the literature on structural breaks by arguing that the movement

in the trend component could be well-explained by a few permanent shocks related to very

significant events (such as wars, deep economic crisis, etc.), the so-called structural breaks

(SB hereafter), in an otherwise stable linear trend. All remaining shocks had a transitory

character. He showed that when the DGP is of this type, standard unit root tests cannot

reject the D-ST model. Using quarterly data for the post-war GNP, he presented evidence

against a unit root in favor of a trend-shift alternative where the shift was associated to the

1973 oil crisis. This idea had a great impact and has stimulated a very active research in

this area (see Perron (2005) for a recent survey).

On the other hand, fractionally integrated (FI) models were introduced by Granger and

Joyeux (1980) and Hosking (1981) who showed that, by allowing for fractional orders of

integration (and not only integer ones as in the ARIMA methodology), a richer description

of the persistence of shocks could be achieved. These models are able to fill the gap be-

tween the short-lasting and the permanent effect of shocks in the T-ST and D-ST models,

respectively, by allowing for intermediate behaviors (such as long memory, non-stationary

mean-reversion, etc.). Interestingly, it has been shown analytically that fractional integra-

tion can arise in aggregate output just by allowing for some degree of heterogeneity at the

micro level. Furthermore, empirical support for the existence of these features in GNP and
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other variables (not only in macroeconomics but also in finance and other social sciences), is

well-documented (see Henry and Zaffaroni (2002) for surveys regarding these contributions).

The goal of this paper is to shed further light on the controversy about the statistical

properties of real GNP and real GNP per capita taking into account simultaneously the two

criticisms described above. Firstly, in order to have good power properties a data set that

covers a very long time span (133 years) will be analyzed. Diebold and Senhadji (1996)

used first these data to show that Rudebusch’s (1993) conclusions could be reversed. They

replicated his analysis using annual U.S. GNP and they showed that the unit root could be

clearly rejected in favor of trend stationarity (T-ST) and that the DF test had power in that

case to distinguish between these two models. As it is well-known, rejecting a hypothesis in

favor of an alternative one does not imply that the latter is a good description of the data.

This paper starts by noticing that, if the same procedure and the same data set as in the

paper above is used for testing T-ST against D-ST, evidence against the former hypothesis

also arises (see Section 2). This suggests that possibly neither the I (1) nor the I (0)+trend

models are suitable for these data.

Next, we enlarge the set of DGP’s considered by exploring if there exists evidence in favor

of FI and SB models in these data set. It turns out that when tested against the D-ST

and T-ST, the former models are preferred. A well-known statistical problem arises here:

despite the fact that FI and SB imply very different medium and long term dynamics, it

is difficult to identify them. This is so because short memory models containing some type

of trends and/or breaks display spurious persistence that may look very similar to that

generated by FI(d) models. The opposite is also true, that is, conventional procedures for

detecting and dating structural changes tend to find spurious breaks, usually in the middle

of the sample, when in fact there is only fractional integration in the data. Surprisingly,

although there exist quite a few papers that look for FI behavior or for the existence of

structural breaks in output, to the best of our knowledge this is the first contribution that

directly test these hypotheses.

The main results can be summarized as follows. It is first shown that high power can be

achieved if long spans of data are used. In particular both the T-ST and D-ST are clearly
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rejected in this data set in favor to other alternatives such as FI and SB models. When the

latter models are directly tested, the former is preferred. These results are also robust to

the different econometric methods employed and to the inclusion of trends and/or breaks in

the FI model. It turns out that real GNP and real GNP per capita are well characterized

as non-stationary but mean-reverting processes. The implications of these conclusions are

discussed along the paper.

The outline of the paper is as follows. Section 2 introduces the data and considers some

classical unit roots tests of I (1) vs. T −ST and vice versa. Section 3 analyzes the existence
of structural breaks in the data for the case where the innovations are weakly dependent.

Section 4 describes the main characteristics and the economic mechanisms that are able

to generate FI in economic data. Several procedures for estimating and testing the FI

hypothesis against both the I (1) and the I (0) ones are also considered. Section 5, in turn,

tests the hypotheses of FI versus a breaking-trend model. Some robustness checks the

consider the possibility of breaks/trends and FI are also included. Finally, Section 6 put

forward some macroeconomic implications of the findings of this article and concludes.

2. The data and preliminary tests

We consider the same data set employed in Diebold and Senhadji (1996) (DS henceforth):

the annual real GNP series reported in table 1.10 of the National Income and Product

Accounts of the United States, measured in billions of 1987 dollars, ranging from 1929 to

2001 (8 new observations have been added with respect to DS analysis). As in DS, these

series has been spliced to the 1869-1929 real GNP series of Balke and Gordon (1989) or

Romer (1989) given rise to two different series of Real GNP, each containing 133 annual

observations. Per capita GNP has also been considered and in order to construct the series,

total population residing in the United States (in thousands of people) has been taken

from table A-7 of Historical Statistics of the United States for years ranging from 1869 to

1970 and for the years 1971-2001, data has been taken from the Census Bureau’s Current

Population Reports, Series P-25. All series are in natural logs.

We keep the same notation as in DS and we define:
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GNP-BG (“GNP-Balke-Gordon”). Gross national product. Pre-1929 values from Balke-

Gordon.

GNP-R (“GNP-Romer”). Gross national product. Pre-1929 values from Romer.

GNP-BGPC (“GNP-Balke-Gordon, per capita”). Gross national product per capita.

Pre-1929 values from Balke-Gordon.

GNP-RPC (“GNP-Romer, per capita”). Gross national product per capita. Pre-1929

values from Romer.

Figure 1 contains the plots of these data. The post-1929 series values of both the GNP-R

and GNP-BG are identical but pre-1929 values differ slightly due to the differing assump-

tions underlying their construction. The same is true for the per capita series GNP-RPC

and GNP-BGPC.

[Figure 1 about here]

Some preliminary unit root tests

Before beginning the analysis, it is illustrative to look at some basic properties of D-ST

and T-ST models. A trended process, as those in Figure I, may be represented by

yt = µ+ βt+ ut. (1)

If ut is a linear weakly-dependent process, that is,

ut = C (L) εt (2)

with εt ∼ i.i.d
¡
0,σ2

¢
and C (L) =

P∞
j=0 cjL

j such that
P∞
j=0 j |cj | <∞, then yt is a T-ST

process. In this case, the trend component τT−STt = µ + βt is completely deterministic

and stable over time, while the cycle ct = ut has a short effect on the trend because the

correlation function of ut decays to zero at an exponential rate.

On the other hand, a unit root in yt can be modelled as,

(1− L)ut = C (L) εt. (3)

In this case, yt is a unit root process with a drift equal to β and an initial condition given
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by µ. Noticing that C (L) can always be written as C (L) = C (1)+ (1− L)C∗ (L) , 1 where
C∗ (L) =

P∞
i=0 c

∗
iL

i and c∗i = −
P∞
j=i+1 cj , it follows that yt is given by,

yt = µ+ βt+C (1)
t−1X
j=0

εt−j + at, (4)

where at = C∗ (L) εt is a weakly-dependent stationary processes. Expression (4) corresponds

to the trend-cycle decomposition (Beveridge and Nelson (1981)). The trend component is

given by τD−STt = µ + βt + C (1)
Pt−1
j=0 εt−j and, as opposed to τ

T−ST
t it has a stochastic

character since it shifts every period in an unpredictable way.

Since the major difference between T-ST and D-ST models is the duration of shocks, it

is clear that data covering long data spans are needed in order to have a reasonable power.

This is the approach followed by DS (1996) who contested Rudebusch (1993) conclusions by

using the above-described long data set. They followed Rudebusch’ approach and computed

the best fitting T-ST and D-ST models for each of the four series. Then, for each series

they computed the exact finite sample distribution of the corresponding t-statistics from an

augmented Dickey-Fuller (ADF) regression under both best-fitting models. They showed

that the p-value associated to the former statistic was very small under the D-ST model but

quite large under the T-ST one and therefore it was possible to reject the null hypothesis

of a unit root with reasonable power.

Nevertheless, as noticed by the authors rejecting the null hypothesis does not mean that

the alternative is a good characterization of this data set. Table I below show that, when

the hypotheses are reversed, the T-ST hypothesis is rejected too for the same data set. This

table also presents the results of other classical unit root tests. The first three columns have

the unit root as null hypothesis. In addition to the Augmented Dickey-Fuller test employed

by DS, also the Phillips-Perron (P-P) (1988) and the efficient DF-GLS method proposed by

Elliott, Rothenberg and Stock (1996) are considered. Not surprisingly, the I (1) hypothesis

is rejected for the four extended series employed in this article, confirming DS findings. The

last column reports the result of the KPSS test for the null hypothesis of trend stationarity

1See Johansen (1995), Lemma 4.1.
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versus a unit root. Interestingly, the I(0)+trend hypothesis is also rejected in all the four

series.2

[Table I about here]

Figure 2 is similar to DS’ Figure 2 but contains in this case the exact finite-sample

distribution of the KPSS statistic under the best-fitting T-ST and D-STmodels for real GNP

per capita (Pre-1929 values are from Romer, (1989)).3 This plot confirms DS conclusions

in the sense that the KPSS value is very unlikely under the best-fitting D-ST formulation:

only 4% of the values coming from the D-ST distribution are smaller than that one. But

remarkably, it shows that the sample KPSS is also unlikely under the T-ST model since

only 19% of the values are bigger than that quantity.

It is interesting to notice that the chronic problem of lack of power does not seem to

apply here since both hypotheses can be rejected. It is natural to ask now why this is

happening. A plausible explanation stems from considering DGP’s that differ from the

T-ST and D-ST ones. It is well-known that the tests above do have power against some

alternative formulations. This is the case of Dickey-Fuller tests against FI processes (see

Diebold and Rudebusch, 1991) and also against some types of breaks (cf. Perron, 1989).

Similar properties have been found to hold for the KPSS test (Lee and Schmidt (1996)).

In the following sections we will explore the plausibility of processes that can be considered

to be mid-way between the T-ST and the D-ST formulations: those containing structural

breaks and fractional orders of integration.

3. Models containing Structural Breaks

It follows from the discussion below equation (1) that the unit root versus T-ST problem

can be viewed as addressing the question “do the data support the view that the trend
2For the DF and the DF- GLS tests, the number of lags was chosen according to the BIC criterion and in

all cases a number equal to 2 was set. For the remaining tests, also two lags were considered to compute the

Newey-West variance-covariance estimator. Different values were tried and the results remained qualitatively

identical.

3The best-fitting T-ST and D-ST models are reproduced in Table XI in the Appendix.
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never changes or is it changing every period?”. Clearly, these alternatives are not mutually

exclusive and can be seen as too extreme in some contexts. A more interesting question to

ask would be “how frequent permanent shocks are?”. Perron (1989) initiated this line of

research postulating that only a few shocks, those related with very significant events, could

have a permanent character while the remaining ones would only last for a short time. The

specific number of permanent shocks becomes then case-specific. Under these assumptions,

the process yt can be represented by the sum of two components: a deterministic trend

whose parameters are allowed to change at each break date and a cycle, similar to that

described in (2) . More specifically, using quarterly data for the postwar U.S. GNP, Perron

(1989) favored the model yt = τ t + ut where the trending component is given by,

τ t = α1 + β1t+ (β2 − β1) (t− T ∗) 1(t>T ∗),

where T ∗ coincides with the 1973 oil crisis, 1(t>T ∗) is an indicator function and β2 captures

the slow down in the growth rate after the crisis.

We now explore if there exists evidence in favor of a breaking trend in the data set

considered in this article. Given the long time span considered here, it seems reasonable

to allow for several permanent shocks in the data occurring at unknown break dates. We

employ the method proposed by Bai and Perron (1998, 2003a, b), henceforth BP,4 for

multiple structural breaks. BP propose three types of tests. The supFT (k) test considers

the null hypothesis of no breaks against the alternative of k breaks. The supFT (l+1/l) test,

takes the existence of l breaks, with l = 0, 1, ...,as H0 against the alternative of l+1 changes.

Finally, the so-called “double maximum” tests, UDmax andWDmax, test the null of absence

of structural breaks versus the existence of an unknown number of breaks. Bai and Perron
4Some of the procedures developed in Bai and Perron (1998) are not valid when trending regressors are

allowed for, as it is the case of these data. Nevertheless, the consistency, the rate of convergence and the

confidence intervals of the estimated breaks points still hold. The case with trending data is discussed in Bai

(1999) and yields different asymptotic distributions for the tests of no break versus a fixed number of breaks.

But, as discussed in Bai and Perron (2003), the asymptotic distributions in the two cases are fairly similar,

especially in the tail (where critical values are obtained), and simulations confirm that the size distortions

are minor.
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(2003b) suggest beginning with the supFT (k) test. If no break is detected, they recommend

checking this result with the UDmax and WDmax tests to see if at least one break exists.

When this is the case, they recommend continuing with a sequential application of the

supFT (l+1/l) test, with l = 1, ... To compute the tests, a Gauss code (available from

Perron’s webpage at http://econ.bu.edu/perron/code.html) has been employed. To test

the changes in the trend of the series, the following representation has been considered,

yt = τ t + ut,

where τ t is a linear time trend and ut is a general weakly dependent linear process. The

autocorrelation in ut has been corrected by introducing lagged terms of the dependent

variable. A number of breaks equal or less than 5 is considered and both the mean and the

trend are allowed to change, while the remaining parameters were assumed to remain fixed.

Table II gathers the main results.5 They can be summarized as follows. Real GNP shows

little evidence of structural breaks. The null of no-break is only rejected at the 10% level

versus the alternative of two breaks, occurring, for both GNP-R and GNP-BG around the

1929 crisis and the end of World War II. On the other hand, one break is found in per-capita

series located around 1939, coinciding with the beginning of World War II Since there is no

evidence of a change in real GNP around that date, the latter finding suggests that it may

be due to a demographic shock. Tests of no-break versus an unknown number of breaks and

sequential tests were performed and their conclusions were similar as the above-described

ones.

[Table II about here]

4. Fractionally Integrated models

General description

As described above, memory is infinite in D-ST models (past shocks are perfectly re-

membered) while it decays exponentially fast in T-ST ones. Fractionally integrated (FI)
5For the sake of brevity, we only report the results of the tests with three breaks or less, but the hypotheses

of 4 and 5 breaks were also considered and rejected in favor of the no-break hypothesis in all cases.
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processes constitute an interesting alternative to this dichotomy since they are able to bridge

the gap between these two possibilities by introducing a continuum of degrees of memory.

To achieve that, the same model as in (1) can be entertained, that is

yt = µ+ βt+ ut, (5)

where in this case ut is defined as

(1− L)d ut = C (L) εt. (6)

The parameter d determines the integration order of ut and governs the memory of the

process. The higher the value of d, the more persistent shocks are. Notice that if d = {0, 1},
the T-ST and D-ST models are found respectively. However, if fractional values of d are

considered, richer memory properties can be obtained. This provides for parsimonious, yet

flexible, modeling of the low frequency variation. The process ut is stationary if d < 1/2 and

invertible whenever d > −1 (see Hosking (1981) and Odaki (1993)). Long memory occurs
whenever d belongs to the (0,0.5) interval, since in this case the autocorrelation function,

ρ (k), verifies that,

ρ (k) ∼ ck2d−1 for large k, d ∈ (0, 0.5) , (7)

where c is a constant. In other words, long memory is implied by a hyperbolic decay of

correlations, as opposed to the case d = 0 where correlations decay exponentially fast. For

values of d ∈ [0.5, 1), the process is non-stationary since the variance is unbounded. Shocks
are very persistent but do not have a permanent effect implying that the process is mean

reverting despite its non-stationary character. Values of d greater or equal than 1 imply a

permanent behavior of shocks.

Operationally, a binomial expansion of the operator (1− L)d is used in order to differen-
tiate fractionally a process:

(1− L)d =
∞X
i=0

πi (d)L
i,
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where,

πi (d) = Γ (i− d) /Γ (−d)Γ (j + 1) , (8)

and Γ (.) denotes the gamma function. When d = 1, this is just the usual first-differencing

filter. For non-integer d, the operator (1− L)d provides an infinite-order lag-operator poly-
nomial with coefficients that decay very slowly.6

Fractional integration in GNP

Why output could display fractional integration? Some authors have pointed out that

one plausible explanation for the existence of FI behavior in GNP data is that produc-

tion shocks themselves also display this behavior. The argument is based on the fact that

strongly dependent shocks (possibly inherited from underlying geophysical processes) in a

real business cycle model of the economy can account for the presence of such behavior in

aggregate income series (see Kydland and Prescott (1982)). The existence of that type of

shocks in geophysical variables, such as rainfall, riverflow or climatic series is well docu-

mented (see Mandelbrot and Wallis (1969), Lawrence and Kottegoda (1977) and Hipel and

McLeod (1978) among others).

However, a more satisfactory explanation is provided by economic models that produce

FI in output despite white noise innovations. All these models make use of results obtained

by Granger (1980) and Robinson (1978) who showed how FI arises as a consequence of

aggregation over heterogeneous entities (see also Zaffaroni (2004)).

Michelacci and Zaffaroni (2000) showed that FI in GNP per capita arises in a Solow-

Swan growth model just by allowing for cross sectional heterogeneity in the speed with

which different units in the same countries adjust. Abadir and Talmain (2002) consider a

monopolistically-competitive Real Business Cycle model and, by allowing for heterogeneity

at the firm level, show that GDP turns out to be very persistent although mean-reverting.

Haubrich and Lo (2001) discuss a multiple-sector real business cycle model along the lines

6Since the expansion is infinite, in practice a truncation is needed to differentiate fractionally a series (see

Dolado, Gonzalo and Mayoral (2002) for details on the consequences of the truncation).
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of Long and Plosser (1983) and show analytically that GNP behaves as a FI process.

From an empirical point of view, several papers have also tested the existence of FI in

output with somehow mixed conclusions. Both Diebold and Rudebusch (1989) and Sowell

(1992a) analyzed quarterly post-war data and obtain estimates of d below unity. Never-

theless, their results are in line with Rudebusch’s (1993) and Christiano and Eichembaum

(1990) conclusions in the sense that the confidence interval of the estimated value of d

includes the unit root and, in the Sowell’s case, also the T-ST model.

In the next subsections, we contribute to the previous literature by analyzing the empirical

plausibility of the FI hypothesis in real GNP and real GNP per capita. The use of data

that covers longer time spans and a wider set of econometric techniques will allow us to

obtain more robust conclusions.

Estimation of FI (d) models

There is a broad literature on the parametric and semiparametric estimation of FI models.

In the following we consider some of the most representative techniques in both fields.

ARFIMA processes have been chosen to specify the parametric model. This amounts to

consider that the polynomial C(L) in expression (6) admits an ARMA representation. Exact

Maximum Likelihood (ML) (Sowell, 1992b), Minimum Distance (MD) (Mayoral, 2004), and

the Whittle estimator with tapered data (WT) (Velasco and Robinson, 2000) are employed.

The semiparametric techniques proposed by Geweke and Porter Hudak (GPH) (1983) and

by Teverovsky and Taqqu (TT) (1997) have also been applied. Table III gathers the main

results.7

Two main conclusions can be drawn from the inspection of the table above. Firstly, the

memory parameter is a fractional number below unity for all series across all techniques

7All parametric models have chosen according to the BIC criterion. The exact ML, the GPH and the

TT estimator have been computed in first differences and unity has been added to the estimated value of d.

Following Velasco and Robinson (2000), tapering has been employed to compute the Whittle estimator since

non-stationary was suspected. Finally, the number of frequencies used in the calculus of the GPH estimator

was set equal to T 0.5.
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employed. Secondly, although the values differ slightly across techniques, values of d in the

interval (0.5,1) are always found. More specifically, all parametric methods show values of

d around 0.6-0.7 whereas the semiparametric GPH estimator delivers higher values around

0.9. This fact is not surprising since it is well-known that short-run autocorrelation may bias

upwards this estimator (Sowell (1992b)). On the other hand, if the GPH is computed on the

first differences of the series, the estimates change radically (they are, after adding unity,

around 0.2-0.3). This difference may be explained by noticing that deterministic trends

can substantially bias the estimator (cf. Sibbertsen, (2003)). Summarizing, the finding of

fractional integration seems to be very robust in all the four series, with an integration order

around 0.7. This implies that the series are non-stationary with very persistent although

mean-reverting shocks.

[Table III about here]

Figure 3 reproduces Figure 2 above but the exact distribution of the best-fitting FI(d)

model (according to the exact ML procedure) has been included. It can be seen that

the sample KPSS occupies a central position in the distribution under the FI hypothesis,

implying that this is a very likely value under this distribution. More specifically, the

probability mass on the left side of this value is equal to 0.44.

[Figure 3 about here]

Although Table III provides some evidence in favor of the hypothesis of non-stationary

mean-reversion (0.5 ≤ d < 1), tests based on confidence intervals around the estimated val-
ues are known to have very low power to reject alternatives with an integer order of inte-

gration. Then, the hypothesis of FI(d) would be directly tested against the T-ST and the

D-ST alternatives in the following section.

Testing I (1) versus FI (d)

Two popular tests have been employed: Lagrange Multiplier (LM) and Wald type tests.

The former were introduced by Robinson (1994) and Tanaka (1999) in the frequency and
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time domain respectively.8 In contrast to classical unit root tests, the statistics have standard

asymptotic distributions and under gaussianity are locally optimal. A drawback, however,

is that they are fully parametric and the results may rely heavily in the parametric specifi-

cation of the model. A different approach was introduced by Dolado, Gonzalo and Mayoral

(2002, 2004) who generalized the traditional Dickey-Fuller test of I (1) against I (0) to the

more general framework of I (1) versus FI(d). The so-called Fractional Dickey-Fuller (FDF)

test is based upon the t-ratio associated to the coefficient of (1− L)d yt−1 in a regression of
(1− L) yt on (1− L)d yt−1, and possibly, some lags of (1− L) yt, to account for the short
run autocorrelation of the process, and/or some deterministic components if the series dis-

plays a trending behavior or initial conditions different from zero. Besides its simplicity,

two additional features stand out in this approach: as in the Dickey-Fuller approach (see

Said and Dickey, (1984)), the test allows for a semiparametric specification of the short

term structure and secondly, although not locally optimal under gaussianity, it presents a

higher power in finite samples that, in general, outperforms the above-mentioned methods.

Table IV presents the outcome of the tests. With respect to the FDF test, the invariant re-

gression described in Dolado et al. (2004) has been performed against several non-stationary

fractional hypotheses.9 For all the values of d considered under the alternative (from 0.6

to 0.9), the null hypothesis of a unit root was rejected. Similar results were obtained by

applying the time domain LM test.10 Then, both tests support the hypothesis that these

8See also Breitung and Hassler (2002) and Demetrescu et al. (2005) for asymptotically equivalent versions

of these tests.
9The testing regression that has is ∆yt = α1+α2τ t−1 (d)+α3τ t−1 (d− 1)+φ∆dyt−1+

Pk

j=1
∆yt−j +at

and a number of lags of ∆yt equal to two was chosen according to the BIC criterion. Coefficients α1,α2 and

α3 are associated to different deterministic components that result from introducing a constant and a time

trend in the DGP (see Dolado et al., 2004). The deterministic trends are given by τ t (d) =
Pt−1

i=0
πi (d) and

τ t (d− 1) =
Pt−1

i=0
πi (d− 1) , where the coefficients πi (δ) come from the expansion of (1− L)δ as defined

in equation (8) .
10Tanaka’s (1999) time domain version has been computed instead of Robinson’s (1994) original frequency

domain test since Monte Carlo simulations show that the former sligthly outperforms its frequency domain

counterpart in finite samples (cf. Tanaka, (1999)). The test statistic is given by
√
T
PT−1

k=1
1
k
ρ̂k, where ρ̂k is

the autocorrelation function of the residuals of a FI(d) parametric model, and it is asymptotically normally
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series do not contain a unit root.

[Table IV about here]

Testing FI versus Trend stationarity

Once the unit root has been rejected, we consider the problem of directly testing for

FI versus T-ST. As mentioned above, the KPSS test is consistent against some types of

long memory processes (Lee and Schmidt, (1996)), therefore the rejection of the null of

I (0) reported in Table I is consistent with the finding of fractional integration in the data

reported in Tables III and IV. To formally test these hypotheses, LM tests have again been

considered, setting in this case the T-ST as null hypothesis versus the alternative of a higher

integration order. Table V presents the outcome of the LM test for testing the hypothesis

of I (0) vs. a bigger integration order. Not surprisingly, the null hypothesis of T-ST is

rejected.

[Table V about here]

Bhattacharya et al. (1983) first noticed that processes of the form: yt = f (t) + ut where

ut is a weakly dependent process and f (t) is a deterministic trend of the form k(m+ t)d−1/2

could produced spurious long memory with an integration order equal to d ∈ (0, 0.5).11

The same test was computed again, this time considering trends of the type α+βtd−1/2 for

different values of d ∈ (0, 0.5) . In all cases, the null hypothesis of I (0) innovations could be
rejected.12

FromKwiatkowski et al. (1992) it is known the importance of reversing the null and the al-

ternative hypothesis. To do so, we next employ a test recently introduced in Mayoral (2005).

It is a likelihood-ratio test that allows for testing non-stationary FI vs. T-ST. The test re-

jects the null hypothesis of non-stationary FI for large values of L (d,σ)|H1 − L (d,σ)|H0 ,
where L represents the likelihood function under the alternative and null hypothesis, re-

spectively. The distribution of the test is non-standard and simulated critical values can be

distributed.
11See also Künsch (1986) and Giraitis et al. (2001) .
12For the sake of brevety, the corresponding figures are omitted but they are available upon request.
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found in Mayoral (2005) . Finally, a nice feature of this technique is that it is not needed to

specify a parametric model, since a non-parametric correction can be introduced to account

for the short term correlation.13

Table VI gathers the results of applying this test on GNP data. The first column reports

the values of the test for the null hypothesis H0 : d ≥ 0.5 vs. the alternative of T-ST

while the remaining ones consider the simple hypothesis problems H0 : d = d0 vs. T-ST

for d0 = {0.6, 0.7, 0.8, 0.9, 1}, respectively. To compute the test in the first column, the
likelihood function needs to be evaluated at an estimated value of d under H0 which has

been taken from Table III (second row).

The following conclusions may be drawn. In all cases, the null hypothesis of non-

stationary FI cannot be rejected against T-ST (first column). To interpret the remaining

columns, it is important to bear in mind that if the order of integration under H0, d0,

exceeds the true integration order, d∗, the test rejects H0, at least asymptotically. Thus,

it turns out that this tests confirms the output from the estimation methods reported in

Table III that reported estimated values of d around 0.6-0.7. The null hypothesis of FI

cannot be rejected for values of d0 around these values. Nevertheless, for higher values of

d0, H0 is rejected, as expected.

[Table VI about here]

5. Fractional Integration or Structural Breaks

So far, two important conclusions can be drawn. First, the rejection of the D-ST and the

T-ST hypotheses is very robust across the various alternatives considered, the different

econometric techniques employed and the type of pre-1929 data (Balke-Gordon or Romer).

This suggests that the problem of lack of power is not to be very relevant here. Second, em-

pirical evidence supporting the hypothesis of non-stationary fractional integration has been

13More specifically, the test statistic should be multiplied by an estimate of the quantity (γ0/λ
2)−1,

where λ = σC (1) and γ0 = σ2
P∞

i=0
c2j . In particular, γ0 has been estimated as

P¡
∆d0yt

¢2
/T whereas to

estimate λ2 the Newey-West estimator has been employed. The lag truncation, q has been chosen according

to Andrews (1991).
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found and similar evidence in favor of a breaking trend in an otherwise weakly dependent

data has also been reported.

In spite of the very different medium and long term dynamics that these two formulations

imply, the latter finding is not surprising since it is well-known that these models share some

statistical properties that make their identification a difficult task. Some authors have

shown analytically that the existence of trends and/or changes in some parameter values

that have not been explicitly accounted for can produce spurious persistence properties

similar to those of FI processes (see Bhattacharya et al. (1983) , Künsch (1986), Teverovsky

and Taqqu (1997), Giraitis et al. (2001), Mikosch and Starica, (2004)). The opposite effect

is also well-documented, that is, standard methods for detecting and locating structural

breaks tend to find spurious breaks when the DGP is a FI process (see Hsu (2001), Nunes

et al. (1995) and Krämer and Sibbertsen (2002)).

A very intuitive way to see why this happens is to notice that both FI and SB models

share the property of being able to accommodate a few number of “permanent” shocks while

the remaining ones are transitory. In this context, “permanent” should be understood in

a broad sense as in Perron (2005) , that is, a shock is permanent if, given a sample of

data, it lasts for a long time and in particular is still in effect at the end of that sample.

To see this, consider the decomposition of a FI process obtained by using the property

C (L) = C (1) + (1− L)C∗ (L). The process yt, defined as in (5) and (6) can be rewritten
as,

yt = µ+ βt+C (1)
t−1X
j=0

πj (−d) εt−j + a∗t , (9)

where a∗t = (1−L)1−dC∗ (L) εt is stationary and invertible for values of d > 0. As a

particular case, notice that if d = 1, then πj (−1) = 1 for all j implying that all shocks

are permanent and expression (9) is identical to the trend-cycle decomposition in (4) .

Otherwise, πj (−d) ≈ Γ (d)−1 jd−1 for large j. This means that for values of d < 1, shocks
tend to vanish but at a very slow rate, specially for high values of d.

The process xt = C (1)
Pt−1
j=0 πj (−d) εt−j is very persistent while a∗t is not. This im-

plies that a shock happening at time T ∗ has an effect on yT ∗+h given approximately by
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C (1)πh (−d) εT ∗ ≈ C(1)Γ (d)−1 hd−1εT ∗ for large h. This quantity can be large even at
very distant h if εT ∗ is also large. For instance, if d = 0.7, the effect of εT ∗ on yT ∗+h is

approximately given by 0.32C(1)εT ∗ , 0.24C(1)εT ∗ and 0.20C(1)εT ∗ for h = 20, 50 and and

100, respectively.

This property allows FI processes (with values of d < 1) to mimic the behavior of SB

models. After a sufficiently large number of periods, the effect of most shocks will be small

and not significantly different from zero. However, large shocks can retain a considerable

impact on the process even at very distant horizons. In particular, given the relative short

length of most macroeconomic variables, large shocks can still be in effect at end of the

sample. Parke (1999) reached similar conclusions using a different approach. He introduced

the so-called Error Duration (ED) model where the process yt is given by the cumulation

of shocks that switch to 0 after a random delay following a power law distribution. He

showed that under certain conditions yt presents a behavior similar to a FI(d) process with

d ∈ (0, 1].14 In this framework, it is easy to compute the number of shocks that, on average,
will remain alive at the end of the sample. For instance, he showed that in a sample of 100

observations and a value of d = 0.6, on average, 4.5 shocks would still be in effect at the

end of the sample while the rest would have already switched to zero.

In spite of sharing the above-described property, SB and FI processes present very differ-

ent dynamics because the “transitory” shocks behave very differently. For instance, forecasts

from the SB model revert to the deterministic trend quickly in sharp contrast to those from

FI(d) processes, whose shocks are much more persistent, specially for non-stationary values

of d.

The problem of distinguishing between SB and FI models has been largely overlooked,

despite the fact that an erroneous identification of the process has the same undesirable

consequences as in the I(1) case where, in contrast, a dense literature is available. To the

best of our knowledge, this paper is the first contribution that directly tests the hypothesis

of FI versus SB in GNP data. Similar to most of the I(1) vs. SB literature, we consider

14More specifically, if the probability that a shock survives for k periods, pk,decreases with k at the rate

pk = k
2d−2 for d ∈ (0, 1], Parke shows that the ED model generates long memory for 0< d ≤ 1.
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this testing problem without allowing for structural breaks under the FI hypothesis. Then,

we check whether the main conclusions hold when this assumption is relaxed.

Testing for FI versus SB

Two procedures will be implemented to test for FI vs. SB. The first one is a likelihood

ratio test that extends the technique used in Section 4 (see Mayoral (2005)). It is designed

for testing null hypotheses of the type H0 : d ≥ 0.5 or H0 : d = d0 for some d0 ≥ 0.5 vs.
the alternative of H1 : d = 0 allowing for a single break in (some or all of the components

of) the deterministic trend. The break date is unknown and is estimated as the value

that maximizes the likelihood under H1. The asymptotic distributions are non-standard

and critical values can be found in Mayoral (2005) . A non-parametric correction has been

introduced to account for the short-term correlation as it was explained in Section 4.

Table VII present the results. The main conclusion is that, for all the series considered,

the null hypothesis of non-stationary fractional integration cannot be rejected (first column,

H0 : d0 ≥ 0.5). Columns 2 to 5 also report some interesting information. They contain the
output from the tests where the null hypothesis is a single point d = d0, for various values

of d0. It should be remembered that if the process is FI (d∗), whenever the value used as

null hypothesis, d0, is bigger than the true integration order, the test rejects the hypothesis

of d0 at least asymptotically. It follows that the results of the tests are in good agreement

with the estimated values of d reported in Table III. For all series, the test is not able to

reject FI in the range of values of d around 0.7 or smaller. For higher values of d, the results

differ. The null hypothesis d0 = 0.8 is rejected in per-capita series, although it is not in

real GNP. Finally, for a null hypothesis closer to one, d = 0.9, the test rejects fractional

integration in favor of a structural break in all the four series.

[Table VII about here]

Next, we apply a different technique that permits to reverse the hypothesis. We use

an asymptotically equivalent version of the LM test of Robinson (1994) and Tanaka (1999)

recently introduced by Demetrescu et al. (2005) . This technique has the advantage of being
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very simple to implement since is completely regression-based and the autocorrelation of the

short memory component can be captured by introducing an increasing number of lagged

terms of the dependent variable, in the spirit of Said and Dickey (1984) . As a drawback,

breaks in the trend component can only be introduced at dates that should be pre-specified

and this could be an important limitation of this procedure (see Banerjee et al. (1992) and

Zivot and Andrews (1992) for a discussion). We consider the three dates that have usually

been postulated as candidates for break dates, namely, the 1929 crash, World War II and

the oil crisis of 1973. Breaks in the level, in the constant or both have been considered. For

the sake of brevity, only values corresponding to GNP-R and GNP-RPC are reported (those

related to GNP-BG and GNP-BGPC were very similar). For comparison, values of the test

obtained without allowing the possibility of breaks in the trend are also reported (bottom

row). Critical values are taken from a standard normal distribution and large values of the

statistic favor an order of integration greater than 0.

The results are presented in Table VIII. As it was found in Section 3, the null hypothesis

of T-ST is rejected for both GNP and GNP per-capita (bottom row). This is also the

case for real GNP across the different types of breaks and dates considered. Values of the

statistic are large and positive which implies that the test favors higher values of d. The

result is more ambiguous in the case of real GNP per capita. In this case, the test only

rejects a T-ST model with a break in the slope occurring in the first half of the sample at a

10% signification level. In spite of this result, it can be concluded that in general FI models

are preferred to SB ones.

[Table VIII about here]

Some robustness checks

In line with most of the I(1) vs. SB testing literature, in the section above FI and SB

models have been treated as mutually exclusive alternatives. Considering a pure FI model

is economically meaningful since there exists economic underpinnings for the existence of

such a behavior in output (Section 4). It is also justified from a statistic point of view
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since, as explained in Parke (1999) , FI models are able to represent processes that posses

a few number of “permanent” shocks while the rest are transitory. Since this is the main

characteristic of the type of SB models considered here, it makes sense to consider which

model is preferred for these data.

Nevertheless, it could be the case that both FI and SB coexist in the data. If this was

the case and breaks in deterministic component were not taken into account, estimates of

the order of integration, d, are likely to be biased upwards. This would lead to incorrect

forecasts and biased measures of persistence.

In the following we check whether there is evidence of overestimation of d stemming from

unaccounted shifts in the deterministic components. We carry out two types of analysis.

Firstly, we reestimate the processes according to the exact ML and MD procedures described

in Section 4, but this time dummy variables have been introduced in the trend component

to capture possible breaks in the trend parameters. Changes in the level and/or the rate

of growth have been allowed at three pre-specified dates: the 1929 crash, the beginning of

World War II and the 1973 oil crisis. Figures in Table IX reproduce the results of estimating

GNP-R and GNP-RPC series for the case where both the level and the slope of the trend

component are allowed to change. The results when only some of the components were

allowed to change or those associated to GNP-BG are very similar and for the sake of

brevity are omitted. It can be seen that the introduction of dummy variables do no change

significative the outcome of the estimation procedures.

[Table IX about here]

The results above depend on the break date that has been selected in a rather arbitrary

way. More robust methods are also available. Iacone (2005) has recently shown that the

local Whittle estimator can still yield consistent estimates of d in the presence of some

trending components and shifts in the mean.15 We assume that the DGP is given as in

(5) and (6) , where ut can be non-stationary. Since stationary of the stochastic component

15More specifically, the estimator is consistent if trends of the form κtρ0−1/2 for some ρ0 < d0 + 1/2 are

included and also in the presence of mean shifts.
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is required, first differences have been taken before applying this technique.16 Table X

presents the estimated values of d (unity has been added to the original estimation). It can

be seen that the estimated values do not change significatively from those that have been

presented along the article.17

Secondly, the LM test introduced by Demetrescu et al. (2005) has been applied again,

this time setting as null hypothesis different values of d and the same breaking trend pattern

as that described in Table IX (that is, breaks are allowed at three possible dates and both

in the slope and the level). Again, the results do not vary significatively: in general, for

values of the null hypothesis around 0.6-0.7, this hypothesis cannot be rejected whereas it

can if higher values of d are used.

The previous results suggest that the estimated orders of integration provided in Table

III, were no breaks were allowed for, are not overestimated. Clearly, this does not rule out

the possibility of breaks in the trend component. There is an incipient literature dealing

with the problem of testing for structural breaks in the presence of (stationary) long memory

innovations (see Hidalgo and Robinson, (1996) and Lazarova (2005)) . Unfortunately, these

techniques are not well-suited here since non-stationary FI processes are suspected and

adapting them for this problem is well beyond the scope of the paper. Nevertheless, this

will an interesting avenue for future research.

Concluding remarks

This paper has tried to shed further light on the controversy about the statistical properties

of real GNP. Taking as starting point the conclusions in Diebold and Senhadji (1996), we

have complemented their analysis by first, considering a wider range of models, both under

16Estimation of d0 is carried out by maximixing the Whittle log-likelihood in a neighborhood of the zero

frequency. Following Iacone (2005) , the number of frecuencies included in the criterion function was m = 16

whereas the parameter in charge of the trimming of the lowest frequencies, l, was set equal to 3.

17The modified version of the variance-type estimator introduced in Teverovsky and Taqqu (1997) was

also tried. Nevertheless, given the short length of the data, the resulting plots were too scattered to obtain

any conclusion.
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the null and under the alternative hypothesis. In agreement to their results, the unit root

hypothesis was robustly rejected for all the alternatives and across the different techniques.

But, interestingly, when the hypotheses were reversed also trend-stationarity was rejected.

This led us to analyze in depth some generalizations of the considered models: FI and

processes containing breaks. These models differ in many respects and posses very different

implications in terms of duration of shocks, long-run implications, etc. Nevertheless, they

may be difficult to identify since they shared some statistical properties such as a similar

correlation structure. Applying a wide set of recent techniques, various tests of FI vs.

structural break have been implemented. The final conclusion is that the finding of fractional

integration is robust. Therefore, this may suggest that the evidence that has been found in

other studies supporting the existence of breaks in GNP could be the result of the existence

of fractional integration in the data, and therefore, these breaks could be spurious.

From an economic point of view, the implications of these findings are important. As we

have seen, long memory can appear in macroeconomic series after aggregating heterogeneous

individual entities. This suggests that moving from the representative agent assumption

to a multiple-sector real business cycle model introduces not unmanageable complexity,

but qualitatively new behavior that should be taken into account. On the other hand,

calibrations aimed at matching only a few first and second order moments can similarly hide

major differences between models and the data, missing long range dependence properties

(which is basically characterized by the slow rate of decay of covariances). Finally, the lack

of structural breaks in the data together with the finding of integration orders of around 0.7

for per capita series imply that the growth rate of GDP per capita (first differences of the

logarithm of real GNP per capita) is well characterized as a process with little persistence

and a constant mean. As Jones (1995) first suggested, this evidence is inconsistent with

endogenous growth theories for which permanent changes in certain policy variables have

permanent effects on the rate of economic growth.
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Fig. 1. Annual US real GNP and GNP per-capita 1869-2001

TABLE I

Unit Root Tests

H0: Unit Root H0: T-ST

Data | Test ADF P-P DF-GLS KPSS

GNP-R -4.70∗∗ -3.53∗ -3.34∗ 0.190∗

GNP-RPC -4.63∗∗ -4.27∗ -4.61∗∗ 0.168∗

GNP-BG -4.16∗∗ -3.65∗ -3.34∗ 0.181∗

GNP-BGPC -4.79∗∗ -3.65∗ -4.76∗∗ 0.182∗

∗Rejection at the 5% level;∗∗Rejection at the 1% level;
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Fig. 2. Exact Distribution of the KPSS statistic computed under the best-fitting T-ST and

D-ST of real GNP per capita (pre-1929 values from Romer).
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Fig. 3. Exact Distribution of the KPSS statistic computed under the best-fitting T-ST,

D-ST and FI(d) models of real GNP per capita (pre-1929 values from Romer).
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TABLE II

Sup F tests for a fixed number of breaks.

H0 : no break

GNP-R GNP-RPC GNP-BG GNP-BGPC

H1 : 1 break 6.53 15.84∗∗∗ 5.53 16.26∗∗∗

H1 : 2 breaks 9.44∗ 8.06 9.43∗ 7.39

H1 : 3 breaks 7.35 6.13 7.07 5.49

Break date (BD) _ 1941 - 1939

Conf. Int. of

Break Dates

(1927− 1929)
(1945− 1956)

(1938-1956)
(1928− 1930)
(1945− 1956)

(1936-1958)

∗Rejection at the 10% level;∗∗Rejection at the 5% level; ∗∗∗Rejection at the 1% level.

TABLE III

Estimation of FI (d) models

Method-Data GNP-R GNP-BG GNP-RPC GNP-BGPC

MD

d = 0.59
(0.21)

φ1 = 0.84
(0.13)

φ2 =−0.18
(0.12)

d = 0.711
(0.15)

φ1 = 0.554
(0.12)

_

d = 0.570
(0.20)

φ1 = 0.797
(0.14)

φ2 =−0.198
(0.11)

d = 0.581
(0.21)

φ1 = 0.757
(0.13)

φ2 =−0.208
(0.11)

ML
d =0.68

(0.16)

φ1 =0.60
(0.11)

d =0.65
(0.16)

φ1 =0.63
(0.12)

d =0.65
(0.15)

φ1 =0.61
(0.12)

d =0.63
(0.15)

φ1 =0.62
(0.12)

Whittle
d =0.731

(0.22)

φ1 =0.625
(0.21)

d =0.627
(0.24)

φ1 =0.63
(0.21)

d =0.731
(0.24)

φ1 =0.62
(0.21)

d =0.731
(0.26)

φ1 =0.621
(0.21)

GPH d = 0.93
(0.27)

d = 0.91
(0.27)

d = 0.89
(0.263)

d = 0.88
(0.271)

TT d = 0.66 d = 0.66 d = 0.83 d = 0.83
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TABLE IV

Test of I(1) versus FI(d) . S.L: 5%

FD-F Test LM Test (Tanaka,1999)

H1 : d = 0.6 d = 0.7 d = 0.8 d = 0.9 d < 1

GNP-R -4.06∗ -3.92∗ -3.75∗ -3.58∗ -1.71∗

GNP-RPC -3.85∗ -3.67∗ -3.49∗ -3.32∗ -1.91∗

GNP-BG -2.89∗ -2.78∗ -2.66∗ -3.51∗ -1.91∗

GNP-BGPC -3.99∗ -3.81∗ -3.63∗ -3.46∗ -1.89∗

Crit. Values (5% S.L.) -2.45 -2.23 -2.11 -1.97 -1.64
∗Rejection at the 5% level;

TABLE V

Test of T-ST versus FI(d)

LM test, (Tanaka (1999))

H0 : d = 0 vs. H1 : d > 0

GNP-R 1.95∗

GNP-RPC 1.82∗

GNP-BG 1.99∗

GNP-BGPC 1.88∗

Crit. Values (5% S.L.) 1.64

∗Rejection at the 5% level;
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TABLE VI

LR Tests FI(d) vs I(0). SL:5%

H0 : d0 > 0.5 d0 =0.6 d0 =0.7 d0 =0.8 d0 =0.9 d0 =1.0

GNP-R 0.361 0. 578 0. 261 0. 118 0.0 53 0.022∗

GNP-RPC 0.395 0. 5102 0. 2309 0. 103 0.045∗ 0.019∗

GNP-BG 0.402 0. 57803 0. 2570 0. 115 0.051 0.022∗

GNP-BGPC 0.462 0. 5102 0. 2304 0. 102 0.045∗ 0.019∗

Critical Values (5%) (♣) (0. 469) (0. 209) (0.096) (0.047) (0.024)
∗Rejection at the 5% level.

(♣)
The crit. val. used are 0.295 and 0 .327 for GNP-R and GNP-RPC and 0.327and 0.351 forGNP-BG and GNP-BGPC .

Truncation lag to compute the Newey-West estim ator was equal to 3 .

TABLE VII

LR tests FI(d) vs I(0) with one break. S.L.:5%

Data/H0 : d = d0 d0 ≥ 0.5 d0 = 0.6 d0 = 0.7 d0 = 0.8 d0 = 0.9

GNP-R 0.623 1. 4925 0. 5050 0. 1677 0.0551∗

GNP-RPC 0.651 1. 1236 0. 3787 0. 1262 0.0416∗

GNP-BG 0.734 1. 4085 0. 4784 0. 1607 0.0534∗

GNP-BGPC 0.763 1. 0638 0. 3610 0 1209 0.0409∗

Critical Values (5%) (♣) 0. 6135 0. 2994 0. 1515 0.0821

∗Rejection at the 5% level;

(♣) Crit.va l. are 0 .353 ,0 .489 for GNP-R and GNP-RPC and ,0.489 and 0 .521 GNP-BG and GNP-BG
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TABLE VIII

LM tests H0 : I(0) +Breaking trend.

GNP-R GNP-RPC

Break date\Type of break Level Slope Both Level Trend Both

1929 2.63∗∗∗ 2.30∗∗ 2.25∗∗ 1.76∗∗ 1.75∗∗ 1.73∗∗

1939 2.97∗∗∗ 2.20∗∗ 2.38∗∗∗ 1.68∗∗ 1.61∗ 1.58∗

1973 2.25∗∗ 2.30∗∗ 2.28∗∗ 1.79∗∗ 1.78∗∗ 1.76∗∗

T-ST (no break) 2.53∗∗∗ 2.01∗∗

∗Rejection at the 10% level;∗∗Rejection at the 5% level;∗∗∗Rejection at the 5% level

TABLE IX

Re-estimation of FI (d) models allowing for breaks

Method-Data GNP -R GNP-RPC

MD ML MD ML

No break d = 0.59
(0.21)

d =0.68
(0.16)

d = 0.57
(0.21)

d =0.65
(0.15)

1929 d = 0.57
(0.20)

d = 0.55
(0.16)

d = 0.52
(0.21)

d =0.66
(0.15)

1939 d = 0.57
(0.21)

d = 0.59
(0.16)

d = 0.51
(0.20)

d =0.66
(0.15)

1973 d = 0.62
(0.21)

d = 0.54
(0.16)

d = 0.56
(0.21)

d =0.64
(0.15)

TABLE X

Whittle Local estimation of d

GNP-R GNP-BG GNP-RPC GNP-BGPC

0.78 0.79 0.69 0.67
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Appendix

TABLE XI

Estimated Best Fitting Trend and Diff. Stat. Models

Regressor

Data series c t yt−1 yt−2 ∆yt−1

Trend stationary (dependent variable yt)

GNP-R 0.797
(0.187)

0.0052
(0.0013)

1.306
(0.082)

−0.489
(0.07)

−

GNP-RPC −1.21
(0.25)

0.0032
(0.007)

1.306
(0.07)

−0.492
(0.077)

−

GNP-BG 0.805
(0.187)

0.0052
(0.0013)

1.207
(0.042)

−0.377
(0.187)

−

GNP-BGPC −1.12
(0.023)

0.0032
(0.007)

1.306
(0.0.077)

−0.481
(0.077)

−

Difference-stationary (dependent variable ∆yt)

GNP-R 0.019
(0.0053)

− − − 0.401
(0.083)

GNP-RPC 0.001
(0.080)

− − − 0.315
(0.080)

GNP-BG 0.022
(0.0053)

− − − 0.30
(0.083)

GNP-BGPC 0.011
(0.080)

− − − 0.39
(0.080)
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