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Abstract:  In the analysis of multivariate categorical data, typically the analysis of 

questionnaire data, it is often advantageous, for substantive and technical reasons, 

to analyse a subset of response categories.  In multiple correspondence analysis, 

where each category is coded as a column of an indicator matrix or row and column 

of Burt matrix, it is not correct to simply analyse the corresponding submatrix of 

data, since the whole geometric structure is different for the submatrix .  A simple 

modification of the correspondence analysis algorithm allows the overall geometric 

structure of the complete data set to be retained while calculating the solution for 

the selected subset of points.  This strategy is useful for analysing patterns of 

response amongst any subset of categories and relating these patterns to 

demographic factors, especially for studying patterns of particular responses such as 

missing and neutral responses.  The methodology is illustrated using data from the 

International Social Survey Program on Family and Changing Gender Roles in 

1994. 

Keywords:  Correspondence analysis, exploratory data analysis, missing data, 

multivariate categorical data, principal components analysis, questionnaire data.   

 
 



 2

1  Introduction 

In the social sciences the principal application of multiple correspondence analysis (MCA) is 

to visualize the interrelationships between response categories of a set of questions in a 

questionnaire survey, for example a set of statements to which the respondents answer on the 

following scale: “strongly agree”, “somewhat agree”, “neither agree nor disagree”, 

“somewhat disagree”, “strongly disagree”.   Once the relationships between the questions, or 

items, are visualized in a spatial map and interpreted, the method additionally allows the 

display of explanatory demographic variables such as age, education and gender in order to 

enrich the interpretation.  There are invariably many non-responses as well, and this absence 

of a response is a potential category that also needs to be considered.   

It may be interesting from a substantive point of view to focus on a particular subset 

of response categories, for example the categories of agreement only.   Or we might want to 

focus on the categories of agreement and disagreement alone, excluding both the non-

responses and the fence-sitting “neither agree nor disagree” responses.  A further analysis of 

interest would be just of the non-responses by themselves, in order to understand how these 

are correlated between items as well as how item non-response is correlated with 

demographic variables.  The response categories “neither agree or disagree” provide another 

interesting subset which could be analysed alone, to see if there are specific questions to 

which respondents are giving this unsure response and how the pattern of these responses is 

related to the demographic characteristics. 

MCA is generally defined in two practically equivalent ways: either as (i) the simple 

correspondence analysis (CA) of the individual response data in the format of an indicator 

matrix, where all response categories form the columns of the indicator matrix, or (ii) the CA 

of all cross-tabulations concatenated in the so-called Burt matrix, a symmetric matrix which 

has the response categories as both rows and columns.  The maps obtained by MCA are 

frequently overpopulated with points, making their printing difficult and interpretation 

complicated.  There are strategies for rectifying this situation, such as not plotting points that 

contribute weakly to the principal axes of the map, but this would be undesirable when we 

are truly interested in each category point across all the questions.  Furthermore, it is 

commonly found that the principal dimensions of MCA tell an obvious and unsurprising 

story about the data at hand, while the more interesting patterns are hidden in lower 

dimensions.  Exploring further dimensions is not a simple task, since all the category points 
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appear on and contribute to every dimension, to a greater or lesser extent.  The basic problem 

is that the MCA map is trying to show many different types of relationships simultaneously 

and these relationships are not isolated to particular dimensions.  While the technique does 

the best it can to visualize all the response categories, the maps may not be easily conducive 

to visualizing those relationships of particular interest to the researcher.   

The methodology we expose here allows subsets of categories to be analyzed and 

visualized, thus focussing the map on relationships within a chosen subset, or between a 

subset and another subset.   Thus, this approach would allow, for example, a direct analysis 

and interpretation of the non-responses, how they interrelate, how they relate to other 

response categories and to demographic variables.    

We shall illustrate the methodology on a number of questions from the survey on 

Family and Changing Gender Roles II in the International Social Survey Programme (ISSP, 

1994).  We shall use the German data from this study as an example, for both (former) West 

and East Germany, involving a total sample of 3,291 respondents (a few respondents had to 

be omitted owing to missing data for the demographic variables of interest).  We consider 

eleven questions (Table 1) related to the issue of single or dual earners in the family, mostly 

concerning the question of women working or not, which we shall call the substantive 

variables.  To simplify our presentation we have combined the two response categories of 

agreement, “strongly agree” and “agree somewhat”, into one, and similarly have combined 

the two corresponding categories of disagreement into one. In Table 1 we also list five 

demographic variables, referred to as the exogenous variables, which will be used to interpret 

the patterns of response found amongst the former eleven substantive variables. The raw 

response data of interest are thus of the form given in Table 2(a), showing the first four 

substantive and first two exogenous variables as examples, while Table 2(b) shows the same 

data coded as zero-one dummy variables in the columns of an indicator matrix.  The Burt 

matrix corresponding to these data would be equal to the transpose of the indicator matrix 

multiplied by itself – part of the Burt matrix is shown in Table 2(c).    

Insert Tables 1 and 2 about here 

There are two possible analytical strategies in this situation: firstly, using MCA, that is 

CA of the indicator matrix of dummy variables corresponding to the substantive variables (or 

the corresponding cross-tabulations in the Burt matrix), with the categories of the exogenous 

categories displayed as supplementary points; or secondly, CA of the cross-tabulations of the 

variables with the exogenous variables, that is an analysis of several concatenated tables (see, 
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for example, Greenacre, 1994).  Here we treat the former case of MCA, which is more 

concerned with the interrelationships between the substantive variables, with the exogenous 

variables visualized a posteriori.  

In order to motivate our approach, first consider the usual MCA map of these data in 

Figure 1, showing all the categories of the substantive variables and of the exogenous 

variables, the latter displayed as supplementary points.  This result is typical of analyses of 

survey data such as these where non-response categories have been introduced into the 

analysis: the non-response categories are highly associated across questions and have 

separated out from the actual response categories.  The latter response categories form a 

diagonal strip of points, with the “polar” categories of agreement (1) and disagreement (3) 

generally at the extremes and the unsure categories (?) in the middle, while the supplementary 

points (indicated by a diamond symbol, without labels) form another band of points just to the 

right of the response categories.  In many similar examples, the non-response categories are 

aligned with the first principal axis and we can thus eliminate most of their effect by mapping 

the points with respect to the plane of the second and third dimensions.   In this particular 

example, however, there is an added complication that the non-responses separate out 

diagonally in the plane, which would necessitate a rotation to “reify” the solution, an 

operation which is perfectly feasible in correspondence analysis but not regularly done nor 

incorporated into CA software.   

In order to investigate the spread of points in the cloud of points in the upper left-hand 

side of Figure 1, we have several possible courses of action.  One possible strategy would be 

to remove all cases which have non-responses, called “listwise deletion”, but this would entail 

a reduction in sample size from 3291 to 2479, that is a loss of 812 cases, or 25% of the 

sample.   A second strategy would be to try to isolate the effect of the non-responses on the 

first principal axis by rotating the solution appropriately, as mentioned above, and then 

consider dimensions from two onwards.  But the non-response points will still contribute, 

albeit much less, to these subsequent dimensions, thereby complicating the interpretation.  A 

third way to improve the visualization of the data would be to omit the non-response 

categories from the indicator matrix, and then apply CA.  But then the totals of the rows of 

the indicator matrix are no longer equal and the profiles have different nonzero values (and 

different masses) depending on the number of non-missing responses.   

Insert Figure 1 about here 
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A better solution, as we intend to show, will be provided by applying a variant of CA, 

called subset correspondence analysis, to the indicator matrix, or to the Burt matrix.  

Greenacre and Pardo (2004) showed how subset correspondence analysis can improve the 

interpretability of CA maps by focussing on subsets of points.  Our proposal is thus to apply 

this subset methodology to the present case of MCA.   This approach may be applied to any 

subset of the response categories, but usually a subset will consist of the same response 

categories across the questions: for example, one might simply want to analyse all the 

categories excluding non-responses, or the “agreement” categories alone or even just the non-

response categories by themselves.  The main idea is to analyse the subset of the original 

profile matrix, in this case the row profile matrix, and not re-express the profiles relative to 

their new totals within the subset.  Furthermore, the row and column masses used in any 

subset are the same as those masses in the original data matrix of which a subset is being 

analyzed.  A further benefit of this approach is that, if we partition the categories completely 

into mutually exclusive subsets, then we obtain a decomposition of the total inertia of the 

indicator matrix into parts accounted for by each subset.  This decomposition of total inertia 

into parts is even more interesting when we think of MCA as an analysis of the Burt matrix 

rather than that of the indicator matrix. 

2 Correspondence analysis of a subset of an indicator matrix 

CA, and thus MCA too, is a particular case of weighted principal components analysis (see, 

for example, Greenacre, 1984, chapter 3).  In this general scheme, a set of multidimensional 

points exists in a high-dimensional space in which distance is measured by a weighted 

Euclidean metric and the points themselves have differential weights, these latter weights 

being called masses to distinguish them from the dimension weights.  A two-dimensional 

solution, (in general low-dimensional), is obtained by determining the closest plane to the 

points in terms of weighted least-squared distance, and then projecting the points onto the 

plane for visualization and interpretation.   The original dimensions of the points can also be 

represented in the plane by projecting unit vectors onto the plane – these are usually depicted 

as arrows rather than points, since they may be considered as directions in the biplot style of 

joint interpretation of row and column points (Gower & Hand, 1996; Greenacre, 1993, 2004).  

In the context of MCA, however, when the rows represent many, often thousands, of 

respondents, we are generally interested in the column points only, and groups of 
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respondents, for example age groups or social class groups represented as supplementary 

column points or, equivalently, by the centroids of the respondent points that fall into these 

groups.  

The most general problem and solution is as follows.  Suppose that we have a data 

matrix Y (n×m), usually centred with respect to rows or columns or both.  We assume that the 

rows represent respondents and that the columns represent variables, which in our context are 

categories of response.   Let Dr (n×n) and Dw (m×m) be diagonal matrices of row masses and 

column weights respectively, where the masses give differentiated importance to the rows and 

the column weights serve to normalize the contributions of the variables in the weighted 

Euclidean distance function between rows. With no loss of generality the row masses are 

presumed to have a sum of 1.  The rows of Y are thus presumed to be points with varying 

masses, given by the diagonal of Dr, in an m-dimensional Euclidean space, structured by the 

inner product and metric defined by the weight matrix Dw .    The solution, a low-dimensional 

subspace which fits the points as closely as possible using weighted least-squares, minimizes 

the following function: 

∑
=

−−=−
n

i
iiwiiir

1
)ˆ()ˆ()ˆ(In yy Dyy YY T                                (1) 

where iŷ , the i-th row of Ŷ , is the closest low-dimensional approximation of yi  

(equivalently, Ŷ is the best optimal low-rank matrix approximation of Y).   The function In(·) 

stands for the inertia, in this case the inertia of the difference between the original and 

approximated matrices.   The total inertia, a measure of dispersion of the points in the full m-

dimensional space, is equal to In(Y).    

The solution can be obtained compactly and neatly using the generalized singular 

value decomposition (GSVD) of the matrix Y (see, for example, Greenacre, 1984, Appendix 

A).  Computationally, using the ordinary SVD algorithm commonly available in software 

packages such as R (Venables & Smith, 2003), the steps in finding the solution are to first 

transform the matrix Y by pre- and post-multiplying by the square roots of the weighting 

matrices, then calculate the SVD and then post-process the solution using the inverse 

transformation to obtain principal and standard coordinates.  The steps are summarized as 

follows: 

   1.  2/12/1
wr

YDDS =                 (2) 
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   2.  TVU?S =                 (3) 

3. Principal coordinates of rows:       U?DF 2/1−=
r

           (4) 

4. Principal coordinates of columns: V?DG 2/1

w
=                     (5) 

Step 2 above is the SVD, with the (positive) singular values in descending order in the 

diagonal matrix ∆ , and left and right singular vectors in the matrices U and V respectively.  A   

two-dimensional solution, say, would use the first two columns of F and G, where the 

principal coordinates in F and G are the projections of the rows (respondents) and columns 

(variables) onto principal axes of the solution space.  An alternative scaling for the columns is 

to plot standard coordinates, that is formula (5) without the post-multiplication by ∆  – the 

points are then projections onto the principal axes of the unit vectors representing the column 

variables and usually depicted by vectors from the origin of the map to the points.  The total 

inertia is the sum of squares of the singular values δ1
2+δ2

2+…,  the inertia accounted for in a 

two-dimensional solution is the sum of the first two terms δ1
2+δ2

2, while the inertia not 

accounted for (minimized in formula (1)) is the remainder of the sum: δ3
2+δ4

2+….  

Regular MCA is the above procedure applied to an indicator matrix Z of the form 

illustrated by the left hand matrix in Table 1(b), that is of the Q=11 questions (variables).  The 

matrix Y is this indicator matrix divided by Q (i.e., the row profile matrix), centred with 

respect to the averages of its columns.  The averages of the columns are the column totals of 

Z divided by Z’s grand total nQ, where n is the number of rows (respondents), and hence are  

exactly the proportions of respondents giving the corresponding categories of response, 

divided by Q.  Thus, if a particular category of response is given by 2675 of the total of 3,291 

respondents (as in the case of A+, see Table 2(c)), and since there are 11 questions, then the 

corresponding column average is equal to the proportion of response 2675/3291 = 0.8128 

divided by 11, that is 0.0739.  In matrix notation: 

)
1

)(
1

(
11

Z11IZ11ZY
QnnQQ

TT −=−=  
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The row masses in this case are all equal, being the row totals of Z, all equal to Q, divided by 

its grand total nQ, hence the masses are all 1/n.  The column weights used (inversely) in the 

chi-square distance function are in the vector of column averages Z1T)/1( nQ . 

We now wish to analyse and visualize a chosen subset of the indicator matrix.   The 

subset version of simple CA of Greenacre and Pardo (2004), applied to the indicator matrix, 

implies that we maintain the same row and column weighting as in classical MCA described 

above, but the matrix to be analysed is the chosen subset of the profile matrix Y, not of the 

original indicator matrix.  That is, suppose that H is a selected subset of the columns of Y, 

already centred, and that the corresponding subset of column weights (masses) is denoted by 

h. Then subset MCA is defined as the principal components analysis of H with row masses r 

in Dr as before and metric defined by Dh
-1 where Dh is the diagonal matrix of h.  Hence the 

subset MCA solution is obtained using steps (1)-(5) with Y equal to H – 1hT= (I – 1rT)H, Dr 

equal to the present Dr and Dw equal to Dh
– 1.   The matrix (2) that is decomposed is thus: 

                             2/12/1 )( −−=
hr

HD1rIDS T                                                          (6) 

and the row and column principal coordinates from (4) and (5) are thus: 

             V?DGU?DF 2/12/1
                       

−− ==
hr

                                                   (7) 

All the usual numerical diagnostics (or contributions) of ordinary CA apply as before, since 

the total inertia, equal to the sum-of-squares of (6), can be broken down into parts 

corresponding to points and to principal axes, thanks to the SVD decomposition (see 

Greenacre, 2004). 

3 Application to women’s participation in labour force  

Insert Figure 2 about here 

Figure 2 shows the subset MCA map of the response categories agree (+), neither agree nor 

disagree (?) and disagree (-) for the questions A to K, thus omitting the non-responses (x).  

All the unsure (?) points line up on the vertical second axis of the solution, while most of the 

agreements and disagreements are spread horizontally along the first axis. Amongst the 11 

statements, there are four that are worded in a reverse sense compared to the others: in 
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statements A, F, G and H agreement represents a favourable attitude to women working, 

whereas in the other statements it is the opposite. Notice that in Figure 2 the disagreements to 

these four statements are on the side of the agreements to the others, which is what we would 

expect.   

 In order to interpret the agreement and disagreement categories without having to cope 

with the dimension of “neither…nor” responses, Figure 3 shows the subset MCA map of 

what we shall loosely call the “polar” responses, that is agreements (+) and disagreements (-), 

without the “non-polar” responses, that is without non-responses (x) and “neither…nor”s (?).  

The spectrum of agreements and disagreements is now easier to interpret, and it is clear that 

there is a closely correlated group items B, C, E and I , to a lesser extent J, along the 

horizontal axis which are being responded differently from F, G, H and to a lesser extent A, 

which are separating out vertically in the map(the solution could be slightly rotated to 

improve the interpretation along axes).  We see now that the reversely worded statements are 

not always reversely answered – if they were then A+, F+, G+ and H+ should lie amongst the 

bunch of “-” categories of the other statements, similarly A-, F-, G- and H- should lie 

amongst the “+” categories of the others. 

Insert Figure 3 and Table 3 about here 

To investigate why A, F, G and H behave differently, we constructed a table where we 

counted how many times respondents had responded positively or negatively to a statement in 

this group and to a statement in the group formed by B, C, D, E and I which are all worded 

clearly in a sense unfavourable to women working (Table 3).   If agreements to the first set of 

questions generally co-occurred with disagreements to the second set, then we would expect 

much larger percentages in the top right and bottom left of the table, compared to their 

corresponding margins.  However, this table shows that whereas 38.2% of co-occurring 

responses are in the upper right corner of the table (agreements to A, F, G, H and 

disagreements to B, C, D, E, I), there are as many as 30.1% co-occurring agreements to 

statements from both sets.  There is a similar effect in the last row: although the overall level 

of disagreement to A, F, G, H is lower, there are relatively many co-occurrences to 

disagreements to statements from both sets (4.0%) compared to the inverted responses where 

disagreement to statements in the first set coincides with agreement to statements in the 

second set (7.3%). 
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Insert Figure 4 about here 

In spite of the separation of the A, F, G, H set from the others, for the abovementioned 

reason, we do see a lining up along the horizontal first axis in Figure 3 of attitudes favourable 

to women working on the left hand side, with unfavourable attitudes on the right.  Figure 4 

shows the categories of the exogenous demographic variables, which are represented as 

supplementary points with respect to the dimensions of Figure 3, but displayed separately.  

The spread is generally along the horizontal dimens ion, showing East Germans to be much 

more in favour of women working than West Germans: taking two examples from the 

original data, we calculated that 93.5% of East Germans think that both husband and wife 

should contribute to the household income (statement H), compared to 66.9% for West 

Germans; and 11.2% of East Germans think that the household is the wife’s job (statement I), 

compared to 37.2% for West Germans).  Also more in favour are the younger age groups and 

more educated groups, as well as single and divorced people, while older, less educated and 

the “widowed” group are less in favour.  As expected, females are on average in favour of 

women working while men are less in favour.  The interpretation using supplementary points 

could be enriched by indicating the positions of interactive subgroups of respondents, for 

example male East Germans, female East Germans, male West Germans, and male West 

Germans, or East Germans in different age groups and so on. 

 Finally, we performed a subset MCA of the non-response (x) categories alone, which 

we had originally omitted, and the resulting map is shown in Figure 5.   All the category 

points are on the positive side of the first axis, so that the first axis is a dimension of overall 

non-responses and would be highly correlated with a count of non-responses for each 

respondent.  However, we see an interesting dichotomy in the items, with non-responses to A, 

B and C clearly separated from the rest – these are exactly the items that include the word 

“mother” and relate to the working women’s relationship with her children and family, for 

which there must exist a special pattern of interrelated non-responses in some respondents. 

The origin of the map in Figure 5 represents the average non-response point for all 11 

questions.  Demographic categories are also shown in Figure 5 and those to the left of centre 

will thus have less than average non-responses and categories to the right more than average.  

Hence, higher educational groups have fewer non-responses, as do East Germans compared to 

West Germans.  Both the youngest and oldest age groups have higher than average non-

responses, and so on.  As in Figures 3 and 4, the contrast in attitudes reflected by the second 

dimension is not correlating strongly with the demographic categories. 
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Thanks to the fact that the margins in each subset analysis are always determined from 

the full data table, there is an interesting decomposition of total inertia across the subset 

analyses.  A subset MCA of the complete indicator matrix, which is just an ordinary MCA, 

has a total inertia equal to (J – Q)/Q = (44–11)/11 = 3, where Q = number of questions, J = 

total number of categories.   In the analysis of the subset without the non-response categories 

(Figure 2), the total inertia is 2.046, while in the analysis of the non-response categories alone 

(Figure 5), the total inertia is 0.954.  Hence in subset MCA the total inertia of all categories is 

decomposed into parts for each of the two mutually exclusive but exhaustive subsets.  This 

breakdown is summarized in Table 4, including the percentages of inertia on the first two 

dimensions of each analysis reported previously.   When the “neither…nor”s (?) are removed 

from the analysis of Figure 2, the total inertia for the “polar” responses (Figure 3) is equal to 

1.163. From these results one can deduce that the inertia of the “neither…nor” categories is 

equal to 2.046–1.163 = 0.833.  Thus the inertia from “non-polar responses” (? and X) is equal 

to 0.954+0.833 = 1.837, more than half of the inertia in the original MCA.   

Insert Table 4 about here 

The percentages of inertia indicated in each map but are all underestimates of the true 

variance explained, which is the same issue that affects the percentages of inertia in MCA.  In 

Figure 1, where all categories are analyzed and which is thus a regular MCA, the principal 

inertias (eigenvalues) can be adjusted – Table 4 shows the adjusted percentages in the first 

row of the table.  When analyzing the subset, we could still calculate the percentages of 

inertia explained conditional on the coordinates obtained in the subset analysis, but it is not 

clear whether adjusted estimates can be obtained easily from the subset MCA solution, as in 

MCA.  

4 Subset MCA applied to the Burt matrix  

The relationship between subset MCA of the indicator matrix and a subset analysis of 

the corresponding Burt matrix gives another perspective on the problem.  As an example, 

suppose that we divide the question response categories into “polar responses” (PRs) and 

“non-polar responses” (NPRs) – as in our application, the categories “+”and “–” on the one 

hand, and the categories “?” and “X” on the other.  Then the Burt matrix B can be subsetted 

into four parts: 
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  PR    NPR 

PR      B11     B12 

NPR  B21     B22 

If λ1, λ2, … are the principal inertias of the indicator matrix Z, with sum (J–Q)/Q  then λ1
2, 

λ2
2, … are the principal inertias of the Burt matrix B.  Table 5 gives the total inertias and first 

two percentages of inertia for several subset MCAs of B, including the complete MCA in the 

first line.  For example, in the complete MCA in Figure 1, the first principal inertia is 0.3143, 

which if squared is equal to 0.09878.  This is the first principal inertia of the Burt matrix, and 

represents 26.0% of the total inertia 0.3797 of B, which checks with Table 5.  This property 

carries over to the subset analyses as well.  For example, in Table 3, the first principal inertia 

in the subset MCA of the PRs is 0.2718, which if squared is equal to 0.07388.  Expressed as a 

percentage of the inertia 0.1366 of the submatrix B11 of the Burt matrix which analyses the 

PRs, a percentage of 54.1% is obtained, again agreeing with the percentage reported in Table 

5.   The connection between the principal inertias in the subset MCA of the indicator matrix 

and the subset MCA of the corresponding part of the Burt matrix, holds for exactly the same 

reason as in the complete MCA: the matrix B11 analysed in the latter case is exactly Z1
TZ1, 

where Z1 is the submatrix of the indicator matrix analysed in the former case. 

Insert Table 5 about here 

From the above partitioning of B into four sub-matrices, the total inertia of B is equal 

to the sum of inertias in the subset analyses of  B11, B22, B12 and B21 (notice that the last two 

are transposes of each other, so we could just count the inertia of one of them twice – the 

caption of Table 5 gives the calculation to verify this assertion). As we have just said in the 

previous paragraph, the subset analyses of B11 and B22 give results whose principal inertias 

are exactly the squares of those in the respective subset analyses of the corresponding 

indicator matrices of PR and NPR responses.  But there is an “extra” subset analysis, namely 

that of B12 , that is manifest in the Burt matrix but not in the indicator matrix.  In our 

illustration, the submatrix B12 captures the associations between PRs and NPRs.  In Table 5, 

which gives the corresponding decomposition of inertia for these subset analyses, we can see 

that the level of association between the PRs and NPRs is much less than within PRs and 

within NPRs.  It should be remembered, however, that all these components of inertia are 

inflated by fragments of the “diagonal blocks” from the Burt matrix, as in the complete MCA.  
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In the case of B11 and B22, these are inflated by subsets of the diagonal matrices on the 

diagonal of B.   In the case of B12 or B21, the elements of the matrix corresponding to the 

same question account for the inflation, and consist of blocks of zeros since there is zero 

contingency between the PRs and NPRs of the same question.  It is a question of continuing 

research if there exist simple ways for adjusting the eigenvalues and their percentages, as is 

possible in the MCA of the complete Burt matrix. 

4. Discussion and conclusions  

One of Benzécri’s (1973) basic principles of Analyse des Données (Data Analysis) is that one 

should analyse all the available information, a principle which implies that every possible 

category of response, including missing responses, be analysed together.  In the case of MCA 

this means analysing the so-called “tableau disjonctif complet” (complete disjunctive table, 

or indicator matrix) which has as many ones in each row as there are variables indicating the 

categories of response.  When analysing several variables, however, it is almost always the 

case that the interpretation is hampered by the large number of category points in the map, all 

of which load to a greater or lesser extent on every dimension, so that interpretation and 

conclusions are limited to broad generalities.   We have shown that there is great value in 

restricting the analysis to subsets of categories, which may be visualized separately and thus 

with better quality than they would have been the case in a complete MCA.   The method 

allows exploration of several issues of prime importance to social scientists:  

• analysing substantive responses only, ignoring non-responses,  

• studying the pattern of non-responses  by themselves and how they relate to 

demographic variables, 

• focusing on the role played by neutral responses, how they are related to one another, 

how they are related to the non-responses and whether any patterns correlate with the 

demographic variables. 

In the first visualization of the data (Figure 1), that is the complete MCA, the points 

representing the missing data were so strongly associated that they forced all the other 

categories into a group on the opposite side of the first axis.  Even though the frequency of 

non-responses was fairly low, they dominate this map, leaving little remaining “space” to 
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understand the relationships between the other responses categories.  The subset analysis 

allowed this effect to be removed, showing the separation of the “non-missing” response 

categories more clearly in Figure 2.  The neutral categories could also be removed (Figure 3) 

to further clarify the associations between the agreement and disagreement poles of questions 

that were worded in a favourable and unfavourable direction towards working women.  The 

subset could also consist of just one response category across the questions, as illustrated by 

the map in Figure 5, which showed the missing data categories only.  In all cases, 

supplementary points could be added to show the relationship between the analysed response 

categories and the demographic variables (Figures 4 and 5). 

The subset variant of simple CA has been extended here to MCA and maintains the 

geometry of the masses and chi-square distances of the complete MCA, the only difference 

being that we do not re-express the elements of the subset with respect to their own totals, but 

maintain their profile values with respect to the totals of the complete data set.   This 

approach ensures the attractive property that the total inertia is decomposed into parts for each 

of the subsets of categories.  The same idea has already been used in an MCA context by Gifi 

(1990) to exclude non-responses, where the approach is called “missing data passive” (see 

also Michailidis and de Leeuw, 1998), and similarly by Le Roux and Rouanet (2004).  These 

uses are limited, however, to the exclusion of missing data, whereas in our application we 

consider a much wider number of possible subsets, including the analysis of missing data 

alone when all the substantive responses are excluded.       

Software notes 

Programs for CA, MCA, subset CA and subset MCA are available as functions in the R 

language (www.r-project.org) as well as in XLSTAT (www.xlstat.com).  The first author can 

be contacted for further information about this software.   
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Table 1 

List of variables used in this study, taken from the survey on Family and Changing Gender 

Roles II as part of the International Social Survey Program (ISSP, 1994). 

 
A : 

 
A working mother can establish just as warm and secure a relationship with her children  
As a mother who does not work. 

 
B : 

 
A pre-school child is likely to suffer if his or her mother works 

 
C : 

 
All in all, family life suffers when the woman has a full-time job 

 
D : 

 
A job is all right, but what most women really want is a home and children. 

 
E : 

 
Being a housewife is just as fulfilling as working for pay. 

 
F : 

 
Having a job is the best way for a woman to be an independent person. 

 
G : 

 
Most women have to work these days to support their families. 

 
H : 

 
Both the man and woman should contribute to the household income. 

 
I : 

 
A man's job is to earn money; a woman's job is to look after the home and family 

 
J : 

 
It is not good if the man stays at home and cares for and the woman goes out to work. 

 
K : 

 
Family life often suffers because men concentrate too much on their work. 

Response scales for each question: strongly agree, agree somewhat, neither agree nor 
disagree, disagree somewhat, strongly disagree; in our application we have merged the 
two categories of agreement into one, and the two categories of disagreement into one 

Exogenous variables: 

German region 2 regions: DW (West Germany), DE (East Germany)  

Sex   2 categories: M, F 

Age   6 groups: A1 (up to 25), A2 (26-35), A3 (36-45) 
    A4 (46-55), A5 (56-65), A6 (66 and over) 

Marital status 5 groups: MA (married), WI (widowed), DI (divorced), SE (separated),  
                                       SI (single) 

Education 7 groups: E0 (none), E1 (incomplete primary), E2 (primary), 
                 E3 (incomplete secondary), E4 (secondary),  

    E5 (incomplete tertiary), E6 (tertiary) 
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Table 2 

Raw data in two different but equivalent forms: (a) the original response pattern data for the 

first four questions and the first two exogenous variables region and sex; (b) the indicator 

(dummy variable) form of coding.  Response categories for questions A – K are:  1. strongly 

agree or agree combined (+) , 2. neither agree nor disagree (?), 3. disagree or strongly 

disagree combined (-), 4. non-response (x); for region: 1. former West Germany (DW),  

2. former East Germany (DE); for sex: 1. male (M), 2. female (F).  Data is shown only for 

first six respondents (out of  n = 3291).  (c) A part of the Burt matrix, showing some cross-

tabulations with question A only. 

 

        (a)                                                (b)                                                                               
                                          A        B        C        D     Region Sex ...    
        A  B  C  D  ...Reg Sex ...      + ? – x  + ? – x  + ? – x  + ? – x   DW DE  M F    

                                                             
                                                            
                                                           
 3291312 
cases                                                                      
                                                            
                                                      
  

 

 

         (c) 

                A                  B         ...   Region  ...    
          +   ?   –   x      +   ?   –   x           DW  DE   
 
    + 

    ? 

    - 

    x 

    . 
    . 
    . 
    . 
   
       
 

 

 1  1  1  1  ... 1  1   ... 
 3  1  1  3  ... 1  1   ... 
 1  1  1  1  ... 1  1   ... 
 1  3  3  3  ... 1  2   ... 
 1  2  2  3  ... 1  2   ... 
 1  1  3  2  ... 1  1   ... 
 .  .  .  .  ... .  .   ... 
 .  .  .  .  ... .  .   ... 
 .  .  .  .  ... .  .   ... 
 .  .  .  .  ... .  .   ... 

1 0 0 0  1 0 0 0  1 0 0 0  1 0 0 0    1 0   1 0 ... 
0 0 1 0  1 0 0 0  1 0 0 0  0 0 1 0    1 0   1 0 ... 
1 0 0 0  1 0 0 0  1 0 0 0  1 0 0 0    1 0   1 0 ... 
1 0 0 0  0 0 1 0  0 0 1 0  0 0 1 0    1 0   0 1 ... 
1 0 0 0  0 1 0 0  0 1 0 0  0 0 1 0    1 0   0 1 ... 
1 0 0 0  1 0 0 0  0 0 1 0  0 1 0 0    1 0   1 0 ... 
. . . .  . . . .  . . . .  . . . .    . .   . . ... 
. . . .  . . . .  . . . .  . . . .    . .   . . ... 
. . . .  . . . .  . . . .  . . . .    . .   . . ... 
. . . .  . . . .  . . . .  . . . .    . .   . . ... 
 

2675   0   0   0   1328 374 901  72  ... 1685 990  ... 

   0 111   0   0     85  17   8   1  ...   92  19  ... 

   0   0 525   0    472  13  31   9  ...  461  64  ... 

   0   0   0 110     61   3   4  42  ...   86  24  ... 

  .   .   .   .      .   .   .   .   ...   .   .   ... 
  .   .   .   .      .   .   .   .   ...   .   .   ... 
  .   .   .   .      .   .   .   .   ...   .   .   ... 
  .   .   .   .      .   .   .   .   ...   .   .   ... 

A 
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Table 3 

Percentages of co-occurrences of agreements (+), unsures (?) and disagreements (-) between 

the two sets of statements with opposite wording with respect to women working: A, F, G and 

H are favourable to women working, while B, C, D, E and I are unfavourable.  Non-responses 

have been omitted (using pairwise deletion) when compiling these percentages. 

 

                                                  B, C, D, E, I 

         +          ?      - 

+ 30.1%  10.6%  38.2% 

  A, F, G, H   ?   3.9%    1.7%    2.9% 

-   7.3%    1.2%     4.0% 
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Table 4 

Total inertias of different subsets of categories, and the percentages of inertia along the first 

two dimensions of the analyses reported in Figures 1 to 4.  For the first analysis of all the 

categories (MCA) the adjusted percentages are given in parentheses.   

 
 
   Subset   Total inertia           Percentages 
 analysed     Axis 1     Axis 2 
 
 
 all response 
  categories      3.000  10.4%      9.1%   
  (Figure 1)                (50.5%)            (34.3%) 
   +,?,–,x 
 
 without non- 
  reponses     2.047     13.7%     8.0% 
  (Figure 2) 
    +,?,– 
  
without NPR’s       
   (Figure 3)      1.165  23.4%   10.7% 
      +,–       
 
non-responses 
  (Figure 5) 
       x      0.953  30.1%     9.3% 
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Table 5 

Total inertias of different subsets of categories in the analysis of the submatrices of the Burt 

matrix, and the percentages of inertia along the first two dimensions.    It is readily checked 

that 0.3797=0.1366+0.2077+2(0.0177), as described in the text, corresponding to the inertias 

of the submatrices of the Burt matrix.  For the first analysis of all the categories (MCA) the 

adjusted percentages are given in parentheses, as in Table 4.   

 
 
   Subset   Total inertia           Percentages 
 analysed     Axis 1     Axis 2 
 
 
 all response 
 categories      0.3797  26.0%     19.5%   
   +,?,–,x                (50.5%)             (34.3%) 
    
 
    polar 
 reponses (PRs)    0.1366     54.1%     11.2% 
   +,– 
     
  
non-polar        
responses (NPRs)    0.2077  41.9%       9.0% 
   ?,X       
 
 
PRs by NPRs     0.0177  35.1%    15.7% 
  (Figure 6) 
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Figure 1 

MCA map of Table 3, showing the four response categories for each of the 11 questions A to 

K (see Table 1).  The unlabelled points with diamond symbols are the supplementary points 

for the exogenous variables. 
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Figure 2 

Subset MCA map of the response categories omitting the non-response categories.  
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Figure 3 

Subset MCA map of the agreement and disagreement categories only (A+, A- to K+, K-), 

without NSRs (“neither agree nor disagree” and non-responses). 
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Figure  4 

Positions of the supplementary points in the map of Figure 3.   
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Figure 5 

Subset MCA map of the non-response categories only (AX to KX), showing supplementary 

demographic categories    
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