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Abstract 

 

The purpose of this paper is to show how agent-based simulations of payment systems can be 

used to aid central bankers and payment system operators in thinking about the appropriate 

design of payment settlement systems to minimise risk and increase their efficiency.  Banks, 

which we model as the ‘agents’, are capable of a degree of autonomy with which to respond to 

payment system rules and adopt a strategy that determines how much collateral to post with the 

central bank at the start of the day (equivalently how much liquidity to borrow intraday from the 

central bank) and when to send payment orders to the central processor.  An interbank payment 

system with costly liquidity requires banks to solve an intraday cash management problem, 

minimising their liquidity and delay costs subject to their beliefs about what the other banks are 

doing.  We use the Erev and Roth (1998) reinforcement learning algorithm for banks to 

endogenously determine how much liquidity to post in the interbank liquidity management game.   
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1 Introduction 

 

The purpose of this paper is to show how the methodology of ‘agent-based modelling’ can be 

used to examine interbank payment systems, defined as ‘a set of instruments, banking procedures 

and, typically, interbank funds transfer systems that ensure the circulation of money’, (Bank for 

International Settlements (2003)).  The interbank flow of large-value payments increased 

substantially in the 1980’s and 1990’s as a result of financial innovation, deregulation and 

globalisation of financial markets.  On a daily basis it has been estimated that close to 20% of a 

country’s GDP typically comes up for settlement in the interbank payment networks of each of 

the G10 countries.
(1)

  Given that the smooth functioning of payment systems is clearly important 

for financial stability, the central bank should have an understanding of the risks associated with 

different systems and seek to minimise these where it can do so in a cost-effective manner. 

 

Bank of England (2000) discusses four types of risk in payments systems: 

 

 Credit risk:  the risk that a bank will not actually meet a payment obligation incurred by it 

either when the obligation is due or at a later stage 

 Liquidity risk:  the risk that a bank won’t meet an obligation at the time it is due, although it 

will at some point thereafter (as a result of being ‘short of liquidity’) 

 Operational risk:  the risk that the system breaks down or fails to function and this results in 

possible financial losses 

 Legal risk:  the risk that unexpected legal decisions or legal uncertainty more generally will 

leave the system or its members with unforeseen obligations and possible losses 

 

By thinking of the participants – ‘settlement banks’ – in a payment system as our ‘agents’, one 

can construct a model of a payment system in which the agents adopt strategies that determine 

how they behave given the ‘instruments and procedures’ in a particular payment system.  In 

particular, such strategies would include rules for much collateral to post with the central bank at 

the start of the day (equivalently how much liquidity to borrow intraday from the central bank), 

when to send payment orders to the central processor and what priority to attach to each payment.  

Simulations of such models can be used to aid central bankers and payment system operators in 

thinking about the appropriate design of payment systems to minimise these risks.   

 

A number of alternative methodologies have been used to examine these issues.  On the more 

theoretical side, Angelini (1998), Bech and Garratt (2003) and Willison (2005) have used a game-

theoretic perspective to understand the differences in incentives for the banks created by different 

credit and settlement arrangements in interbank payments.  McAndrews (2005) refers to this 

strand of work as being a ‘market microstructure’ approach to payment systems.  He argues that 

different payment system designs are analogous to the different institutional arrangements found 

in different financial markets.  Hence, insights from the study of financial market microstructure 

can be used to consider the risk and efficiency implications of different payment system designs 

and that advances in the analysis of real-time data can be used to evaluate these theories. 

                                                                                                                                                              

 
1
 In the United Kingdom, CHAPS processes some £200 billion per day with a transactions volume of about 100,000.  

This results in an average value per transaction of about £2 million. 
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These papers are insightful and give qualitative suggestions on design issues. However, they 

cannot address the trade-offs between the different risks, and the costs associated with system 

designs that minimise them, in the quantitative fashion that is needed for a realistic comparison of 

different ‘real-life’ interbank payment systems.  Further, these authors are typically forced to 

make a number of simplifying assumptions in order to solve their models.  Indeed, it is well 

known that it is difficult to solve a formal model of a network of independent, optimising agents 

interacting with each other in an environment that is even close to reality.  But such assumptions 

are not always innocuous.  For instance, most models assume that banks know in advance what 

payments are coming in to them over the course of the day; this makes liquidity planning much 

easier than it ever would be in practice.  Finally, we show how an Erev and Roth (1998) type 

reinforcement learning algorithm can be used for banks to endogenously determine how much 

liquidity to post in the interbank liquidity management game.  However, it is beyond the scope of 

this paper to show how agent based modelling can be used to see how bank behaviour may 

evolve over time, particularly in response to the actions of other participants, and how certain 

‘conventions’ in payments behaviour arise. 

 

An alternative theoretical approach to examining the trade-off between risk and efficiency in 

payment systems can be found in Lester et al (2005).  These authors adopt a ‘search-theoretic’ 

approach to modelling payments and develop a model within which they examine the trade-off 

between cost and risk of deferred net settlement (DNS) and real-time gross settlement (RTGS) 

payment systems.  But their approach is not suitable for examining the behaviour of participants 

within a payment system since, in their model, payment requests received by banks are assumed 

to be automatically forwarded to the system;  banks have no discretion over this.        

 

Another popular methodology is that of payment system simulations (PSS).  Leinonen (2005) 

brings together a number of papers in this vein, most of which use a simulator developed by the 

Bank of Finland (BoF PSS for short).  In this approach, authors typically use actual data on the 

arrival of payment requests at the central payments processor and experiment with different 

settlement rules, analysing the trade-off between liquidity used and speed in processing payments.  

The BoF PSS has also been used (for example, in Bedford et al (2005)) to examine the effect of 

operational events (such as a bank’s IT system crashing leaving it unable to make payments) and 

bank defaults on the ability of the remaining banks to make payments.  Although, this approach is 

similar to ours, it suffers from the problem that it takes the behaviour of the participating banks as 

given.  In particular, it cannot deal with the strategic decision of the banks to delay payments or 

that of how much liquidity to post in the first place.  In addition, it assumes that bank behaviour 

and network interconnections in the system remain unchanged across experiments; we might 

expect both to change given different payment system designs. 

 

In agent-based simulations, we can simulate bank behaviour by starting the banks off with simple 

rules and allowing them to revise these rules as they deliver outcomes that are better or worse in 

terms of their objective functions.  Given this, we can watch the evolution of payments behaviour 

over time in different systems by using real payments data as input.  Alternatively, we can run 

‘stochastic simulations’ that would enable the experimenter to vary the statistical properties of the 

interbank system in terms of the size, arrival times of payment requests and distribution of the 

payment flows in the interbank system.  For instance, one can compare payment systems we see 
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in practice with the perfectly symmetrical (identical banks making the same number of equal-

sized payments to one other) systems that form the basis of most theoretical models of payments, 

examining, for example, the implications for liquidity requirements and systemic risk in each 

system. 

 

As an example of this approach, we conduct a set of experiments that throw some light on the 

relative merits of two ‘vanilla’ variants of an RTGS system:  one in which banks generate all the 

liquidity they need to use the system by posting collateral with the Central Bank at the beginning 

of the day – opening liquidity (OL) – and one in which they generate liquidity, by borrowing 

from the Central Bank, as and when they need it – just in time (JIT).  In the JIT system banks 

weigh up the costs of delaying a payment against the interest they would need to pay on a loan 

from the central bank in order to determine when liquidity is used.  We compare the performance 

of these systems in terms of a liquidity-delay trade off. 

 

The rest of the paper is organized as follows.  In Section 2 we discuss the main issues in payment 

system design.  In Section 3 we set out the computational modelling framework.   In Sections 4 

and 5 the results of our example experiment are reported.  Section 6 briefly discusses how the   

Erev and Roth (1998) reinforcement learning algorithm can be used for banks to endogenously 

determine how much liquidity to post in the interbank liquidity management game.  Section 7 

gives the conclusions and discusses future work. 

  

2 Payment Systems in Practice 

 

Historically, interbank payments following the clearing house tradition for paper based IOUs 

such as cheques have involved central processing with multilateral net settlement at the end of the 

day.  Such end-of-day netting systems were the norm when the process of transmitting payments 

was expensive and the physicality of the IOUs militated against real-time settlement.  But these 

Deferred Net Settlement (DNS) systems can generate large intraday credit exposures.  

Notification by payer banks of payment requests to customers of payee banks, result in the latter 

processing payments, granting de facto credit extensions to the initiating/payer banks until final 

settlement occurs at the end of day.  Further, in a DNS system, as banks treat the promised 

inflows with a substantial degree of finality they typically make no explicit arrangements for any 

liquidity in excess of the end of day multilateral netted amount. 

 

As the size and volume of payments grew larger, the corresponding increase of risk of non-

settlement by payer banks in DNS led to the introduction of Real Time Gross Settlement (RTGS) 

systems in the 1990’s by all EU and G10 countries (with the exception of Canada).  In a RTGS 

system all payment requests arriving at the central processor are processed individually, with 

immediacy and finality using the balance in a bank’s settlement account.  Those payments that do 

not satisfy the criteria set out by the rules are returned to the sender unpaid.
(2)

  While settlement 

risk can, in principle, be eliminated completely by RTGS, such systems require large quantities of 

intraday liquidity.  As an alternative, banks can use payment inflows to finance subsequent 

                                                                                                                                                              

 
2
 For a fuller discussion of the different variants of the RTGS in practice, see McAndrews and Trundle (2001).  

McAndrews and Rajan (2000) discuss the settlement process in Fedwire.   
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outflows, strategically delaying the settlement of payments requested in anticipation of offset.  

Such delaying tactics, which result in hidden queues of unsettled payments, though individually 

rational, can result in ‘bad’ equilibrium outcomes, compromising the efficiency of the system 

(see, for example, Angelini, 1998, or Bech and Garratt, 2003).    

 

The relative advantages of DNS and RTGS systems have led to the recent development of hybrid 

systems that combine the bilateral or multilateral netting features of DNS with RTGS to reduce 

liquidity requirements and to rid RTGS of the potential for free riding.  The maximum benefits 

from a hybrid system arise when the system operates at the lowest possible level of liquidity, all 

payments are cleared in full at the time they are made, and all payments are made early in the day.  

(See Willison (2005) for a discussion of this.)   

 

The intraday liquidity needed in a payment system is a non-trivial function of the random arrival 

times of payments as well as the size and distribution of payments among banks.  For a DNS 

system, if every bank is assumed to owe every other bank the same value of payments, with 

multilateral or bilateral netting done at end of day, the liquidity needed will be zero.  Given the 

lack of symmetry in the value (and volume) of real world interbank payment flows, the end of 

day multilateral netted amount is positive and typically about 2.5% - 3 % of the total value of 

payments.  This amount, calculated by a multilateral netting algorithm on the end of day liability 

matrix of the interbank settlement system, is generally referred to as the ‘lower bound’ level of 

liquidity needed by a payment system.    The ‘upper bound’ level of liquidity needed by a 

payment system, on the other hand, is equal to the amount of liquidity that banks require so that 

all payment requests are settled immediately at the time they are requested with no payments 

being queued.  This value is typically far less than the total value of payments processed in the 

system and reflects the speed with which liquidity is recycled.  If banks post less than their upper 

bound level of liquidity, the possibility arises of payment gridlock.  Bech and Soramäki (2002) 

define a gridlock as one where the (possibly hidden) queues of payment requests of banks can be 

eliminated if they can be simultaneously netted with no additional posting of liquidity.
(3)

   

 

It is worth commenting at this point on how liquidity is generated within a payment system.  In 

many RTGS systems liquidity is obtained by banks posting collateral with the Central Bank and 

receiving cash on their settlement account at the beginning of the day.  At the end of the day, the 

Central Bank returns this collateral to the settlement banks.  This process is equivalent to the 

Central Bank giving the settlement banks fully collateralised but otherwise free loans intraday.  

One could think of alternatives to this approach.  In particular, the Central Bank could charge an 

interest rate on these loans and/or could provide these loans on an uncollateralised basis.  In the 

case of uncollateralised loans, this could work through the provision of overdraft facilities at the 

Central Bank. 

 

Other features of a payment system that are of interest to policy makers but that we will not 

consider in this paper include the types of payments that are made through it.  For instance, we 

could distinguish between systems that process wholesale financial market transactions, such as 

                                                                                                                                                              

 
3
 Situations in which additional liquidity is needed to assist in the elimination of payment queues with simultaneous 

or multilateral netting are referred to in Bech and Soramäki (2002) as deadlock.   
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CHAPS Sterling, and those that process retail payments, such as BACS or credit card schemes.  

Related to this will be the issue of size of payments.  The wholesale systems are likely to process 

fewer payments but with much higher values than the retail systems.  Finally, we could also 

consider the extent to which banks access the system.  In the United Kingdom, the payment 

systems are highly tiered.  That is, there are a small number of settlement banks that process 

payments not only on their own account but on behalf of a large number of other banks that do 

not have settlement accounts. 

 

In what follows, we focus on large-value payment systems.  But we make the model general 

enough that it can handle different rules as to how liquidity is obtained and on what terms.  In 

particular, our example experiment compares two large-value payment systems: 

1) Banks obtain liquidity by posting collateral at the start of the day;  this liquidity is 

provided free of charge by the Central Bank – OL  

2) Banks obtain liquidity as and when they need it by borrowing uncollateralised from 

the Central Bank at a cost – JIT 

 

3 An agent-based model of a payment system    

  

In order to construct an agent-based simulation model of a payment system we need the 

following ingredients: 

 

 a central processor for the payment system 

 a central bank that offers settlement accounts to a group of settlement banks;  payments 

within the payment system are settled across these accounts 

 a set of settlement banks that have direct access to the payment system and have settlement 

accounts at the central bank (For the rest of this paper we use the term ‘banks’ to refer only to 

settlement banks.) 

 customers (which could include second-tier banks) submitting payment requests at random 

times  

 

In principle, there are three arrival times that need to be stipulated for payments:  let Rt be the 

time when the customer of bank i  has made the request for a payment, Ct  be the time the 

payment request arrives at the central processor where it is either settled immediately or put in the 

central queue (if this facility exists), and Et  be the time when the system settles the payment with 

finality.  

 

Let 
ij

tR
X denote a payment request made by a customer from bank i to bank j at time tR and is 

known only to bank i.  Let 
C

ij

tX  denote a payment from bank i that has been submitted to the 

central processor for settlement and hence is known to the central bank and to bank j.  In the 

absence of the facility of central queues, the time between tC  and tE would be zero as only 

payments capable of being executed are submitted to the central processor.  On the other hand for 

those payments that were requested at time Rt  but are forwarded for final execution at  tC = tE, tC  

> tR , banks have effectively maintained ‘hidden queues’ denoted by Xi
HQ

(0, t), which is a vector 

of time stamped non-settled payment requests being held at each bank i.    
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If the opening time is t=0, then a bank’s settlement account balance at the central bank at t-1 is 

denoted by Bit-1 
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,1,  (1) 

 

LPi,s denotes liquidity generated by bank i (by depositing collateral with the central bank) at time 

s; the second term is the sum of all payments made to bank i by all other banks j;  and the third 

term is bank i’s payments to all other banks. 

 

We need to specify a process for the arrival time of payment requests at the bank.  One way of 

doing this is to use actual payments data.  The problem with this is that we only see the times at 

which payments were submitted to the central processor, tC, and not tR.  An alternative that still 

relies on using real payments data involves allowing the payment requests to arrive at banks prior 

to the time they were submitted to the central processor.  In particular, we could suppose that the 

arrival times are drawn from independent uniform distributions,  CR tUt ,0~ .  (This is the 

approach we use in our example experiment below.)  Alternatively, we could randomly generate 

data that matched certain statistical features of the actual payments data.  The advantage with this 

approach is that it is possible to do many simulations with different data when examining the 

benefits of one payment system design vis-à-vis another. 

 

Having generated data for the arrival of payment requests at the banks, we then need to define 

strategies for the banks.  In particular, we need to propose rules governing the amount of liquidity 

they post at the beginning of the day and the order and timing of payment submission to the 

central queue. 

 

In terms of liquidity posted, the simplest rule that one could imagine would be that banks post a 

constant amount of liquidity each day.  In principle, this amount could be set at any level above 

the lower bound level of liquidity.  The simulation studies discussed in Leinonen (2005) typically 

examine payment delays at different levels of liquidity posted between the lower bound and the 

upper bound (where these are allowed to vary each day along with the upper and lower bounds). 

 

But, one of the key advantages of using an ‘agent-based’ approach is that we can specify a 

decision rule for the banks that makes liquidity posted each day a function of observed payment 

system outcomes.  The variables entering this function could vary over time or be time invariant.  

They could be past values of certain variables or the expectations of future values.  Examples of 

variables that might enter such a function include the upper and lower bounds, total outgoing 

payments, total incoming payments, total outgoing/incoming payments to individual banks, the 

proportion of their payments that are time critical, the cost of liquidity, the number and value of 

delayed payments, the variance of any of these, the date, and indeed any other variable that might 

be thought relevant.  We could even go so far as to revise the coefficients within this function 

based on payment system outcomes;  this would enable us to examine whether agents can 

autonomously learn to play strategies that would result in the system converging on a ‘good’ 

equilibrium. 
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We turn, next, to the issue of when to send payments to the central processor.  A benchmark 

strategy for payment submission is one where banks promptly despatch payments at time of 

arrival to the central processor.  This requires that banks generate additional liquidity if 

settlement balances defined in equation (1) at the central bank are insufficient to make the 

payment.   The total amount of liquidity used by banks under these conditions gives the upper 

bound of liquidity needed by the interbank system.  If banks faced a zero cost of liquidity, this 

strategy would be cost minimising.  But, as liquidity typically has an opportunity cost, then this 

strategy is not cost-minimising in general. 

 

So, to derive an alternative queuing rule for banks to determine when to forward payment 

requests to the central processor, start by noting that, since delaying payments is costly, banks 

will always settle payments when they have the liquidity to do it.  That is, if  1, tiB  > 0 and greater 

than any of its payment requests in its hidden queue, Xi
HQ

(0, t), the bank will select such 

payments for settlement without delay.  There is, of course, an issue of how to order payments.  

Clearly, payments with a higher delay cost (e.g., time-critical payments) will be made first;  two 

alternative ways of ordering payments of equal priority are ‘first-in-first-out’ (FIFO) and by value.   

 

More generally, the total costs incurred from making a given payment, X, will be the sum of two 

components:  a delay cost and a liquidity cost.  We could imagine that delay costs are increasing 

in the length of time the payment is delayed, tE – tR and asymptote towards infinity as the 

execution time approaches the end of the day.  This reflects an assumption that the costs of a 

payment failing to be made at all are ‘very large’.  In addition, we can allow different payments 

to have different priorities, , with high priority payments carrying a greater delay cost than low 

priority payments for a given delay.  Putting all this together suggests the following specification 

of delay costs: 

 

 
 

E

RE

tT

ttXb







CostDelay  (2) 

 

Two possible alternative assumptions for the liquidity cost are that it is constant throughout the 

day (though it need not be the same as that of generating liquidity at the central bank first thing in 

the morning) or that it depends on the length of time for which the bank expects to need it.  In 

either case, this will create an incentive for the bank to ‘free ride’ off the liquidity provided by its 

incoming payments.  Given this, it is impossible to generate analytically an ‘optimal’ decision 

rule for how long to delay a payment.  The analysis suggests using a ‘rule of thumb’ that links the 

length of time for which a bank is prepared to delay making a payment to the delay cost 

associated with that payment, cumulative outgoing payments, cumulative incoming payments, 

expected payment requests (in and out) for the rest of the day, and indeed any other variable that 

might be thought relevant.  Again, it would be possible to examine whether such rules of thumb 

will lead to the system converging on a ‘good’ equilibrium in which free- riding was minimal. 

 

As an example of such a rule of thumb, suppose that we assume the cost of liquidity to equal , 

where  is independent of the length of time for which the liquidity is required.  This would be 

the case if there were no intraday money market – the case in the United Kingdom – since banks 

would have to enter into two overnight transactions in order to raise the liquidity they need.  
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Since banks take into account the possibility of receiving incoming payments, we need to 

calculate the difference between the value of payments they expect to receive and the value of 

payments they need to pay out over all time periods between now and the end of the day, which 

we denote as V.  If we assume that, although they know the total value of payments they will 

need to make and expect to receive over the whole day, they do not know the timing of any of 

them we can calculate V as: 
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The bank’s total cost function will now be: 
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Differentiating with respect to tE implies : 
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 (5) 

 

The bank’s optimal decision rule will then be as follows: 

 

If XB   and/or 
 

0


V
tT

Xb

R




, make the payment immediately. 

 

Otherwise, it will be optimal to delay the payment.  Assuming that the bank’s expectation of V 

turned out to be realised, the optimal execution time will be given by: 

 

 
 
V

tTXb
Tt R

E


 
  (6) 

 

However, it is likely that the pattern of incoming and outgoing payments would not be as smooth 

as assumed in calculating V.  In that case, the bank would need to re-optimise each time it 

received a new payment request or a payment from another bank.  It would do this for all 

payments in its internal queue;  part of the rule of thumb would involve specifying an ordering 

for payments within the queue, say, first-in-first-out or by value from lowest to highest. 

 

In our example experiment below, we consider an alternative specification of liquidity cost.  In 

particular, we assume that liquidity carries a per-minute cost and that banks simply ignore 

expected incoming and outgoing payments when calculating the optimal time of delay.  Although, 

neither of these assumptions are likely to hold in practice, there are two reasons for considering 

this case.  First, we can calculate an optimal time of delay for each payment in this case.  Second, 

it would be interesting to see how a rule of thumb based on these assumptions actually works in 
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practice;  it may be that such rules of thumb are no worse than those based on more realistic 

assumptions since we know that none will be optimal in general. 

 

Adding such a specification of liquidity costs to delay costs suggests that the total cost of making 

a payment of value X will be given by: 

 

 
 

  E

E

RE tTBXi
tT

ttXb
Cost 




 0,max


 (7) 

 

where B is, again, the bank’s settlement account balance at the central bank, T is the number of 

minutes in a trading day and i is the per-minute intraday interest rate. 

 

One way of interpreting the parameter b is to think of banks deciding whether or not to delay 

payments based on their priority.  For relatively low priority (low ) payments, banks will be 

happy to delay them a while, whereas for relatively high priority (high ) payments, banks will 

want to make them immediately.  Let * be the cut-off point at which all payments of priority 

higher than or equal to * are made immediately.  Then different values of b will imply different 

values of *.  So b can be thought of as parameterising a rule of thumb along the lines of ‘Make 

any payment immediately if it is of high enough priority;  otherwise, delay until incoming 

payments provide the liquidity needed to make it or we are getting close to the end of the day’. 

 

An alternative interpretation of b relates to the bank’s view of incoming payments.  The 

derivation of equation (7) assumes that banks do not ‘free-ride’ on incoming payments since they 

take no account of their likelihood when deciding the optimal delay time.  In practice, it is clear 

that if banks think incoming payments are going to arrive soon then they are more likely to delay 

outgoing payments in order to reduce their total liquidity cost.  We can think of a lower b as 

proxying for more regular and larger incoming payments since this would lead to an increase in 

the value of delaying payments (reduction in delay costs). 

 

Either way, as varying b will lead to changes in the amount of liquidity used and numbers of 

delayed payments in a system where banks were obtaining liquidity through the day, then it will 

have the same effect as varying the amount of liquidity posted (and hence available to use) in a 

system where banks obtain all their liquidity at the start of the day.  In the experiment we report 

below, we varied b in order to achieve different levels for the liquidity-delay trade-off in our 

system where liquidity was raised ‘just-in-time’. 

 

Minimising the total cost implies an optimal time to execute the payment that will be given by: 

 

 
 

  
















 R

R
E t

BXi

tTXb
Tt ,max*


 (8) 

 

This analysis suggests the following strategy for the banks:  execute payments immediately if the 

liquidity is available and otherwise execute the payment at the time suggested by equation (8).  

We can note that the higher is the liquidity needed to make the payment and/or the cost of 



 

12 

liquidity, the longer it will be delayed whereas the higher its priority the less time it will be 

delayed.  We can further note that this function is a concave function of the payment’s arrival 

time, as would be expected.  Now, given the assumptions used to derive this rule, it is optimal.  

But, as we said earlier, in practice these assumptions are unlikely to hold.  In our experiment 

below, we assess how efficient is liquidity usage when banks are using this rule. 

 

4 An example experiment 

 

As an example of how one might go about using this approach we consider an experiment 

comparing the liquidity-delay trade offs for two variants of the RTGS system.  In the first 

payment system, banks can post liquidity only at the start of the day as there is an implicit 

assumption that the cost of posting additional liquidity intraday is large relative to the potential 

cost of not using liquidity posted at the beginning of the day.  In the second system banks obtain 

liquidity as and when they need it by borrowing uncollateralised funds from the central bank at a 

cost.  To make the experiments being run for the two variants of RTGS comparable, identical sets 

of payments data (with payments arriving at the same time at the level of banks) need to be used 

so that both systems have the same upper and lower bound liquidity requirements.  In the 

experiments reported below, we fully replicate the data on payments settled within CHAPS 

Sterling on a particular day in terms of the numbers of banks involved, the direction and size of 

payment flows and time of arrival for settlement at the central processor. We, however, simulate 

assuming an independent uniform arrival process as discussed above, of the arrival time of 

payment requests to banks and they are modelled as arriving at banks earlier than the time they 

were submitted to the central processor.  

 

To evaluate the liquidity-delay trade off in the different variants of RTGS we calculated the 

absolute values of liquidity posted and the number and value of delayed payments.  In addition, 

we calculated time-weighted values for these, in order to see for what proportion of the day 

payments were delayed or settlement balances were positive.  The time delay on payments uses 

the time stamps converted to the closest number of minutes from opening for payment requests, 

tisR,  and  payment execution, tisE,  for each payment indexed by s for bank i such that when (tisE - 

tisR ) > 0.  The time weighted delay is given by dividing each of these numbers by T where T is 

total time in minutes from opening to closing. 

 

The aggregate time weighted value of payments for N banks is given by 

  

 









 


N

i s

isRisE

is

TWD

T

tt
XX

1

(£)  (9)  

 

It is clear that if all payments are requested at opening and delayed till end of day,  X
TWD

 (£)   will 

equal the total value of payments requested in the day and, in percentage terms, the time-

weighted proportion of delayed payments will be 100%. 
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The aggregate time weighted value of liquidity (L
TW

 ) used is a useful measure  to be contrasted 

with the total absolute value of payments made and the liquidity used in so doing. This is defined 

as    

 

 L
TW

= 









 N

i s

isL

is
T

tT
L

1

 (10)                      

 

4.1 Liquidity posted at opening (OL) 

 

In this experiment, we do not specify a decision rule by which banks post opening liquidity;  

instead, we follow Bech and Soramäki (2002) and specify exogenous amounts of opening 

liquidity.
4
  Six liquidity levels are operated for simulation purposes.  These lie between the upper 

bound (UB) and lower bound (LB) levels of liquidity for each bank. 

 

The six levels of liquidity are calculated as follows 

 

 L(UB - (UB –LB) (11)

     

where  = {0, 0.2, 0.4, 0.6, 0.8, 1} 

 

When banks receive payment requests, they will make them immediately provided they have 

enough liquidity so to do.  If they do not, then they will put such payments into their internal 

queue.  This will happen for, at least, some payments if the exogenously posted opening liquidity 

is less than the upper bound.  As soon as the bank receives an incoming payment, it will then 

assess whether it now has enough liquidity to make any of its queued payments starting with the 

payment at the head of the queue, according to a pre-specified ordering.  We ran two versions of 

this experiment, one where the banks ordered payments in their queues by ‘First-in-first-out 

(FIFO)’ and one where they ordered their queued payments by size, lowest value first.  Due to the 

asynchronous nature of the arrival and size of payments, if banks post opening liquidity far short 

of what is needed to settle all payments as and when they arrive (the upper bound), payments may 

need to be settled as a group at the end of the day.  We do not actually settle these payments but 

simply refer to them as ‘failed payments’ with their gross value being given.    

 

                                                                                                                                                              

 
4
 We can think of the exogenous levels of liquidity as having been generated by the banks following a rule of thumb 

based on their expected upper and lower bounds for the coming day.  Explicit decision rules can be modelled for 

liquidity posting that would allow the amount of liquidity posted on a given day to depend on the bank’s experience 

of the previous day in addition to its expectation of incoming and outgoing payments for the day to come. However, 

as shown in Section 6 a low rationality endogenous learning process is more efficacious to see how a bank will learn 

to optimize the amount of liquidity it will post.    
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4.2 Liquidity is raised just in time (JIT)  

 

In this experiment, we assume that liquidity is raised ‘just-in-time’ – through borrowing from the 

central bank – and that banks post no liquidity at the beginning of the day.  When banks receive 

payment requests, they will make them immediately provided they have enough liquidity so to do.  

If they do not, they put the payment into their internal queue.  As soon as the bank receives an 

incoming payment, it will then assess whether it now has enough liquidity to make any of its 

queued payments starting with the payment at the head of the queue, according to a pre-specified 

ordering.  Again, we ran two versions of this experiment, one where the banks ordered payments 

in their queues by ‘First-in-first-out (FIFO)’ and one where they ordered their queued payments 

by size, lowest value first.  If the payment has sat in the queue until the time suggested by 

equation (8) without being made, it is made at that point anyway.  Note again that this time is set 

once for each payment;  banks do not react to incoming payments or their perceptions of future 

incoming and outgoing payments when they decide how long they are prepared to allow 

payments to sit in their queues.  In terms of the parameters of our model, we set the intraday 

interest rate to 0.1 basis points per day and we varied b in order to achieve different levels for the 

liquidity-delay trade-off (the equivalent of in the OL system). 

 

5 Results 

 

In this section, we report the results of our example experiment.  We start by examining the 

liquidity-delay trade-off in each of our two systems and we then use payment throughput in the 

two systems as a way of gauging their exposure to operational risk. 

 

Our data on payment requests was generated by using data on payments settled within CHAPS 

Sterling on a particular day, allowing payment requests to arrive at banks earlier than the time 

they were submitted to the central processor; as described earlier, we assumed an independent 

uniform arrival process.  Having generated a day’s worth of data in this manner, we ran 24 

simulations:  for each system, we chose six values for the key parameter (as described below) and 

two alternative methods of ordering queued payments (also described below).  In future work, for 

each system, parameter value and queue ordering, we intend to run multiple simulations with 

different draws of payment arrival times so as to test the robustness of our results. 

 

5.1  Liquidity-delay trade off results in RTGS  

 

Here we first implement the Bech-Soramäki (2002) methodology for determining the liquidity-

delay trade off in RTGS where all liquidity is posted up front at opening and delayed payments 

are settled on a FIFO basis.   To do this, we run a simulation of our OL system where the banks 

are assumed to post liquidity based on equation (11) above for each of the six values of .  Table 

A gives the results of these simulations.  Table B, in contrast, reports the results for the OL 

system when banks submit the payments for settlement smallest in value first.  Again we run six 

simulations based on different values of .  What is interesting is that as the OL system is 

squeezed for liquidity, i.e., when liquidity posted is at the lower bound value, there are some 10 

unsettled payments of about £7.8 billion when banks reorder payments for settlement based on 

their value.  In particular, two banks needed to make six and four payments to each other, 
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respectively.  As neither had an adequate settlement balance to make the smallest payment they 

owed the other, we were left with a gridlock situation in which £7.8 billion of payments were left 

unsettled.  In the FIFO case for the OL system, there was no gridlock.  Further, at liquidity levels 

equal to the lower bound the time-weighted value of delayed payments in Table1.B is over twice 

that of the case in Table 1.A when banks follow the FIFO rule.    

 

Table 1.A:  Liquidity-delay statistics for Opening Liquidity, FIFO 

Alpha 

Liquidity 

(£ billion) 

TW 

Liquidity 

(£ billion) 

Number 

of delays 

Number of 

delays (%) 

Value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(£ million) 

TW value of 

delayed 

payments 

(%) 

0.0 17.6 17.6       0   0.00  0.0       0 0.00 

0.2 15.2 15.2      60   0.07  4.7     68 0.03 

0.4 12.8 12.8    303   0.36 12.3    229 0.11 

0.6 10.4 10.4    796   0.94 23.2    503 0.24 

0.8   8.0   8.0   3370   3.98 49.2 1,279 0.61 

1.0   5.6   5.6 12319 14.54 87.6 3,804 1.80 

 

Table 1.B:  Liquidity-delay statistics for Opening Liquidity, Order by size, smallest first  

Alpha 

Liquidity 

(£ billion) 

TW 

Liquidity 

(£ billion) 

Number 

of delays 

Number of 

delays (%) 

Value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(£ million) 

TW value of 

delayed 

payments 

(%) 

0.0 17.6 17.6    0 0.00   0.0       0 0.00 

0.2 15.2 15.2   33 0.04   4.5     72 0.03 

0.4 12.8 12.8   79 0.09 10.9    300 0.12 

0.6 10.4 10.4 188 0.22 20.5    500 0.25 

0.8   8.0   8.0 314 0.37 38.3 1,800 0.86 

  1.0
(a)

   5.6   5.6 848 1.00  65.2
(a)

   8,500
(a)

   4.04
(a)

 

(a) Includes value of the 10 failed payments totalling £7.8 bn. 

 

These results are in line with some unpublished work that two of the authors carried out using the 

BoF PSS.  They suggest that if the system operators are worried about controlling operational 

risk by minimising the total value of payments in the queue, they would always prefer banks to 

use the standard FIFO by priority method of sorting their payments.  If, alternatively, they were 

most concerned about the volume of payments in the queue, they would always prefer the banks 

to use the ‘order by size, smallest first’ method of sorting their payments.  In practice, banks 

choose to post far more liquidity than the lower bound value (indeed they post far more liquidity 

than the upper bound value), probably to counter the possibility of being unable to make time-

sensitive payments.  In particular, this is more likely to be the economical option when liquidity 

costs are relatively low and posting additional liquidity would not make large inroads into bank 

profitability.  In addition, it is also likely that in a gridlock situation the banks concerned would 

negotiate an interbank loan so as to enable one bank to make the first payment needed for the 

gridlock situation to unwind;  this possibility was not considered in our experiment.   
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 Tables 2.C and 2.D report the liquidity-delay trade offs for the JIT system conditional on 

different threshold values for b.  With b = 6*10
-6

, banks will make all payments without delay.  

To do this, they need to use a total of £17.6 billion, the ‘upper bound’ value of liquidity needed 

by the system.  With b = 0.97*10
-6

 (at which point liquidity used is minimised), banks use a total 

of £11.9 billion if they order their queues by FIFO and £11.6 billion if they order their queues by 

value.  At all levels of liquidity, fewer payments are delayed when queues are ordered by value 

than when they are ordered by FIFO but the value of delayed payments is higher when queues are 

ordered by value than when they are ordered by FIFO.  This is the same as we found for OL 

systems and again suggests that if the system operators are worried about controlling operational 

risk by minimising the total value of payments in the queue, they would always prefer banks to 

use the standard FIFO by priority method of sorting their payments.   

 

Table 2.C:  Liquidity-delay statistics for Just in time, FIFO 

B 
Liquidity 

(£ billion) 

TW 

Liquidity 

(£ billion) 

Number 

of delays 

Number 

of delays 

(%) 

Value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(%) 

10*10
-6

 17.6 15.3       0 0.00   0.00   0.00 0.00 

5*10
-6

 17.5 15.2   102 0.12   0.97   0.10 0.05 

4*10
-6

 17.3 15.0   155 0.18   1.33   0.20 0.09 

3*10
-6

 16.8 14.4   258 0.30   2.81   0.44 0.21 

2*10
-6

 15.8 13.4   470 0.55   8.56   1.50 0.71 

1*10
-6

 12.5   9.5 2845 3.36 43.90 10.01 4.74 

0.97*10
-6

 11.9   9.1 6089 7.19 52.29 11.93 5.65 

 

Table 2.D:  Liquidity-delay statistics for Just in time, Order by size, smallest first  

B 
Liquidity 

(£ billion) 

TW 

Liquidity 

(£ billion) 

Number 

of delays 

Number 

of delays 

(%) 

Value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(£ billion) 

TW value of 

delayed 

payments 

(%) 

10*10
-6

 17.6 15.3       0     0   0.0   0.0 0.00 

5*10
-6

 17.4 15.2     93 0.11   1.0   0.1 0.05 

4*10
-6

 17.3 14.9   137 0.16   1.7   0.2 0.11 

3*10
-6

 16.7 14.4   226 0.27   3.1   0.5 0.24 

2*10
-6

 15.9 13.4   403 0.48   9.0   1.7 0.80 

1*10
-6

 12.3   9.4 2119 2.50 44.3 10.2 4.84 

0.97*10
-6

 11.8   8.9 5447 6.43 53.8 12.4 5.89 

     

 

Figure 1 below graphs the percentage time weighted value of delayed payments against the 

liquidity posted in the OL and JIT systems. 
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Figure 1: Trade off between Liquidity posted and Time Weighted Delays 

 

5.2 The impact of operational events in the two systems 

 

As we said earlier, one way of gauging the effect of an operational event is to examine how 

quickly payments are submitted to the central processor and settled within the system.  The logic 

is that should an operational event occur, it will affect the ability of the system to sort out any 

remaining payments for the day.  The more payments that have already been processed before the 

event happens, the less this will be a problem.  Figure 2 shows the throughput for the two 

systems, viz. the percentage of payments by value that are settled prior to any given time for each 

of our two systems.  To make the comparison fair, we assumed that £12.8 billion of liquidity was 

used in each of the two systems.  From Tables A and C, respectively, we see that in the FIFO 

case, at this level of liquidity, the JIT system delays £44.8 billion worth of payments with time 

weighted value of £10.2 billion.  In contrast, the OL system delays payments valued at about 

£12.3 billion with time weighted value of £0.2 billion.  Chart 1 shows that, at each point in time, 

the OL system has settled more payments than the JIT one.    
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Figure 2: Through put (%) of payment requests settled with X-axis giving time of day 

 

6. Erev- Roth reinforcement learning by banks to post optimal liquidity (alpha): 

 Opening Liquidity system 

Here we report the results on how banks can endogenously learn to determine how much liquidity 

to post.  For this we use the Erev- Roth reinforcement learning (RL) algorithm (Erev and Roth 

(1998)) which is known to be a powerful learning device and has been successful in training 

artificial agents on how to play complex games.  RL is an experientially driven low rationality 

algorithm that enables agents to develop sufficient competence to play strategies that will, with a 

high probability, enable them to play optimally with little or no knowledge of the characteristics 

of other agents and of the environment itself.   

 

The choice of strategy here involves different values of alpha in equation (11) which enables a 

bank to minimize liquidity and delay costs given that other banks are behaving similarly. We 

assume the first in first out (FIFO) ordering of payment requests.  Figure 3  gives the result of 50 

days of learning for a single bank where initially the possible values of alpha (from 0 to 1) are 

placed in 10 alpha ‘buckets’. The picture below shows how the probabilities of a particular bank 

using each of the possible alpha values evolve over time as the bank learns. It starts at Day 1 with 

all buckets having the same probability of 10%. In this particular instance, the bank seems to 

learn that using lower values of alpha is more profitable, so the probabilities of using large values 

of alpha quickly decrease to negligible values. As can be seen from Figure 3, after 50 days, the 

alphas that the bank is more likely to use are between  0.3 to 0.4.  Note: this is only one particular 

example, and the results are highly dependent on the relative magnitudes of liquidity costs vs. 

delay costs.  

 

Figure 3 shows how a single bank learns to determine the alpha parameter. If we average the 

alpha used by all banks in each day, we see that over the 50 day period, the average alpha value 

for this particular simulation tends to decrease to about 0.35.  This is shown in Figure 4.   This 

implies that banks learn to operate at about £12-£13 bn levels of opening liquidity which shows 

very high efficiency in terms of a less than 0.1% time weighted delay in payments (see Table 

1.A).  
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Figure 3: Results of Erev-Roth Reinforcement Learning over 50 days of how much liquidity 

to post (alpha) at the beginning of the day : A single bank case 
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Figure 4: Results of Erev-Roth Reinforcement Learning over 50 days of how much liquidity 

to post (alpha) at the beginning of the day :Averaged over all banks 
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7 Concluding remarks and future work 

 

In this paper, we have discussed a methodology for simulating interbank payment systems that is 

capable of handling real time payment records along with limited autonomy in bank behaviour.  

We showed that this methodology could be used, in principle, to evaluate different designs of 

RTGS systems by carrying out an example experiment using two systems:  one in which liquidity 

was posted at the beginning of the day and one where it could be borrowed ‘just in time’. 

 

In RTGS systems, payment requests to banks are not fully and individually financed as then they 

would need an amount of liquidity equal to the total value of payments made; rather, the bulk of 

the liquidity used for settling comes in the form of incoming payments.  The efficiency in 

recycling the liquidity posted by banks is the key to the design of RTGS system.  At the level of 

individual banks, an attempt to handle the trade-off between liquidity and delay costs may result 

in behaviour where banks delay settlement in anticipation that other banks will make payments to 

them first.  Thus, in principle banks always have the discretion to reorder payments for 

submission at the central processor influencing the liquidity that they need to post and the ability 

of the system to settle payments.  What appears to be an individually rational response at the level 

of banks, viz. to delay large payments (with low priority), leads to a deterioration in the collective 

performance of the RTGS system whether in the OL case or the JIT variant.  However, we found 

that the JIT system is more prone to rapid deterioration of its liquidity recycling capabilities than 

the OL system.  In fact, a key message of our experiments is that, at any given level of liquidity, 

the JIT system would generate more delayed payments than an otherwise identical system in 

which banks posted their liquidity at the beginning of the day, and this would be bad from an 

operational risk point of view. 

 

However, some important caveats need to be borne in mind in the interpretation of the results of 

our experiment.  In particular, our experiments relied on one particular stochastic simulation of 

data based on one day’s worth of actual payments.  To get a clearer picture we would need to run 

multiple simulations based on data from a large number of days.  In addition, our experiments on 

the OL system imposed a given level of opening liquidity.  In order to get a real understanding of 

how such systems work, one would need to postulate behavioural rules to explain the decision of 

how much liquidity to post at opening and allow the parameters of such rules to depend on the 

outcomes of previous days.  For the JIT system, we assumed that banks did not take into account 

the possibility of using liquidity from incoming payments to make their own future payments 

when they choose how long to delay payments. 

 

The main issue relating to mechanism design in real time interbank settlement systems is the 

question ‘At what levels of liquidity and delay will each system operate?  In particular, we would 

like to know how the socially efficient outcome can be achieved by design, with banks having to 

behave autonomously and faced by asymmetric information.  In the philosophy of agent based 

modelling, however, the prior question is ‘Can banks behaving autonomously adaptively learn to 

achieve the liquidity savings associated with cooperative outcomes?’  An obvious extension of 

the work presented in this paper would be to focus on the question of whether or not banks, as 

autonomous and adaptively intelligent agents playing a repeated game, can move to the efficient 
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and stable point of the ‘good’ equilibrium; that is, could they co-operate in such a way as to 

enable them to make payments with little delay in an OL system operating at liquidity levels 

close to the lower bound.  Preliminary results in Section 6 based on adaptive learning by banks 

show that they could in fact operate without much free riding at very high efficiency with few 

delayed payments.  Computational experiments of this kind can yield invaluable normative 

insights into the complex intraday liquidity management game by banks within the context of 

bank profitability and solvency. For this further experimentation is needed using Erev-Roth type 

autonomous learning over multiple days and under different market conditions to see if banks’ 

liquidity strategy changes. Finally, it will be interesting to see how banks respond to changes in 

policy rules of RTGS.  Wind tunnel tests for proposed policy changes such as the introduction of 

hybrid large value payment systems which combines RTGS and real time netting requires an 

artificial test bed of this kind.      
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