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Abstract. In this note we present rth order kernel density derivative estimators using canonical
higher-order kernels. These canonical rescalings uncouple the choice of kernel and scale factor. This
approach is useful for selection of the order of the kernel in a data-driven procedure as well as for
visual comparison of kernel estimates.
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1. Introduction

The issue of kernel selection on the performance of density estimation is widely believed to have

little overall impact relative to that of the bandwidth. Yet, given that the bandwidth controls the

smoothing of the density estimator, using different kernels (e.g., Epanechnikov vs. Gaussian) can

produce different results. Here we generalize the canonical second-order kernel equivalence class

developed in Marron & Nolan (1989) to higher-order kernels.1 The development of canonical higher

order and derivative kernels may be useful for data-driven selection of the bandwidth and the kernel

order simultaneously (Hall & Marron 1988).

The remainder of the paper is laid out as follows. Section 2 discusses the construction of the

higher-order equivalence class and provides the canonical kernel scalings. Section 3 gives a simple

set of illustrations to emphasize our results.
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2. Estimators

The νth-order, rth derivative kernel density estimator for f (r) (·) , based on an iid random sample

{X1, . . . , Xn} from f (·), the probability density, is defined as

(1) f̂ (r) (x) = n−1h−(1+r)
n∑

i=1

k(r)
ν,s

(
x−Xi

h

)
,

where h is the bandwidth and k
(r)
ν,s is the rth derivative of the νth-order s-kernel (see (2) below). The

most common setup is ν = 2 and r = 0 which constitutes a second-order kernel used to estimate

the density itself. The use of a higher-order kernel is typically undertaken to reduce the bias of the

density estimator.

There are also many cases where interest may lie in the rth derivative. For example, one may be

interested in looking for the location of modes (r = 1). Indirect interest in derivatives estimates

also exists. For example, estimation of the roughness of the second derivative (r = 2) of the density,

R(f (2) (·)) =
∫

f (2)(x)2dx, is required for plug-in bandwidth selection.

Marron & Nolan (1989) discuss an equivalence class of kernels for the case ν = 2 and r = 0.

Here we generalize their results for the arbitrary ν, rth case. We discuss estimation for the class of

kernels defined as

(2) ks(u) =
(2s + 1)!!

2s+1s!
(1− u2)s1{|u| ≤ 1},

where the double factorial is defined as (2s+1)!! = (2s+1) · (2s−1) · · · 5 ·3 ·1 (commonly known as

the odd factorial). As s →∞, ks(u) → e−u2/2. Rescaling this particular case by 1/
√

2π delivers the

common Gaussian kernel, which we denote as kφ(u). The Epanechnikov (s = 1), biweight (s = 2)

and triweight (s = 3) are also popular kernels from this class. Notice that as s increases, the kernel

possesses more derivatives and thus is ‘smoother’.

For the class of polynomial kernels of order s, a νth-order s-kernel can be constructed as (Hansen

2005, Theorem 1)

kν,s(u) = Bν/2,s(u)ks(u),
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where

Bν/2,s(u) =

(
3
2

)
ν/2−1

(
3
2 + s

)
ν/2−1

(s + 1)ν/2−1

ν/2−1∑

j=0

(−1)j
(

1
2 + s + ν/2

)
j
x2j

j!(ν/2− 1− j)!
(

3
2

)
j

.

The notation (a)n = Γ(a+n)
Γ(a) is Pochhamer’s symbol, where Γ(a) =

∞∫
0

ta−1e−tdt. See Wand &

Schucany (1990, Theorem 2.1) for a similar expression for higher order Gaussian kernels.

We first impose several generic properties on our kernel function involving the ‘moments’ of the

kernel. Letting κj(k) =
∞∫
−∞

ujk(u)du, we say a kernel is of νth-order if κ0(k) = 1, κj(k) = 0 for

1 ≤ j ≤ ν − 1 and κν(k) < ∞. With symmetric kernels we have that κ`(k) = 0 for ` = 2j + 1,

i.e. all odd moments of our kernel are zero so that we may treat only the cases where ν is even.

Requiring κν (·) to be finite is necessary to obtain meaningful expressions for the bias of our kernel

density estimator.

As pointed out by Marron & Nolan (1989, pg. 197), a representative kernel has a best element.2

This kernel is known as the canonical kernel and it is such that it has exactly the same effect on

the squared bias and variance components which make up the asymptotic mean integrated squared

error (AMISE). Here we extend the results of Marron & Nolan (1989) to both higher-order

and derivative kernels. To establish our basis, we quantify the requisite amount of smoothing via

AMISE which one can easily show for the density derivative estimator in (1) to be

(3) AMISE(f̂ (r)(x)) ≈ R
(
f (r+ν) (·))h2νκ2

ν (kν,s)
(ν!)2

+
R

(
k

(r)
ν,s

)

nh1+2r
,

provided h → 0 and nh1+2r →∞ and assuming that f (·) is r +ν times continuously differentiable.

We immediately notice that (3) quantifies the smoothing trade-off since decreasing h results

in the first term (the squared bias) collapsing towards zero with the second term (the variance)

increasing. This produces an estimated curve with too much variation. Alternatively, allowing

h to increase clearly raises the first term while the second term shrinks, producing a curve that

is uninformative as it possesses almost no local variation since it averages over too large of a

neighborhood surrounding x. Moreover, regardless of the order of the derivative of interest, the

2For a given kernel one may scale it by any positive constant, thus, each scaled kernel is an element from the class of
kernels defined by s and ν in our language.
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bias always depends on the kernel, not its derivative. Alternatively, the variance depends directly

on the rth derivative of the kernel being used in estimation.

2.1. Optimal scaling. We now discuss a rescaled version of the kernel which decouples the impact

that the choice of kernel has on each component in (3). Following the setup of Marron & Nolan

(1989), we seek to rescale k
(r)
ν,s so that k and h are separate in (3). This can be done by noting

that the kernel impacts the bias through κ2
ν,s (kν,s) , while it impacts the variance through R

(
k

(r)
ν,s

)
.

By selecting the scale of the kernel so that these are equivalent, we see that we can equalize their

individual contributions to AMISE.3

Rescaling our kernel by δ,

k
(r)
ν,s,δ(·) = k(r)

ν,s(·/δ)/δr+1,

our optimal scale (δ) is found by solving

[∫
xνkν,s,δ(x)dx

]2

=
∫ (

k
(r)
ν,s,δ(x)

)2
dx.

Integration by substitution yields

(4) δ0 =
[
R

(
k(r)

ν,s

)]1/(1+2r+2ν)
[κν (kν,s)]

−2/(1+2r+2ν) .

When r = 0 and ν = 2, (4) gives the optimal scaling found in Marron & Nolan (1989).

With the choice δ = δ0, using the kernel k
(r)
ν,s,δ0

(·), delivers

(5) AMISE
(
f̂ (r)(x)

)
≈ C

(
k

(r)
ν,s,δ0

(·)
) [

R
(
f (r+ν) (·)

)
h2ν(ν!)−2 + (nh1+2r)−1

]
,

where

C
(
k

(r)
ν,s,δ0

(·)
)

=
[
R

(
k(r)

ν,s

)]2ν/(1+2r+2ν)
[κν (kν,s)]

(2+4r)/(1+2r+2ν) .

These scalings are produced for various values of s, ν, and r in Table 1. Here we first note the

obvious; the table shows fewer kernel functions (s) when the order of the derivative (r) increases

as some of our kernel functions only possess derivatives up to a given order. The relative difference

between estimates for a given kernel function can be seen by the relative values for δ. For example,

when r = 0, the effective smoothness of the Epanechnikov and Gaussian kernels differ by a factor in

3An interesting extension would be to develop an equivalence class for the bias reducing kernels proposed in Mynbaev
& Martins-Filho (2010).
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excess of 2 for higher-order kernels and this difference increases with ν. Note that this is when the

same bandwidth is used for smoothing. In contrast, we can surmise that comparisons between the

biweight and triweight kernels based on the same bandwidth would produce more closely related

density estimates for any order kernel.

3. Illustration

For both illustrative and comparison purposes, we consider the same data generating process

as Marron & Nolan (1989). Specifically, we simulate 500 data points from a mixture density:

(0.7)Beta(4, 8) + (0.3)Beta(40, 20). We plot estimates using fourth-order kernels (ν = 4).

Figure 1, panel (a) uses Gaussian (s = φ) and triweight (s = 3) kernels to estimate the underlying

density (r = 0), while panel (b) uses their respective canonical fourth-order kernels. Both panels

also provide vertically rescaled kernels centered at 0.5 to provide an equivalence (dotted lines).

Notice that in panel (a) the kernels do not appear to look similar and as such, even with the same

amount of smoothing, h = 0.11, the resulting curves are different (due to the difference in the

kernels). In panel (b), we see that differences in the density estimates are harder to detect visually

given the use of canonical kernels. This is further buttressed by the vertically rescaled canonical

kernels at 0.5. The differences in these canonical kernels are difficult to detect relative to panel (a).

In Figure 2 panel (a), we look at the estimates of the second-order derivatives of our density

(r = 2) using standard and canonical fourth-order kernels (ν = 4), respectively. To make the panels

visually appealing we plot the vertically rescaled kernels using -400 as the x−axis (again dotted

lines represent the kernels). We use the bandwidth h = 0.11 to construct our density derivative

estimates. We note that the 4th order, 2nd derivative density estimate using the triwieght kernel

is highly variable, suggesting that this bandwidth is too small (increased variance) whereas this

same bandwidth produces a viable estimate using the Gaussian kernel. However, the peaks and

the troughs are all underestimated suggesting perhaps that this bandwidth is too large (increased

bias). The differences in these estimated curves is easily gleaned by noting the differences in the

corresponding kernels at the bottom of each plot. Panel (b) provides the canonical forms of these

density estimates, where as expected, the differences in the estimated curves are difficult to detect

visually.
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In sum, the use of canonical higher order derivative kernels may prove useful in a data driven

procedure which simultaneously selects the kernel order and the bandwidth since the use of canon-

ical kernels decouples the problem of kernel and bandwidth selection. This is an area of research

that has received little attention in the applied nonparametric literature.
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Table 1. Canonical kernel scalings (δ): s refers to the kernel type. s = 1, 2, 3, φ
representing Epanechnikov, biweight, triweight and Gaussian kernels, respectively.
v = 2, 4, 6, 8, 10 refers to the order of the kernel funciton. r refers to the order of the
derivative of the function. r = 0, 1, 2 represents the density itself, and its first and
second order derivatives, respectively. The remaining values in the table represent
δ, the canonical kernel scalings.

aaaa
s ν 2 4 6 8 10

r = 0
1 1.7188 2.0165 2.0834 2.1021 2.1062
2 2.0362 2.2591 2.2694 2.2513 2.2302
3 2.3122 2.4788 2.4416 2.3913 2.3478
φ 0.7764 0.7214 0.6358 0.5686 0.5169

r = 1
2 1.9442 2.3658 2.4539 2.4607 2.4443
3 2.2103 2.5973 2.6410 2.6143 2.5736
φ 0.7559 0.7668 0.6959 0.6280 0.5717

r = 2
3 2.4189 2.8627 2.9335 2.9083 2.8585
φ 0.8415 0.8566 0.7818 0.7054 0.6405
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Figure 1. The solid curve is the true underlying density function while the dashed
curve is the corresponding kernel density estimate. Both density estimates use 4th
order (canonical) kernels with bandwidth, h = 0.11. Vertically rescaled (canonical)
kernels appear as a dotted line in each panel.
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Figure 2. The solid curve is the true underlying 2nd derivative of the density
function while the dashed curve is the corresponding 2nd derivative kernel density
estimate. Both derivative density estimates use 4th order (canonical) kernels with
bandwidth, h = 0.11. Vertically rescaled (canonical) kernels appear as a dotted line
in each panel.
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