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Abstract. This note derives the general form of the approximate mean integrated squared error
for the q-variate, νth-order kernel density rth derivative estimator. This formula allows for normal
reference rule-of-thumb bandwidths to be derived. We give tables for some of the most common
cases in the literature.

JEL Classification: C1 (General), C13 (Estimation), C14 (Semiparametric and nonparametric

methods).

1. Introduction

The general order kernel density derivative estimator for multivariate data is of general interest.

Chaćon, Duong & Wand (2010) derive the basic asymptotic properties of this estimator using a

multivariate kernel with bandwidth matrix H. They explicitly consider exact mean integrated

square error (MISE) properties for this estimator both assuming the matrix form of H and the

common applied setting of a product kernel with a vector of bandwidths h (in this case H is

diagonal). They are able to obtain a closed form expression for a normal scale bandwidth matrix

for density derivative estimators. Here we discuss this general setting as well but also consider

the kernel order. Our focus resides with approximate mean integrated squared error (AMISE) as

this quantity is useful for deriving parametric reference rule-of-thumb bandwidths that are useful

when beginning analysis prior to more computationally expensive data driven methods such as

least-squares cross-validation.

These rule-of-thumb constants are important since in economics it appears that a standard rule-

of-thumb mechanism is deployed even in settings where these constants are not directly linked

to the estimator being used. For example in the np package (Hayfield & Racine 2008) in R (R
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Development Core Team 2008) when one selects the normal-reference option in the npudensbw

command (to generate bandwidths for the multivariate kernel density estimator), the q bandwidths

are constructed as 1.06 ∗ σ̂jn−1/(4+q) where σ̂j is the standard deviation of the jth variable and q is

the dimensionality of the density. The 1.06 scale is the appropriate normal reference rule-of-thumb

bandwidth if one is using a second order Gaussian kernel in the univariate setting. This is trouble-

some in three aspects. First, if one uses any kernel other than the second order Gaussian kernel in

the univariate setting this scale factor is inappropriate. Second, if one uses any kernel order other

than the second order Gaussian kernel in the univariate setting this scale factor is inappropriate.

And third, if one uses any kernel (even the second order Gaussian kernel) in the multivariate setting

this scale factor is inappropriate. See Silverman (1986, Table 4.1) and Epanechnikov (1969) for

further details.

Li & Racine (2006, pg. 26) suggest generalizing the 2nd order Gaussian kernel bandwidth normal

reference rule-of-thumb bandwidth of 1.06σ̂xn
−1/5 to the multivariate setting using 1.06σ̂xjn

−1/(4+q)

for j = 1, . . . , q. Similarly, Li, Perrigne & Vuong (2002) use a rule of thumb bandwidth designed for

the univariate case with a product kernel (but for the Triweight kernel). Silverman (1986, pg. 87)

notes that “... it will often be appropriate to use a slightly smaller value” rather than using the one

dimensional normal reference rule-of-thumb bandwidth in the multidimensional case. Indeed, our

results show that the normal reference rule-of-thumb bandwidths in higher dimensional settings for

2nd order kernels produces smaller scaling factors than those that are commonplace in univariate

work.

It is important to note that normal reference rule-of-thumb scale factors are irrelevant when

performing data-driven bandwidth selection (which we advocate wholeheartedly). They are also

not optimal (in the AMISE sense) when the assumed density differs from the true density. However,

rule-of-thumb bandwidths are commonly used when no data driven methods exist for a particular

estimator (as in Li et al. 2002), are used in applied work as a benchmark, or are used in simulation

studies to avoid computationally expensive Monte Carlo analysis. As noted by Silverman (1986,

pg. 87), these rule-of-thumb bandwidths“... give a quick and easy choice of at least an initial value

of the window width.” Thus, developing the appropriate scaling factors for a variety of kernels and

kernel orders for q-dimensions has practical merit. Our general formula will allow easy derivation
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of a normal reference rule-of-thumb bandwidth for general derivative settings as well given that

closed form solutions for the derivatives of a standard multivariate normal are easily obtained.

2. Estimator

The general νth-order kernel estimator for a q-variate density derivative estimator will require

precise notation prior to the discussion of the estimator. For this we will follow Masry (1996). Let

the vector r = (r1, r2, . . . , rq) and define

r! = r1!× · · · × rq!, |r| =
q∑
s=1

rs, xr = xr11 × · · · × x
rq
q .

For taking Taylor expansions and multivariate partial derivatives we also use the notation

∑
0≤|r|≤ν

=

ν∑
|r|=0

|r|∑
r1=0

· · ·
|r|∑
rq=0

, g(r)(x) =
∂rg(x)

∂r1x1 · · · ∂rqxq
,

for a given function g(·). We define the Taylor expansion of total order p of g(z) around the point

u to be

g(z) ≈
∑

0≤|r|≤p

1

r!
g(r)(x)

∣∣∣
x=u

(z − u)r.

For a univariate kernel kν(u) we say that kν(·) is a νth-order kernel if
∫
kν(u)du = 1,

∫
ujkν(u)du =

0 for j = 1, . . . , ν − 1 and
∫
uνkν(u)du = κν(kν) <∞. We define the roughness of a function g(x)

as R(g) =
∫
g(x)2dx.

The νth-order, multivariate kernel density estimator of the rth derivative of the density of x

(f (x)) is defined as

(1) f̂ (r)(x) = n−1
n∑
i=1

K
(r)
ν,h(xi − x),

where the product kernel is defined as

(2) K
(r)
ν,h(xi − x) =

q∏
s=1

h−1
s k(rs)

ν

(
xis − xs
hs

)
.
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If the same univariate kernel is used for each of the q variables then we have

R
(
K

(r)
ν,h

)
=

∫
K

(r)
ν,h(u)2du =

∫
· · ·
∫ ( q∏

s=1

h−(2+2rs)
s k(2rs)

ν (u/hs)

)
du1 · · · duq = h−(2+2r)

q∏
s=1

R
(
k(rs)
ν

)
.

For r = (0, . . . , 0), R
(
K

(r)
ν,h

)
= h−2R(kν)q.

To derive a normal reference rule-of-thumb bandwidth we need to derive the asymptotic mean

integrated squared error (AMISE) which requires derivation of the bias and variance of f̂ (r)(x). For

the derivations that follow we will assume that x is distributed iid.

2.1. Approximate Mean Intergrated Square Error. The bias of our q-variate, νth-order kernel

density rth derivative estimator presented in (1) is

(3) Bias
{
f̂ (r)(x)

}
= E

[
f̂ (r)(x)

]
− f (r)(x) ≈ κν(kν)

ν!

q∑
s=1

hνsf
(rs+ν)(x),

while the variance is

(4) V ar
[
f̂ (r)(x)

]
≈
f (r)(x)R

(
K

(r)
ν (u)

)
n−1h(1+2r)

=

f (r)(x)
q∏
s=1

R
(
k

(rs)
ν (u)

)
n−1h(1+2r)

.

Combing our results in (3) and (4) we can produce the approximate mean integrated squared

error (AMISE) for our q-variate, νth-order kernel density rth derivative estimator:

AMISE
{
f̂ (r)(x)

}
=

∫
Bias

{
f̂ (r)(x)

}2
dx+

∫
V ar

[
f̂ (r)(x)

]
dx

=

∫ (
κν(kν)

ν!

q∑
s=1

hνsf
(rs+ν)(x)

)2

dx+

q∏
s=1

R
(
k

(rs)
ν (u)

)
n−1h(1+2r)

=
κ2
ν(kν)

(ν!)2

∫ ( q∑
s=1

hνsf
(rs+ν)(x)

)2

dx+

q∏
s=1

R
(
k

(rs)
ν (u)

)
n−1h(1+2r)

.(5)

It should be clear from (5) that a closed form solution for our vector of optimal bandwidths is not

obtainable in closed form solution for q > 1. Equation (5) is the general form for the q-variate,

νth-order kernel density rth derivative estimator, i.e. it holds for any νth-order kernel and any

derivative order.
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2.2. Derivation of Optimal Bandwidth. To derive a general form for the optimal bandwidths

we assume that h1 = · · · = hq = h. In this case we have

AMISE
{
f̂ (r)(x)

}
=
κ2
ν(kν)h2νR

(
∇(ν)f (r)

)
(ν!)2

+

q∏
s=1

R
(
k

(rs)
ν (u)

)
n−1hq+2|r| ,

where we have used the notation ∇(ν)f (r) =
q∑
s=1

f (rs+ν)(x). Differentiating AMISE with respect

to h to find the optimal bandwidth produces

(6) hopt =

(ν!)2(q + 2|r|)
q∏
s=1

R
(
k

(rs)
ν (u)

)
(2ν)κ2

ν(kν)R
(
∇(ν)f (r)

)


1
2ν+2|r|+q

n
−1

2ν+2|r|+q .

To determine a reference rule-of-thumb bandwidth we act as though we have a priori knowledge

of f(x). For follow the standard convention and use the normal family for f(x). Using the properties

of normal probability density functions we have that for r = (0, . . . , 0)

R
(
∇(ν)φI(x)

)
=qφ

(2ν)
2I (0) + q(q − 1)φ

(ν+ν′)
2I (0)

=q
(

(2π)−q/2(2ν)!!2−
ν+q
2

)
+ q(q − 1)

(
(2π)−q/2(ν!!)22−

ν+q
2

)
=

q

πq/22ν+q

[
(2ν)!! + (q − 1)(ν!!)2

]
,

where φI (·) represents the multivariate normal variance-covariance matrix. The double factorial

notation is defined as (2ν)!! = (2ν−1) · · · 5·3·1 (commonly known as the odd factorial). When ν = 2

we have the well known result that R
(
∇(2)φI(x)

)
= (2

√
π)−q

(
(1/2)q + (1/4)q2

)
(see Silverman

1986, pg. 86). Using this definition for R
(
∇(ν)f (r)

)
inside of (6) yields

(7) hopt =

[
πq/22ν+q−1(ν!)2R (kν)q

νκ2
ν(kν) [(2ν)!! + (q − 1)(ν!!)2]

] 1
2ν+q

n
− 1

2ν+q = C(kν)n
− 1

2ν+q .

For ν = 2 and using the Gaussian kernel we know that R (kν) = (2
√
π)−1 and κ2

ν(kν) = 1. In this

setting we have

C (k2(u)) =

[
4

2 + q

] 1
4+q

.
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This is the same as equation 6.41 (pp. 152) in Scott (1992). There appears to be a typo in Table

4.1 of Silverman (1986) where C (k2(u)) is given as [4/ (2d+ 1)]1/(d+4) and this typo is repeated in

Pagan & Ullah (1999).

Given that we assumed our parametric reference family was the q-variate standard normal, we

rescale each of our bandwidths by the variables standard deviation to obtain the normal reference

rule-of-thumb bandwidths for the q-dimensional setting. These bandwidths are of the form

(8) hROTj = C(kν)σ̂jn
− 1

2ν+q .

3. Illustration

We derive normal reference rule-of-thumb bandwidths for the class of kernels defined as

(9) ks(u) =
(2s+ 1)!!

2s+1s!
(1− u2)s1{|u| ≤ 1}.

This class of kernels contains many of the most common kernels deployed in empirical work, in-

cluding the Epanechnikov (s = 1) and the Gaussian kernel (s = ∞). For the class of polynomial

kernels of order s, a νth-order s-kernel can be constructed as (Hansen 2005, Theorem1)

kν,s(u) = Bν/2,s(u)ks(u),

where

Bν/2,s(u) =

(
3
2

)
ν/2−1

(
3
2 + s

)
ν/2−1

(s+ 1)ν/2−1

ν/2−1∑
j=0

(−1)j
(

1
2 + s+ ν/2

)
j
x2j

j!(ν/2− 1− j)!
(

3
2

)
j

.

The notation (a)n = Γ(a+n)
Γ(a) is Pochhamer’s symbol, where Γ(a) =

∞∫
0

ta−1e−tdt. See Wand &

Schucany (1990, Theorem 2.1) for a similar expression for higher order Gaussian kernels. In what

follows we will dispense with the s notation of the kernel as our key results will be independent of

the choice of kernel.

Table 1 provides the normal reference rule-of-thumb constants (C(kν) in (8)) for the νth-order

q-variate kernel density estimator (r = (0, . . . , 0)). The Biweight kernel corresponds to s = 2 and

the Triweight kernel to s = 3 in our s polynomial kernel family in (9). We point out several striking

features. First, in the common setting of a second order kernel (ν = 2) the rule-of-thumb constants

are decreasing as q increases. Scott (1992) notes that these reach a minimum when q = 11. The
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ν = 2 case is the only one he considers. When ν > 2, we see that the rule-of-thumb constants are

increasing in the dimensionality of the problem. The basic idea behind this is given that higher-

order kernels reduce bias, larger bandwidths are needed to minimize AMISE. However, note that

the increase is not uniform over ν. For example, the optimal bandwidth for q = 2 and ν = 6 for

the Gaussian kernel is 1.1318 and the rule-of-thumb bandwidth for that same kernel with ν = 8

is 1.1235. There appears to be an interplay between the roughness and variance which goes into

calculating the rule-of-thumb bandwidth.

Table 1. Normal reference rule-of-thumb constants (C(kν)) for the multivariate
νth order kernel density estimator.

Kernel q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10
ν = 2

Epanechnikov 2.3449 2.1991 2.1200 2.0730 2.0437 2.0246 2.0121 2.0037 1.9982 1.9947
Biweight 2.7779 2.6073 2.5150 2.4604 2.4263 2.4044 2.3900 2.3805 2.3744 2.3705
Triweight 3.1545 2.9636 2.8606 2.8000 2.7624 2.7383 2.7226 2.7124 2.7059 2.7020
Gaussian 1.0592 1.0000 0.9686 0.9506 0.9397 0.9330 0.9289 0.9265 0.9251 0.9245

ν = 4
Epanechnikov 3.0286 3.1203 3.1993 3.2680 3.3285 3.3823 3.4304 3.4737 3.5130 3.5488
Biweight 3.3930 3.4975 3.5874 3.6657 3.7347 3.7959 3.8507 3.9001 3.9449 3.9857
Triweight 3.7230 3.8403 3.9412 4.0291 4.1066 4.1753 4.2369 4.2923 4.3426 4.3884
Gaussian 1.0834 1.1233 1.1576 1.1875 1.2139 1.2373 1.2583 1.2771 1.2943 1.3099

ν = 6
Epanechnikov 3.5284 3.6886 3.8334 3.9648 4.0846 4.1942 4.2949 4.3877 4.4734 4.5528
Biweight 3.8434 4.0191 4.1780 4.3223 4.4539 4.5743 4.6849 4.7868 4.8809 4.9683
Triweight 4.1350 4.3261 4.4991 4.6561 4.7994 4.9306 5.0511 5.1621 5.2648 5.3600
Gaussian 1.0767 1.1318 1.1819 1.2275 1.2693 1.3076 1.3429 1.3756 1.4058 1.4338

ν = 8
Epanechnikov 3.9504 4.1336 4.3047 4.4647 4.6146 4.7552 4.8874 5.0118 5.1290 5.2397
Biweight 4.2308 4.4279 4.6121 4.7844 4.9458 5.0973 5.2396 5.3736 5.4999 5.6191
Triweight 4.4940 4.7050 4.9022 5.0868 5.2598 5.4222 5.5748 5.7185 5.8539 5.9818
Gaussian 1.0685 1.1235 1.1751 1.2236 1.2691 1.3120 1.3525 1.3906 1.4267 1.4608

ν = 10
Epanechnikov 4.3250 4.5167 4.6992 4.8729 5.0384 5.1961 5.3466 5.4902 5.6274 5.7585
Biweight 4.5798 4.7835 4.9775 5.1622 5.3381 5.5059 5.6659 5.8187 5.9646 6.1041
Triweight 4.8212 5.0371 5.2426 5.4383 5.6249 5.8027 5.9724 6.1344 6.2892 6.4372
Gaussian 1.0615 1.1134 1.1629 1.2103 1.2556 1.2989 1.3403 1.3800 1.4179 1.4543

Table 2 provides the rule-of-thumb constants for the setting |r| = 1, which represents estimating

a derivative of the multivariate kernel density estimator in a specific dimension. Here the normal
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reference rule-of-thumb bandwidth can be shown to be

(10) h
|r|=1
ROT =

 πq/22ν+q−1(ν!)2(q + 2)R (kν)q−1R
(
k

(1)
ν

)
νκ2

ν(kν) [(2ν)!!(q + ν − 1/2) + (q − 1)2(ν!!)2]


1

2ν+2+q

n
− 1

2ν+2+q .

We see exactly the same patterns for |r| = 1 as we did when |r| = 0. For 2nd order kernels the

rule-of-thumb constants decrease for all kernels as the dimensionality increases while for higher

order kernels the rule-of-thumb constants increase as the dimensionality increases. Note that Table

2 does not list rule-of-thumb constants for the class of Epanechnikov kernels as in this setting this

kernel is not continuously differentiable over its support.

Table 2. Normal reference rule-of-thumb constants for the multivariate νth order
kernel density derivative estimator for |r| = 1 provided in equation (10).

Kernel q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10
ν = 2

Biweight 2.4912 2.4531 2.4085 2.374 2.3499 2.3337 2.3232 2.3166 2.3128 2.311
Triweight 2.8322 2.7905 2.741 2.7028 2.6761 2.6583 2.6469 2.6398 2.6359 2.6342
Gaussian 0.9686 0.9557 0.9397 0.9274 0.9189 0.9133 0.9098 0.9078 0.9068 0.9065

ν = 4
Biweight 3.1805 3.3219 3.4327 3.5238 3.601 3.6679 3.7268 3.7795 3.8269 3.87
Triweight 3.4918 3.6489 3.7724 3.8739 3.9601 4.0348 4.1007 4.1596 4.2127 4.2609
Gaussian 1.0308 1.0805 1.1199 1.1526 1.1805 1.2048 1.2263 1.2455 1.2628 1.2787

ν = 6
Biweight 3.6793 3.8759 4.0458 4.1962 4.3312 4.4534 4.5651 4.6675 4.7621 4.8497
Triweight 3.9598 4.173 4.3575 4.5209 4.6676 4.8006 4.9221 5.0336 5.1366 5.232
Gaussian 1.0435 1.1033 1.1556 1.2021 1.244 1.2822 1.3172 1.3494 1.3792 1.4069

ν = 8
Biweight 4.0964 4.3136 4.5083 4.6861 4.8501 5.0024 5.1445 5.2777 5.4029 5.5209
Triweight 4.3521 4.5843 4.7926 4.9829 5.1584 5.3215 5.4738 5.6165 5.7507 5.8772
Gaussian 1.0454 1.1049 1.1586 1.2079 1.2536 1.2962 1.3362 1.3737 1.4091 1.4425

ν = 10
Biweight 4.465 4.6902 4.8963 5.0877 5.2671 5.4363 5.5965 5.7486 5.8933 6.0312
Triweight 4.7012 4.9395 5.1576 5.3603 5.5504 5.7297 5.8995 6.0607 6.2141 6.3604
Gaussian 1.0444 1.1009 1.1529 1.2014 1.2472 1.2905 1.3316 1.3708 1.4082 1.4439
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Appendix A. Facts pertaining to the Gaussian probability density function

To obtain specific values for the normal reference rule-of-thumb bandwidths we need to invoke

several properties of the q-variate normal probability density. The results presented here can either

be found directly in Aldershof, Marron, Park & Wand (1995) and Wand & Jones (1993) or are

straightforward extensions of their results.

The standard univariate normal probability density is defined as

φ(x) = (2π)−1e−(1/2)x2 ,

while the rth derivative of φ(x) is defined as

φ(r)(x) = (−1)rHr(x)φ(x),

where Hr(x) is the rth Hermite polynomial. The Hermite polynomials are defined as

Hr(x) = xHr−1(x)− (r − 1)Hr−2(x), H0(x) = 1, H1(x) = x.

For the case where the random variable does not have unit variance the rescaling

φσ(x) = φ(x/σ)/σ

will be used. In this case the rth derivative of φσ(x) is defined as

φ(r)
σ (x) = φ(r)(x/σ)/σr+1.

We will be interested in the rth derivative of φσ(x) evaluated at 0. For this we have

φ(r)
σ (0) = (−1)r/2σ−(r+1)(2π)−1/2r!! for r even

and 0 otherwise.

In the multivariate setting we define the standard q-variate normal probability density as

φ(x) =

q∏
s=1

φ(xs) = (2π)−q/2e−(1/2)x′x.



RULE-OF-THUMB BANDWIDTHS 11

For Σ a q × q symmetric, positive definite matrix, we have

φΣ(x) = |Σ|−1/2φ(Σ−1/2x).

When Σ is diagonal with elements σ2
s we have

φΣ(x) =

q∏
s=1

φσs(xs).

Wand & Jones (1993, Theorem 2) show that for vectors r = (r1, . . . , rq) and r′ = (r′1, . . . , r
′
q)∫

φ
(r)
Σ (x)φ

(r′)
Σ′ (x)dx = φ

(r+r′)
Σ+Σ′ (0).

For the development of our normal reference rule we assume that Σ = Σ′ = Iq which yields∫
φ

(r)
Iq

(x)φ
(r′)
Iq

(x)dx = φ
(r+r′)
2Iq

(0).

Moreover, we have

φ
(r+r′)
2Iq

(0) =

q∏
s=1

φ
(rs+r′s)√

2
(0).

It is simple to check that when r = r′ = (0, . . . , 0) we have

φ2Iq(0) =

q∏
s=1

φ√2(0) = (2
√
π)−q.


