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Réarrangements et Dominance en Quantiles Séquentielle 
Un Résultat avec Applications Économiques 

 

Résumé 

L’analyse distributive implique généralement des comparaisons de distributions hétérogènes 

où les individus diffèrent dans plus d’un attribut. Dans le cas particulier où il y a deux 

attributs et où la distribution de l’un de ces deux attributs est fixée, on peut faire appel à la 

dominance en quantiles séquentielle pour comparer les distributions. Nous considérons le 

cas dégénéré où tous les individus diffèrent par rapport à l’attribut dont la distribution est 

fixée et nous montrons que, si une distribution domine une autre distribution au sens du 

critère des quantiles séquentiel, alors la première peut être obtenue à partir de la seconde au 

moyen d’une suite finie de permutations favorables, et réciproquement. Nous présentons 

trois exemples où les permutations favorables se révèlent avoir des implications 

intéressantes d’un point de vue normatif. 

Mots-clés : Réarrangements, Permutation Favorable, Dominance en Quantiles Séquentielle, 

Appariement, Mobilité, Impatience. 

 

Rearrangements and Sequential Rank Order Dominance 
A Result with Economic Applications 

Abstract 

Distributive analysis typically involves comparisons of heterogeneous distributions where 

individuals differ in more than just one attribute. In the particular case where there are two 

attributes and where the distribution of one of these two attributes is fixed, one can appeal 

to sequential rank order dominance for comparing distributions. We consider the degenerate 

case where all individuals differ with respect to the attribute whose distribution is fixed and 

we show that sequential rank order domination of one distribution over another implies that 

the dominating distribution can be obtained from the dominated one by means of a finite 

sequence of favourable permutations, and conversely. We provide three examples where 

favourable permutations prove to have interesting implications from a normative point of 

view. 

Keywords: Rearrangements, Favourable Permutations, Sequential Rank Order Dominance, 

Matching, Mobility, Impatience 

JEL: D31, D63, I32. 

 

* This paper forms part of the research project The Multiple Dimensions of Inequality (Contract 

No.ANR 2010 BLANC 1808) of the French National Agency for Research whose financial support 

isgratefully acknowledged. I am indebted to Stephen Bazen for very useful conversations and 

suggestions. 

Reference to this paper: MOYES Patrick, (2011) Rearrangements and Sequential Rank Order 
Dominance. A Result with Economic Applications Cahiers du GREThA, n°2011-35. 

 http://ideas.repec.org/p/grt/wpegrt/2011-35.html. 



Patrick Moyes/Rearrangements and Sequential Rank Order Dominance

1. Introduction

It is not uncommon for distributive analysis to involve comparisons of heterogeneous distri-
butions where individuals differ in two attributes, for instance income and health status. A
related example is provided by comparisons of income profiles which indicate the income re-
ceived by an individual at given dates. The assessment of intergenerational mobility is another
area that involves comparisons of multidimensional distributions: in the simplest case, those
of the parents and those of the children. On the one hand, Atkinson and Bourguignon (1982)
have shown that the ranking of such distributions by utilitarian unanimity proves to be iden-
tical to the one implied by bidimensional first order stochastic dominance, when unanimity
is sought over the class of submodular utility functions. On the other hand, it can be easily
checked that favourable permutations always result in an increase in social welfare when it is
evaluated by the utilitarian rule and when the utility function is submodular (see, e.g., Moyes
(2011)). However, it is still an open question as to whether the converse statement holds, or
equivalently whether it is possible to derive the dominating distribution from the dominated
one – where domination is understood in the sense of bidimensional first order stochastic
dominance – by means of appropriate combinations of such permutations.

In the particular case where the distribution of one of the two attributes is fixed, bidi-
mensional first order stochastic dominance reduces to sequential rank order dominance (see,
e.g., Atkinson and Bourguignon (1987)). To illustrate things, consider the case where every
individual in the population is identified by her health status and her income. Suppose further
that an individual’s health status falls into a finite set of ordered categories like “bad health”,
“average” or “good health”. The sequential rank order criterion consists in comparing, first
the quantile distributions of income for those individuals in bad health, then the quantile
distributions of income for those individuals in the combined bad or average health categories,
and finally the quantile distributions of income for the entire population. If one distribution
is ranked above another at each stage of the process, then it is declared to be better according
to the sequential rank order criterion. In this note, we consider the degenerate case where all
individuals differ with respect to the attribute whose distribution is fixed, i.e. no two individ-
uals have the same value of the attribute, and we show that sequential rank order domination
of one distribution over another implies that the dominating distribution can be obtained from
the dominated one by means of a finite sequence of favourable permutations, and conversely.

The organisation of the note is as follows. We introduce the notation, as well as the
definitions of rank order and sequential rank order dominance in Section 2. We also provide
some preliminary results that will be useful later on. We present and prove in Section 3 our
main result according to which sequential rank order domination of one distribution by another
implies that the dominating distribution can be obtained from the dominated one by means
of successive favourable permutations. We examine in Section 4 three examples that involve
more or less explicitly favourable permutations and where the application of the sequential
rank order criterion proves to be relevant. Finally, Section 5 concludes the paper.
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2. Notation, Definitions and Preliminary Results

There is a finite set of individuals N := {1, 2, . . . , n} with n = 2. A distribution for population
N is a list u := (u1, . . . , un), where ui ∈ D ⊂ R may be viewed as the income of individual i
in situation u, but other interpretations are also possible.

Definition 2.1. Given two income distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we
say that u component-wise dominates v, which we write u ≥ v, if and only if:

(2.1) uh = vh, ∀ h = 1, 2, . . . , n.

We indicate respectively by ∼ and > the symmetric and asymmetric components of ≥ defined
in the usual way, and we note that u ∼ v if and only if uh = vh, for all h = 1, 2, . . . , n. The
non-decreasing rearrangement of an income distribution u := (u1, . . . , un) ∈ Dn is indicated
by u( ) := (u(1), u(2), . . . , u(n)), where u(1) 5 u(2) 5 · · · 5 u(n).

Definition 2.2. Given two income distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we
say that u rank order dominates v, which we write u ≥RO v, if and only if:

(2.2) u(h) = v(h), ∀ h = 1, 2, . . . , n.

We indicate respectively by ∼RO and >RO the symmetric and asymmetric components of ≥RO,
and we note that u ∼RO v if and only if u(h) = v(h), for all h = 1, 2, . . . , n, in which case u
is a permutation of v. Component-wise dominance implies rank-order dominance, but the
converse implication is false as the next result demonstrates.

Lemma 2.1. Let u,v ∈ Dn and consider the following two statements:

(a) u ≥ v.

(b) u ≥RO v.

Then, statement (a) implies statement (b), but the converse implication does not hold.

Proof.
(a) =⇒ (b). By definition, we have uh = vh, for all h ∈ {1, 2, . . . , n}. Consider the indices i
and j defined by ui = uh, for all h ∈ {1, 2, . . . , n}, and vj = vh, for all h ∈ {1, 2, . . . , n}.

Case 1: i = j. Then u(n) = ui = vi = v(n) and uh = vh, for all h ∈ {1, 2, . . . , n} \ {i}. Let

ũ := (u1, . . . , ui−1, ui+1, . . . , un);(2.3a)

ṽ := (v1, . . . , vi−1, vi+1, . . . , vn);(2.3b)

û := (u(n)) = (ui);(2.3c)

v̂ := (v(n)) = (vi).(2.3d)

Then, we have ũ ≥ ṽ and û ≥ v̂.
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Case 2: i 6= j. We have ui = uj = vj = vi, from which we deduce that u(n) = ui = vj = v(n)

and uj = vi. In addition, uh = vh, for all h ∈ {1, 2, . . . , n} \ {i, j}. Denote as v∗ the
permutation of distribution v defined by

(2.4) v∗ := (v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vn) ,

assuming that i < j. From what precedes, we deduce that u ≥ v∗. Define next

ũ := (u1, . . . , ui−1, ui+1, . . . , uj . . . , un);(2.5a)

ṽ := (v∗1, . . . , v∗i−1, v
∗
i+1, . . . , v

∗
j . . . , v

∗
n) = (v1, . . . , vi−1, vi+1, . . . , vi, . . . , vn);(2.5b)

û := (u(n)) = (ui);(2.5c)

v̂ := (v(n)) = (vj).(2.5d)

Then, we obtain ũ ≥ ṽ and û ≥ v̂. Repeating this argument n times, we finally obtain two
distributions û = u( ) and v̂ = v( ) such that û ≥ v̂.

¬ [(a) =⇒ (b)]: Choose u := (4, 2, 2) and v := (1, 1, 3), which are not comparable according
to the component-wise ordering, though u( ) := (2, 2, 4) ≥ (1, 1, 3) =: v( ).

The next lemma is well-known (see, e.g., Saposnik (1981)) and it simply states that the
ranking of income distributions by utilitarian unanimity over the class of non-decreasing utility
functions is equivalent to the ranking implied by the rank order criterion. More precisely,
letting

(2.6) Φ := {φ : D → R | φ is non-decreasing},

we have the following result:

Lemma 2.2. Let u,v ∈ Dn. Then, statements (a) and (b) below are equivalent:

(a) ∑n
h=1 φ(uh) =

∑n
h=1 φ(vh), ∀ φ ∈ Φ.

(b) u ≥RO v.

This result mirrors the standard equivalence between first order stochastic dominance and
utilitarian unanimity (see, e.g., Fishburn and Vickson (1978)).

From now on, we assume (i) that individuals can be distinguished on the basis of a variable
which we call for convenience ability and (ii) that no two individuals have the same ability.
What is important here is that individuals are ranked according to ability which means that
individual i is strictly less able than individual j whenever i < j. In other words, we can
interpret the set N as an ordered list of n distinct ability levels and u := (u1, . . . , un) ∈ Dn as a
distribution of incomes over the set of (ordered) abilities. We indicate by uh := (u1, u2, . . . , uh)
the distribution of the incomes received by the individuals with abilities equal to h or less and
we note that un = u. We let

(2.7) uh( ) := (uh(1), u
h
(2), . . . , u

h
(h−1), u

h
(h))

stand for the rearrangement of uh such that

(2.8) uh(1) 5 uh(2) 5 · · · 5 uh(h−1) 5 uh(h).

3
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Definition 2.3. Given two distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we say
that u sequential rank order dominates v, which we write u ≥SRO v, if and only if:

(2.9) uh ≥RO vh, ∀ h = 1, 2, . . . , n− 1, and un ∼RO vn.

If in addition uk >RO vk, for some k < n, then we say that u sequential rank order strictly
dominates v, which we write u >SRO v.

Important for subsequent developments is the fact that, if u ≥SRO v, then u is a permutation
of v. Making use of (2.2), (2.7) and (2.8), we note that u ≥SRO v amounts to requiring that

uh(g) = vh(g), ∀ g = 1, 2, . . . , h, ∀h = 1, 2, . . . , n− 1, and(2.10a)

un(g) = vn(g), ∀ g = 1, 2, . . . , n.(2.10b)

Among the different possible rearrangements of the elements of a distribution, the following
one will play a crucial role in the paper.

Definition 2.4. Given two distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we say
that u is obtained from v by means of a favourable permutation if there exists two individuals
i, j ∈ N with i < j such that

vi = uj < ui = vj; and(2.11a)

vg = ug, ∀ g 6= i, j.(2.11b)

The third lemma constitutes the analogue of Lemma 2.2 in the case of heterogeneous income
distributions by appealing to the sequential rank order criterion. Before we state the result,
we need to introduce the following class of n-tuples of functions:

(2.12) Ψ :=
{
ψ := (ψ1, . . . , ψn) | ψ′h(s) = ψ′h+1(s), ∀ s ∈ D , ∀h = 1, 2, . . . , n− 1

}
.

Then, we have:

Lemma 2.3. Consider two heterogeneous distributions u,v ∈ Dn. Then, statements (a) and
(b) below are equivalent:

(a) ∑n
h=1 ψh(uh) =

∑n
h=1 ψh(vh), ∀ ψ := (ψ1, . . . , ψn) ∈ Ψ.

(b) u ≥SRO v.

Proof.
(a) =⇒ (b). Let λ := (λ1, . . . , λn) and consider the n-tuple ψ := (ψ1, . . . , ψn) defined
by ψh(s) := λh φ(s), for all h = 1, 2, . . . , n. Clearly, ψ := (ψ1, . . . , ψn) ∈ Ψ provided
that φ′(s) = 0 and λ1 = λ2 = · · · = λn, which we assume. Choosing successively λ :=
(1, 0, 0, . . . , 0, 0), λ := (1, 1, 0, . . . , 0, 0), . . . ,λ := (1, 1, 1, . . . , 1, 0), λ := (1, 1, 1, . . . , 1, 1), and
λ := (−1,−1,−1, . . . ,−1,−1), condition (a) reduces to

h∑
g=1

φ(ug) =
h∑
g=1

φ(vg), ∀h = 1, 2, . . . , n− 1, and(2.13a)

n∑
g=1

φ(ug) =
n∑
g=1

φ(vg),(2.13b)

4
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which holds for all functions φ ∈ Φ. Appealing to Lemma 2.2, we conclude that uh ≥RO vh,
for all h = 1, 2, . . . , n− 1, and un ∼RO vn, hence u ≥SRO v.

(b) =⇒ (a). Given any u := (u1, . . . , un) ∈ Dn, we have the following equality:

(2.14)
n∑
h=1

ψh(uh) =
n∑
h=1

[
ψh(uh)±

h−1∑
k=1

ψh(uk)
]

=
n−1∑
h=1

[
h∑
k=1

(ψh(uk)− ψh+1(uk))
]

+
n∑
k=1

ψn(uk).

Letting fh(s) := ψh(s) − ψh+1(s), for h = 1, 2, . . . , n − 1, and fn(s) := ψn(s), and upon
substituting into (2.14), we obtain

(2.15)
n∑
h=1

ψh(uh) =
n−1∑
h=1

[
h∑
k=1

fh(uk)
]

+
n∑
k=1

fn(uk) =
n∑
h=1

h∑
i=1

fh(uh(i)).

Because f ′h(s) := ψ′h(s) − ψ′h+1(s), in the light of (2.15), condition (a) can be equivalently
rewritten as

(2.16)
n∑
h=1

(ψh(uh)− ψh(vh)) =
n∑
h=1

h∑
i=1

(
fh(uh(i))− fh(vh(i))

)
= 0,

for all fh(s) that are non-decreasing in s. Making use of the Mean Value Theorem, condition
(2.16) is equivalent to

(2.17)
n−1∑
h=1

h∑
i=1

f ′h(ξhi )
[
uh(i) − vh(i)

]
+

n∑
i=1

f ′n(ξni )
[
un(i) − vn(i)

]
= 0,

for some ξhi ∈ (uh(i), vh(i)), for all i ∈ {1, 2, . . . , h} and all h ∈ {1, 2, . . . , n}. Given (2.10) and
since f ′h(s) = ψ′h(s)− ψ′h+1(s) = 0, for all s and all h = 1, 2, . . . , n− 1, we conclude that it is
sufficient for (2.17) to hold that u ≥SRO v.

The connection between the class of n-tuples Ψ and the class of submodular functions is easily
recognised if we let g(s, h) := ψh(s), for all s ∈ D and all h ∈ {1, 2, . . . , n}. Indeed, a function
g : D×D → R is called submodular if g(u+ δ, v+ε)−g(u, v+ε) 5 g(u+ δ, v)−g(u, v), for all
(u, v) ∈ D×D and all δ, ε > 0. When the function g is differentiable in its first argument, this
reduces to the condition that g(1)(s, h) = ψ′h(s) = ψ′h+1(s) = g(1)(s, h + 1), for all s ∈ D and
all h ∈ {1, 2, . . . , n− 1}. Sometimes, one also says that g is L-subadditive (see, e.g., Marshall
and Olkin (1979, Chapter 6, Section D).

The assumption that individuals, whatever their abilities, have different incomes in the two
situations under comparison simplifies things. In conjunction with Lemma 2.3, our last tech-
nical result confirms that there is no loss of generality when comparing heterogeneous income
distributions by means of utilitarian unanimity in order to restrict attention to the subpop-
ulation of individuals whose incomes differ in the two situations. Given two heterogeneous
distributions u,v ∈ Dn, we define:

S := {h ∈ N |uh = vh} ;(2.18a)

T := {h ∈ N |uh 6= vh} .(2.18b)

Given the n-tuple ψ := (ψ1, . . . , ψn) ∈ Ψ, we denote by ψ(T ) := ((ψh)h∈T ) its restriction to
T and by Ψ(T ) the set of such profiles. Then, we have the following obvious result:

5
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Lemma 2.4. Let u,v ∈ Dn. Then, statements (a) and (b) below are equivalent:

(a) ∑n
h=1 ψh(uh) =

∑n
h=1 ψh(vh), ∀ ψ := (ψ1, . . . , ψn) ∈ Ψ.

(b) ∑h∈T ψh(uh) =
∑
h∈T ψh(vh), ∀ ψ(T ) ∈ Ψ(T ).

3. Main Result

We are now in a position to state our main result which establishes the connection between
sequential rank order dominance and favourable permutations.

Theorem 3.1. Let u,v ∈ Dn. Then, statements (a) and (b) below are equivalent:

(a) u is obtained from v by means of a finite sequence of favourable permutations.

(b) u ≥SRO v.

Proof.
(a) =⇒ (b). Suppose that u is obtained from v by means of a single favourable permutation
so that

(3.1) u = (v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vn),

where vi < vj. Then, we have:

1 5 h 5 i− 1 : uh ∼RO vh because uh = vh,(3.2a)

i 5 h 5 j − 1 : uh >RO vh by Lemma 2.1,(3.2b)

j 5 h 5 n : uh ∼RO vh because uh is a permutation of vh,(3.2c)

and we conclude that u ≥SRO v. When more than one favourable permutation is needed to
convert u into v, the result follows by invoking the transitivity of the sequential rank order
criterion.

(b) =⇒ (a). Thanks to Lemma 2.4, we assume without loss of generality that

(3.3) uh 6= vh, ∀h ∈ {1, 2, . . . , n}.

Now consider the indices i and j defined as follows:

i := min {h ∈ {1, 2, . . . , n} | uh = ug, ∀ g ∈ {1, 2, . . . , n}} ;(3.4a)

j := min {h ∈ {1, 2, . . . , n} | vh = vg, ∀ g ∈ {1, 2, . . . , n}} .(3.4b)

From the definition of the indices i and j, we have

uh < ui, ∀h = 1, 2, . . . , i− 1;(3.5a)

ui = uh, ∀h = i+ 1, i+ 2, . . . , n;(3.5b)

vh < vj, ∀h = 1, 2, . . . , j − 1;(3.5c)

6
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vj = vh, ∀h = j + 1, i+ 2, . . . , n.(3.5d)

Furthermore, ui := max{uh} = max{vh} =: vj, because u is a permutation of v. We note
that by construction i < j. Indeed, we cannot have i = j, for, if it were the case, then
ui = vi, which is ruled out by (3.3). Suppose next that j < i and consider the distributions
uj := (u1, u2, . . . , uj) and vj := (v1, v2, . . . , vj). From definition of vj, we have

(3.6) uj(j) < ui = vj = vj(j).

Hence ¬ [uj ≥RO vj], which contradicts the fact that u ≥SRO v by assumption.

The idea of the proof is to operate favourable permutations within the subpopulation {i, i+
1, . . . , j − 1, j} so that, at the end of this process, one obtains a new distribution z with the
properties that (i) ui = zi = vj, and (ii) u ≥SRO z >SRO v. Let

(3.7) k := min {h ∈ {i, i+ 1, . . . , j − 1} | vh = vg,∀ g ∈ {i, i+ 1, . . . , j − 1}} .

By definition of the index k, we have:

vh < vk, ∀h ∈ {i, i+ 1, . . . , k − 1};(3.8a)

vk = vh, ∀h ∈ {k + 1, k + 2, . . . , j − 1};(3.8b)

vk < vj.(3.8c)

Then, we construct a new distribution w := (w1, . . . , wn) starting from v := (v1, . . . , vn) by
means of a favourable permutation as it is indicated below

wh = vh, ∀h 6= k, j; and(3.9a)

wk = vj; wj = vk;(3.9b)

and illustrated in Table 3.1.

We now examine the distributions uh, wh and vh, for h = 1, 2, . . . , H. We consider succes-
sively four cases.

Case 1: 1 5 h 5 i − 1. By assumption uh ≥RO vh and by construction wh = vh. Hence,
uh(g) = wh(g) = vh(g), for all g ∈ {1, 2, . . . , h}.

Table 3.1: Construction of w starting from v by means of a favourable permutation

1 · · · i− 1 i i+ 1 · · · k − 1 k k + 1 · · · j − 1 j j + 1 · · · n

u : u1 · · · ui−1 ui ui+1 · · · uk−1 uk uk+1 · · · uj−1 uj uj+1 · · · un

w : v1 · · · vi−1 vi vi+1 · · · vk−1 vj vk+1 · · · vj−1 vk vj+1 · · · vn

v : v1 · · · vi−1 vi vi+1 · · · vk−1 vk vk+1 · · · vj−1 vj vj+1 · · · vn

7
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Case 2: i 5 h 5 j − 1. If k > h, the argument is the same as in Case 1, so we can restrict
attention to the case in which k ∈ {i, i + 1, . . . , h − 1, h}. We indicate by g∗ = χ(h, k) the
largest rank with the income vk in the ordered distribution vh( ) as shown in

(3.10) vh(1) 5 · · · 5 vh(g∗−1) 5 vh(g∗) ≡ vk < vh(g∗+1) 5 · · · 5 vh(h),

and we denote by

(3.11) ρ∗ := #
{
g ∈ {1, 2, . . . , h}

∣∣∣ vh(g) > vh(g∗) = vk
}

= h− g∗

the number of individuals who, in distribution vh := (v1, v2, . . . , vh), have incomes greater than
vk. We note that h− i+ 1 5 g∗ = χ(h, k) 5 h, for all h ∈ {i, i+ 1, . . . , j − 1}, or equivalently
that ρ∗ 5 i − 1. This is because by definition vk = vg, for all g ∈ {i, i + 1, . . . , h − 1, h} and
all h ∈ {i, i+ 1, . . . , j − 1}. Suppose first that g∗ = h. Then, it follows from the definition of
wh

( ) and the fact that uh( ) ≥RO vh( ) by assumption that

uh(g) = wh(g) = vh(g), ∀ g = 1, 2, . . . , h− 1, and(3.12a)

ui = uh(h) = wh(h) = vj > vk = vh(h).(3.12b)

Consider next the case where g∗ ∈ {1, 2, . . . , h− 1}. Invoking again the definition of wh
( ) and

the fact that uh( ) ≥RO vh( ) by assumption, we have

uh(g) = wh(g) = vh(g), ∀ g = 1, 2, . . . , g∗ − 1, and(3.13a)

ui = uh(h) = wh(h) = vj > vk = vh(h).(3.13b)

It remains to be examined what happens when g = g∗, g∗ + 1, . . . , h− 1. By definition of the
index i, we have

(3.14) uh(1) 5 uh(2) 5 · · · 5 uh(h−p) < uh(h−p+1) = · · · = uh(h) = ui ,

where p := # {g ∈ {i, i+ 1, . . . , h} | ug = ui}. Given a non-empty and finite set A : =
{a1, a2, . . . , am}, where ai ∈ R, for all i = 1, 2, . . . ,m (m = 2), we denote by maxρA the
ρth-greatest element in A with 1 5 ρ 5 m. Since by definition uh(h) = ui > ug, for all
g ∈ {1, 2, . . . , i− 1}, we deduce that

(3.15)
{
{ui−1

(g) }g=1,2,...,i−1
}
⊆
{
{uh(g)}g=1,2,...,h−1

}
,

and we have:

uh(h−1) = max
1

{
{uh(g)}g=1,2,...,h−1

}
= max

1

{
{ui−1

(g) }g=1,2,...,i−1
}

= ui−1
(i−1); ρ = 1

uh(h−2) = max
2

{
{uh(g)}g=1,2,...,h−1

}
= max

2

{
{ui−1

(g) }g=1,2,...,i−1
}

= ui−1
(i−2); ρ = 2

... ...

uh(h−ρ∗+1) = max
ρ∗−1

{
{uh(g)}g=1,2,...,h−1

}
= max

ρ∗−1

{
{ui−1

(g) }g=1,2,...,i−1
}

= ui−1
(i−ρ∗+1); ρ = ρ∗ − 1
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uh(h−ρ∗) = max
ρ∗

{
{uh(g)}g=1,2,...,h−1

}
= max

ρ∗

{
{ui−1

(g) }g=1,2,...,i−1
}

= ui−1
(i−ρ∗); ρ = ρ∗.

More compactly:

(3.16) uh(h−ρ) = max
ρ

{
{uh(g)}g=1,2,...,h−1

}
= max

ρ

{
{ui−1

(g) }g=1,2,...,i−1
}

= ui−1
(i−ρ),

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗. Similarly, by definition of the index k, we have

(3.17) vh(1) 5 · · · 5 vh(h−q) 5 vh(h−q+1) = · · · = vh(g∗) ≡ vk < vh(g∗+1) 5 · · · 5 vh(h),

where q := # {g ∈ {1, 2, . . . , h} | vg = vk }. Since by definition vh(g∗) = vk = vg, for all g ∈
{i, i+ 1, . . . , h}, we deduce that

(3.18)
{
vh(g∗+1), v

h
(g∗+2), . . . , v

h
(h)

}
⊆
{
vi−1

(1) , v
i−1
(2) , . . . , v

i−1
(i−1)

}
.

This implies in turn that

vh(h) = max
1

{
{vh(g)}g=g∗+1,g∗+2,...,h

}
5 max

1

{
{vi−1

(g) }g=1,2,...,i−1
}

= vi−1
(i−1); ρ = 1

vh(h−1) = max
2

{
{vh(g)}g=g∗+1,g∗+2,...,h

}
5 max

2

{
{vi−1

(g) }g=1,2,...,i−1
}

= vi−1
(i−2); ρ = 2

... ...

vh(h−ρ∗+2) = max
ρ∗−1

{
{vh(g)}g=g∗+1,g∗+2,...,h

}
5 max

ρ∗−1

{
{vi−1

(g) }g=1,2,...,i−1
}

= vi−1
(i−ρ∗+1); ρ = ρ∗ − 1

vh(h−ρ∗+1) = max
ρ∗

{
{vh(g)}g=g∗+1,g∗+2,...,h

}
5 max

ρ∗

{
{vi−1

(g) }g=1,2,...,i−1
}

= vi−1
(i−ρ∗); ρ = ρ∗.

More compactly:

(3.19) vh(h−ρ+1) = max
ρ

{
{vh(g)}g=g∗+1,g∗+2,...,h

}
5 max

ρ

{
{vi−1

(g) }g=1,2,...,i−1
}

= vi−1
(i−ρ),

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗. Combining (3.16) and (3.19), making use of the definition of w
and of the fact that ui−1

( ) ≥RO vi−1
( ) , we obtain

uh(h−1) = ui−1
(i−1) = vi−1

(i−1) = vh(h) = wh(h−1) = vh(h−1); ρ = 1

uh(h−2) = ui−1
(i−2) = vi−1

(i−2) = vh(h−1) = wh(h−2) = vh(h−2); ρ = 2

... ...

ui(h−ρ∗+1) = ui−1
(i−ρ∗+1) = vi−1

(i−ρ∗+1) = vh(h−ρ∗+2) = wh(h−ρ∗+1) = vh(h−ρ∗+1); ρ = ρ∗ − 1

ui(h−ρ∗) = u
(i−1)
(i−ρ∗) = vi−1

(i−ρ∗) = vh(h−ρ∗+1) = wh(h−ρ∗) = vh(h−ρ∗); ρ = ρ∗.

More compactly:

(3.20) uh(h−ρ) = ui−1
(i−ρ) = vi−1

(i−ρ) = vh(h−ρ+1) = wh(h−ρ) = vh(h−ρ),

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗. Thus, we conclude that

(3.21) uh(h−ρ) = wh(h−ρ) = vh(h−ρ), ∀ ρ = 1, 2, . . . , h− g∗ − 1, h− g∗,

9
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or equivalently

(3.22) uh(g) = wh(g) = vh(g), ∀ g = h− 1, h− 2, . . . , g∗ + 1, g∗.

Case 3: j 5 h 5 n− 1. By assumption uh ≥RO vh and by construction wh is a permutation
of vh. Hence, uh(g) = wh(g) = vh(g), for all g ∈ {1, 2, . . . , h}.

Case 4: h = n. By assumption un ∼RO vn and by construction wn is a permutation of vn.
Hence, un(g) = wn(g) = vn(g), for all g ∈ {1, 2, . . . , n}.

To summarise, we have uh ≥RO wh ≥RO vh, for all h = 1, 2, . . . , n − 1, with wh >RO vh,
for at least one h, and un ∼RO wn ∼RO vn. Therefore u ≥SRO w >SRO v. If u = w, then
distribution u results from distribution v by means of a single favourable permutation and
the proof is complete. If u 6= w, then we apply the above reasoning to the distributions û
and ŵ obtained by deleting all indices h such that uh = wh. It is possible that no such indices
exist in which case û = u and ŵ = w. By successive permutations of the kind described
above, we finally obtain a distribution z such that zi = vj = ui. Given i < j, we need at most
j− i favourable permutations in order to obtain z starting from v, which gives a maximum of
(n− 1) permutations in the case where i = 1 and j = n. At the next stage, we would need at
most (n− 2) favourable permutations since the algorithm involves distributions with at most
(n− 1) elements. Therefore, we obtain distribution u from distribution v by means of a finite
sequence of at most n (n− 1)/2 favourable permutations.

Theorem 3.1 has interesting implications for the ranking of the permutations of any arbi-
trary distribution. Given a distribution u ∈ Dn, we indicate by u[ ] := (u[1], u[2], . . . , u[n]) its
non-increasing rearrangement defined by u[1] = u[2] = · · · = u[n]. Denoting by Pn the set of
permutation matrices P ≡ [pij] of order n, one establishes using a similar argument to that
used in the first part of the proof of Theorem 3.1 the following result:

Proposition 3.1. Let u ∈ Dn be an arbitrary heterogeneous distribution. Then, we have:

(3.23) u( ) ≥SRO P u ≥SRO u[ ], ∀ P ∈Pn.

Since condition (3.19) holds whatever the choice of the distribution u, Proposition 3.1 provides
implicitly a means of ranking permutation matrices.

4. Three Applications

Matching and inequality We consider two populations of the same size n – men and women
– where each population is characterised by a distribution of income. We denote by u :=
(u1, . . . , un) and v := (v1, . . . , vn) the distributions of income for men and women, respectively,
and we assume for simplicity that no two incomes within distributions u and v are the same.
We are interested in pairing men and women in such a way that aggregate income inequality
is minimised. In order to compare distributions on the basis of inequality, we appeal to
the standard Lorenz criterion. More precisely, given two distributions u := (u1, . . . , un) and

10
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v := (v1, . . . , vn) such that ∑n
i=1 ui = ∑n

i=1 vi, we say that u Lorenz dominates v, which we
write u ≥L v, if and only if:

(4.1)
k∑
j=1

u(j) =
k∑
j=1

v(j), ∀ k = 1, 2, . . . , n− 1.

We assume without loss of generality that the distribution of women’s incomes is fixed and
that their incomes are non-decreasingly arranged. Consider the situation where the richest
woman is matched with the richest man, the second richest woman with the second richest
man and so on, which implies the following aggregate income distribution:

(4.2) (u( ) + v( )) := (u(1) + v(1), u(2) + v(2), . . . , u(n) + v(n)).

Suppose now that women i and j switch men, which results in the aggregate income distribu-
tion:

(4.3) (ũ + v( )) := (u(1) + v(1), . . . , u(j) + v(i), . . . , u(i) + v(j), . . . , u(n) + v(n)),

where ũ := (u(1), . . . , u(j), . . . , u(i) . . . , u(n)). This exchange of partners between women i and
j can be interpreted as a favourable permutation for women, and it follows from Theorem 3.1
that ũ ≥SRO u( ). By Lemma 2.3 we know that this is equivalent to

(4.4)
n∑
i=1

ψi(ũi) =
n∑
i=1

ψi(u(i)),

for all n-tuples ψ := (ψ1, . . . , ψn) ∈ Ψ, and in particular for those n-tuples ψ := (ψ1, . . . , ψn)
such that

(4.5) ψi(s) := φ(s+ v(i)), ∀ s > 0, ∀ i = 1, 2, . . . , n,

where φ is concave. Hence,

(4.6)
n∑
i=1

φ(ũi + v(i)) =
n∑
i=1

φ(u(i) + v(i)), ∀ φ ∈ Φ,

which, upon invoking the Hardy, Littlewood, and Pólya (1934) theorem, is equivalent to

(4.7) (ũ + v( )) ≥L (u( ) + v( )).

Invoking Proposition 3.1, one establishes using a similar argument that

(4.8) (u[ ] + v( )) ≥L (P u + v( )) ≥L (u( ) + v( )), ∀ u,v ∈ Dn, ∀ P ∈Pn.

Thus, assuming that the distribution of income among men and women are given, the most
effective way to reduce income inequality among couples is to match the richest woman with
the poorest man, the second richest woman with the second poorest man, and so on.

11
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Intertemporal choice under impatience Consider an individual who has to decide which
occupation to choose on the basis of the incomes these occupations generate in each period of
her lifetime. Suppose that all that matters for the individual is the incomes she receives in the
different periods and that no uncertainty is attached to these incomes. An income profile is a
list u := (u1, u2, . . . , ut, . . . , uT ), where ut ∈ D is the income the individual receives in period
t and T the finite horizon. In order to evaluate the different income profiles available to her,
the individual uses an intertemporal utility function

(4.9) V (u) ≡ V (u1, u2, . . . , uT ).

It is generally considered that individuals, when they have to make choices involving future
prospects, exhibit a preference for the present (see, e.g., Ekern (1981), Bohren and Hansen
(1980)). To be more precise, we assume here that the individual is impatient in the sense that
if she is given the possibility of choosing between getting an extra dollar today or receiving it
tomorrow and if she has the same income in both periods, then she always prefers to have it
today. Formally, this amounts to requiring that the intertemporal utility function satisfies:

(4.10) V (u1, . . . , ur + ∆, . . . , us, . . . , uT ) = V (u1, . . . , ur, . . . , us + ∆, . . . , uT ), ∀ u, ∀ ∆ > 0,

whenever ur = us and r < s. In the particular case where the intertemporal utility function
is additively separable, that is V (u1, . . . , uT ) = ∑T

t=1 ψt(ut), this condition reduces to

(4.11) ψ′r(u) = ψ′s(u), ∀ u, ∀ r < s,

where we assume for simplicity that the temporal utility functions ψt(u) (t = 1, 2, . . . , T ) are
differentiable. It follows from Lemma 2.3 that a necessary and sufficient condition for profile
u to be preferred to profile v by all additively separable intertemporal utility functions with
impatience is that u ≥SRO v. Invoking Theorem 3.1, this is in turn equivalent to the fact that
u can be derived from v by a finite sequence of favourable permutations, which in the present
context consists in permuting incomes from some period in the future to a more recent period.

Exchange mobility We consider a society composed of n dynasties (n = 2), where each
dynasty consists of one father and one son. A situation for the society is a n× 2 matrix

(4.12) x ≡ (xF ; xS) :=



xF1 xS1
... ...
xFh xSh
... ...
xFn xSn


=



x1
...

xh
...

xn


,

such that xh = (xFh , xSh) is the intergenerational income distribution of dynasty h, xFh ∈
S and xSh ∈ S are respectively the father’s and son’s incomes of dynasty h, and S :=
{s1, s2, . . . , sm} ⊂ D is the set of possible incomes with s1 < s2 < · · · < sm. To simplify things,
we let m = n and xFh = sh, for all h = 1, 2, . . . , n, which implies that xF1 < xF2 < · · · < xFn . We
also assume that the incomes of children are permutations of parents’ incomes which implies
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that no two children can have the same income. Given the conventions above, two situations
x ≡ (xF ; xS) and y ≡ (yF ; yS) can only differ to the extent that xS and yS are permutations
of each other. Following Atkinson (1981), we say that x exhibits more mobility than y if and
only if

(4.13)
n∑
h=1

V (xFh , xSh) =
n∑
h=1

V (yFh , ySh ), ∀ V ∈ V ,

where V := {V : D × D → R | V12(u, v) 5 0, ∀ (u, v) ∈ D × D} is the set of admissible
dynasty utility functions. It follows from Lemma 2.3 that, if x is more mobile than y, then
xS ≥SRO yS, and conversely. Appealing next to Theorem 3.1, this is equivalent to saying that
xS is obtained from yS by means of a finite sequence of favourable permutations.

As it is suggested for instance by Shorrocks (1980, Section 4), we note that, the more mobile
the society is, the more equally distributed are the dynasties’ aggregate incomes. Indeed,
consider the class of dynasty utility functions V (u, v) := φ(f(u)+g(v)), where f(u)+g(v) can
be interpreted as the net present value of the dynasty’s intergenerational income distribution
and where φ measures the value attached to it. Assuming that f and g are increasing and
that φ is concave, we have

(4.14) V12(u, v) = φ′′(f(u) + g(v)) f ′(u) g′(u) 5 0, ∀ (u, v) ∈ D ×D ,

hence V (u, v) := φ(f(u) + g(v)) ∈ V . Then, we deduce from (4.13) that

(4.15)
n∑
h=1

φ(f(xFh ) + g(xSh)) =
n∑
h=1

φ(f(yFh ) + g(ySh )), ∀ φ ∈ Φ.

Letting f(zF ) := (f(zF1 ), . . . , f(zFn )) and g(zS) := (g(zS1 ), . . . , g(zSn )), for z ∈ {x,y}, and
invoking the Hardy et al. (1934) theorem, this is equivalent to

(4.16) (f(xF ) + g(xS)) ≥L (f(yF ) + g(yS)).

Therefore, whatever the way we compute the net present values of the intergenerational income
distributions – provided that fathers’ and sons’ incomes contribute positively to it and that
their distributions of income are permutations of each other – inequality decreases as mobility
increases.

5. Concluding Remarks

We have shown in this note that, if one distribution of two variables sequential rank order
dominates another, then it can be derived from the dominated distribution by means of a
finite sequence of favourable permutations, and conversely. We have provided three examples
that involve more or less explicitly favourable permutations and where the application of the
sequential rank order criterion proves to be relevant.

An obvious limitation of the present note is the strong assumption that there is one and
only one individual for each category of the variable whose marginal distribution is fixed.
While there is a high presumption that our result generalises to the case where there is more
than one individual per category of the conditioning variable, it is fair to admit that this is
still something that has to be proven.
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