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. METHODOLOGY

Abstract—This study aims to construct continuous-timeA Discrete Time Modellin
autoregressive (CAR) model and continuous-timeRGA : 9

(COGARCH) model from discrete time data of foreign  The discrete time models help us to obtain contisu
exchange rate of United States Dollar (USD) verduskish ~ models by following the ways of Brockwell for camtious
Lira (TRY). These processes are solutions to hetsiic ~ARMA and Klippelberg for COGARCH.

differential equation Leévy-driven processes. Végenshown After making the data stationary, the best candidat

that CAR(1) and COGARCH(1,1) processes are propeARIMA model for the conditional mean is chosen adiugy
models to represent foreign exchange rate of A&IDTRY to Akakike Information Criteria (AIC) [1]. Then, ARH

for different periods of time February 2002- Judd @ effect, serial correlation in error terms and sqdagrror terms
Keywords: Continuous modeling; Continuous AR; COGARCH; are investigate by the ARCH-LM test[3] and LjuBgx test.
USD/TRY If there is a serial correlation between residuais ARCH

effect occurs, then we estimate variance equatidth w
GARCH model. The model verifying is the most impaott
. INTRODUCTION case in discrete modeling. The residual analysis tfe

The modelling and forecasting the foreign excharsdjes GARCH model is the usual method. The probabilitysiey

are one of the most important subject for the madonal functions of the financial data and simulated dedald be

financial markets. After 2001 crisis, The Governmei  used for model verifying.

Turkey changed the foreign exchange policy, anywlasy

government set up the currency control and theidore B. Continuous ARMA Models

exchange rates are set by the free market The dstiag

becomes difficult because of the fluctations in @ypand

demand for the foreign currency.Hence, a succesbdel is

important for the investors, Turkish financial smst and

derivative pricing.

ARIMA model is used to obtain continuous ARMA model
The parameters of CARMA model is found by using the
autocovariance function of ARIMA [2]. CARMA(p,q) pcess
with the condition0< p<q is

Many forecasting methods have been developed ifagte a(D)Y, =b(D)DW,,t 20 (1)
few decades Time series forecasting is highly sgdi in . . .
predicting economic and business trends.. The Bokids Where D denotes the differentiation with respedt and

method [5] is one of the most widely used timeieser
forecasting methods in practice. It is also oneth& most
popular models in traditional time series forecagtand is _
often used as a benchmark model for comparison attter bz) =b, + bz +..hz" (2)
time series methods. The method uses a systenratiegure
to select an appropriate model from a rich famifynmdels,
namely, Autoregressive Moving Average (ARMA) models

— 5P p-1
A2)=z"+qz" +..+4q,

Brockwell shows the observation and the state s
as the following

In fact, empirical investigations of various finécdata Y, = b X, (3)
Show that an ARMA models, combined with a GARCH _
model and a heavy-tailed assumption for the errgiges dX, = AX dt+edW (4)

superior in-sample and out-of-sample fits.

There are many studies that use the ARMA and GARCH
models for the foreign exchange rates data in elisctime.
But the continuous ARMA and COGARCH models for
foreign exchange rate of USD versus TRY are nataus
methods.

The solution for state equation is

t
X, =e™X, +.[e““‘“)dV\/u ®)
0



S=E[X X]]= ].VeAyeery (6)
0

The real parts of the eigenvalues of matrix A ninest

negative for stationarity conditions where
E[X/]=0,t>0
E[X.,. X/]1=€e"Z ,h=0

The autocovariance function of CARMA(p,q) process i

b(A)b(-A)
" a (Na(-1)
The autocovariance function of ARMA(p,q) procesksi$6
, & AN O(-A)

= @)@ (A)

e/

y,(h =% (7)

y,(hy=c (8)

The parameters of CARMA(p,q) process are foun

comparing the equations (7) and (8) Whel[;e...,ap,bo,...,bq
are CARMA model parameters ar:;g,...,(pp,eo,...,eq are

ARMA model parameters.

C. Continuous GARCH Modelling

ol =B+ A-mo’, +¢(G, -G)* (14)

lll.  DATA

s0 100 1500 200

Figurel:TCMB USD versus TRY Exchange Rates
Source: Turkish Republic Central Bank’s Web Pagje:Mivww.tcmb.gov.tr

In order to realize the model, for the period afass
Februrary 2002- June 2010, the daily real foreigohange
rate data have been used related to Turkish LirsugeUnited

tates Dolar. The datas have ben got ftoenCentral Bank of
urkey. The data is the selling prices of the ehdhe daily
exchange rates

IV. RESULTSAND DIAGNOSTICS

Nelson[9] introduce COGARCH model that includes twoA. Unitroot And Stationary Tests

independent Brownian motions B(1) and B(2)
dG =0,dg®”,t=0 9)
ol =(B-no?)dt+pcdB? t=20 (10)
where >0, 720, and¢ = 0 are constants.

Klippelberg [4] shows that COGARCH model is anal®g

TABLE I. ADF AND P-PTESTRESULTS
Test for Unit Root
t-Test Null Hypothesis St-el;ﬁzttic P-value
ADF There is a unit root 11.81 1.842e-24
P-P There is a unit root -42.84 9.262e-4

of the discrete time GARCH model, based on a single The real data is not stationary. After taking thestf

background driving Lévy process. COGARCH model thees
basic properties of discrete time GARCH process.

The COGARCH proces€G, ), is defined in terms of its
stochastic differential G, such that
dG =odL t©0 (12)
do?= (B-no?)dt+ w2dlL L], t>0 (12)
wheref3 >0, 7 =0, and¢ = 0 are constants.

The solution for the stochastic equation is

t
ol =0t - B+ [olds+p Y 0l(AL) +of (13)
0 O<sst
t
Euler approximation is used for the integr*lgszdsz o,
0
and ZUSZ (AL,)? = (G, - G,_,)? since ALis usually not
O<ss<t
observable. So, we get

difference of the data, it becomes stationary atingrto ADF
and Philips-Perron tests are shown in Table |. Hdrer the
difference data is called DFX.

B. ARIMA Modeling

TABLE II. THE ESTIMATION OF ARIMA(1,1,0) VIA GAUSSIAN
MAXIMUM LIKELIHOODS
ARIMA(1,1,0) Results
Value Standard Error t-value
Cc 0.02857 0.01487 1.921
AR(1) | 0.00005797 NA NA

The best candidate model is ARIMA(1,1,0) pure AR(1)

process for DFX data according to AIC value -121876.
The coefficient of AR(1) in Table II. is statistibasignificant.
Although the constant of the model is not equakeco, the
coefficient will not used for simulations and in QML)
process. AR(1) model for DFX is



DFX, = 0.000058+ 0.0285DFX, , +a, (15)

where @, is the error term.

C. Continuous AR Modeling
The state equation of CAR(1) is
dX, = —aX,dt+bdW (16)
Which is the analogue of AR(1). In (16) we replat®itner
process with Lévy process Benth et.al [10] and Bnadl

[11], since the error terms are not normally dstted.
Consequently (16) comes to that

dX, = -aX,dt+bdL,
Where
a=-log¢,¢ = 0.02857 AR(1) coefficient,

20°?
b=-
1-¢°
As a result. The continuous model for DFX is
dX, = -15441X,dt-1.081L, (17)

DFX

Figure2:First Difference of USD versus TRY Exchaigges (DFX)
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Figure3:Simulated AR(1)
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Figure4:Simulated CAR(1)
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Figure7: Fast Fourier Transform of CAR(1)

The Figure3 and Figure4 show that the differenata dn
Figure2 and the simulated data from AR(1)and CARgve
same manner. Another approach to verify our mosldtast
Fourier Transform (FFT) of DFX and simulated d&t&T is
used for changing time domain data to frequencyadoniFT
of DFX and simulated data from discrete and comtirsu
models show common allocation.

A. Discrete Volatility Modeling

We fail to reject the null hypothesis of Ljung Bthat is
no autocorrelation between residuals and betweerarsd
residuals since the p-values of the test are 0.52150.8493
test. This situation is strengthened by ARCH-LM teg&h p-
values 0.8463 and 0.9150. In other word ARCH eftexturs
in residuals. ARCH-LM test The best candidate moidel
AR(1)~GARCH(1,1) according to AIC.

TABLE 111, ESTIMATED COEFFICIENTSOFAR(1)~GARCH(1,1)
Value Std.Error t value Pr(>t)
C 0.000045 2.150e-004 2.087 3.002-
AR(1) 0.0548 2.207e-002 2.482 1.313e-002
A 0.0000056 7.415e-007| 7.528 7.572e-014
ARCH(1) 0.1749 1.306e-002 13.393 0.000e+000
GARCH(1) 0.8039 1.006e-002 79.937 0.000e+Q00




All the coefficients of AR(1)~GARCH(1,1) are stditslly
significant and the coefficients satisfy the coaage
stationary conditions where totoal of the coefiigtof ARCH
term and GARCH term is less than 1.

DFX, = 0.000045+ 0.0548DFX_, +a,
at = O-tgt
o? =0.0000056+ 0.174%72, + 0.803w7, (18)

The Jarque-Bera normality test points out that @#xX is
not normally distiributed. The distribution of DFK Log-
Logistic distribution with three parameter. The fpability

density function (pdf) of Log-Logistic distribution
-2

rnic

Where @ - continuous shape parametef? (> 0)

[3 - continuous scale parametgf (> 0) ) - continuous
location parameter}( = 0 yields the two-parameter Log-

Logistic distribution)

Domainy < X < co

TABLE IV. PARAMETERS OFTHE DISTIRIBUTION
Data Distribution Parameters
DEX Log- 0=76,857 3=0,53338
Logistic (3P) | y=-0,53399
ARIMA(1,1,0)- Log- 0=81,4823=0,03397
GARCH(1,1) Logistic (3P) y=-0,034

density(xu100dif)$x

Figure8: PDF of DFX and PDF of Simulated Data

B. Continuous Volatility Modeling

The parameters of COGARCH model is obtained from th
discrete GARCH model's parameters

B=B.,n=Ind,¢=A10 (20)
Where [ is the constant of GARCH modeb is the

coefficient of GARCH term andl O is the coefficient of
ARCH term.The parameters' of COGARCH(1,1) model are

17 =1n0.8039 ¢ =0.17490.8039

volatilty of real data

(21)
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Figure9: Volatility of DFX
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Figure1l0: GARCH Volatility
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Figure10: COGARCH Volatility

The numerical solutions folG, and do; is done by using

Lévy process driven by compound Poisson processabbve
figures show that real data volatility, discretmei volatility
and the continuous time volatility are closed tahe@ather
since jumps in the volatility plots almost have sgpmattern.

V. CONCLUSION

The pdf of the DFX and pdf of simulated data aresed.

Also, Figure8 shows hundreds of simulations havemesa |pq exchange rate of USD versus TRY data was mddele

distribution 'shape ~with the real data. There IS nQyq type continuous model. CAR and COGARCH models
autocorrelation between residuals of GARCH modehva- — oonqirict by the verified discrete models. Also GARand
value 0.019.These evidences show that AR(1)~GARCN(1 COGARCH(1,1) process was verified by comparing gtk

is adequate model for discrete time volatility. and simulated data from discrete models. The eogiresults



showed that continuous models for adequate modéis
models should be used in studies about derivatii@ng or
Value at Risk calculations.
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