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Abstract—This study aims to construct continuous-time 
autoregressive (CAR)   model and continuous-time GARCH 
(COGARCH) model from discrete time  data of foreign 
exchange rate of United States Dollar (USD) versus  Turkish 
Lira (TRY). These  processes are solutions to  stochastic 
differential equation  Lévy-driven processes.  We have shown  
that CAR(1) and COGARCH(1,1)  processes are proper 
models to represent   foreign exchange rate of  USD and TRY  
for different periods of time February 2002- June 2010. 
Keywords: Continuous modeling; Continuous AR; COGARCH; 
USD/TRY 

I.  INTRODUCTION  

The modelling and forecasting the foreign exchange rates 
are one of the most important subject for the international 
financial markets. After 2001 crisis, The Government of 
Turkey changed the foreign exchange policy, anyway the 
government set up the currency control and the foreign 
exchange rates are set by the free market The forecasting 
becomes difficult because of the fluctations in supply and 
demand for the foreign currency.Hence, a succesful model is 
important for the investors, Turkish financial system and 
derivative pricing.  

Many forecasting methods have been developed in the last 
few decades Time series forecasting is highly utilised in 
predicting economic and business trends.. The Box-Jenkins 
method [5]  is one of the most widely used time series 
forecasting methods in practice. It is also one of the most 
popular models in traditional time series forecasting and is 
often used as a benchmark model for comparison with other 
time series methods. The method uses a systematic procedure 
to select an appropriate model from a rich family of models, 
namely, Autoregressive Moving Average (ARMA) models. 

In fact, empirical investigations of various financial data 
Show that an ARMA models, combined with a GARCH 
model and a heavy-tailed assumption for the errors, gives 
superior in-sample and out-of-sample fits. 

There are many studies that use the ARMA and GARCH 
models for the foreign exchange rates data in discrete time. 
But the continuous ARMA and COGARCH models for  
foreign exchange rate of  USD versus TRY are not usual 
methods.   

II. METHODOLOGY 

A. Discrete Time Modelling  

 The discrete time models help us to obtain continuous 
models by following the ways of Brockwell for continuous 
ARMA and Klüppelberg for COGARCH. 

After making the data stationary, the best candidate 
ARIMA model for the conditional mean is chosen according 
to Akakike Information Criteria (AIC) [1]. Then, ARCH 
effect, serial correlation in error terms and squared error terms 
are investigate by the  ARCH-LM test[3]  and Ljung Box test. 
If there is a serial correlation between residuals and ARCH 
effect occurs, then we estimate variance equation with 
GARCH model. The model verifying is the most important 
case in discrete modeling. The residual analysis for the 
GARCH model is the usual method. The probability density 
functions of the financial data and simulated data could be 
used for model verifying.  

B. Continuous ARMA Models  

ARIMA model is used to obtain continuous ARMA model. 
The parameters of CARMA model is found by using the 
autocovariance function of ARIMA [2]. CARMA(p,q) process 
with the condition qp <≤0  is 
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Where D denotes the differentiation with respect to t, and 
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 Brockwell shows the observation and the state equations 
as the following 
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The real parts of the eigenvalues of matrix A must be 
negative for stationarity conditions where 
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The autocovariance function of CARMA(p,q) process is 
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The autocovariance function of ARMA(p,q) process [6] is 
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The parameters of CARMA(p,q) process are found 
comparing the equations (7) and (8) where qp bbaa ,...,,,..., 00  

are CARMA model parameters and qp θθφφ ,...,,,..., 00  are 

ARMA model parameters. 

C. Continuous GARCH Modelling 

Nelson[9] introduce COGARCH model that includes two 
independent Brownian motions B(1) and B(2) 

)1(
ttt dBdG σ= , 0≥t   (9) 

)2(222 )( tttt dBdt ϕσησβσ +−= , 0≥t    (10) 

where 0>β , 0≥η , and 0≥φ  are constants. 

 
Klüppelberg [4]  shows that COGARCH model is analogue 

of the discrete time GARCH model, based on a single 
background driving Lévy process. COGARCH model has the 
basic properties of discrete time GARCH process. 

The COGARCH process 0)( ≥ttG  is defined in terms of its 

stochastic differentialdG , such that 
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where 0>β , 0≥η , and 0≥φ  are constants. 

 
    The solution for the stochastic equation is 
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Euler approximation is used for the integral  2
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III.  DATA  
real data
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Figure1:TCMB USD versus TRY Exchange Rates 

Source: Turkish Republic Central Bank’s Web Page http://www.tcmb.gov.tr 
 

 In order to realize the model, for the period of years 
Februrary 2002- June 2010, the daily real foreign exchange 
rate data have been used related to Turkish Lira versus United 
States Dolar. The datas have ben got from the Central Bank of 
Turkey. The data is the selling prices of the end of the daily 
exchange rates.. 

IV.  RESULTS AND DIAGNOSTICS 

 
 

A. Unitroot And Stationary Tests 

TABLE I.  ADF AND P-P TEST RESULTS 

t-Test 
Test for Unit Root  

Null Hypothesis 
Test 

Statistic 
P-value 

ADF There is a unit root  11.81 1.842e-24 

P-P There is a unit root -42.84 9.262e-4 

The real data is not stationary. After taking the first 
difference of the data, it becomes stationary according to ADF 
and Philips-Perron tests are shown in Table I. Here after the 
difference data is called DFX. 

B. ARIMA Modeling 

TABLE II.  THE ESTIMATION OF ARIMA(1,1,0) VIA GAUSSIAN 
MAXIMUM LIKELIHOODS 

 
ARIMA(1,1,0) Results  

Value Standard Error t-value 

C 0.02857 0.01487 1.921 

AR(1) 0.00005797            NA NA 

 
 

The best candidate model is ARIMA(1,1,0) pure AR(1) 
process for DFX data according to AIC value -12181.1576. 
The coefficient of AR(1) in Table II. is statistically significant. 
Although the constant of the model is not equal to zero, the 
coefficient will not used for simulations and in CAR(1) 
process.  AR(1) model for DFX is 



ttt aDFXDFX ++= −102857.0000058.0   (15) 

where ta  is the error term. 

C. Continuous AR Modeling 

The state equation of CAR(1) is 

ttt bdWdtaXdX +−=   (16) 

Which is the analogue of AR(1). In (16) we replaced Wiener 
process with Lévy process Benth et.al [10] and Brockwell 
[11], since the error terms are not normally distributed. 
Consequently (16) comes to that 
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 As a result. The continuous model for DFX is 

ttt dLdtXdX 0812.15441.1 −−=   (17) 
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Figure2:First Difference of USD versus TRY Exchange Rates (DFX) 

simulated AR(1)with innovation at
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Figure3:Simulated AR(1) 

     

simulation CAR(1)
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Figure4:Simulated CAR(1) 
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Figure5:Fast Fourier Transform of DFX 
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Figure6: Fast Fourier Transform of AR(1) 

Re(ffts)

Im
(ff
ts
)

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-1
.0

-0
.5

0
.0

0.
5

1.
0

1.
5

 
Figure7: Fast Fourier Transform of CAR(1) 

 
 
The Figure3 and Figure4  show that the difference data in 

Figure2  and the simulated data from AR(1)and CAR(1) have 
same manner. Another approach to verify our model is Fast 
Fourier Transform (FFT) of DFX and simulated data. FFT is 
used for changing time domain data to frequency domain. FFT 
of DFX and simulated data from discrete and continuous 
models show common allocation. 

A. Discrete Volatility Modeling 

We fail to reject the null hypothesis of  Ljung Box that is 
no autocorrelation between residuals and between squared 
residuals since the p-values of the test are 0.1215 and 0.8493 
test. This situation is strengthened by ARCH-LM test with p-
values 0.8463 and 0.9150. In other word ARCH effect occurs 
in residuals. ARCH-LM test The best candidate model is 
AR(1)~GARCH(1,1) according to AIC.    

TABLE III.   ESTIMATED COEFFICIENTS OF AR(1)~GARCH(1,1) 

 Value        Std.Error  t value  Pr(>t) 
C           0.000045  2.150e-004   2.087    3.701e-002 

AR(1)     0.0548  2.207e-002    2.482     1.313e-002 
A           0.0000056 7.415e-007    7.528     7.572e-014 

ARCH(1)  0.1749 1.306e-002   13.393    0.000e+000 
GARCH(1)  0.8039  1.006e-002   79.932    0.000e+000 

 



All the coefficients of AR(1)~GARCH(1,1) are statistically 
significant and the coefficients satisfy the covariance 
stationary conditions where totoal of the coefficienst of ARCH 
term and GARCH term is less than 1. 

 

ttt aDFXDFX ++= −10548.0000045.0  

ttta εσ=  
2
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2

1
2 8039.01749.00000056.0 −− ++= ttt a σσ   (18) 

 
The Jarque-Bera normality test points out that data DFX is 

not normally distiributed. The distribution of DFX is Log-
Logistic distribution with three parameter. The probability 
density function (pdf) of Log-Logistic distribution 
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Where α - continuous shape parameter ( α  > 0) 

β - continuous scale parameter (β  > 0)γ - continuous 

location parameter (γ = 0 yields the two-parameter Log-

Logistic distribution) 

Domain ∞≤< xγ   

TABLE IV.  PARAMETERS OF THE DISTIRIBUTION 

Data Distribution Parameters 

DFX 
Log-
Logistic (3P) 

α=76,857  β=0,53338  
γ=-0,53399 

ARIMA(1,1,0)-
GARCH(1,1) 

Log-
Logistic (3P) 

α=81,482  β=0,03397  
γ=-0,034 
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Figure8: PDF of DFX and PDF of Simulated Data 

 

  
The pdf of the DFX and pdf of simulated data are closed. 
Also, Figure8 shows hundreds of simulations have same 
distribution shape with the real data. There is no 
autocorrelation between residuals of GARCH model with p-
value 0.019.These evidences show that AR(1)~GARCH(1,1) 
is adequate model for discrete time volatility. 
 

B. Continuous Volatility Modeling 
 
The parameters of COGARCH model is obtained from the 
discrete GARCH model's parameters  

ββ = , δη ln= , δλφ /=                      (20) 

Where β  is the constant of GARCH model, δ  is the 

coefficient of GARCH term and λ δ  is the coefficient of 
ARCH term.The parameters' of COGARCH(1,1) model are 
 

 0.8039ln=η  0.8039/0.1749=φ       (21) 
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Figure9: Volatility of DFX 

 
GARCH Volatility
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Figure10: GARCH Volatility 

 
Cogarch volatility
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Figure10: COGARCH Volatility 

 
 

The numerical solutions for tdG  and 2
tdσ  is done by using 

Lévy process driven by compound Poisson process. The above 
figures show that real data volatility, discrete time volatility 
and the continuous time volatility are closed to each other 
since jumps in the volatility plots almost have same pattern.      
 

V. CONCLUSION 

The exchange rate of USD versus TRY data was modeled 
two type continuous model. CAR and COGARCH models 
construct by the verified discrete models. Also CAR(1) and 
COGARCH(1,1) process was verified by comparing real data 
and simulated data from discrete models. The empirical results 



showed that  continuous models for adequate models. This 
models should be used in studies about derivative pricing or 
Value at Risk calculations. 
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