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REGRESSION ANALYSIS FOR SIMULATION PRACTITIONERS

Jack P. C. Kleijnen

Katholieke Hogeschool~Indíana University~

ABSTRACT

Based on elementary regression analysis as found in standard

textbooks and computer software packages this tutorial presents some

simple extensions useful ín the analysís of simulation experiments.

In simulatíon one usually has variance estímates (standard errors)

available. These estimates often conflict with the assumption of

constant variances maintained in elementary regression analysis.

Therefore two options are available: (1) Switch to Generalized Least

Squares, (2) Contínue to use Ordinary Least Squares. The conaequences

of both approaches are surveyed. How to test the model's adequacy is

discussed in detail.

1. INTRODUCTION

In most practícal and theoretícal simulation studies the ex-

perimenter obtains an estimate not only of the mean system response

(e.g. queuing time) but also of the standard errors of this estimate.

The standard errors si (i-i, ...,N) of the responses for N different

system configurations often show large differences, and hence the

assumption of constant variance Qi- a2 obviously does not hold. For

~ This paper was wrítten while the author was on leave from the
Department of Business and Economics, Katholieke Hogeachool, Tilburg,
Netherlands, to teach a summer course at the School of Busiaess, Indiana
University, Bloomington.
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an illustration I refer to the case-study discussed later (see

Table 2) in which the estimated variances ai vary between 64 and

93~228.Many more examples could be given.l Observe that the foot-

notes make it possible to read this tutorial at two levels: as an

elementary survey using a minimum of formulas or as a survey includ-

ing technícal details and addítional references.

It has become more and more accepted to analyse the outputs

of a simulation experiment, applying techniques like Analysis of

Variance (ANOVA)2 and regression analysís; see Weeks 6 Fryer

(1976) for a practícal example and see Kleijnen (1979) for additional

references. However, in virtually all practical applications
simulationists have assumed a constant variance o2. Such a practice

is stimulated by the avaílability of standard computer packages,
based on the constant variance assumption3.

Remember that Ordinary Least Squares (OLS) refers to a strictly

mathematical (i.e. non-statistical) criteríon: minimize the sum of

squared deviations. If the standard statistical assumptíons of

normally and independently distributed (NID) errors e with constant

variance o2 and zero expectation

e1...NID (O,a2)

are introduced, then the OLS estímator is known to be BLUE: best

linear unbiased estimator, "best" meaning minimum variance. If the

variances ai are unequal, the simulationist may stick to the OLS

algorithm but he has to be aware of the different values for the

standard errors of the traditional OLS estímators.
B z (X'.X)-1 7C'.Y (1.2)
M N N N iV
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where'X and y~ are the standard regression symbols. Using elementary

statistics the variances (and covariances) of S will be investigated.,...
The simulation practitioner may also remember that if the standard

assumptions in eq. (1.1) do not hold, then a BLUE results when

Generalized Least Squares (GLS) is applied:

s ~ (X' .52-1.X)-1 X' .n l.y (1.3)
... N N N r ... .....

where S3 denotes the "covariance matrix" i.e., the matrix of

variances and covariances of ei (or equivalently y). However,

in practice Sà is unknown and has to be estimated. Substitution of

the estimator S2 into eq. (1.3) yields an estimator, say ~, with
N ti

unknown small-sample properties! Below the results of a small scale

Monte Carlo experiment are reported, which may be used as a preliminary

guideline.

I have applied both techniques, OLS and GLS, to a practical

simulation experiment; see Kleíjnen et al. (1979). The results will

be summarized in section 6.

2. ORDINARY LEAST SQUARES AND HETEROGENOUS VARIANCES

As mentíoned above, OLS can still be used even i f the standard

assumptions of eq. (1.1) are violated. To derive the standard errors

of the corresponding estimators ~ a result presented in e.g.

Scheffé ( 1964, p. 8) is needed. Consider a vector of stochastic

variables, say Y, with covariance matrix 521. Next introduce a

linear transformation of N1.
.~2 3 A .Y1 (2.1)
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Then Y2's covariance matrix can be proven to be

n2- N .N1 A~ (2.2)

App3ying thís result to eq. (1.2), defining for convenience
W - (X'.X)-1 X' (2.3)
N N N ~`r

results in the covariance matrix of S:

R,. ~ W. tl.W' (2.4)
N~ N N N

Eq. (2.4) together with eq. (2.3) looks quite complicated. Neverthelesa

an estimator ~~ can be easily computed through a computer program

that reads the values of the independent variables X and the estimator

n. Obviously the OLS estimator remains unbiased. 4
N

In simulation the observations N can be made strictly independent

through the use of dífferent random numbers per simulation run. Hence

S2 reduces to a diagonal matrix, say D. As mentioned ín section 1,
N

its diagonal elements oi will not be constant in general. In the

simulation of steady-state behavior, runs might be continued so.long

that each run yields the same estimated variance. In practice such

an approach ís not popular.

If the standard assumptions of eq. (1.1) held, i.e. i2 - a.I,
N .y

then eq. (2.4) would reduce to a familiar formula:

S2~ ~ a2 .(X'.X)-1 (2.5)
N S N N

In practice eq. (2.5) is applied by simulationists relyíng on standard

software. Usually the common varíance o2 in eq. (2.5) is estimated

through the Mean Squared Resíduals (MSR):
N

MSR - E (yi-yi)2 ~(N-q)
1

(2.6)

where q denotes the number of estimated parameters, i.e.,~ is a

vector of q elements . The MSR has only (N-q) degrees of freedom
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(d.f.) whereas in simulation each run provídes an estimator si with

di degrees of freedom when the total run i is divided into (di t 1)

independent subruns.5 If a common variance were assumed, the N

runs could be combined to yield a pooled estimator of a2 with Edi

degrees of freedom. Hence I would recommend that símulationists use

the information on the standard errors to get a more precise

estimator of o2, if a common variance assumption i s maintained.

Simulationists familiar with experimental design should note

that even with an orthogenal X-matrix, the OLS estimators remain
6

correlated when the observations have heterogenoua variances.

Summarizing so far, if the constant variance assumption is

not maintained then eqs. (2.5) and (2.6) are replaced by eq. (2.4)

where S2 ís estimated from the N individual simulation runs, and
N

N becomes the diagonal matrix D with elements si, each si having

di degrees of freedom.7 Therefore, the significance of an estimated

regression parameter B~ (j - 1, ...,q) can be tested through the

Student t-test:

td

0s~ - s~

var ( j) (2.7)

Here B~ denotes the hypothesized value, usually zero. The denominator

follows from the main diagonal of S2S. The índex d denoted the d.f.

of t. In simulation si has so many d.f. that the t-distribution can

be replaced by the standard normal distributíon.8
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If the postulated value S~ is accepted then the regressíon model's
remainíng parameters Sj, (j' ~ j) can be reestímated. With an orthogonal

X-matrix, the reestimated parameters, will remaín unchanged.

3. GENERALIZED LEAST SQUARES

The GLS estimator s was defined in eq. (1.3). For independent

observations ~2 reduces to the díagonal matrix j~ and GLS can be

simplífied to "weighted least squares", the weight for obaervation

yi being inversely proportional to its variance ai; see e.g.

Pritchard 6 Bacon (1977). The covariance matrix of the GLS estimator

ia known to be
SES a (X' .~1 .~C)-1 (3.1)

Since in practice ~ is unknown, two options are avaílable:

(1) Estimate it and substitute the estimator ~,2 into the GLS eqiiation
(1.3). As Schmidt (1976, pp. 71-72) shows the resulting estimator

has the same asumptotic distributíon as the regular GLS estimator and

remains unbiased (under mild technical conditions). Unfortunately, its

small sample behavior remains unknown!

(2) Use OLS even when the classical assumptions of eq. ( 1.1) are

violated, using eqs. (2.4) and (2.7).9

In appendix 1 a small Monte Carlo experíment ís presented. Based on this

preliminary experiment I conjecture:

(a) GLS with estimated covariance matrix ,~,t gives point estimators

with smaller variances than OLS estimators. This result seems

intuitively acceptable because OLS yields BLUE only if the variances

ai were constant; the "estimated GLS" tries to incorporate the information

si on the actual variances oi.
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(b) For the "estimated GLS" estimators B the standard errors might etill be

computed through eq. (3.1), a formula - strictly speaking - valid for known
~

S2 or for "large" samples. Intuitively, replacing S2 by its estimatoi il
increases the variance compared to eq. (3.1).

Becauae of (a) and (b) I would suggest to use GLS. A case-atndy employíng

both OLS and GLS, will be preaented later.

4. VALIDATION OF REGRESSION METAMODEL

The metamodel should explain how the more complicated símulation

model's output y reacts to changes in the simulation model's input

factors xl through xk (k ~ 1). The experimental design fixes xil
through xik wíth i- l, ...,N. The metamodel may further include

interaction terms like xil xik' quadratic terms like xil, etc. which

are completely determined by the choice of the desígn; see Kleijnen

(1979). Decidíng which interactions to include in X specifies the

form of the metamodel, linear in its parameters B:

~ - X. B f e (4.1)
tiN N

If eq. ( 4.1) is a good approximation then using estimators for

its parameters B yields an accurate predictor y. This predictor
N

can be checked against the outcome of an actual simulation run, y.

More precisely, let x0 denote the column vector of prespecified

values of the independent variables in a new símulation run. (This

run was not used in the estimator S, í.e., ~ is not included in X.)
N ~

Hence the expected value of the simulatíon output is predicted by

eq. (4.1):

yo z ~0 , ~ (4.2)
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Using eq. (2.2) yieldsl0

var (y0) - x0 ' S?s '.v0 (4.3)

where ~S was given in eq. (2.4). The simulation program reads NO

and yields the output y0 with its estimated variance s~, based on d0

degrees of freedom. The significance can be tested through a Student

t-statistic:

td yo - yo
[var (YO) f var (YO)]1~2

where d(the d.f. of t) may be set to d0. 11

(4.4)

If GLS with estimator n is used then the asymptotic variance

of s might be used in eq. (4.3).....
If the constant variance assumption held, then an F-test

for lack-of-fít would be possible. This test compares the estimators

si to the Mean Squared Residuals of eq. (2.6). Apart from its reatrict-

ive assumptions, its power (inverse of B-error) is low, if its d.f.

are small, e.g. for a- 0.05 F12 ~ - 1.75 but F3~~ - 2.60. Note.
that some authors claim that the F-test ie insèásitive to heterogeneity of

variance and to nonnormality, whereas other suthors hold different opiniona.l2

If the covariance matrix St were known, then a similar test

for lack-of-fít could be applied in GLS.13 Some more tests are

known but they seem less appropriate.l4

After the validation run is accepted, it can be added to X
N

and ~ so that R can be estimated more precisely. It seems wise
N

to have x0 correspond with the "center" of the design (i.e., to

have the quantitative factors satisfy x- 0) in order to test

quadratic effects. Some validation runs ahould correspond with
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x-values occurring in practice, as the use of experímental designs

to specify X means that the x-values correspond to reasonable,

extreme conditions rather than "common" conditions.l5

5. SIMULTANEOUS TESTS

In regressíon analysis a number of tests are made: the estimated

regression model is checked against one or more validation runs,

and indivídual parameters S are tested. These multiple tests

raise the problem of experimentwise error rates.

In the case study reported on in section 6 ten extra runs

are available to test the adequacy of the regression (meta) model. By

definition the a-error implies that

P(td ? td ~ HO)- a (5.1)

Hence even if the null-hypothesis of an adequate model holds, ten valida-

tion runs are expected to result ín one significant t-value if a

traditional a of l0Y is used. The simplest solution is to replace

a in eq. (5.1) by a~n where n denotes the number of tests, i.e.

n- 10. Instead of this simple "Bonferroni" approach more complicated

"multiple comparison procedures" are available; see Kleijnen (1975,

pp. 525-597). Note that protection of the a-error (type I error)

increases the S-error (type II error), i.e. it becomes more

difficult to detect an incorrect model specification. Therefore

the experimentwise error rate is usually fixed at a high value

such as 20~.

Next consider the evaluation of separate components of the

model. As an íllustration assume that the model incorporates k
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factors:
k

yi - RO t E Rj xij f ei
j~l

(5.2)

Then the paramters sj can be teated through the t-test of eq.

(2.7). Each factor is considered individually, í.e., the experiment's

interpretation does not hinge on the joint results of the tests.

Therefore I propose to stick to the familiar a-rates of, say,

10i: "per comparisor!'error rate. Remember that ín the validation

phase the model is rejected if any validation run yields a significant

t-value: experimentwise error.

Consider another example, in which only two factors are

studied but a more complicated model is postulated;

yi ~ s0 } slxil } S2xi2 } S12xilxi2 }

2 2
} Sllxil } s22xi2 } ei

(5.3)

Suppose that the t-test of eq. (2.7) shaws that all B's are

signíficant except for Bi1. Remember, however, that B11 is an

unbiased estimator of 811; if the assumptione of eq. (1.1) hold, then

S11 is even a BLUE. Strong reasons may exist to formulate a null-hypo-

thesis. For instance, the parsimonous character of scientific models

requires that ínstead of postulating that "everything depends on

everything else", the observation y be explained by as few factors

as possíble: H~i): Si - 0 (i - 1, ..., k). Eq. (5.3),

however, postulates that y is a quadratic polynomial in xl and

x2. Hence I propose to maintain the small, but non-zero, sll-

value.
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A different question may arise: can eq. (5.3) be replaced by

a simpler model, namely a fírst degree polynomial in xl and x2?

This question can be answered in different ways:

(1) Formulate the composite hypothesis

HO : S12 z OA gll - OA622 - 0 (5.4)

where A denotes the logícal operator "and". The experimentwise

error is controlled if a common variance is assumed and the

appropriate ANOVA F-test is used,ló

(2) The hypothesís of eq. (5.4) can also be tested applying the

individual t-tests of eq. (2.7) with a replaced by a~3 :

Bonferroni-approach.

(3) A cruder approach estimates the first order polynomial

Yi ' s0 t Slxil } Szxi2 } ei (5.5)

and validates this model with runs not used in estimating eq. (5.5);

see eqs. (4.4) and (5.1). Alternative (3) is cruder: if the simpler

model of eq. (5.5) is rejected, it is unknown whether this rejection

is cauaed by a large value for 812, S11 or s22. See also Kleijnen

(1975, pps. 358-367).

6. AN APPLICATION

This section summarizes a case study presented ín detail in

Kleijnen et al. (1979) and Van den Burg et al. (1977). The present

summary emphasizes the statistical techniques applied in that study.

Moreover, both previous publications are based on a Monte Carlo

experiment that contaíned a programming bug. The correct results

are given in Appendix 1.
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Europe Container Terminus (ECT) in the Rotterdam harbour

provides facílities for handlíng en storing containers. A simulation

model represents storage capacity w as a funetion of yearly throughput

(productíon). A fixed production síze can be realized by many small

ships or by a few big shíps; hence define the mean ship-size xl

and the arrival rate x2. Four more factors are investigated: x3

through x4, e.g. x4 denotes the shape (not the mean) of the ship-size

distributíon.l~ Every eight simulated hours the simulation gives

a snapshot of the storage size. From thís time series wt (t - 1,

..., T) a frequency diagram ís formed. The frequency diagram yields

an average and a few selected quantíles such as the 90X quantile. Fig.

1 is a simplified flow chart of the símulation model. The present

summary concentrates on the average storage capacity y(or w~ Ewt~T

in the above symbols). The other outputs such as the 90X quantile

(w.90) are analyzed similarly, although more sophísticated multi-

variate analysis would be better.

The complicated simulation model of Fig. 1 defines a function

f:

Y - f (xl~ . , xb~ ,.ri) (6.1)

where r~ denotes the random number vector. The complicated function

f ís approximated (in the area of experímentation) by a regression

model linear in its parameter s but not necessarily linear in the

variables x. Preliminary studíes suggested that the response y

reacts non-linearly to the interarrival time but linearly to the

interarrival rate, i.e. a simple transformation l~x simplifies the
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model. Quadratic effects (of the quantitative factors xl through

x3) are assumed to be zero. Interaction effects between factor 2

and the other factors are suspected to be important: introduce

g12, g23, s24, 525, and 826. Moreover, R13 may be important.

So ,Q comprises one overall mean R0, six main effects R1 through

S6, and six interactions, together q- 13 parameters. The selection

of an appropriate N is the domain of experimental design theory;

see Kleijnen (1975) and (1979). Application of this theory resulte

in a 16 x 13 X-matrix with all 13 columns orthogonal.i8 So 3

degrees of freedom remain for a possible F-test for lack-of-fit

(section 4). However, instead of this F-test the t-teat of eq. (4.4)

can be applíed to ten extra runs executed besides the above 16 x 13

X-matrix. Van den Burg et al. (1977, pp. 57-68) give ten tables

containing a great many data. Here only a few tables are preaented.

The Monte Carlo experíment suggests that in Table 1 the standard

errors for p and hence the correapondinR t-valuea may be based on the

asymptotic formula eq. (3.1). Table 2 showe that the OLS reRrea~ion model

need not be rejected, since the maximum of the ten t-statistics is

1.67 whereas the significance level is 2.33 for a ~ 0.20~10 (ex-

perimentwise error of 20~). If for GLS the asymptotic eq. (3.1) is

used, then the validation runs need not be rejected either (not

shown in tables). If the F-test for lack-of-fit were used (assuming

constant varíances) then the OLS model would be rejected: F3,128 -
3.50 ís significant at a ~ 0.05. The estimated variances

si, however, vary drastically, namely between 64 and 93,228 (in the first
sixteen rune; in.the.ne~ct ten runs si varies between 152 and 22,102; ~

see column "vár(y)" in Table 2).
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Table 1

OLS and GLS estimators of regression parameters ~ based on 28-4 m 16 runs

OLS

S b) s~) t d) S e) s f) t d)

GLS

0 -1.420 112.483 -0.013 27.434 30.341 0.904
1 -0.769 15.960 -0.048 -6.656 3.845 -1.575
2 13.440 38.420 0.350 28.566 22.639 1.262
3 -11.508 24.814 -0.479 -17.108 8.849 -1.933
4 3.500 16.042 -0.218 9.267 14.750 0.628
5 -1.375 16.042 -0.086 4.138 14.851 0.279
6 140.918 96.256 1.464 151.932 67.672 2.245~

1,2 15.391 3.192 4.621~ 14.644 2.089 7.009~~
1,3 0.046 3.331 0.014 1.152 0.896 1.285
2,3 281.098 6.662 42.196~ 280.352 5.931 47.268~~
2,4 21.250 13.323 1.595 10.729 11.858 0.905
2,5 11.875 13.323 0.891 6.560 11.922 0.550
2,6 -49.483 79.939 -0.619 139.107 50.129 -2.775

a) 0 refers to So; ...; 2,6 refers to a26
b) see eq. (1.2)
c) standard error: square root of main diagonal element in eq. (2.4)
d) Student t- statistic; eq. (2.7)
e~ see aq. (1.3) substituting S2
f~ asymptotic eq. (3.1) -
~~ significant at any a~ 0.00005
~ significant at a - 0.025



Table 2

Model Validatíon (OLS)

Y Y a) Y-Y var(Y) b) vár(Y) c) t d)

8,332 8,715 -383 22,102 30,494 -1.67
3,002 2,919 83 1,156 5,092 1.05

729 743 -14 544 964 -0.36
1,725 1,774 -49 625 1,142 -1.16
1,893 1,814 79 4,444 1,205 1.05

685 684 1 107 847 0.03
2,977 3,058 -81 4,761 8,308 -0.71
8,469 8,415 54 10,885 20,808 0.30

608 595 13 152 920 0.40
1,674 1,624 50 514 1,138 1.23

a) eq. (4.2)
b) simulation run dívided into 9 subruns
c) eq. (4.3)
d) eq. (4.4)



-17-

After accepting the regression model, the ten validation runs

are included in X and Z, and S is reestimated. The effects S23~, N

and 612 remain very significant, namely t- 49 and 5.5 respectively.

Using GLS their significance further increases: t- 64 and 7.9.

Whereas X comprises standardized variables (x - fl or x--1)
N

the actual design and regression model comprise "user" variables

zl,e.g., zlis either 200 or 1,000. The user varíables have as

significant parameters s23 and 612, whereas the standardized

variables would have significant parameters Y0, Y2, Y3, Y23'
Y1 and Y12 (in order of decreasing signíficance, using Y to denote

19
the parameters of the standardized varíables x).

So some parameter estimates~ are found insígnificant (after

validating the first sixteen runs using ten extra runs, and then

reestimating B from all twenty-six runs). Next these insigníficant
N

parameters are set to zero, and the remaining~ (i.e. s23 and S12)
are again reestimated.20

In general, it is recommended to examine the residuals y- y

to see whether they satisfy the classical assumptions of eq. (1.1);

see Draper 6 Smith (1966, pp. 86-94). Upon studying the responses,

and especially the residuals, applying j ust "common sense",

certain patterna emerged. These patterns suggest the importance of

interactions until then ignored, namely R14 and R1S (see again

note 18). Fortunately, íncorporating these two new effects into

left X non-singular (see also next section). The resulting B
N ~ ~

still contaíns as significant parameters S23 and S12 only.

X
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Instead of backwards elimination of insignificant parameters,

one might proceed from the other direction. In stepwise regression

one new varíabele is introduced in each step, namely the ( remaining)
va~fi8~bele'a ahowing maximum correlation with the dependent variable y,

The qualitative results are símilar to backwards elimination;
first R23 is introduced, then B1z (and next s14 etc.)

The above procedure is summarízed in Fig. 2. The discussion

should make it obvious that the procedure cannot be used mechanícally.
The selection of variables in regression models is discussed from a
statistícal vlewpoint by Hocking (1976); see also Enslein et al.
(1977) and Thompson ( 1978). However, the regression model's specification
involves more than a statistical bag of tricks. Model specification
requires intuitíon, and prior knowledge based on relevant theories
and empirical data. In the present case study the most sígnificant
parameter s12 was also the one parameter suggested by a simplified
analytical model.

7. ALTERNATIVES TO OLS AND GLS

Both OLS and GLS use as criterion minimization of squared

residuals: least aquares. Simulation practitioners tend to focus on

relatíve resíduals: ~y - y~~y. This criterion leads to a linear

programming problem: see Narula 6 Wellington (1977). Unfortunately,

the properties of the resulting estimators are unknown, whereas for

OLS or GLS the estimators are known to be BLUE, and a battery of

statistical tests ís available.

The choice of the criterion also affects the sensítivity of

the resulting estimates to outliers, i.e., wild observations on y
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Figure 2: Summary of regression procedure

Select form of regression (meta)model

Select factor combination: X-matrix

Simulate systems corresponding to X-matrix;
results in y-observations~
Estimate regression parameters, using OLS
and~or GLS

Select validation runs: }~matrix
Simulate corresponding systems, yieldíng
y~observations

re j ect

Í
Select new
regression model

Test y~-observatíons against regression
predictions }~0.

accept

Include validation runs in X-matrix and
y-vector

Reestimate S-parameters

non-significant
Test signifícance of s- parameters

Set insignificant
S - parameter to zero

Conclusíons

significant
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or x. Denby fi Larsen (1977) give a survey of robust regression

estimators and they present Monte Carlo results for a number of
these estimators. A special isaue on robustneas including a number

of articles on robust regression analysis, was edited by Hogg (1977).

If the X-matrix is ill-conditioned, ridge estimatíon may be

of interest, i.e., the estimators of S are no longer unbiased;~..
however, this bias may be outweighted by a decrease ín variance

through a proper choice of the ridge algorithm parameters; see

Hocking (1976). In simulation X can be made orthogonal, but íntroduc-
N

ing unexpected parameters (such as S14 and (315 in the preceding

section) can make X perfectly or nearly singular.21

Dempster et al. (1977) performed an extensive simulation

experiment (160 data sets) examining 57 dífferent regression

estimatorsl

Instead of selecting an appropriate estimation algorithm, a

matrix of independent variables X can be selected so that the sensítivity
N

of the:estimates towards outliers is mínimized; aee Box S Draper

(1975).

One more alternative is provided by the Bayesian decision-

theoretíc model: príor probabilities on parameters like s are...~

postulated (Bayes approach), together with loss functions like

Ewi (s~ - Bj)2. Instead of fixing the a-values, the expected

"aposteríor" (after taking the sample) loss is minimized, or the
maxímum loss is minimized; see Dempster et al. (1977).
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8. CONCLUSION

To mitigate the ad-hoc character of simulation, regression

analysis can be used so that a metamodel results. The metamodel

serves to interpret the simulation results.

The regression analysis can use OLS or GLS. When applying OLS

the experimenter should check for non-constant variances ai (estimated

from the índividual simulation runs). Heterogeneity of variances

changes the formula for ~S (the covariance matrix of the estimated

parameters S) and hence the corresponding t-test for significance.
N

A Monte Carlo experiment suggests that GLS with estimated N(covariance

matrix of the observations) results in a covaríance matrix for the

s-estimators that can be approximated accurately by the asumptotic

formula, eq. (3.1).

The regression metamodel's validity can be tested statistically

applying a t-test. Multiple validation runs raise the issue of

experimentwise error rates. This complication may be solved through the

Bonferroni inequality.

The model form and the values specified in null-hypotheses

have to come from non-statistical sources such as engineeríng

and management science. Subjective elements remain in the selection

of the a-values and in the evaluation of the statistical technique's

sensitivity to assumptions like normalíty and constant variance.
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APPENDIX 1: MONTE CARLO EXPERIMENT WITH OLS AND GLS

The Monte Carlo experiment computes the observations y from the

"true" model

y-X. Sfe
~.J iv ~i tii

(A1.1)

where X and B are known inputs and e has a known distribution
r N

e ~N(O,S2 ~ D)
N ~.. N N

(A1.2)

D being a diagonal matríx with elements ai. Next - as in practice -
N

only y~ and X(together with an estímate tt) are made available to
N

the OLS and GLS algorithms to compute the estimates 8 and B,

respectively. Finally, the latter estimates are compared to the

true values s.
N

In simulation N i s estimated from the mi individual subruns

within a simulation run:
m
i

si - E(Yi j - Yi) 2 ~ (mi - 1)
j-1

(A1.3)

Aence si is a~2-variable with di - mi - 1 degrees of freedom
2(d.f.) and si can be sampled using the simpler formula

m
i

si ~ E eij I(mi - 1)
jal

(A1.4)

The OLS and GLS estímators use not the subrun observations yij but

only the total-run observations yi. Consequently

oi - var (yi) a var (yij) ~m (A1.5)
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Figure 3: Summary of Monte Carlo experiment

Read X, S ,~N,m,M

Repeat M timea. ~-

Repeat for
i-1, ..., N

Sample eij from N(o,ai) for j-1,

si - E (eij)ZI(m-1)
j-1

m
E eijlm

j-1

Q -
yi - E ~ xik f ei

k-1

S~ - D - (silm)

R - (X' X)-1 X' Y
N ~ ~~ N 1I

~- (", r ~ X)-~ X' n~ Y

N N N N ti.

ot,s Bias - s - s

GLS Bias

~v N

á- s
N
~ - n ~C'

ns - (s - s) cs - s)'

, m

s ~ c~ - á) cá - ~)'
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The Monte Carlo experiment is summarized in Fíg. 3.

Fig. 3 shows that a number of values has to be fixed in the

Monte Carlo experiment. As true values for R are selected the

estimates from the E.C.T. study; see the column labelled "~" in
Table 1. ~ ís the corresponding 16 x 13 orthogonal matrix ( see again
note 18); hence N- 16. Further m- 9 and ei~ is sampled from
N(0, oi) with oi equal to m times the square of "s" in Table 1,

see eq. (A.1.4). M is arbitrarily set to 250, and turns out to
yield significant dífferences between OLS and GLS. In a second experiment
the ten validation runs are included, and hence N 3 26. The "true"
g corresponda with the s estimated from the augmented X and yN .v r.. ~.,~

matrices in the E.C.T. study. Normal varíates are sampled using the
familiar Box-Muller trigonometric transformation.

The Monte Carlo results can be summarized as follows,

(1) OLS yields unbiased estimators of S, even íf R~ a2Z. This
- N ~~ N

property can be proved analytically; see note 4. The Monte Carlo

experiment double-checks this property, computing per effect q:
Sk - Sk

z -4
[var (sk)~M]1~2

(q-1, ...,13) (A1.~)

which should be distríbuted as a standard normal variable N(0, 1).
Note that var(sq) follows from eq. (2.4), in which N ia known.
The maximum z turns out to be 1.54, whereas the critical z-value
is 2.16 for an experimentwise error rate of 20X (so that the

individual a becomes 0.20~13 ~ 1.547)
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Table 3: Monte Carlo results

S a)

Theoretical a2

OLS b) GLS c)

Monte Carlo d)
deviatíon

OLS(I) GLS(X)

1 710.042 297.212 -14.17 - 1.77

2 710.042 568.936 -18.11 - 4.98

3 710.042 566.836 -14.87 - 8.53

4 710.042 562.356 12.27 11.18

5 710.042 571.266 22.02 20.39

6 710.042 282.799 7.75 2.44

~.2 710.042 279.342 - 6.34 9.73

1,3 710.042 51.392 - 4.53 -11.69

2.3 710.042 562.867 -17.78 - 8.64

2.4 710.042 562.425 12.61 15.12

2.5 710.042 568.574 20.64 19.95

2,6 710.042 279.214 6.19 2.64

0 710.042 568.940 -19.23 - 9.47

a) 1 corresponds with S1, r.."2,6

with 526, and 0 with s0.

b) main diagonal of eq. (2.4)

c) main diagonal of eq. (3.1)

d) {(a2- a2)~a2} x 100 where a2 denotes the Monte Carlo

estimate; see eq. (A1.7)
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(2) GLS wíth estimated ~ remains unbíased. In eq. (A1.6) var(Bk)

is replaced by the estimator
M

var(~o) - E ~(B~ - Sq)2 ~(M-1) (A1.7)
g-1

and z is replaced by tM-l, the Student t-atatistic wíth M-1 d.f. .

However, since M-250 the t-distribution can be approximated by the

z-distribution. The extreme t-value is -1.99: non-significant.

Since the OLS and GLS algorithms use the same data, a positive

(negative) deviatíon s- s tends to be accompanied by a positive

(negative) deviation s- B: positive correlation between S and s.
(3) The OLS estimators s have a known covariance matrix Sts ;

see eq. (1.3). The theoretical result agrees with the estimator i2S

computed from M-250 replications: Test each díagonal element s2 of

~ versus the corresponding element a2 in NS via the ~é2-statistic:

2
X2 - S2 . (df) (A1.8)

a
where df - M-1 - 249. The maximum s2~a2 occurs for s5 and equals
1.22; see Table 3. The value 1.22 just remains insignificant with an
experimentwise a of, say, 20~22 The covariances between two OLS
estimators are positive (not displayed). Thís positive correlation

ís explained by the specific values of X and R in this Monte Carlo
N y

experiment; see note 6.

(4) For GLS using estimator St only an asymptotically valid covariance
formula is known; see eq. (3.1). The Monte Carlo experiment estimates
the small-sample (m~9) variances using eq. (A1.7). These estimates
based on I~250 replications, are compared to the asymptotic variances.
As Table 3 shows the maximum deviation occurs again for s5, and ís
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20X, i.e. the maximum deviation is smaller than that for OLS. Not

only is the maximum error smaller, but as Table 3 shows for 10 out

of 13 parameters the deviation between estimated and theoretical

variances is smaller for GLS than for OLS. Note that the GLS estimators

are sometimes negatively correlated (not displayed).

(5) Comparison of the estimated covariance matrices of the OLS and

GLS estimators, ahows that the GLS estimators of S have smaller standard

errors than the OLS estimators have. Moreover, all estimated covariances

are also smaller ín GLS than in OLS. In shorthand notation:

~ys ~ SES (A1.9)

where the "smaller than" relation holds for all elements of the two

13 x 13 matrices. This inequality might be tested statistically,

usíng a result derived by Box; see Morríson (1967, pp. 152-153).23

(6) The whole experiment is repeated once more. The 16 x 13

X-matrix is augmented with ten extra runs. New values for all

thirteen 6's are used;N is augmented to a 26 x 26 matrix. The

results are as follows. For GLS the maximum s2~a2 ís now 1.218

which is insignificant; see the discussion below eq. (A1.8). It is

interesting to note that for all 13 parameters the aey~ptotic formula

yields variances smaller than the Monte Carlo estimates, though

insignificantly smaller according to the 3E2 test of eq. (A1.8). This

suggests that the asymptotic formula slightly underestimates the true

variance. Hence estimated S-parameters found to be significant may

actually be insignifícant (insignifícant parameters remain insignificant).

Again the relation (A1.9) is found.



NOTES

1. The estimated varíances si (1-1, ..., N) could be subjected to a

statistical test with HO : Qi -... - aN (z a2). Findíng a robust

test (i.e., a test not very sensitive to its underlying assumptions

such as normality) may be difficult; see Scheffé (1964), Even if

the test is robust, it may still have little power, i.e., the teat

may not be able to detect devíations from the null-hypothesis.

2. ANOVA with fixed effects is a special case of linear regression analy-

sís; see Kleíjnen (1975, p. 301).

3. A referee pointed out that the Biomed computer package allows for

Generalized Least Squares; see [3, p. 453] and eq. (1.3). Neverthe-

less my experience has been that in the simulation field practitioners

do not use such optíons. The purpose of this tutorial is exactly to

bring these optíons to their attention.

4. ~(6) - ~(W ~) -W 8(~)s(X' X)-1X' (X S) - S

5. If renewal analysis ís applied to estimate ai , then use di a m,

because renemal analysis is based on asymptotic formulas. For the

estimatíon of standard errors of autocorrelated simulation responses

see Kleijnen (1979).

6. X is orthogonal means X' X- N I. Hence eq. (1.2) reduces to

N
Sj - E xij yilN (j- 1, .... q)

1-1



and eq. (2.4) becomes

~s- X' D X J N2~ ti,~

From the main diagonal elements of RS, or directly from the pre-

ceding equation for Rj, it follows that

N
var (S.) - E xi. o2~N2

~ í-1 ~

Hence, even though Exij xij, - 0 for j~ j', the covariances do not

reduce to zero íf ai ~ a2.

7. If common random numbers or antithetic numbers were used, then St

would no longer be a diagonal matrix; Kleijnen (1975) and (1979).

8. Under the standard assumptions of eq. (1.1) any textbook on regres-

sion analysis shows that the d.f. of t equal those of var (S). Be-

cause var (s) follows from eqs. (2.5) and (2.6), the d.f. of-var (S)

equal (N-q). In simulation assuming constant variances ai ~ a2

means that the d.f. of var (R) become Edi, pooling the d.f, of the

individual estimators si. If the si have different expectations

ai, then I conjecture that a test is possible using as d.f, for t

the minimum of the di -values; see Scheffé (1970, p. 1502) for the

"enasetyat'3we" character of such an approach, i.e., the actual type-

I error may be smaller than the nominal a-value. Observe further

that the numerator and denominator of the t-statistic defined by

eq. (2.7) remaín independent: S is a function of the yi whereas

var(S) is a function of the si, and yi and si are independent, pro-

vided the subrun averages as assumed normally distributed.



9. See also Kleijnen (1975, pp. 719-720), and Schmidt (1976, pp. 65-72).

10. Observe that Hocking (1976) introduces the predicted individual

observation y f e wíth variance equal to var (y) f var (e); see

his equations (2.13) and 4.1).

11. Originally the t-test was derived for comparing a single sample

average with its hypothesized value, or for comparing two indepen-

dent sample averages from two populations with each other provided

the two populatíons have a common variance. I conjecture that a

conservative test may be based on eq. (4.4) with the d.f. equal to

the minimum of the d.f. of vár(ya and vár(y0); see footnote 8 and

Kleijnen (1975, pp. 470-472). The minimum d.f. equal dp, unlesa

the verification run is extremely long. Note that the t-approxima-

tion suggests making y0 and y0 independent, i.e., excluding x0

from X. Observe that some non-statistícal publications like Keeney

~ Raiffa (1976, pp. 280-281) compare not y to 9, but the actual

changes yi -yi, to the predicted changes yi - yi,. However, this
increaees the variance of the relevant atatietic.

12. MSR defined in eq. (2.6) has expected value a2 if the model of eq.

(4.1) is correct (and the standard assumptions of eq. (1.1) hold);

else ~(MSR) ~a2. Simulation run i(or in general, replication of

factor combination i) yields the estimator si, unbiased even if

eq. (4.1) is not a good (meta) model. Hence Fd d a MSR~si with
1, 2

dl z N-q and d2 - di. Because of the common variance assumption,
N

different runs can be pooled: E si~N wíth Edi.d.f. . In simu-
1

lation the denominator's d.f. are usually high (in the case-study
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16 x 8 - 128) but the numerator's d.f. is low, if the number of

simulation runs is small compared to the number of regression para-

meters s(in the case-study 16 - 13 - 3). In GLS a similar procedure

appliea; see next footnote. For a related test see Lyons fi Proctor

(1977). For the F-test's robustness and power see Bishop 5 Dudewicz

(1977, pp. 1, 24-25), Derby d~ Larsen (1977, p. 250), and Kleijnen

(1975, p. 725).

13. The original regression model - see eq. (4.1) - implies

V.y - V.X.s f V.e
N N N N N N N

Denote the transformed variables by ~ so that
~

y~ - X.8 f e~
iy N N N

It is possible to select V such that

V'.V - St 1
N ... ..s

Eq. (2.2) yields then

SZ~ - V.S2.V' - I
w .~ N N -.i

Hence the transformed variables Z~ satisfy the classical assumptions

with o2 - 1. Therefore there is no need to estimate a2 in the

denominator of the F-statistic. Consequently the F-statistic (a

ratio of two variance estimators) becomes a~t2-statistic:
N

Xn-q - E (Yi - yi)2
i-1

where y~ and y~ are based on the transformation matríx V which in

turn assumes a known matrix S2. It is unknown whether theX2-statistic
N

remains valid if S2 (and hence V~ is estimated. See also Schmidt
N

(1976, p. 68), substituting n- T, q- K, N-v~2 with o2- 1; it is

easy to check that in the classical case where St v o2 I, Schmídt's
N ~I

n 2

á reduces to the familiar expression E(yi - yi) ~(N-q).
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14. Hocking (1976, pp. 22-23) proposes to pool all, say, c validation
runs: Ec (yg - yg)2 ~c and to compare this statistic to MSR. This

g-1
approach, however, assumes a common variance.

15. A trick to obtain validation runs is to delete one run i from the

N old observations, yielding yy(i) and X(i). Use y(i) and X(i) tor
compute N(i). Then N(i) can be used to predict y0. See jackknifing

in Kleijnen (1975) and also Hocking (1976, pp. 22-23), Narula S

Wellington (1977, p. 188).

16. Pool the sums of squares corresponding with s12' S11' and S22 and

divíde by the sum of the corresponding d.f. Next compare this ratio

to an independent estímate of pure error; see Kleijnen (1975, pp.

298, 730).

17. A qualitative factor like distribution shape is represented by the

dummy variable x with values tl (denoting exponential distributíon)

and -1 (denoting constant distribution).

18. Readers familiar with experimental design, can construct this X-

matrix as follows. Use the generators 1- 56 and 3- 45. Then the

definíng relation is: I- 156 - 345 - 1346. Hence the alias pattern,

ignoring interactions among three or more factors, is: 1- 56,

3- 45, 4- 35, 5- 16 - 34, and 6- 15 (all two-factor interactions

in this alias relation were assumed zero).

19. The standardized variable x2 (arríval rate) is transformed into the

user variable z2 (yearly production), applying z2 a xl.x2.c where

c is a constant; see Kleijnen et al. (1979, p. 59) and Van den Burg
et al. (1977, p. 56-57).
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20. What effect will the reeatímation of the parameters B have on
N '

the lack-of-fit F-test? By definition the least-squares algorithm

minimizes the MSR numerator; see eq. (2.6). Imposing the restriction

that some parameters are zero, cannot decrease this numerator. In

general the numerator increases but this increase will be small,

since inaignificant S's are selected. The MSR denominator increases

as q decreases. The net result in some experíments turned out to be

a lower MSR. Since the denominator of the F-test for lack-of-fit

remains the same, a lower F-value resulted. For instance, in the

case-study q, the number of parameters, was reduced from seventeen

to eight, and this reduction of q decreased the F-statistic from

1.18 to 0.92 (not shown in tables). This F-value was compared to

the upper a-point of the F-statistic, with the same degrees of

freedom d2 for the denominator but wíth a higher dl for the

numerator. For instance, with a- 0.05 corresponds F3~~ - 2.60

but FB~~ - 1.94. So the F-value decreased but ít was compared to a

lower a-point.

Note that though the expected value of F equals one (under the hypo-

thesis of a correct model), this does not mean that the computed

(sampled) F-value cannot be smaller than one. For instance, the F-

tables showthat P(F3~W ~ 0.789) - 0.50. Indeed, in many case studies

I found F-values smaller than one.

21. For numerical accuracy when X is ill-condítioned see Lawson 6 Hanson
N

(1974) and Míller (1978). For the statistícal aspects see Einslein

et al. (1977), Hocking (1976), Lawless (1978), Schmidt (1976, pp.

41-53) and Swamy et al. (1978).
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22. A two-sided test wíth a- 0.20~13 - 1.54I is performed. Hence the

upper 99.23 quantíle of X249 is needed. The X2-table shows for d.f. ~

250 a value of 1.22 for the 99.0 quantile and 1.25 for the 99.5

quantile.

23. Let H0: S31 - 522 where S21 (and ~2) is the 13 x 13 covariance

matrix of S(and S). Then a X2-variable results with 1~2 q(q-F1)

d.f., setting X2 - MC with

Pí - (Eni) 1nI~I-Eni 1n~S21

where ni - M-1 and 52 - EniS2i ~(Eni), and

3(2q2 f 3q-1)
C-1-1- 6(q t 1) 2n

In the Monte Carlo experiment q- 13 and X91 x 641.5 which has a
probabílity of occurence smaller than O.lx. Hence HO is rejected.
Actually GLS and OLS use the same data ( same error terms e), and
C31 and 522 become dependent. Assume that this dependence reduces the

variation in X2. Hence the significant X2-value of 641.5 becomes

even more sígnificant.
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