

Bestemming	TIDSCHRIFTENBUREAU BIBLIOTHEEK KATHOLIEKE	Nr.
HOGESCHOOL	Rul	
TILBURG	Ru	

RESEARCH MEMORANDUM

TILBURG UNIVERSITY
DEPARTMENT OF ECONOMICS
Postbus 90153-5000 LE Tilburg Netherlands

Tom Wansbeek ${ }^{*}$)
and
Arie Kapteyn**)

*) Groningen University, Econometric Institute, P.0. Box 800, 9700 AV Groningen, The Netherlands.
**) Tilburg University, Department of Econometrics, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

Abstract

Least squares estimation of the gravity model in log-linear form is, under certain assumptions, statistically efficient. Computational efficiency (essential when the number of nodes distinguished is large) is obtained by estimation via the so-called covariance transformation. This transformation can only be applied when flows are observed between al1 nodes. It therefore breaks down in the generic case where there are no flows observed from node 1 to itself. In the paper, an alternative transformation is presented that allows for efficient computation of the estimates in the generic case.

1. Introduction

In this paper we present a computationally efficient calibration method ${ }^{1)}$ for the widely used gravity model. In log-linear form the model can be written as follows:

$$
\begin{equation*}
y_{i j}=\alpha_{1}+\gamma_{j}+\beta d_{i j}+\varepsilon_{i j}, \quad i, j=1, \ldots, R \tag{1.1}
\end{equation*}
$$

where $y_{1 j}$ is the logarithm of the traffic flow from node i to node $j ; \alpha_{1}$ and γ_{j} are generation and attraction factors respectively, specific to nodes i and $j ; d_{i j}$ is some measure of the distance between i and $j, \varepsilon_{i j}$ is a random disturbance term, which we assume to be normally distributed with mean zero and constant variance, σ^{2}, for all i and j. The parameters α_{i}, γ_{j} and β are unknown and have to be estimated.

Depending upon the particular context to which the model is applied, a different operationalisation of $d_{i j}$ will be used. A fairly general specification would be to replace $\beta d_{i j}$ by $\sum_{k=1}^{K} \beta_{k} x_{i j k}$, where the β_{k} are parameters and $x_{i j k}$ are different measures of the distance between 1 and j. This transforms model (1.1) into

$$
\text { (1.2) } \quad y_{i j}=\alpha_{i}+\gamma_{j}+\sum_{k=1}^{K} \beta_{k} x_{i j k}+\varepsilon_{i j}, \quad i, j=1, \ldots, R
$$

If we would have observations on $y_{1 j}$ and $x_{i j k}$ for all $1, j$ and k, estimation of (1.2) by means of ordinary least squares would be statistically efficient, i.e. satisfy the Gauss-Markov theorem. Although the number of parameters may be large in practice, namely $2 R+K$, use of the wellknown covariance transformation reduces the computational burden of calibration to manageable proportions. For later reference, we give these computationally efficient formulas for the estimates of α_{i}, γ_{j} and β_{k} in a Lemma.

Define:

1) We will use the terms "calibration" and "estimation" interchangeably,
but the latter more frequently.

$$
\begin{equation*}
x_{1, k} \equiv \frac{1}{R} \sum_{j} x_{i j k}, x_{\cdot j k} \equiv \frac{1}{R} \sum_{i} x_{i j k}, x_{\ldots k} \equiv \frac{1}{R^{2}} \sum_{i} \sum_{j} x_{i j k}, \tag{1.3}
\end{equation*}
$$

$$
k=1, \ldots, k
$$

and $y_{1 .}, y_{\text {.j }}, y_{\text {.. analogously. Next define }}$
(1.4)

$$
\begin{aligned}
& \bar{x}_{i j k} \equiv x_{i j k}-x_{i, k}-x_{\cdot j k}+x_{k \ldots}, \quad k=1, \ldots, k ; \\
& \bar{y}_{i j} \equiv y_{i j}-y_{i .}-y_{. j}+y_{\ldots} .
\end{aligned}
$$

Furthermore, let b_{k} be the OLS-estimate of $\beta_{k}, k=1, \ldots, k$, in the transformed model

$$
\begin{equation*}
\bar{y}_{i j}=\sum_{k=1}^{K} \beta_{k} \bar{x}_{i j k}+\bar{\varepsilon}_{i j}, \tag{1.5}
\end{equation*}
$$

where $\bar{\varepsilon}_{i j} \equiv \varepsilon_{i j}-\varepsilon_{i,}-\varepsilon_{. j}+\varepsilon_{\ldots,}$ in obvious notation.

Lemma. Least squares estimates of β_{k}, α_{i} and γ_{j} in model (1.2) are b_{k}, a_{i} and c_{j}, respectively, where

$$
\begin{equation*}
a_{i} \equiv\left(y_{1,}-y \ldots\right)-\sum_{k}\left(x_{1, k}-x_{\ldots k}\right) b_{k} \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
c_{j} \equiv\left(y . j^{-y} \ldots\right)-\sum_{k}\left(x, j k^{-x} \ldots k\right) b_{k}+y \ldots-\sum_{k} x_{\ldots k} b_{k} . \tag{1.7}
\end{equation*}
$$

The estimates of β_{k} are unique, those of α_{i} and γ_{j} are unique up to an additive constant.

Proof: e.g. Scheffé (1959), Cesario (1975), Judge et al. (1980, Ch. 8).

The non-uniqueness of the estimates of α_{i} and γ_{j} is already clear from model (1.2) where we can add a constant to all α_{i} and subtract the same constant from all γ_{j} without affecting the $y_{i j}$. This lack of uniqueness can be used to obtain a slightly more elegant expression for c_{j}. Notice that the a_{i} sum to zero. We can introduce a constant term β_{0} in (1.2) and impose the restriction that both the a_{i} and the c_{j}
add up to zero. In that case the last two terms on the right hand side of (1.7) drop out, giving (1.6) and (1.7) a similar structure. The estimate of β_{0} is then

$$
\begin{equation*}
b_{0}=y \ldots-\sum_{k} x_{\ldots k} b_{k} \tag{1.8}
\end{equation*}
$$

The obvious advantage of the least squares solution here is its computational simplicity. Rather than having to invert ${ }^{1)}$ a matrix of order $(2 R+K) \times(2 R+K)$, when applying OLS to (1.2) directly, we can carry out a simple transformation of the data, first estimate the B_{k} which requires inversion of a $K \times K$-matrix only and then compute the estimates of the α_{i} and γ_{j} straightforwardly.

A typical characteristic of traffic flow data is that there will be no observations for $i=j$, i.e. one does not observe a flow from node 1 to itself. As a result, the lemma cannot be applied. Although one could still try to apply least squares to (1.2) directly, this will turn out to be non-feasible for many realistic problems where R may large (we return to this in section 3). Hence, we require results similar to those presented in the lemma, for the model where observations are missing whenever $i=j$. These results are the main objective of this paper and are collected in the theorem below.

Define:

$$
\begin{array}{r}
\tilde{x}_{1 . k} \equiv \frac{1}{R-1} \sum_{j} x_{i j k}, \tilde{x}_{. j k} \equiv \frac{1}{R-1} \sum_{i} x_{i j k}, \tilde{x}_{\ldots k} \equiv \frac{1}{R(R-1)} \sum_{i} \sum_{j} x_{i j k}, \tag{1.9}\\
k=1, \ldots, k
\end{array}
$$

and $\tilde{y}_{i,}, \tilde{y}_{. j}, \tilde{y}_{\ldots,}, \tilde{\varepsilon}_{1 .}, \tilde{\varepsilon}_{. j}, \tilde{\varepsilon}_{\ldots}$ analogously. To appreciate the definitions, notice that the total number of observations is now $R(R-1)$ instead of R^{2} and that for given k and i (and for given k and j), there are $R-1$ observations $x_{i j k}$. Next define

$$
\begin{equation*}
\tilde{x}_{i j k} \equiv x_{i j k}-\frac{(R-1)^{2}}{R(R-2)} \tilde{x}_{i \cdot k}-\frac{(R-1)^{2}}{R(R-2)} \tilde{x}_{\cdot j k}-\frac{R-1}{R(R-2)} \tilde{x}_{j \cdot k}- \tag{1.10}
\end{equation*}
$$

1) Since this matrix has at most rank $2 R+K-1$, a generalized inverse has to he taken, of course.

$$
-\frac{R-1}{R(R-2)} \tilde{x}_{. i k}+\frac{R}{R-2} \tilde{x}_{. . k} \quad, \quad k=1, \ldots, k
$$

and $\tilde{y}_{i j}$ and $\tilde{\varepsilon}_{1 j}$ analogously. Note that for large $R, \tilde{x}_{i j k}$ will be close to $\bar{x}_{i j k}$ defined by (1.4). Furthermore, let \hat{b}_{k} be the OLS-estimate of $\beta_{k}, k=1, \ldots, K$, in the transformed model
(1.11) $\tilde{y}_{i j}=\sum_{k=1}^{K} \beta_{k} \tilde{x}_{i j k}+\tilde{\varepsilon}_{i j}$,
then we define $\tilde{\Omega}$ as $\tilde{\Omega}=\sigma^{2}\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1}$, where \tilde{X} is the $R(R-1) \times K$ matrix with typical element $\tilde{x}_{i j k}$ and denote a typical element of $\tilde{\Omega}$ by $\tilde{\omega}_{k \ell}$. The quantity $\tilde{\sigma}^{2}$ is defined as the "usual" best quadratic unbiased estimator of $\operatorname{var}\left(\tilde{\varepsilon}_{1 j}\right)$ in this model, and

$$
\begin{equation*}
r_{i j} \equiv y_{i j}-\sum_{k} \hat{b}_{k} x_{i j k} \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
r_{i .} \equiv \frac{1}{R-1} \sum_{j} r_{i j}, r \equiv \frac{1}{R-1} \sum_{i} r_{i j}, r \ldots \equiv \frac{1}{R(R-1)} \sum_{i} \sum_{j} r_{i j} . \tag{1.13}
\end{equation*}
$$

In addition we define:
(1.14) $\quad q_{i k} \equiv \frac{(R-1)^{2}}{R(R-2)} x_{i . k}+\frac{R-1}{R(R-2)} x_{.1 k}-\frac{1}{R-2} x_{. . k}$

$$
\begin{equation*}
s_{j k} \equiv \frac{R-1}{R(R-2)} x_{j \cdot k}+\frac{(R-1)^{2}}{R(R-2)} x_{\cdot j k}-\frac{R-1}{R-2} x_{\ldots k} \tag{1.15}
\end{equation*}
$$

Theorem. Let in model (1.2) observations be missing if and only if $i=j$. Least squares estimates of β_{k}, α_{i} and γ_{j} are \hat{b}_{k}, \hat{a}_{i} and \hat{c}_{j}, where
(1.16) $\quad \hat{a}_{i} \equiv \frac{(R-1)^{2}}{R(R-2)} r_{i} .+\frac{R-1}{R(R-2)} r_{. i}-\frac{1}{R-2} r_{\ldots}$
(1.17)

$$
\hat{c}_{j} \equiv \frac{R-1}{R(R-2)} r_{j .}+\frac{(R-1)^{2}}{R(R-2)} r_{. j}-\frac{R-1}{R-2} r_{\ldots} .
$$

The estimates of β_{k} are unique, those of α_{i} and γ_{j} are unique up to an additive constant. The variance covariance matrix of the estimates \hat{b}_{k} is $\tilde{\Omega}$. The best quadratic unbiased estimator of σ^{2} is

$$
\begin{equation*}
\hat{\sigma}^{2} \equiv \tilde{\sigma}^{2} \frac{R(R-1)-K}{R(R-1)-(2 R+K-1)} \tag{1.18}
\end{equation*}
$$

The coefficient of determination is
(1.19) $\quad \check{R}^{2} \equiv 1-\frac{\left\{R(R-1)-(2 R+K-1) \cdot \hat{\sigma}^{2}\right.}{\sum \sum\left(y_{i j}-y\right)^{2}}$

The variances of \hat{a}_{i} and \hat{c}_{j} are
(1.20) $\operatorname{var}\left(\hat{a}_{i}\right)=\hat{\sigma}^{2} \frac{2 R^{2}-3 R-1}{R(R-1)(R-2)}+\sum_{k \ell} \sum_{i k} q_{i \ell} \tilde{\omega}_{k \ell}, \quad i=1, \ldots, R$,
(1.21) $\quad \operatorname{var}\left(\hat{c}_{j}\right)=\hat{\sigma}^{2} \frac{(R-1)^{2}}{R^{2}(R-2)}+\sum_{k \ell} \sum_{j k} s_{j \ell} s_{j \ell} \tilde{\omega}_{k \ell}, \quad j=1, \ldots, R$.

Section 2 will be devoted to a proof of this theorem and section 3 to a discussion of its practical importance.

2. Proof of the Theorem

Rewrite model (1.2) in matrix form as follows,
(2.1) $y=z \delta+X \beta+\varepsilon$,
where
(2.2) $y \equiv\left(y_{12}, y_{13}, \ldots, y_{1 R}, y_{21}, y_{23}, \ldots, y_{2 R}, \ldots, y_{R 1}, \ldots, y_{R, R-1}\right)^{\prime}$
(2.3) $\varepsilon \equiv\left(\varepsilon_{12}, \varepsilon_{13}, \ldots, \varepsilon_{1 R}, \varepsilon_{21}, \varepsilon_{23}, \ldots, \varepsilon_{2 R}, \ldots, \varepsilon_{R 1}, \ldots, \varepsilon_{R, R-1}\right)^{\prime}$
X is a $R(R-1) \times K$ matrix of which the $k-t h$ column x_{k} is
(2.4) $x_{k} \equiv\left(x_{12 k}, x_{13 k}, \ldots, x_{1 R k}, x_{21 k}, x_{23 k}, \ldots, x_{2 R k}, \ldots, x_{R 1 k}, \ldots, x_{R, R-1, k}\right)^{\prime}$
(2.5) $Z \equiv\left(Z_{1}, Z_{2}\right), \quad R(R-1) \times 2 R$,
with
(2.7) $\quad \beta \equiv\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)^{\prime}, \delta \equiv\left(\alpha^{\prime}, \gamma^{\prime}\right)^{\prime}$,
with

$$
\begin{equation*}
\alpha \equiv\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{R}\right)^{\prime}, \gamma \equiv\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{R}\right)^{\prime} \tag{2.8}
\end{equation*}
$$

In a slightly more compact form, (2.1) can be written as
(2.9) $y=W \rho+\varepsilon$,
with
(2.10) $W \equiv(Z, X), \quad \rho \equiv\left(\beta^{\prime}, \delta^{\prime}\right)^{\prime}$

The matrix Z defined by (2.5) has rank $2 R-1$ and hence W will generally be of rank $2 \mathrm{R}-1+\mathrm{K}$. Consequently, there is no unique least squares solution for the $(2 R+K)$-vector ρ. It is well-known however, (cf., e.g., Searle, 1971, Ch. 5), that all least squares solutions for ρ are generated by

$$
\begin{equation*}
\hat{\rho}=\left(W^{\prime} W\right)^{-} W^{\prime} y \tag{2.11}
\end{equation*}
$$

where $\left(W^{\prime} W\right)^{-}$is a g-inverse of $W^{\prime} W$. By varying over the set of all possible g-inverses of $W^{\prime} W$ we generate all possible solutions $\hat{\rho}$. Furthermore,
(2.12) $\operatorname{var}(\hat{\rho})=\sigma^{2}\left(W^{\prime} W\right)^{-} W^{\prime} W\left(W^{\prime} W\right)^{-}$
and the best quadratic unbiased estimator of σ^{2} is
(2.13) $\quad \hat{\sigma}^{2}=\frac{y^{\prime}\left[I-W\left(W^{\prime} W\right)^{-} W^{\prime}\right] y}{R(R-1)-\operatorname{rank}(W)}$.

The coefficient of determination is
(2.14) $\quad \tilde{R}^{2}=1-\frac{y^{\prime}\left[I-W\left(W^{\prime} W\right)^{-} W^{\prime}\right] y}{y^{\prime} y-R(R-1) y^{2}}$.

The proof of the theorem consists of an elaboration of these formulas, with respect to the model at hand. We will start with (2.11).
(2.15) $\quad W^{\prime} W=\left[\begin{array}{ll}Z^{\prime} Z & Z^{\prime} X \\ X^{\prime} Z & X^{\prime} X\end{array}\right]$,
so that a g-inverse of $W^{\prime} W$ is (cf. Ronde, 1965):
(2.16) $\left(W^{\prime} W\right)^{-}=\left[\begin{array}{ll}\left(Z^{\prime} Z\right)^{-}+\left(Z^{\prime} Z\right)^{-} Z^{\prime} X\left(X^{\prime} P X\right)^{-1} X^{\prime} Z\left(Z^{\prime} Z\right)^{-} & -\left(Z^{\prime} Z\right)^{-} Z^{\prime} X\left(X^{\prime} P X\right)^{-1} \\ -\left(X^{\prime} P X\right)^{-1} X^{\prime} Z\left(Z^{\prime} Z\right)^{-} & \left(X^{\prime} P X\right)^{-1}\end{array}\right]$,
where $\left(Z^{\prime} Z\right)^{-}$is a g-inverse of $Z^{\prime} Z$ and $P \equiv I-Z\left(Z^{\prime} Z\right)^{-} Z$; P is idempotent and invariant under the choice of $\left(Z^{\prime} Z\right)^{-}$. Using (2.16) to elaborate (2.11) yields
(2.17) $\quad \hat{\rho} \equiv\binom{\hat{d}}{\hat{b}}=\binom{\left(Z^{\prime} Z\right)^{-} Z^{\prime}\left\{y-\left(X^{\prime} P X\right)^{-1} X^{\prime} P y\right\}}{\left(X^{\prime} P X\right)^{-1} X^{\prime} P y}$

Notice that P and hence \hat{b} is invariant under the choice of a g-inverse of $Z^{\prime} Z$, i.e. \hat{b} is unique, as claimed in the theorem. The non-uniqueness of \hat{d} can be investigated formally by employing the theory of estimable functions. For the sake of brevity, this part of the proof is omitted here.

The next step is to elaborate the matrix P, to obtain a formula for \hat{b} that is computationally efficient. First, notice that
(2.18) $\quad Z^{\prime} Z=\left[\begin{array}{lc}(R-1) I_{R} & J_{R}-I_{R} \\ J_{R}-I_{R} & (R-1) I_{R}\end{array}\right]$,
where I_{R} is the identity matrix of order R and J_{R} is a square $R \times R$-matrix of ones. It can be verified directly that the following matrix is a g inverse of $Z^{\prime} Z$:
(2.19) $\left(Z^{\prime} Z\right)^{-}=\left[\begin{array}{ccc}\frac{1}{R-1} I_{R} & 0 \\ 0 & 0\end{array}\right]+\frac{R-1}{R(R-2)}\left[\begin{array}{cc}\frac{1}{(R-1)^{2}} E_{R} & \frac{1}{R-1} E_{R} \\ \frac{1}{R-1} E_{R} & E_{R}\end{array}\right]$,
with $E_{R} \equiv I_{R}-\frac{1}{R} J_{R}$. Next, it is a matter of straightforward manipulation to show that
(2.20) $Z\left(Z^{\prime} Z\right)^{-} Z^{\prime}=\frac{1}{R(R-2)}\left\{(R-1) Z_{1} Z_{1}^{\prime}+Z_{1} Z_{2}^{\prime}+Z_{2} Z_{1}^{\prime}+(R-1) Z_{2} Z_{2}^{\prime}-\frac{R}{R-1} J_{N}\right\}$, where J_{N} is an $N \times N$-matrix of ones, $N \equiv R(R-1)$. For P we thus obtain
(2.21) $P=I-Z\left(Z^{\prime} Z\right)^{-} Z^{\prime}=$

$$
=I_{N}-\frac{1}{R-2}\left(Z_{1} Z_{1}^{\prime}+Z_{2} Z_{2}^{\prime}\right)+\frac{1}{R(R-2)}\left(Z_{1}-Z_{2}\right)\left(Z_{1}-Z_{2}\right)^{\prime}+\frac{1}{(R-1)(R-2)} J_{N}
$$

To see how this works out for \hat{b}, consider as an example the expression for Py. Define $n_{1} \equiv Z_{1}^{\prime} y, n_{2} \equiv z_{2}^{\prime} y, \eta_{3} \equiv{ }^{1}{ }_{N}^{\prime} y$, with ${ }_{1}{ }_{N}$ an N-vector of ones. This yields

$$
\begin{equation*}
P y=y-\frac{1}{R-2}\left(Z_{1} n_{1}+Z_{2} n_{2}\right)+\frac{1}{R(R-2)}\left(Z_{1}-z_{2}\right)\left(n_{1}-n_{2}\right)+\frac{n}{(R-1)(R-2)}{ }^{1} N \tag{2.22}
\end{equation*}
$$

Thus the ($1, j$)-element of the vector Py is
(2.23) $\quad(P y)_{i j}=y_{1 j}-\frac{1}{R-2}\left(n_{1 i}+n_{2 j}\right)+\frac{1}{R(R-2)}\left(n_{1 i}^{-n} 1 j^{-n} 2 i+n_{2 j}\right)+\frac{n}{(R-1)(R-2)}$ or
(2.24) $\quad(P y)_{i j}=\tilde{y}_{i j}$,
as defined on the previous section (cf. (1.10) and below). Premultiplication of X by P transforms the columns of X analogously, so that $x_{1 j k}$ is replaced by $\tilde{x}_{i j k}$, cf. (1.10). As a result we recognize the formula for b as the least squares estimate of β in model (1.11), as claimed in the theorem.
$\hat{\text { Now consider }} \hat{d} \equiv\left(\hat{a}^{\prime}, \hat{c}^{\prime}\right)^{\prime}$, where $\hat{a}=\left(\hat{a}_{1}, \hat{a}_{2}, \ldots, \hat{a}_{R}\right)^{\prime}$,
$\hat{c}=\left(\hat{c}_{1}, \hat{c}_{2}, \ldots, \hat{c}_{R}\right)$. The expression for \hat{d} in (2.17) can be rewritten as

$$
\begin{equation*}
\hat{d}=\left(Z^{\prime} Z\right)^{-} Z^{\prime} r, \tag{2.25}
\end{equation*}
$$

where $\mathrm{r} \equiv \mathrm{y}-\mathrm{Xb}$. Define

$$
\begin{equation*}
p_{1} \equiv Z_{1}^{\prime} r, \quad p_{2} \equiv Z_{2}^{\prime} r, \quad p \equiv{ }_{1}^{\prime} r=\imath_{R}^{\prime} p_{1}=\imath_{R}^{\prime} p_{2} \tag{2.26}
\end{equation*}
$$

Using (2.19), we can write
(2.27) $\quad \hat{d}=\binom{\frac{1}{R-1} p_{1}}{0}+\frac{R-1}{R(R-2)}\left[\begin{array}{l}\frac{1}{R-1}\left(\frac{1}{R-1} p_{1}+p_{2}-\frac{p}{R-1}{ }^{2} R\right) \\ \frac{1}{R-1} p_{1}+p_{2}-\frac{p}{R-1}{ }^{1} R\end{array}\right]$

$$
=\frac{1}{R(R-2)}\left[\begin{array}{c}
(R-1) p_{1}+p_{2}-\frac{p}{R-1} \imath^{\prime} R \\
p_{1}+(R-1) p_{2}-p \cdot 1{ }^{\prime} R
\end{array}\right]=\binom{\hat{a}}{\hat{c}}
$$

Inserting the expressions for p_{1}, p_{2} and p in (2.27) directly yields (1.16) and (1.17) of the Theorem.

Now consider the variances of the estimators. It is easy to verify that $\left(Z^{\prime} Z\right)^{-}$given by (2.19) is a reflexive g-inverse of $Z^{\prime} Z$ and
that $\left(W^{\prime} W\right)^{-}$given by (2.16) is a reflexive g-inverse of $W^{\prime} W$. Hence the variance covariance matrix of $\hat{\rho}$ is $\sigma^{2}\left(W^{\prime} W\right)^{-}$. Consequently $\sigma^{2}\left(X^{\prime} P X\right)^{-1}$ is the variance covariance matrix of \hat{b} and this is nothing else than $\tilde{\Omega}$ defined below (1.11), as claimed in the Theorem.

From (2.16), we have that the variance covariance matrix of \hat{d} is equal to

$$
\begin{equation*}
\operatorname{var}(\hat{d})=\operatorname{var}\binom{\hat{a}}{\hat{c}}=\sigma^{2}\left\{\left(Z^{\prime} Z\right)^{-}+\left(Z^{\prime} Z\right)^{-} Z^{\prime} X\left(X^{\prime} P X\right)^{-1} X^{\prime} Z\left(Z^{\prime} Z\right)^{-}\right\} \tag{2.28}
\end{equation*}
$$

To prove (1.20) and (1.21) in the Theorem, we will show that these expressions correspond to diagonal elements of the matrix on the right hand side of (2.28). First consider ($\left.Z^{\prime} Z\right)^{-}$. From (2.19) it is clear that its diagonal elements in the upper left $(R \times R)$-block are equal to $\left(2 R^{2}-3 R-1\right) / R(R-1)(R-2)$. The diagonal elements in the lower right $(R \times R)-$ block are equal to $(R-1)^{2} / R^{2}(R-2)$. Next, consider $\left(Z^{\prime} Z\right)^{-} Z^{\prime} X\left(X^{\prime} P X\right)^{-1}$. $X^{\prime} Z\left(Z^{\prime} Z\right)^{-}$. To evaluate this expression, we note that the $k-t h$ column of $\left(Z^{\prime} Z\right)^{-} Z^{\prime} X$ has the same structure as \hat{d}, given in (2.25). By analogy with (2.27) and (1.16) and (1.17) it is clear that

$$
\begin{equation*}
\left(Z^{\prime} Z\right)^{-} Z^{\prime} X=\binom{Q}{S} \tag{2.29}
\end{equation*}
$$

where the $(R \times K)$-matrices Q en S have typical elements $q_{i k}$ and $s_{j k}$, defined in (1.14) and (1.15). Denoting the (k, ℓ)-element of $\sigma^{2}\left(X^{\prime} P X\right)^{-1}$ by $\widetilde{\omega}_{k \ell}$, as in section 1 , we obtain as typical diagonal elements of $\left(Z^{\prime} Z\right)^{-} Z^{\prime} X\left(X^{\prime} P X\right)^{-1} X^{\prime} Z\left(Z^{\prime} Z\right)^{-}, \Sigma_{k^{2}} \Sigma_{i} q_{i k} q_{i \ell} \tilde{\omega}_{k \ell}, \quad i=1, \ldots, R$, in the upper left $(R \times R)$-block and $\Sigma_{k} \Sigma_{\ell} s_{j k} s_{j \ell} \tilde{\omega}_{k \ell}, \quad j=1, \ldots, R$, in the lower right ($R \times R$)-block. Combining this with the results for $\left(Z^{\prime} Z\right)^{-}$yields (1.20) and (1.21) of the Theorem.

To arrive at the best quadratic estimate for σ^{2} we note that in (2.13) $y^{\prime}\left[I-W\left(W^{\prime} W\right)^{-} W^{\prime}\right] y$ is equal to $y^{\prime} P\left(I-P X\left(X^{\prime} P X\right)^{-1} X^{\prime} P\right) P y$, which is simply the residual sum of squares for model (1.11). However, when applying least squares to (1.11), we would divide the residual sum of squares by $R(R-1)-K$ to arrive at the best quadratic estimator of σ^{2} in that model, whereas in (2.13) we divide by $R(R-1)-(2 R+K-1)$, which explains the "degrees of freedom corrections" in (1.18) of the Theorem.

Finally, (2.14) immediately implies (1.19).

3. Discussion

As with the standard model, we can use the indeterminateness of the estimates of α_{1} and γ_{j} to introduce an intercept β_{0}, and to restrict \hat{a}_{i} and \hat{c}_{j} to sum to zero. It is easily seen from (1.17) that the \hat{c}_{j} already add up to zero, so that we only have to adapt the r..term in (1.16); (1.16) is hence replaced by
$(1.16), \quad \hat{a}_{i}=\frac{(R-1)^{2}}{R(R-2)} r_{i .}+\frac{R-1}{R(R-2)} r_{. i}-\frac{R-1}{R-2} r_{\ldots}$
and the estimate of β_{0} is then
(3.1) $\hat{b}_{0} \equiv \mathrm{r}$. ,
which is analogous to (1.8).
A comparison of the formulas in the Theorem with the corresponding ones in the Lemma, shows that for $R \rightarrow \infty$ they become pairwise identical. This is what one might have expected, because for increasing R the missing observations make up a smaller proportion of the total number of observations.

The formulas in the Theorem look a bit more complicated than those in the Lemma, but their computational complexity is the same. Given the estimate for β, \hat{b}, the computation of all other quantities \hat{a}_{1}, \hat{c}_{i}, etc.) requires at most $O(N)$ time $(N \equiv R(R-1))$. The computation of b itself requires simple manipulations of the data to arrive at model (1.11). These manipulations and the computation of \hat{b} also require $O(N)$ time. In contrast, if least squares would be applied to (1.2) directly, one would have to invert a $(2 R+K) \times(2 R+K)$-matrix, which requires $O\left((2 R+K)^{3}\right)$ time. Thus, application of the Theorem reduces the computing time required approximately by a factor of R. In practice, where R may be in the hundreds, this may very well be the difference between feasibility and non-feasibility of the estimation task.

References

Cesario, F.J. (1975), "Least Squares Estimation of Trip Distribution Parameters", Transportation Research, 9, pp. 13-18.

Judge, G.G., W.E. Griffiths, R.C. Hill, T.C. Lee (1980), The Theory and Practice of Econometrics, Wiley, New York.

Rohde, C.A. (1966), "Some Results on Generalized Inverse ", SIAM Review, 8, pp. 201-205.

Scheffé, H. (1959), The Analysis of Variance, Wiley, New York.

Searle, S.R. (1971), Linear Models, Wiley, New York.

```
126 H.H. Tigelaar
    Identification of noisy linear systems with multiple arma inputs.
127 J.P.C. Kleijnen
    Statistical Analysis of Steady-State Simulations: Survey of Recent
    Progress.
128 A.J. de Zeeuw
    Two notes on Nash and Information.
129 H.L. Theuns en A.M.L. Passier-Grootjans
    Toeristische ontwikkeling - voorwaarden en systematiek; een selec-
    tief literatwuroverzicht.
130 J. Plasmans en V. Somers
        A Maximum Likelihood Estimation Method of a Three Market Disequili-
        brium Model.
131 R. van Montfort, R. Schippers, R. Heuts
        Johnson }\mp@subsup{S}{U}{
        when data are non-gaussian.
132 J. Glombowski en M. Krüger
    On the Role of Distribution in Different Theories of Cyclical
    Growth.
133 J.W.A. Vingerhoets en H.J.A. Coppens
    Internationale Grondstoffenovereenkomsten.
    Effecten, kosten en oligopolisten.
134 W.J. Oomens
        The economic interpretation of the advertising effect of Lydia
        Pinkham.
135 J.P.C. Kleijnen
    Regression analysis: assumptions, alternatives, applications.
136 J.P.C. Kleijnen
    On the interpretation of variables.
137 G. van der Laan en A.J.J. Talman
        Simplicial approximation of solutions to the nonlinear complemen-
        tarity problem with lower and upper bounds.
```

138 G.J. Cuypers, J.P.C. Kleijnen en J.W.M. van Rooyen Testing the Mean of an Asymetric Population:
Four Procedures Evaluated
139 T. Wansbeek en A. Kapteyn
Estimation in a linear model with serially correlated errors when observations are missing

140 A. Kapteyn, S. van de Geer, H. van de Stadt, T. Wansbeek Interdependent preferences: an econometric analysis

141 W.J.H. van Groenendaal Discrete and continuous univariate modelling

142 J.P.C. Kleijnen, P. Cremers, F. van Belle The power of weighted and ordinary least squares with estimated unequal variances in experimental design

143 J.P.C. Kleijnen
Superefficient estimation of power functions in simulation experiments

144 P.A. Bekker, D.S.G. Pollock
Identification of linear stochastic models with covariance restrictions.

145 Max D. Merbis, Aart J. de Zeeuw
From structural form to state-space form
146 T.M. Doup and A.J.J. Talman
A new variable dimension simplicial algorithm to find equilibria on the product space of unit simplices.

147 G. van der Laan, A.J.J. Talman and L. Van der Heyden Variable dimension algorithms for unproper labellings.

148 G.J.C.Th. van Schijndel
Dynamic firm behaviour and financial leverage clienteles
149 M. Plattel, J. Peil
The ethico-political and theoretical reconstruction of contemporary economic doctrines

150 F.J.A.M. Hoes, C.W. Vroom
Japanese Business Policy: The Cash Flow Triangle
an exercise in sociological demystification
151 T.M. Doup, G. van der Laan and A.J.J. Talman
The $\left(2^{n+1}-2\right)$-ray algorithm: a new simplicial algorithm to compute economic equilibria

IN 1984 REEDS VERSCHENEN (vervolg)
152 A.L. Hempenius, P.G.H. Mulder Total Mortality Analysis of the Rotterdam Sample of the KaunasRotterdam Intervention Study (KRIS)

153 A. Kapteyn, P. Kooreman
A disaggregated analysis of the allocation of time within the household.

Bibliotheek K. U. Brabant

17000010663269

