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Abstract

Optimal control methods for policy evaluation in econometric models with
a decentralized decision structure, which is also hierarchical or sequential,
are developed. Solutions are given for the N-level problem and in case
more than one player acts at the same decision level. Also strategies
with threats are considered.

Key words

L.Q.-difference games, Stackelberg solutions, (linked) econometric
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i. Introduction

Econometric policy models are mostly used in the following manner. First
one singles out one policy maker and selects more or less controllable

(exogenous) variables for this policy maker. Then simulation results for
objective variables of this policy maker are compared under different

scenarios for the instruments.

Optimal control methods provide an alternative for this analysis. A cost-

criterium is formed as a function of the paths of objective variables and

the use of control variables. Minimization of this criterium yields the

optimal level for the instruments with respect to this criterium.

Advantages of optimal control methods are, that all possible scenarios

for the instruments are considered and that one is forced to make the

objectives of the policy maker explicit. The second point is at the same
time the Achilles tendon of the method: how should one quantify "I want

the unemployment rate to go down and I want this more badly than a

diminution of the rate of inflation:"? In this paper this problem is

skipped. Many contributions to the íntroduction of optimal control

methods in the econometric literature were made by Chow.

A drawback of both simulation and optimal control techniques was made
vivid again by Lucas [5]. He states, that the coefficiënts of the behavio-

ral equations are not constant under varying (governmental) policies.

It seems to be an improvement to consider more policy makers in the same

system at once. This puts the problem in a game-theoretic setting.

The intersection of optimal control and game theory is mostly referred
to as a difference game.

This paper is concerned with optimal control methods in a decentralized

decision structure, which is also hierarchical or sequential. In a sense
all sort of dominant player (government, dominant firm, dominant

country etc.) situations are described. The problem is solved under the

following assumptions. The system is linear. The cost functionals are

quadratic. The noise on the system is Gaussian. Bellman's principle of
optimality is postulated, which gives the problem its stagewise charac-

ter. All the players have complete, error free information about the
present state (the memory) of the system. Under these assumptions the

optimization problem is equivalent to the same problem in a deterministic
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setting.

Chow (3] describes an iterative procedure, which, in case of convergence,

leads to a solution in the covariance stationary equilibrium. This paper
chooses a more standard approach and gives solutions to the N-level
problem and to situations, where more than one player acts at the same
decision level.
Some remarks will be made for the case, where the players have information
about the past of the endogenous variables, which contains errors.
In the last section attention is devoted to (history dependent) threat
strategies in a deterministic setting.
In the theory of difference games the key word for this approach is
Stackelberg solutions.

2. The model

We start from a linear(ized) econometric model in reduced form with N
policy makers, N E N. The error terms are distributed normally and are
independent over time. Each policy maker sets target paths for certain
objective variables over a planning period. These objective variables
are related linearly to the endogenous variables. Now, each player tries
to steer the system such that the objective variables follow these target
paths closely. Steering will be seen as setting the instrument variables
at a level, different from their trend values. The criteria are based on
deviations of objective variables and control variables from these target
paths and trend paths, respectively. Cost functionals are formed by
penalizing these deviations. Different weights represent the (political)
choices of the policy maker. The instruments are chosen such as to
minimize expected total costs. For technical reasons the cost functionals
are assumed to be quadratic.
Mathematically we have:

cost functionals

mi( )Ji(yd. xl(.), x2(.)~ -., xN(.)):-

i
t

f
E{ tE~{ 2 [z (t) - zi (t)] ~ Qi ( t) [z (t) - zi (t)] t
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N 1 - -
t ~E1 2[x~ (t) - x~ (t)~ ~ Ri~ (t) [x~ (t) - x~ (t)~ }}. i - 1, 2, ... N

subject to the econometric model

where
Y (.) E IItn

s.i

N
y(t) - A(t)y(t-1) t iEl Ci(t)xi(t) t bl(t) t u(t),

y(t~-1) - Y~.

z(t) - D(t) y(t) t b2 (t) ,

E{u(t) } - 0. E{u(t) u~ (T) } - á (t-r) E (t) .

t,T - t0, t~tl, .., tf,

: endogenous variables,

x.(.) E 7R : control variables,
i

z ( . ) E ]Rm : ohjective variahles,

r
bl(.) E]R 1: exogenous vector,

r
bz (. ) E g2 Z : exogenous vector,

z. (.) E ]Rm
i

s.
x. (.) E IR 1
i

: target path,

: trend path.

Naturally the matrices Qi(.) and Ri~(.) are positive semi-definite
(nonnegative costs). Without loss of generality they are also symmetric.
To avoid singularities the matrices R,.(.) are assumed to be positiveii
definite.

The players decide upon their strategy one after another, starting with
player N. Every player expects his followers to behave rationally. This
rational behaviour is expressed as a function of the strategies of the
players higher in the decision hierarchy. Starting at the bottom of the
hierarchy this proces leads to an optimal control problem for player N.
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This yields a solution for the game.

Notation: for convenience the time dependency of the data matrices is not
written; quadratic terms like x~Ax are written as Ix1A.

3. Information and the principle of optimality

The hierarchical solution concept implies, that players know the strategies
of players higher in the hierarchy. The question rises, what information
the players have about the endogenous variables. When the information
contains errors, the problem becomes difficult. The players have to
estimate the endogenous vector. How can a player use knowledge about the
strategies of other players to get insight in the information of these
other players? How can a player judge the rational behaviour of other
players properly, not knowing the information of these other players or
not knowing the estimate of these other players? Attempts to solve this
problem so far claim, that it is not possible to deduce information about
the endogenous vector from knowledge about the strategies of other players.
Castanon and Athans [2] solve the two player problem, assuming that the
information of the follower is also known to the leader (a nested infor-
mation structure). Ba~ar [1] evaluates the stochastical structure of the
two player problem. In this paper we will not go into this matter any
further. We will assume, that the players have error free complete
information about the values of the one step delayed endogenous variables
(the state of the system). And the players know at least the cost
functionals of the players lower in the hierarchy. Furthermore, we will
claim, that tne principle of optimality holds. This is generally not the
case under the hierarchical solution concept: when the rational behaviour
of the first player is substituted in the system equations, the (new)
system looses its nonanticipativity (de 2eeuw [10]). Simaan and Cruz [7j
also give counterexamples. A technical consequence of the claim is, that
we can solve the problem by dynamic programminq. Or, the solution can be
found stagewise. Another consequence of the claim is, that the solution
retains its optimality properties after any suboptimal play. This is an
argument in favor of the stagewise solution concept. We conclude this
section with the mathematical structure of the problem.
As always, when the method of dynamic programming is used in linear
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quadratic frameworks, the basics are backward recursive equations for
quadratic value functions.
Quadratic value functions for players 1, 2, .., N, respectively:

Vi(.,y) -- ~Y~K. (.) } gi(.)y t ci(.), i- 1, 2, .. , N. (3.1)
i

Without loss of generality the matrices K.(.) are symmetric.i
Backward recursive equations for the value functions:

1 N
Vi (t~,Y) - min E{ 2.ï l B x. (tD) - x(tD) h R. .}xi (t~) J- J J 1J

N
t Vi(t~tl, Ayf,El C,x (t~) t bl(t~) t u(t~))},(3.2)

J- J j

V. (t,y) - min E{ 1 ~Dy t b (t-1) - z. (t-1)B t
1 x. (t)

2 2 i
Qii

N
t 1 E~Ix. ( t) - x. (t)II t2 j-1 2~ J Rij

N
t V. (tfl, Ayt,L C.x (t) f b (t) t u(t) )},

1 J-1 J j 1

t - t~tl, t~t2, .., tf,

Vi (tftl, Y) - 2 Dy t b2 (tf) - zi (tf)9
Qi

(3.3)

(3.4)

So, at each stage t, t- t~, t~tl, .., tf, we have a static optimization
problem. Each player observes the value y of the vector of one step
delayed endogenous variables y(t-1) and the values x, of the vectors ofi
actions xi(t) of players higher in the decision hierarchy.
Define:

1 NJ.(t, Y, x , x,.., x):- E{ -.E ~x. - x.(t)U ti 1 2 N 2 ~-1 J J Rij
N

t V. (ttl, Ay t E C.x t b(t) t u(t) )},
i j-1 J j 1

t - t~, t~tl, .., tf. (3.5)



If there exist mappings f. : Il2
ltl x...x II2 N-~ IIt 1, i- 1, 2, .., N,

i

such that for any fixed ( xitl, . .., ~) E ~sltl x...x ~sN

x)). x. . .. , x) E W,(i) (xl' ~-' xi-i' fi xitl' ~~' N itl N i-1

whe re

J.lt, Y~ ~1 xl. ... xi-1, fi((xitl' ... ~)). xitl' .. , xN) -

~ Ji(t, Y, xl. .., xN) for all (xl. -- ~ xN) E Wi-1'

Wd :- 1Rs1 x...x ~sN

Wi .- {(xl, .., xN) E Wi-llxi - fi((xitl. -- , xN))}.

i - 1, 2, .., N-1,

and if there exists a( xl, .., xN) E WN-1, such that

JN(t, Y, xl. --. xN) ~ JN(t, Y. xl~ -.~ xN)

for all (xl, .., xN) E WN-1, then (xl, .., xN) constitutes a solution

to the problem.

Zn fact one optimizes, sequentially over the rational reaction sets

Wi, i- 1, 2, .., N-1, subsets of the action space W~. As will be shown

in one of the next sections, under the convexity assumptions there is
only one solution.

4. Certainty equivalence.

The stochastical structure of the optimization problem is very simple.
The optimal strategies are the same as in the deterministic case, where
E(t) - 0, t- t~, t~tl, .., tf. This "certainty equivalence" property
results from the evaluation of the expectations J., i- 1, 2, .., N, ini
(3.5), using (3.1).
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1 rl N
E{- ,E px.-x, (t)II t v. (ttl, Ay t E C.x t b (t) t u(t)) }-

2 J-1 J J Rij 1 j-1 J j 1

1 N - 1 N
- E{-.E ux.-x.(t)II t-AAy t E C.x t b (t)d t

2 J-1 J J Rij 2 J-1 J J 1 Ki(ttl)

N ,
t[Ay t jEl Cjxj t bl(t)] Ki(ttl)u(t) t~u(t)pK,

(ttl) }
i

, N
t gi(ttl)[Ay t jEl Cjxj t bl(t) t u(t)] t ci(ttl)} -

1 N -
E ux.-x.(t)u

Z j-1 J J Rij
t~IAy t E C.x t b (t)12 j-1 J j 1 Ki(ttl) t

, N
t g, (ttl) [Ay t Ei j-1 C.x, t bl(t)J t ci(ttl) t 2 traceJ J E(t)Ki(ttl),

1- 1, 2, --, N, t- tp, t~tl, .., tf. (4.1)

1The term 2 trace E(t)Ki(ttl) is a constant with respect to the optimization
variable. It influences only the total costs of the game (see remark 1,
page 11). So, it suffices to restrict ourselves to the purely deterministic
case, where E(t) - 0(or u(t) - 0), t- tp, t~tl, .., tf.

5. N-level hierarchical solution

The optimal decision of player i at time t can be found by minimizing
(4.1) with respect to xi. The Hessian matrix is positive definite, because
the matrices Q and R, are positive semi-definite and the matrices R.,i ij ii
are positive definite (see remark2 at page 11). So, the first order
conditions yield the solution. Remember, that the decision of each
player depends upon the decisions of players higher in the hierarchy. This
leads to the following set of equations.

N
R11 [xl-xl (t)] t C~ (K (ttl) [Ay t E C.x t b (t)] t g (tti) )- 01 1 j-1 J j 1 1

(5.1)

i-1 ax-
Rii[xi-xi(t)] t E1 ax] Ri [x.-x.(t)] tJ- 1 J ] J
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i-1 ax. N
t(C~ t E ~- C~) (K. (ttl) [Ay t E C,x t b (t)] t

i j-1 Bxi j i j-1 J j 1

t gi(ttl))- 0, i- 2, 3, ., N , t- t~, t~tl, .., tf. (5.2)

Notation: the sum term E and the product term II should be understood as
follows: if the index is decreasing, then E- 0 and II- I, and if not,
then as normal.

Theorem:

The solution is given by:

N N
xX(t) --F. (t) [Ay(t-1) t E C, [x~(t)-x, ( t)] t E C.x, (t) t bl (t)] t1 1 j-it1 J J J j-1 J J

t RE1(-Fi(k)(t))g~(ttl) t xi(t), i- 1, 2, .. , N, t - tp, tCtl, ,,, tf,

where

Fil)(t) - (R11tC1K1(ttl)C1)-1~1

F1(t) - Fil) (t)K1(ttl)

-1 , i-1 i-1 , ~
F (t) - M (t)C { E ( II (I-C F (t) ) ) F, (t)R. .F, (t)i i i j-1 k-jt1 k k J 1J J

i-1 i-1
( II (I-C F (t) ) ) t ( )Z (I-C F (t) ) ) ~K, (ttl)
k-jt1 k k k-1 k k i

i-1
( II (I-C F (t)))}
k-1 k k

i-1 i-1
F,iQ)(t) - ~"1i1(t)Ci{jEl(k-jt1(I-CkFk(t)))~F~(t)RiJ

i-1 m-1
(F~R) (t)-F, (t) F, ( iI (I-C F (t) ) )C F(~) (t) tJ J m-jt1 k-jt1 k k m m

i-1 , i-1 m-1
t ( II (I-C F (t) ) ) K, (ttl) ( E ( II (I-C F (t) ) )

k-1 k k 1 m-1 k-1 k k

(5.3)

(5.4)

(5.5)

(5.6)

(-CmFmR)(t)))}r Q - 1, Z. ..~ i-1 (5.7)
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i-1Fii)
(t) - Mi 1 (t) Ci (kn 1 (I-CkFk (t) ) ) ~

whe re

i-1 i-1
M. (t) - R., t C~{ E ( JI (I-C F (t))) ~F~ (t)R. ,F. (t)i ii i j-1 k-jt1 k k J 1J J

( lIIl (I-C F (t))) t (lIIl(I-C F (t)))~K,(ttl)k-jt1 k k k-1 k k i

(11I1 (I-CkFk (t) ) ) }Ci
k-1

for i- 2, 3, .., N, t- t~, t~tl, .,, tf

(5.8)

(5.9)

and Ki(.), i- 1, 2, .., N, is the solution of the backward recursive
matrix "Riccati" equations

N N
K. (t) - D~Q,D t A~ { E ( II (I-C F (t) ) ) ~F~ (t)R, j

1 1 j-1 k-jt1 k k i

N N
F.(t)( II(I-C F(t))) t( II(I-C F(t)))'K,(ttl)

7 k-jt1 k k k-1 k k i

N
(klll(I-CkFk(t)))}A, t - tf, tf-1, . , t~tl, (5.10)

Ki(tftl) - D~QiD (5.11)

and gi(.), i- 1, 2, .., N, is the solution of the backward recursive
"tracking" equations

N N
gi(t) - D~Qi[b2(t-1)-zi(t-1)] t A~{ E( n (I-CkFk(t)))~

j-1 k-jt1

N N
F. (t)R. [F. (t) ( II (I-C F (t) ) ) [ E C.x. (t)tb (t)] t

7 lj J k-jt1 k k j-1 J J 1

t E (F(Q) (t)-F.(t) E ( mltl (I-CkFk(t)))CmFmR) (t))
JC-1 J J m-jt1 k-jt1

N N
g (ttl)] t ( II (I-C F (t) ) ) ' (K, (ttl) [ ( 1I (I-C F (t) ) )2 k-1 k k i k-1 k k



N N N m-1
[.E1C.x.(t)tbl(t)] t k~l m~l(kIIl(I-CkFk(t)))J- J J -

(-CmFmQ) (t)gR(ttl)] t qi(ttl)) },

t- tf, tf-1, .,, tOtl, (5,12)

gi (tftl) - D~4i [b2 (tf)-zi (tf)] . (5.13)

The structure of the solution is comparabLe to Gardner and Cruz [4]. An

extensive treatment of the proof can be found in de Zeeuw [10]. Three

lemmas are essential. They will be stated here, also as a link to the

next section.

Lemma 1:

n n n
a) I - E . P, ( n (I-P ) ) - n (I-P )

1-7 1 k-it1 k k-j k

n n k-1 n k-1
b) E.{P.-P, E( II(I-P )) P - E( II(I-P ))P1-J 1 1 k-it1 R-it1 R k k-j Q-j R k

Lemma 2:

If (5.3) is correct for i- 1, 2, .., j-1, then

8xx(t) 1
1 - -C~( ~II (I-C F (t)))~F~(t),

dxx(t) J k-it1 k k i
7

for j- 2, 3, .. , N, t- t0, tOtl, .., tf.

Lemma 3:
If (5.3) is correct for i- 1, 2, .., j-1, then

- 1, 2, ,,, j-1,

1 N
x~(t) - x. (t) - -F, (t) ( JII (I-C F (t))) (Ay(t-1) t E C [x~(t)-x (t)] t1 1 1 k-it1 k k m-j m m m

N N
t m-1

Cmxm(t) t bl (t) ) t RE1 (-FiR) (t) t Fi (t)

1
]E ( mIIl (I-CkFk(t)))CmFmQ)(t))qR(ttl), i- 1, 2, .., j-1,m-it1 k-it1
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for j- 2, 3, .., N, t- t0, tOtl, ., tf.

Remarks :

(1) In order to find the costs of the game, the constant terms ci(.),
i- 1, 2, .., N, in the value functions should also be evaluated. If
the variance E(t) ~ 0, t- t0, tOtl, .., tf, an extra term enters the
recursive equations.

(2) By inductive reasoning it can be shown, that the Hessian matrices
(R11tCiK1(.)C1) in (5.4) and Mi(.), i- 2, 3, .., N, in (5.9) are
positive definite, hence non-singular, so that minimum costs, F.(.)i
and K.(.), i- 1, 2, .., N, exist (de Zeeuw [10]).i

(3) When the N-level hierarchical solution is substituted, the model can
be written as follows:

N N
y(t) -(kIIl(I-CkFk(t)))(Ay(t-1) t E1 C.x.(t) t b(t)),

J- J J 1

t - t0, tOtl, .., tf,

Y(t0-1) - YO-

(4) The alqorithm for the hierarchical solution has a loop backward in
time and upward in level, consisting of the equations (5.4) up to
(5.11), and a loop forward in time, consisting of the equations (5.3)
and the model equations.

6. More than one player at the same decision level.

The decision hierarchy is changed in the sense, that now q(q ~ 1) players
act at decision level p. So, there are N-qtl decision levels left. At
level p a Nash (or Cournot) equilibrium is assumed. Three cases are
distinguished: p- 1, 1 ~ p ~ N-qtl and p- N-qtl.
(a) p - 1.

The set of equations (5.1) and (5.2) changes in the sense, that now (5.1)
is effective for i- 1, 2, .., q(instead of only for i- 1) and (5.2)
is effective for i- qtl, qt2, .., N. The solution of (5.1) for
i- 1, 2, .., q is given by the Nash solution for such a problem. Here it
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is preferred to state this Nash solution recursively with an artificial
hierarchy of players. In this way the structure of the solution (5.3)
dces not change, so that the solution (5.2) for i- qtl, qt2, .., N and
the
So,

"Riccati" and "tracking" equations (5.10) up to (5.13) do not change.
this decision hierarchy only gives rise to some adjustments in (5.4)

up to (5.9) :

Fi(t) - Mil(t)CiKi(ttl) (knl(I-CkFk(t)))

i-1 ~ 1FiR)
(t) - Mil ( t) CiKi ( ttl) (mïl ( kll l (I-CkFk (t) ) )

(-CmFmR)(t))). R. - 1. 2. . , i-1

F(i)
(t) - M-1(t)C~i i i

where

Mi(t) - Rii } CiKi(ttl)(knl(I-CkFk(t)))Ci

for i- 1, 2, .., q, t- t0, tOtl, .., tf.

(b) 1 ~ p ~ N-qtl.

The set of equations (S.1) and (5.2) chanqes in the sense, that in (5.2)

i-1 p-1
E becomes E forj-1 j-1 - Ptl. Pt2, .., Pt4-1.

Again, the solution for i- ptl, pt2, .., pfq-1 is stated in a recursive
way with an artificial hierarchy of players, so that the solution for
i- ptq, pfqtl, .., N and the "Riccati" and "tracking" equations do not
change. Of course, the solution for i- 1, 2, .., p does not change either.
So, this decision hierarchy qives rise to the following adjustments:
in (5.6) up to (5.9) for i- ptl, pt2, .., ptq-1

i-1
(k~l(I-CkFk(t)))~ is replaced by
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i-1 P-1
I - (kIIp(I-CkFk(t)))~(I-(kIIl(I-CkFk(t)))')

i-1 p-1
and E is replaced by E.j-1 j-1

(c) p - N-qtl.
This case is not different from case (b),
the sequence ptq, ptqtl, .., N is empty.

except for the fact, that now

An extensive treatment of this section can be found in de Zeeuw [11].
Crucial in the proofs is, that lemma 2 and lemma 3 still hold, because
(5.3) is kept valid. Other changes in the decision hierarchy can be
treated in the same way.

7. Example

A small numerical example is given. Applications to a macroeconometric
policy model for the Corruuon Market can be found in Plasmans and di~
Zecuw [6] .

Cost functionals: J1 - 2y2(0) t 2y2(1) t xi(0) t xi(1)

J2 - y2(0) t y2(1) t x2(0) t x2(1)

Model: y(i) - y(i-1) t xl(i) t x2(i), i- 0, 1,

y(-1) - 1

(5.12),(5.13): gl(2) - g2(2) - gl(1) - g2(1) - 0;

(5.11): K1(2) - 4 , K2(2) - 2;

(5.4) , (5.5) : F1 (1) - 3 ; (5.9) : M2 (1) - ~ ; (5.6) : F2 (1) - 10 ;

(5.10): K1(1) - 25 , K2(1) - 51;

127 68158 2750(5.4) , (5.5) : F1 (0) - 177' (5.9) : M2 (0) - 31329'
(5.6) : F2 (0) - 34079'



(5.3) and model:

hierarchical solution in values:

2750 22479
x2 (0) - - 34079 ' xl (0) - - 34079 '

885 5310
x2 (1) - ' 34079 ' x1 (1) - - 34079 '

8850 2655with simulation 1, 34079 ' 34079 '

8. Threat strategies

In this section we will only consider a two person game in a deterministic
setting, where the target paths zi(.), the trend paths xi(.) and the
exogenous vectors bl(.) and b2(.) are all equal to zero. Without loss of
generality D(.) - I. The matrices R,j(.), i~ j, are also assumed to bei
positive definite in order to have unique "team solutions" with respect
to one cost functional.

So, we have

t
min J. ( y , x(.), x (.)) - 1 É{Ny(t)1 tlx (t)M t9x (t)N }
x(.) i 0 1 2 2 t-t0 4i 1 Ri 1 2 Ri 2,
i

i - 1, 2, (8.1)

subject to

y(t) - Ay(t-1) t Clxl(t) f C2x2(t), t- t0, tOtl, ., tf, (8.2)

y(t0-1) - YO-

Tolwinski [ 9] consideres the situation, where the second player intro-
duces threats in an attempt to force the first player to a desirable
behaviour. This is more in line with the ideas of von Stackelberg about
a dominant player solution. In this case the second player needs more
information from the past (y(t-2) and x2(t-1)) to be able to judge,
whether the other player has behaved according to his wishes. So, the
information becomes more "history dependent". In fact, the second player
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tries by means of a threat to change the parameters of the game in such
a way, that the optimal reaction of the other player coincides with
optimal behaviour with respect to the cost functional of the second
player. In case the first player falls for the threat, this concept
leads to a solution, which is almost the same as the "team solution" under
the second cost functional. We will analyze this concept, in case the
second player knows the value of the last action of the first player
(xl(t-1)) in addition to y(t-1), y(t-2) and x2(t-1). Also selection
among all the possible threats is considered.

The objective of the second player is the "team solution" ( xl(.), x2(.))
with respect to J2. He tries to confront the first player with an optimal
control problem, of which the solution coincides with xl(.).
In other words, in case player 1 chooses strategy xl(.), player 2 plays
x2(.), but in case player 1 deviates from xi(.), player 2 plays such that
player 1 is worse off. Out of all the threats, that will serve his
purpose, player 2 chooses one, which does not do too much harm to himself,
in case it has to be carried out. Note, that at the last stage player 1
is not vulnerable to any threat of player 2, because the game is over.
His rational reaction is gíven by:

xl(tf) - -(R11tC1Q1C1)-1CiQ1(Ay(tf-1)tC2x2(tf)).

Substitution of (8.3) in the cost functionals (8.1) and the model
equations (8.2) leads to the following change in parameters:

Q1(tf) :- Q1(I-C1S) ;

Q2(tf) :- (I-C1S)~Q2(I-CiS) t S~R21S ;

C1(tf) :- 0; R11(tf) :- 0; R21(tf) :- 0,

where S - (R11tC1Q1C1)-1C1Q1

(8.3)

and y(tf) ís redefined as Ay(tf-1) t C2x2(tf).
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By solving a standard optimal control problem, the "team solution" with

respect to JZ can be found. Suppose this solution is given by (after the
change in parameters):

xi(t) --L1(t)y(t-1), t- t~, t~tl, .., tf-1,

x2(t) --LZ(t)y(t-1), t- t~, t~tl, ., tf (8.4)

When we assume, that player 2 will be successfull in realizing this team

solution during the time to come, again we can analyze the problem
stagewise, backward in time. So, player 2 introduces a threat at stage
t, t- tf, tf 1, .., t~tl, in order to influence the action of player 1
at stage t-1, as a function of the information {y(t-1), y(t-2), xl(t-1),
x2(t-1)}. At stage t~ player 2 plays -L2(t~)y~. The threat strategy must
fullfill three conditions:

(a) if xl (t-1) - -L1 (t-1)y (t-2) , then x2 (t) - -LZ (t)y (t-1) .

(b) -L1(t-1)y(t-2) is the optimal control for player 1 at stage t-1.

(c) if xl(t-1) ~ -L1(t-1)y(t-2) ( in which case the threat should be
carried out), then the costs of player 2 are minimized (a selection
from all the possible threats).

We consider the following class of controls, which fullfill condition (a):

xz(t) - -L2(t)y(t-1) t v,

where v- 0, if xl(t-1) --L1(t-1)y(t-2) (8.5)

The cost functionals become:

t-2 1
Ji - E 2 Ny(s)N f Nxl(s)Nlt. } Nx2(s)NR. } t

s-tp Qi il i2

t 29x1(t-1)NRll } ~x2(t-1)NRi2
}

~y(t-1)Npl(t) } wi(t),
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where

Pi (tf) - T~ (tf) QiT (tf) t L2 (tf) Ri2L2 (tf) t Qi

Pi (t) - T~ (t)Pi (ttl)T(t) t L1 (t)Ri1L1 (t) t L2 (t)Ri2L2 (t) t Q.
1

T (t f) - A - C2L2 (tf)

T(t) - A - C1L1(t) - C2L2(t)

wi (t) - 2 Ilv
uN. (t) t di (t) v (8.6)

di(tf) - Y~(tf-1)(T~(tf)QiC2 - L2(tf)12i2)

di (t) - Y~ (t-1) (T~ (t)Pi (ttl)C2 - L2 (t) Ri2)

Ni(tf) - xi2 t C2QiC2

Ni (t) - Ri2 t C2Pi (tti) C2

for t- tf-1, tf-2, .., tOtl , i- 1,2.

The terms wi(.) are the "extra costs", in case the threat is carried out.

If wl(t) is a differentiable function of xl(t-1), the conditions

(i)
aJl

axl(t-1) (-L1(t-1)y(t-2)) - 0

a2J
(ii) 2 1 ~ o

axl(t-1)

(i'li) wl(-L1(t-1)y(t-2)) ~ 0

guarantee condition (b), for:

(i) t(ii) ~ Jl(-Ll(t-1)y(t-2), -LZ(t)y(t-1) t v) c



J1(xl(t-1), -LZ(t)y(t-1) t v), Flxi(t-1)

and

(iii) ~ J1(-L1(t-1)y(t-2), -LZ(t)y(t-1)) ~

J1(-L1(t-1)y(t-2), -L2(t)y(t-1) t v).

Condition (c) implies, that player 2 minimizes wz(t).

(8.7)

Now player 2 chooses at stage t a threat v, differentiable with respect

to xl(t-1), such that w2(t) is minimized under the restrictions (i), (ii)
and (iii). This is a rather complex problem. We restrict ourselves to
solutions with the properties

aw
wl(-L1(t-1)y(t-2)) - 0 and ax (t-1) constant.

1

Then:

8J aw

óxl(tll) -(CiPl(t)C1 t R11)xl(t-1) t axl(t-1) t

t CiPl(t)(Ay(t-2)tCZx2(t-1)).

Condition (i) yields:

awl
ax (t-1) (-L1(t-1)Y(t-2)) - a(t).

1

(8.8)

where a(t) - (CiPl(t)CitRll)L1(t-1)y(t-2) -

- C1P1(t)(Ay(t-2)tC2x2(t-1)).

Together with assumptions (8.8) this leads to:

wl(xl(t-1)) - a~(t)(xl(t-1)tLl(t-1)y(t-2)). (8.9)
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We check condition (ii):

ó 2J 1
2 - (CiPl (t)C1tR11) ~ 0.

axl(t-1)

Now we try to solve for the threat v from (8.6) and (í3.9). Still the
problem is complex. Again we restrict ourselves severely, We consider
only threats v, where all but one component are equal to zero. Further-
more, note that threats v, which imply higher extra costs than wl(t),
serve the purpose of player 2 as well (see (8.7)).

In case dl(t) - 0, solutions are given by

la~(t)(xl(t-1)t L1(t-1)y(t-2))~ 2
~J - (N1(t))jj ' J - JO

jo E {1, Z, ,., sl},
vj - 0 , j ~ j~

because ~a~(t)(xl(t-1)tLl(t-1)y(t-2))I ~ wl(t).

In case dl(t) ~ 0, solutions are giveri by

v.
J

~j

a (t)(xl(t-1)tLl(t-1)y(t-1))

(dl(t))j

-o

, ] - j~

jo E {{l,z,..,sl}~(al(t))jo~ ~},
, j~jo

because 2I ~II
N(t) ~ 0,

1

Now minimization of w2(t) has become very simple:

min{ (N (t) ) v? t (d (t)), v, }.
j 2 JOJO JO 2 JO JO0

We realize, that the problem is by far not generally solved. Besides,
the model looks not very realistic. In case player 1 also introduces
threats in the same way, the situation occurs, that the threats are
actually carried out. At t- t~ player 2 plays -I~Z(t~)y~, which is



generally not according to the team solution under J1. So player 1

executes his threat, which is generally not according to the team
solution under J2. So, player 2 executes his threat at t- tOtl, etc.
The question rises, who wants to and who can continue this costly proces.
We need a concept for relative strength. The dominant player might not
be the one, who decides first:

9. Conclusion

In this paper algorithms are given for optimal control methods in a

decentralized (partly) hierarchical decision structure for econometric

models in reduced form. These algorithms can be used for policy
evaluation in case of more than one policy maker with poss~ibly con-
flicting objectives. Also a concept for tlireat strategies is investigated.

The last results are not very satisfying.
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