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1. INTRODUCTION

This paper develops optimal investment rules in a dynamic model of a

monopolistic firm, facing a U-shaped average cost of capital stock

adjustment. Consequently, the total adjustment cost becomes a concave-

convex function of the investment rate. Our results are derived by using

optimal control theory for systems in continuous time, with a fixed and

finite planning horizon.

The influence of adjustment costs on the firm's optimal behavior has

been noted by, for instance, Gould (1968), Rothschild (1971), Nickell

(1978), Davidson and Harris (1981). For a survey, see Stlderstrtlm (1976).

However, there does not seem to be general agreement on what should be the

"proper" shape of the adjustment cost function. Models with convex

adjustment cost functions (i.e. increasing marginal costs of adjusting the

capital stock) have been studied by e.g. Gould (1968), Nickell (1978). The

use of such cost functions can be realistic, for example, in a situation

where a firm, operating in a monopsonistic environment, wishes to acquire

capital. Then the firm must face increasing prices because of the increased

demand for capital goods. On the other hand, concave adjustment cost

functions (implying decreasing marginal costs) have also been proposed; see

Rothschild (1971), Nickell (1978). Such cost functions could emerge when

fixed ordering costs and quantity discounts are present, but also because

of indivisibilities, economies of information in training and so forth (cf.

Rothschild (1971, pp. 608-609)).

Davidson and Harris (1981) argue that the adjustment cost function be

concave-convex. In a continuous-time model there could be some initial

economies to scale when adjusting the capital stock, but as the investment

rate becomes larger, in a firm of a given size, average adjustment costs
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eventually increase. Put in another way: installing capital at a(too) high

rate ultimately leads to increasing costs. Nickell (1978) notes that

strictly convex adjustment costs imply that it is more expensive to do

adjustments quickly than slowly. If we consider internal adjustment costs

(which are costs related to the adjustment of capital stocks andlor labor

force within the firm) this may be true for sufficiently large amounts of

investment expenditure. But internal adjustment costs being convex for low

investment rates (for example, installing a new production line over a

period of fifty years) make little or no sense. Therefore, when

monopsonistic elements in the capital gooda market are not predominant it

may be better to suppose that adjustment costs are concave for small rates

of ínvestment. (Note that the presence of a monopsonistic market structure

always lead to a stricly canvex adjustment cost function).

The dynamic investment model to be studied in this paper is a

modification of the one proposed by van Loon (1983) (see also Kort (1989))

and the reader is referred to these works for further details. The

organization of the paper is as follows. Section 2 presents the dynamic

optimization problem of the firm and Section 3 contains the mathematical

analysis of the optimal control problem as well as economic interpretations

of the results. Section 4 concludes the paper.

2. A DYNAI~IIC INVESTMENT MODEL

Consider a monopolistic firm behaving so as to maximize the shareholders'

value of the firm, consisting of the discounted stream of dividends over

the planning period plus the discounted value of the amount of equity at
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the end of the planning period. Hence the firm seeks to maximize the

objective functional

T
f exp(-rt)D(t)dt t exp(-rT)X(T)
0

(1)

where D- D(t) is the rate of dividend payout at time t, X- X(t) the stock

of equity by time t, r~ constant ~ 0 the shareholders' time preference

rate, and T the finite length of the firm's fixed planning period.

Suppose that depreciation is proportional to the capital stock and let I-

I(t) be the rate of gross investment at time t, K- K(t) the stock of

capital by time t and a- constant ~ 0 the depreciation rate. The equation

for the evolution of the stock of capital becomes

K- I- aK, K(0) - Ko - constant ~ 0. (Z)

Furthermore, suppose that the firm's only asset is its stock of capital

goods which, in turn, can only be financed by equity. After fixing the unit

value of the capital stock at one unit of money, it holds that K- X in the

firm's balance sheet.

Let the gross earnings of the firm be given by a function S- S(K),

such that S(K) ~ 0 for K ~ 0, S'(K) ~ 0, S"(K) ~ 0, S(0) - 0. Let A a A(I)

denote the rate of adjustment cost incurred when investing at rate I and

assume that A(I) satisfies the following conditions: A(0) a 0, A'(I) ~ 0

for I ~ 0, and A"(I) ~ 0 for I ~ Io , A"(I) ~ 0 for I ~ Io .

Earnings, after deduction of depreciation and adjustment costs, can be

used to pay out dividends and~or increase retained earnings (i.e., equity).

Hence

X- S(K) - aK - A(I) - D. (3)

Using (2) and (3), and noticing that X- K, yields
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D - S(K) - I - A(I) (4)

and substitution of (4) into (1) gives the final form of the objective

functional

T
J exp(-rt)(S(K) - I- A(I))dt t exp(-rT)K(T).
0

Introducing lower bounds on dividends as well as investment yields the

(la)

mixed state-control constraint

D- S(K) - I- A(I) ? 0 (5)

and the pure control constraint

I ~ 0. (6)

Inequality (5) states that total (investment) costs must not exceed total

current revenue whereas inequality (6) states that investment is

irreversible and thus bounded below by zero.

The following assumption is made for technical reasons.

S(K) - aK - A(aK) ~ 0 (7)

and has the interpretation that profits (after depreciation and adjustment

costs) are strictly positive for every admissible K, when investment is

just at the replacement level. It is possible to introduce (7) explicitly

as a pure state constraint (replacing strict inequality by weak

inequality). However, wishing to avoid this we have assumed that such a
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constraint never becomes binding. (This is likely to be the case if the

depreciation rate, a, is relatively small).

The optimal control problem of the firm has now been formulated:

determine an investment path, I(t), over a fixed and finite planning period

[O,TJ, such that the objective functional in (la) is maximal, subject to

the constraints (2), (5), and (6).

Models related to this control problem can be found in Appelbaum and

Harris (1978), Skiba (1978), Davidson and Harris (1981), Hartl and Mehlmann

(1983) and Feichtinger and Hartl (1986, Ch. 13). However, all these

analyses deal with the case of an infinite planning period where, from

obvious reasons, there is no salvage value term in the objective function.

In the model at hand, the planning period is finite and we include a

salvage value term being the terminal value of the capital stock. The set-

up in Davidson and Harris (1981) is close to ours but these authors do not

introduce an upper bound on the investment rate. Hence, the paper at hand

changes the Davidson and Harris model to deal with a finite planning

horizon and specifies an endogenous upper bound on investment given by

S(K) ~ I t A(I). An upper bound on investment was considered in Appelbaum

and Harris (1978) who, however, disregarded the adjustment costs. Thus the

upper bound on investment in Appelbaum and Harris was given by S(K) ~ I.

3. ANALYSIS OF THE INVESTMENT PEOBLEM

Define the total cost function, C(I), as C(I) - I t A(I) and notice that

C(0) z A(0) - 0, C' s 1 t A' ~ 0, C" a A" and C~I - 1 t AII. This implies

that C' and A' attain their minimum at I a Io whereas C~I and AII attain

their minimum at I- I1 ; see also Figure 1.
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[Insert Figure 1 about here]

The current-value Hamiltonian is given by H(I,K,p) - S(K) - paK f pI -

C(I) and p ia a(current-value) adjoint variable. Using the maximum

princigle, we should maximize the Hamiltonian with respect to I for any

arbitrary but fixed pair (K,p). To determine the eign of p we need the

adjoint equation

p-(r t s)p - S'(K) such that p(T) a 1. (8)

Integration in (8) shows that the adjoint variable is stricly positive for

all t e[O,T]. Recall that p has the usual interpretation as a shadow

price (of a unit) of capital atock at date t.

Disregarding for a moment the upper bound on C(I) (i.e., C(I) s S(K)),

an investment policy which maximizes the Hamiltonian is characterized by

I(P)
~ -

I - 0 or II if p C p

where p is defined by

C'(I1) - C(I1)JI1 ~ p. (9)

Notice that I(p) ~ I1 and I(p) is a solution of C'(Z) - p, that is, I(p) -

(C')-1(P).

To take the constraint C(I) s S(K) into account we must modify the

investment policy as follows. There are two cases to consider.

Case 1: II s C-1(S(K)).

Here, an optimal investment policy is characterized by

0
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min{I(p), C-1(S(K))}
I - 0 or I1

0

if
~ -

P ~ P

Case 2: I1 ~ C-1(S(K)).

Here, an optimal investment policy is characterized by

C-1(S(K))
I ~ 0 or C-1(S(K)) if

0
p - S(K)IC-1(S(K)).

t

(10)

The derivation of the optimal policies in Cases 1 and 2 is straightforward

and omitted.

Note that the transversality condition in (8) implies that there is

always a terminal interval on which the optimal investment rate is zero. On

such an interval there is not enough time left to defray the adjustment

costs of new investments. Hence, such investments should not be undertaken

(cf. also Kort (1989)).

What we have obtained until now is a preliminary characterization of

an optimal investment policy. The further analysis will proceed as

follows. First we analyze a model with a globally concave adjustment cost

function. Second, a model with a globally convex adjustment cost function

is studied and, third, we combine the results of these two analyses so as

to construct a solution to the problem with a concave-convex adjuatment

cost function. These derivations are made in Sections 3.1, 3.2 and 3.3,

respectively.
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3.1 Concave Adiustment Cost Function

A similar model was studied by Kort (1989) but only for the case of a fixed

upper bound on the investment rate. (Recall that in the present paper

C-1(S(K)) provides an upper bound on the investment rate). Let C(I) be a

strictly concave (total) inveatment cost function. Following the standard

procedure ( see, e.g., Feichtinger and Hartl (1986)) we replace function

C(I) by a function, say, C1{I,K), being linear in I and such that

C1(I,K) ~ I S(K)IC-1(S(K)) : s I B(K). (12)

For any fixed K the function C1(I,K) coincides with C(I) at I a 0 and at

I- C-1(S(K)) but C1(I,K) is below C(I) for 0 ~ I ~ C-1(S(K)).

We proceed with solving the linearized problem. The objective

functional for this problem becomes

T
f exp(-rt)[S(K) - I g(K)Jdt t exp(-rT)K(T)
0

and substituting I- K t aK into (lb) yields

T .
j exp(-rt)[S(K) - g(K)K - g(K)aKJdt t exp(-rT)K(T).
0

(lb)

(lc)

Define the auxiliary functions M(K) :a S(K) - g(K)aK and N(K) :- g(K)

(which are C1 functions) and note that a singular solution, say, Kw, of the

linear problem satisfies (Feichtinger and Hartl (1986, Section 3.3))

rN(Kw) t M'(K~) - 0, that is,

- rg(K) f S'(K) - ag(K) - aKg'(K) - 0 (13)
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where

g'(K) ~ d(S(K)~C-1(S(K)))~dK -

(14)

S'(K)~C-1(S(K)) - S'(K)S(K)IC'(5(K))(C-I(S(K)))2.

Define the set Q(K) -{I-aK~ 0 5 I 5 C-1(S(K))} ~[-aK, C-1(S(K})-aKJ

and notice that zero is an element in Q because of (7). This implies that

the singular solution is sustainable. Inserting (14) into (13) yields

S'(K) - (atr)S(K)~C-1(S(K)) - aK S'(K)jC-1(S(K)) t

(14s)

aK S'(K)S(K)~C'(S(K))(C-1(S(K)))Z - 0.

It is well known that if no feasible solution(s) exists to (14a) and,

in such a case, the left-hand side of (14a) is negative (positive) for all

admissible K, then it is optimal to invest so as to approach K- 0(K -~)

as fast as possible, starting from Ko. (Notice that such an investment

policy need not exist).

If (14a) has a unique solution, say, K~ (such that 0 e Q(K~), K~ ~ 0),

and the left-hand side of (14a) is positive for K ~ K~, negative for K~

K~, it is optimal to invest so as to approach K~ as fast as possible,

starting from Ko. Note that 0 e Q(K~) holds but the solution of (14a) is

not necessarily unique.

In order to secure existence and uniqueness of such a solution to (14a)

we impose the following assumptions. Suppose that (i) the derivative

d(rN(K) t M'(K))~dK is negative for all K ~ 0 and that (ii) the value rN(0)

t M'(0) is positive. Then there exists a K~ ~ 0 being a unique solution to
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(14a). In the appendix we present a set of sufficient conditions which will

guarantee that hypotheses (i) and (ii) are satisfied.

The optimal investment policy for the linearized problem is given by

if

0 5 K ~ K~ (15a)

K - K~ (15b)
K ~ K~ (15c)

To exclude a pure bang-bang policy we assume that the plannning period, T,

is sufficiently long such that the unique optimal solution I~ (given by

(15)) can reach the steady state value aK~ at some instant t ~ T.

Recall (cf. (12) and (la),(lb)) the relationship between the problem with

concave cost function C(I) and the linearized problem with cost function

C1(I,K) and notice that both problems have the same set of admissible

solutions. For any admissible policy I(t) it holds that

T
0 c J: f exp(-rt)(S(K) - C(I))dt t exp(-rT)K(T) s

0

T
f exp(-rt)(S(K) - C1(I,K))dt t exp(-rT)K(T) 5 (16)
0

T
f exp(-rt)(S(K) - C1(I~,K))dt f exp(-rt)K(T) :- J1
0

where the first inequality follows from the constraint C(I) s S(K) and the

second one from the definition of function C1(I,K). The third inequality

follows from the optimality of I~ as defined in (15). Hence, the optimal

value of the objective functional of the linearized problem, J1, provides an

upper bound on the value of the objective functional of the concave

problem, J.
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If the linearized problem does not admit a singular solution, the

solutions of the concave problem and the linear problem are the same. (This

is intuitively clear but see also, for example, Feichtinger and Hartl

(1986, Th. 3.3)). When the linearized problem does have a singular

solution, it can be seen from (16) that no solution of the concave problem

will give a value of J which actually reaches the upper bound J1. However,

it can be shown (Feichtinger and Hartl (1986, Section 3.5)) that J1 can be

approximated arbitrarily close by using a chattering control. Such a

control consists of switching the investment rate, in principle infinitely

fast, between the bounds I- 0 and I- C-1(S(K)), in order to keep K(t) as

close as possible to K~ on the time interval where K~ (the singular

solution) is optimal. A solution contaíning a phase of chattering control

will be denoted as E-optimal (Davidson and Harris (1981)).

The E-optimal solution of the concave adjustment cost problem is

depicted in Figure 2 for the case of a small initial stock of capital (Ko ~

K~); the chattering control is represented by a dot.

[Insert Figure 2 about here]

The results obtained for a concave adjustment cost function can be

summarized as follows. For the case of a small initial stock of capital, Ko

~ K~ (K~ given by (14a)), an e-optimal investment policy consists of an

initial phase of maximal investment, I- C-1(S(K)), followed by an

intermediate interval of chattering between I- 0 and I- C-1(S(K)). This

interval is the one where K~ is optimal in the linearized problem. The

purpose of the chattering control is to keep K as close as possible to K~.

On a terminal interval investment is zero (due to the transversality

condition). Some economic interpretations will be offered later, in
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connection with the construction of the full solution of the concave-convex
problem.

3.2 Convex Adiustment Cost Function

This situation has been studied extenaively in the literature and we only

give a brief account of the main results. In this section, let C(I) be a

strictly convex (total) cost function.

In the convex case it is easily shown that an optimal policy has

the same structure as (15) (cf. Kort (1989, Section 3.3) but K~ is no

longer constant. The optimal investment policy is characterized by

I ~ C-1(S(K)) (Path 1)

I - I(p) (Path 2)

I ~ 0 (Path 3).

Recall that I(p) -(C')-1(p). I(p) is also determined through the relation

I - [(rta)C'(I) - S'(K)]IC"(I). (17)

An analysis of the synthesis problem yields the following trajectories as

candidates for optimality, depending on the specific set of model

parameters.

I. Path 1-y Path 2-. Path 3

II. Path 2 y Path 3

III. Path 3-y Path 2 y Path 3

IV. Path 3.
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The investment policy I(p) on Path 2 is non-increasing over time when it is

a part of trajectory I(cf. Kort (1989), Lemma 4, p. 149). It can be shown

that

I
~

Trajectory II occurs if NPVMI e 0 at t- 0
~

III, IV

where NPVMI means "net present value of marginal investment" The

expressions for NPVMI on the various paths can be found in Equations

(3.20-22) in Kort (1989).

An equilibrium point (K,I) must satisfy K a I a 0. Equations (2) and
(17) show that such a point is characterized by

S'(K) - (rta)C'(aK) (18)

and it is a saddle point in the K-I plane.

In Figure 3 the optimal solution is depicted for a case where NPVMI ~

0 at ta0. In such a case it is optimal to start with maximal investment at

the rate I~ C-1(S(K)), followed by the interior policy I(p) (where

investment is non-increasing over time). The final phase of zero investment

also occurs here.

[Inaert Figure 3 about here]

Notice that the equilibrium point, K, may never be reached (for a detailed

discussion; see Kort (1989, pp. 149-50). This fact is due to the presence of

the flexible accelerator mechanism which shows up in problems with convex

adjustment costs; see also Gould (1968).
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3.3 Concave-convex Adiustment Cost Function

In this section we combine the solution of the problem having a concave

adjustment cost function with the solution of the problem having a convex

adjustment cost function. This will yield a complete solution of the

problem posed in Section 2.

Consider the K-I plane and notice that the phase diagram (Figure 3) for

the convex case is valid when I~ I1. For I ~ I1 the results for the

concave case (Figure 2) can be used, with a slight modification (to which we

shall return). Assumption (7) yields aK ~ C-1(S(K)) and, depending on the
functional forms of S(K) and C(I) (and the parameters), one of the

following inequalities must always be true.

Case (i): I1 ~ I ~ C-1(S(K))

Case (ii): I ~ I1 ~ C-1(S(K))

Case (iii): I ~ C-1(S(K)) ~ I1.

Here, I- aK and K is given by (18). The solution (depicted by a solid

curve) in each of the three cases ( i), (ii) and ( iii), respectively, is

graphed in Figures 4, S and 6. If we assume that Ko ia sufficiently small,

an optimal investment policy always contains an initial phase of maximal

investment. Furthermore, there is always a terminal phase of zero

?nvestment. That is, I- C-1(S(K)) on an initiel interval, say, [O,tl] and

I~ Q on a final interval, say, [t2,T].

REMARK

In what follows we shall use the generic symbols tI, t2, and t3 to indicate

instants where the investment policy awitches from one type to another.

In order not to complicate the notation unnecessarily we have chosen to
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employ the symbols tl, t2, and t3 in all three cases (i)-(iii). However, it

is obvious that a particular switching instant will depend on the

characteristics of the case under consideration.

Now we proceed with characterizing the investment policy to be employed

in Cases (i)-(iii).

[Insert Figure 4 about here]

Case (i): Refer to Fiaure 4.

For I ~ I1 we use the results of Section 3.2 (where the model with s

convex adjustment cost function was analyzed). The solution depicted in

Figure 3 shows that, at some moment, say, tl, the initially optimal policy

of maximal investment, I~ C-1(S(K)), must be replaced by the (non-

increasing) policy I- I(p) -(C')-1(p). We shall need the following lemma.

Lemma 1. Let t2 be the instant at which I(p) becomes equal to I1 and let K

denote the corresponding value of K. For e~ 0 and sufficiently small it

holds that

I- I(p) ~ I1 for t2 - e ~ t 5 t2

I - 0 for t2 ~ t ~ t2 t E.

Proof. See the appendix.

The lemma implies that from the instant t2 and till the end of the planning

period, the investment rate is set equal to zero.
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To summarize, in Case ( i) an optimal investment policy is given by

C-1(S(K}) 0 ~ t ~ tl
I~ I(p) for tl 5 t s t2 (19)

~ t2 ~ t s T.

The economic implications of such a policy are as follows. Endowed with a

small initial amount of capital goods, Ko, the firm starts out by investing

at the maximal rate on the interval [O,tl). This is a growth phase where no

dividends are paid out since all revenues are used for investment (recall

that C(I) ~ S(K) during this phase). The investment rate and the stock of

capital are both increasing over tíme (due to assumption (7); see also Kort

(1989, p. 142)). At the instant tl this growth phase stops because of the

fact that marginal earnings have become too small to finance the rising

marginal investment costs. (Note that S'(K) decreases when K increases and

that C'(S(K)) increases when K increases and S(K) ~ I1; see also Figure 1).

At t- tl the firm switches from a maximal to an "interior"

investment policy, I~ I(p). The latter is characterized by C'(I) a p, that

is, marginal investment costs equal the shadow price of capital stock.

During the interval [tl,t2] the investment rate is continuously non-

increasing with respect to time. On this interval the capital stock first

increases but then starts to decrease as soon as the investment rate falls

below the replacement level. Since investment is not at its upper bound, a

positive amount of dividends is paid out.

The instant t2 is determined as the moment where the investment rate

becomes equal to I1. On the final interval (t2,Tj contraction occurs in the

sense that no investment is undertaken. All profits are distributed as

dividends and the stock of capital goods continues to decrease on that

interval.
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In Case (i) we have seen that the investment rate drops from I(p) - II

to zero just after t- t2. In the problem with a globally convex adjuetment

cost function (Figure 3) there is an interval, preceding the final phase of
zero investment, on which the investment rate is continuously decreasing

towards zero. If the policy of Case (i) included such an interval, on which

I is lower than II, then such investment rates would be unprofitable

because of the higher average costs (C~I) (see also Figure 1).

[Insert Figure S about here]

Case (ii): Refer to FiQUre 5.

We start by proving the following lemma which, as Lemma 1, characterizes
the investment policy on an intermediate time interval.

Lemma 2. Define a level of capital, say, K, by S'(K) -(atr)C'(I1) and let

t3 be an instant of time such that tl ~ t3 ~ t2. There exists an interval

[t1,t3J un which investment is given by I- I(p) and investment decreases

on this interval until I- I1, at which point it holds that K- K. The

instant of time when this happens is t3. On the interval [t3,t2] investment

chatters between 0 and I1 in order to keep K as close as possible to K.

Proof: See the appendix.

The implication of the lemma is as follows. As previously, on an initial

interval [O,t1J, investment is maximal, I- C-1(S(K)), and both capital

stock and investments are growing over time. Hence, on this interval

marginal earnings decrease whereas (for I ~ I1) marginal adjustment costs
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increase. At the instant tl the firm should start to let the investment

rate decrease. On the interval (tl,t3] investment is kept at its "interior"

level I a I(p), implying a continuously non-increasing inveatment rate (as

in Case (i)). But, in contrast to Case (i), the investment rate reaches at

time t- t3 the line I- I1 before falling below the replacement level.

Therefore, the capital stock increases on the whole interval [tl,t3].

At time t-t3 the capital stock reaches its equilibrium value K where it

holds that the marginal earnings rate equals the marginal cost rate. The

latter consists of the sum of the shareholders' time preference rate (r)

and the depreciation rate (s), corrected for the fact that adjustment costs

must be paid in order to increase the capital stock by one dollar.

Notice that one might argue that the firm should employ an investment

policy which maintains the capital stock at the level K. In the problem at
hand such a replacement policy would, however, be suboptimal since it would

induce a higher average investment cost (see Figure 1 and note that aK ~ I1).

The better policy is to keep K as close as possible to K by using a

chattering control, that is, the investment rate switches rapidly between 0

and I1. This is what happens on the interval (t3,t2). From the instant t2

and onwards investment is zero.

To summarize, in Case (ii) an e-optimal investment policy is given by

I

C-1(S(K))

I(P)
Chattering between 0 and I1
0

0 5 t ~ tl

tl 5 t 5 t3

t3 ~ t ~ t2

t2 5 t 5 T

Notice, in contrast to Case (i), that the policy I(p) is not extended all

over the intermediate interval (tl,tZ] but a period of chattering

investment on (t3,t2) precedes the final interval of zero investment.
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[Insert Figure 6 about here]

Case (iii): Refer to Fieure 6.

This case has been treated in some detail in Section 3.1 (cf. Figure 2). It

suffices to state the following characteristics of the investment policy.

On the initial interval (O,tl) it is optimal to invest maximally, that is,

I- C-1(S(K)), due to the high marginal earnings (Ko is relatively low and

hence S'(K) is high). This policy is followed by chattering such that I

switches as fast as possible between 0 and C-1(S(K)) on the interval

[tl,t2), in order to keep K as close as possible to the singular level K~

(cf. (14b)). As in Case (ii), a chattering policy is better than

replacement investment because the chattering policy carries a lower

adjuscment cost. On the final interval, [t2,t3], no investment is

undertaken.

An e-optimal investment policy is characterized by

C-1(S(K)) 0 s t t tl
Chattering between 0 and C-1(S(K)) tl 5 t ~ t2
0 t2 s t s T.

Notice that only in the convex adjustment cost model (Section 3.2) the

investment rate is continuous with respect to time throughout the interval

(O,T]. Of the three alternative solutions of the concave-convex adjustment

cost model we see that the solution in Case (i) is the one which comes

closest to having this property. Recall that the policy in Case (i) only

has one discontinuity (at t- t).2

The solution in Case (iii) has the same structure as the solution of

the concave adjustment cost model, which is due to the relatively high

value of I1, below which the average cost function is decreasing. In Case
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(ii) the intermediate phase consists of a region where the investment rate

is continuous in time and a chattering control region. Hence, the influence

of the convex and the concave parts of the adjustment cost function is

perhaps most clearly reflected here. This is due to the fact that the

value of I1 is neither particularly high nor low.

4. CONCLUDING BFa4ABRS

In this paper a dynamic investment model of a firm has been analyzed. A key

feature was the assumption of a concave-convex investment adjustment cost

function. Depending on the parameter values and the specific functional

forms of the earnings and cost functions, three different types of optimal

solutions emerged. These solutions were illustrated in phase diagrams for

the case of a small initial stock of capital goods.

A common characteristic of all solutions was an initial maximal growth

phase and a terminal phase of zero investment. However, on an intermediate

interval the solutions were different. In the first case the investment

rate decreased continuously until reaching a value at which the average

adjustment costs are minimal. In the second case such a phase also appeared

but was followed by a chattering investment policy where the investment

rate switched rapidly between zero and the value at which average

adjustment costs are minimal. In the thizd case the intermediate interval

only contained the chattering policy where the investment rate switches

rapidly between zero and its upper bound.

The literature on optimal dynamic investment under adjustment costs has

mainly focused on the case of convex adjustment costs. However, as already

indicated in the introduction, some authors have argued that a partly
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concave adjustment cost function could also be economically plausible. In

particular, an adjustment cost function being concave for low investment

rates and convex for higher investment rates could also be realistic but

not much attention has been paid to investment policies subject to

adjustment costs of such a shape.

Davidson and Harris (1981) studied the implications of a concave-

convex adjustment cost function when the firm maximizes its discounted cash

flow over an infinite planning period and where there is no upper bound on

the rate of investment. In the paper at hand, the planning period is finite

and we impose an endogenous upper bound on the investment rate. This bound

arises from the requirement that dividends must remain non-negative.

In all cases we obtained an initial growth phase with maximal

investment and a final contraction phase (where investment is zero due to

the finite planning period). These phases did not appear in the work by

Davidson and Harris. Moreover, the policy to be followed during the

intermediate phase seems to have a richer structure compared to that in

Davidson and Harris. For instance, these authors obtain a final policy of

investment which chatters between zero and an unspecified value (being

greater than or equal to I1). (This policy is to be applied after having

reached the equilibrium value of K). Introduction of an upper bound on

investment made it possible for us to give a precise characterization of

the levels of investment to be employed in the chattering policies in Cases

(ii) and (iii). Finally notice that, due to their assumptions, Davidson and

Harris did not need to distinguish between the situations treated in our

Cases (ii) and (iii).

A major point of critique which can be raised against the optimal
investment policies of Section 3 is the occurrence of chattering controls.
A chattering investment policy, alternating between zero and "high" levels of
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investment, can be interpreted to imply in practice, the faster the

switching the better. Although this interpretation implies that a"pulsing"

policy with the highest possible pulsing frequency may be the most

profitable, the chattering itself is not an implementable policy in

practice (see, e.g., Feichtinger and Sorger (1986), Hahn and Hyun (1989)).

However, the investment "cycles" of continuous time models can be thought of

as counterparts of investment in "lumps", encountered in discrete time

investment models.

Avoiding the occurence of chattering policies requires a change of the

model set-up. A few remarks on this issue seem to be in order. Chattering

investment policies can be excluded from optimality if we incorporate a

sufficiently large "start-up" cost which is incurred every time the firm

raises the investment rate from zero to a positive level (Davidson and

Harris (1981, Section 4)). Incidentally, such a cost plays the same role as

"re-entry" costs in the theory of optimal extraction of resources (Lewis

and Schmalensee (1982)) or "pulsing costs" in models of optimal advertising

(Hahn and Hyun (1989)). From studies like these it is known that the

introduction of such costs prevents the occurence of chattering. (For

instance, Hahn and Hyun shows that periodic pulsing (rather than

chattering) is the better advertieing policy). Yet another possibility is

to introduce adjustment costs being convex in the rate of change of the

investment rate, that is, the adjustment cost function is modified to

depend on I as well as I and are concave-convex in I but convex in I.

APPENDIX

The purpose of the appendix is first to establish conditions for existence

and uniqueness of a solution to Eq.(14a) in Section 3.1. Without loss of
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generality we can assume a zero discount rate. Differentiation of function
rN(K) f M'(K) shows that

d(rN(K)tM'(K))~dK - S"(K){1-aK~C-1(S(K))} - 2aS'(K)~C-1(S(K)) t

{2aK[S'(K)]2 t 2aS(K)S'(K) f aKS(K)S"(K)}~C'(S(K))[C-1(S(K))]2 -

{aK[S'(K)J2S(K)C"(S(K)) f 2aK[S'(K)]2S(K))~[C'(S(K)]2[C-1(S(K)]2.

The first term on the right-hand side is negative by assumption (7). A
sufficient (but not necessary) condition for global negativity of the
derivative d(rNtM')~dK is as follows.

-2K[S'(K)J2C'(S(K)) - 2S(K)S'(K)C'(S(K)) - KS(K)S"(K)C'(S(K)) f

K[S'(K)]2S(K)C"(S(K)) t 2K(S'(K)]2S(K) ~ 0. (A.1)

Denote the left-hand side of inequality (A.1) by W(K). Hence W(K) ~ 0 is a
sufficient condition for global negativity of d(rNtM')~dK. Suppose that the
revenue function S(K) satisfies

2(S'(K)]2 ~ - S'(K)S(K) (A.2)

which is guaranteed if S(K) does not grow "too fast". (For example, (A.2)
holds for S(K) - Kb provided that 0 ~ b ~ 1~3). Under assumption (A.2) it
holds that

W(K) ~ S(K)S'(K)(-2C'(S(K)) t KS'(K)C"(S(K)) t 2KS'(K)]. (A.3)

We wish to establish a condition which guarantees that the right-hand side
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of inequality (A.3) is positive. Having done so we know that (A.1) ie

satisfied and hence that d(rNtM')IdK is globally negative. Positivity of

the right-hand side of (A.3) is equivalent to requiring

C'(S(K))IKS'(K) ~ 1 t C"(S(K))l2. (A.4)

Recall that we consider the case of an adjustment cost functíon having

C'(K) ~ 0. Unfortunately, condition (A.4) does not seem to have a

straightf~~rward economic~ interpretation. However, with a concave cost

function C defined by C(S(K)) - S(K)d such that 0 ~ d ~ 1, and with S(K)

a Kb (as above), inequality (A.4) becomes

S(K)2-d ~ (2d t bd(1-d)jl2b (A.4')

Notice that (A.4') holds for almost all S(K) ~ 0 if the parameter "d" is

sufficiently small, that is, if the cost function C does not grow "too

fast".

To summarize, we have demonstrated that if (i) there is no discounting

and (ii) functions S(K) and C(S(K)) do not grow "too fast" (i.e., (A.2) and

(A.4) holds) then global negativity of d(rNtM')IdK should be guaranteed.

It remains to show that function rN(K) t M'(K) has a positive value at

K- 0. As above, suppose that r z 0 and recall that

rN(K) t M'(K) ~ S'(K) - s[g(K) t Kg'(K)] -

S'(K) - a{S(K)fC-1(S(K)) t KS'(K)IC-1(S(K)) -

KS'(K)S(K)IC'(S(K))[C-1(S(K))]2}.

(A.5)
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Notice that S'(0) ~ 0, C'(0) ~ 0. By, L'HOpital's rule the first term in

the curly bcackets in (A.5) has the limit C'(0) for K~ 0. The same holds

true for the second term. To evaluate the third term, apply L'HOpital's

rule twice. This yields a limit of the third term being equal to - C'(0).

Collecting results we obtain

lim [S'(K) - e(g(K)tKg'(K))] 3 S'(0) - aC'(0) (A.6)

K0

which is positive for S'(0) ~ aC'(0). Recalling that the total cost
function C(I) equals I f A(I)) we see that S'(0) ~ aC'(0) is equivalent to
S'(0) ~ a(1 f A'(0)). [A similar condition appears in van Schijndel (1988,
Eq. (2.31))]. The condition S'(0) ~ aC'(0) simply states that the marginal
profit derived from the first unit of capital stock must be positive.

Remark

It is easy to show that for r ~ 0, condition (A.6) is replaced by S'(0) -

(atr)C'(0). Positivity of this expression means that the marginal profit

derived from the first unit of capital stock must exceed what could have

been earned by paying the amount C'(0) out as dividend (when the

shareholders' time preference rate equals r). If S'(0) were less than

(atr)C'(0), investment in capital goods would be inferior to paying out

dividends.

The next thing we need to do is to prove Lemma 1. At t a t2 we have a
singular investment policy which satisfies (see also (9))
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P- C'(I1) s~ p~ P ' C'(I1) a C(I1)II1 (at t~ t) (A.7)2

Due to (8), (17), (A.7) and I ~ 0 at t- t2 we obtain

P ` (rfa)p - S'(K) ~ 0 (A.8)

If we consider the optimal investment policy with I1 5 C-1(S(K)) (cf. Case

1 at the beginning of Section 3) we conclude from (A.7) and (A.e) that

I- I(P) z I1 for t2 - E ~ t 5 t2

I- 0 for t2 ~ t ~ t f e

which completes the proof of Lemma 1.

(A.9)

Finally we prove Lemma 2. Let C(I) be a convex (total) cost function

and define a linear-convex cost function, C(I), by

C(I) ~ pI for I ~ I1 ; C(I) - C(I) for I~ I1. (A.10)

The singular investment policy of the problem with cost given by (A.10) is

easily found to satisfy

C"(I) I - (rfa)C'(I) - S'(K). (A.11)

If C(I) a C(I) from (A.10) is substituted into (A.11) we obtain (17) and

conclude that the singular investment rate of the linear-convex problem

equals the singular investment rate of the convex problem for I ~ I1. When

investment I reaches the level I- I1 it must hold that

S'(K) - (rta)C'(I1) - (rfa)p, (A.12)

cf. (9), (A.10) and (A.11). Below the level I- I1 we are faced with a

linear problem which is easily solved (cf. Feichtinger and Hartl (1986, Th.

3.2)) and admits a singular solution defined by
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S'(K) ~ (rta)p. (A.13)

From (A.12) and (A.13) we see that investment I reaches the level I- I1

for K ~ K.

The phase diagram of the linear-convex problem looks very much the same

as the one depicted in Figure 5(with C replaced by C and the chattering

control replaced by a policy of replacement investment). Having

characterized the solution of the linear-convex problem allows us to state

the foliowing results for the concave-convex problem.

(a) For I ~I1 the optimal solution of the concave-convex problem is the

same as the one of the linear-convex problem.

(b) For I ~ I1 it is optimal (in the concave-convex problem) to use a

chattering control which consists of switching as fast as possible between
0 and I1, in order to keep K as close as possible to the singular level K.

In this way the payoff functional of the concave-convex problem can be made

arbitrarily close to its upper bound being the optimal value of the payoff

functional of the linear-convex problem. This can be seen by comparing the

(total) cost function of the concave-convex problem with that of the

linear-convex problem).
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