
CBM
R

7626
1981
99

subfaculteit der econometrie

RESEARCH MEMORANDUM

Bestemmirg
T?i r~SCT?R'FT~ I~TBUREhU
Bi3T,' 1`r~.;~. -K
K~.TiI'si.:I`.KE
HOG~~:;i-I~JOL

TILBUkG

Nr.

uu~~iiuiiuiiiuimuniuu~~iina~~
TILBURG UNIVERSITY

DEPARTMENT OF ECONOMICS

Postbus 90135 - 5000 LE Tilburg
Netherlands



~ ~ K.U.B.
!~, BIBLIOTHEEK

TILBURG



Research Memorandum

AI.GORITHMS FOR THE LINEAR COMPLEMENTARITY

PROBLEM WHICH ALLOW AN ARBITRARY STARTING

POINT

A.J.J. Talmanz) and L. Van der Heyden~)

i~) Tilburg University

Department of Econometrics

Postbox 90153

5000 LE Tilburg

Netherlands

ieic) Yale School of Org. and Management
Box lA
New Haven, CT 06520

U.S.A.

September 1981



ALGORITHMS FOR THE LINEAR
COMPLEMENTARITY PROBLEM WHICH ALLOW

AN ARBITRARY STARTING POINT

by

Dolf Talman - and Ludo Van dez Reyden

1. Introduction

The linear complemantarity problem with data q e Rn and M e Rnxn
consista in findíng two vectors s and z in Rn such that

(1.1) s~Mztq,

(1.2) s, z ~ 0 ,

(1.3) sizi ~ 0, i~ 1, 2, ..., n.

We deaote this problem LCP or LCP(q,M). Two vectors s and z satis-
fyiag (1.3) are said to be complementary.

The LCP is aa important problem in mathematical programming [see,
e.g., Garcia and Gould (1980) for references]. Lemke (1965) first pre-
sented a solutíoa for this problem. His ideas were later exploíted by
Scarf (1967) in his work on fixed point algorithms. The relationahip
betveen the LCP and the fixed point problem ís well described by Eaves
and Scarf (1976) and by Faves aad Lemke (1979).
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Recently, van der Laan and Talman (1979, 1981) proposed a class of

variable dimension restart algorithms for approximating fixed points.

These methods allow a start at an arbitrary point in the domain of the

fixed point problem. One among several directions is followed to leave

the starting point. These directions at the starting point define a

collection of cones of variable dimensions in which the search for an

approximate fixed poínt takes place. Properties of the function govern

the movement of the procedure between the conical regions. In each region

movement occurs through simplicial pivoting, but continuous path-following

could be applied too [see Allgower and Georg (1980)].

The intimate relation between the fixed point problem and the LCP

raises the question of the signifícance of van der Laan and Talman's work

for the LCP. This paper shows that the main features of the variable

dimension fixed-point algorithms developed by van der Laan and Talman

(1981) can be adapted to the linear complementarity problem. One dis-

tinguishing feature of the resulting algorithms is that they allow an

arbitrary starting point z~ 0 whereas most LCP algorithms start at

the origin z s 0. The only other algorithms sharing this feature are

the homotopy procedure of Garcia and Gould (1980) and two algorithms

sketched by Reiser (1978) in the appendix to his dissertation. In fact,

one of the Reiser algorithms appears as a special case in our framework,

while another special case of our framework is very similar to Reiser's

second algorithm. This relationship is not surprising because of the

simílarity between Reiser's and one of van der Laan and Talman's fixed

point algorithms jsee Reiser (1981)]. One of the merits of our framework

is that it encompasses both of Reiser's algorithms. Another interestíng

feature of our class of algorithms is that they coincide wíth Lemke's
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original algorithm when they are started at the origin z- 0. Finally,

our framework can be motivated by considering the artificial column of
Lemke's algorithm as a measure of infeasibility when a solution has not
yet been reached.

The paper is organized as follows. In Section 2 we define the line
segments that are followed by the procedure and the typical positions
of the algorithm. The procedure i tself is explained in Section 3 whích

also deals with convergence issues. The implementation of the algorithm
can be found in Section 4. Finally, Section 5 contains our concluding
remarks.

2. Movement and Positions of the Algorithm

We only consider points (s,z) in R2n satisfying

(2.1) s-Mzfq , z ~0.

A measure of infeasibílity for such points is

(2.2) t~ - maxi
-si for i eN-{1, 2,...,n},

si for i E Nt -{j e N: z~ ~ 0} .

This measure checks for the nonnegatívity of s and for its complemen-
taríty with z. It is clear that z is a solutíon íf and only if

t~ ~ 0. The measure t~ can be negative only at z- 0 when q has

all its coordinates positive (q ~ 0) . A positive value for t~ cor-

responds to the value of the leading infeasibility or infeasibilíties at

z. Starting at the arbitrary starting point z~ , our algorithm íncreases
zi if -si - t0 at z~ , or decreases zi if si - t~ with z~ ~ 0.

In other words, each term in maximand (2.2) is associated with a dírection



4

parallel to a coordinate axis (either ei or -el , i e N, ei being

the ith unit vector). The dírection followed to leave z~ is that

aeeociated with the leading infeasibility--asei~med unique--at z~ . The

algorithm maintains this property: it only moves into regions associated

with leading infeasibílities. For example, when the algorithm moves into

the region z- z~ f elyl f e2y2 - e3y3 with yl, y2, y3 ' 0, then

it will be true that t~ --sl --s2 - s3 . This complementarity between

directions ineident at z~ and leading infeasibilities is central to

our procedure, and will be shown to identify a path of line segments which

starts at z0 and under certain conditions converges to a solu-

tíon for the LCP. Before formalizing this complementaríty, we slightly

generalize expression (2.2) and define directions corresponding to the

terms in the new expression. Our exposition will also be simplified by

assuming that z~ has only positive coordinates (z0 ~ 0) . The general

case (z~ ~ 0) will be discussed in Section 5.

Given a partitition {Ij : j- 1, 2, ...,k} of the índex set N,

and given that all coordinates of z~ are positive, we generalize the

definítion of t~ at z- z~ .

-sj for j e N ,
(2.3) t~ - max

~ si for j E K- {1, 2, ..., k} ,
iEI.

~

Again, we can write that z~ is a solution if and only if t~ ~ 0 at

z~ zG . The above measure of infeasibility is valid at every z~ 0,

but will ba modified on tiie boundary of the nonnegatíve orthant. With

each of the nfk terms in (2.3) we associate a dírection which can be

used to leave the starting point z~ . The directíons (di, i e N)
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associated with the first n terms are still the ones mentioned earlier:

di - ei for i e N .

Leaving z~ along di , i e N, amounts to increasing zi . With the
j th(nf ) term, ~ si , we associate direction dn}j where:

iEIj

di}d --z~ for 1 e Ij ,

z0 for i eN-Ij .

If we leave zD along dntj , we simultaneously decrease all coordinates

of z with indices in Ij . The specific choice for dn}j derives from

a requirement by the procedure that, leaving zD along direction dn}~ ,

all coordinates with index in Ij should simultaneously become equal

to zero. The different directions are illustrated ín Figure 1.

The fígure illustrates well that the starting poii;t z~ and the

di~ectional matrix D~(dl, d2, ..., dn~) partition the nonnegative

orthant of z-space into relatively open areas {z e R} : z- zD f Dy,

n~ ~ 0 fory E R} , yj j e P} , where P is a feasible subset of

NO -{1, 2, ..., n-Hk} . A subset P is said to be feasible if, for any

j e K, if does not contaín both index n~-j and all indices in Ij .

An infeasible P leads to multiple representations for a vector z in

terms of the y-coordinates. If we consider only y-vectors with feasible

subsets of positive coordinates, the correspondence between vectors

z e R} and y e R}~ , with yj ~ 1 for nfl ~ j ~ n-I-k , is one-to-

one. We will equivalently refer to z or to its representation in

terms of y .

Our algorithm maintains a generalized form of compl.ementarity, called
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d3

2

a. k-1

d5

d3

~--------

b. k - 2 ; I1 - {1,2} ~ I2 - {3}

z3

d5

z2

, 6 ~,d '.:.
--------------------------- '-------

~~,

c. k-3

z2

FIGURE 1. The directions d~ , 1 ~ j ~ n~-Ic , in three special cases
of our algorithm (n - 3; k- 1, 2, and 3).



t~complementarity, between leading infeasibilities in maximand (2.3)
and directions represented as columns of the matrix D, t0-complementarity
is more easily explained by introducing a vector whose components are the
terms in maximand (2.3). Let t-(tl, t2, ...,tn~) be defined as:

(2.4) tj a-sj for j e N,

tn}j - ~ si for j e K.
ieI,

J

Wíth this notation, (2.3) can be rewritten

(2.5) t~ - max(tj : j e N~)

with N~ - {1, 2, . . . , n-Fk} ,

It will also be conveníent to partition ND into sets N1 - N and

N2 z{nfl, nf2, ..., n-F-k} . Except for boundary issues, t~-complementarity

means that if yj ~ 0, j e N~ , then t0 - tj . We now motivate the

changes to t0-complementaríty on the boundary of the nonnegative orthant

in z-space.

Assume that initially t~ - tj ~ 0 for j E NZ . Maintaining

t~-complementarity, the algorithm leaves z along direction dj . The

coordinates of zi with i e Ih and j- nfh , are decreased along

thís line. In later stages, other dírections are considered by the algorithm

and larger dimensional regions explored. If at some point, one or more

coordinates zi , i E Ih , become equal to zero--implying ynth - 1
--further movement along direction dn~ is excluded for we don't want

to leave the.nonnegative orthant. Variable yn}h is then fíxed at 1,

while tn~ is free again to differ from t0 although yn}h ~ 0. This



is achieved by completíng the definition of t~ on the boundary in the

following way:

(2.6) t~ - max{tj : j e N~, Yj ~ 1 if j e N2} .

Aence, on the boundary we delete from maximand ( 2.5) any term tn}h asso-
ciated with a zero coordinate zi , i e Ih . Notice that yj ~ 1

with j e N2 implies that zi ~ 0 for all í e Ih .

Definition (2.6) presents one complication in that t0 can vary
discontinuously when reaching the boundary. For example, assume that
after leaving z~ along direction dnth(t~ - tn~) , we reach the boun-

dary where yn}h - 1 and zi - 0 for i e Ih . Following (2.6) t0

then decreases discontinuously--if all other tj's are smaller than

tn~ --and becomes equal to the second leading infeasibility. At the

boundary point tn~ ~ t~ and t 3 - t0 fer some j e N~ -{n-f-h} . On

the boundary t0complementarity thus takes a different form: the pair

(ynfh' tnfh) is said to be t~-complementary also when yn}h - 1, although

tn~ ~ t~ and yn}h ~ 0. It is interesting to observe how the algorithm

continues. With yn}h - 1, the pair (yn-Eh' tn-~h) is t~-complementary,

and so is the pair (yj, tj) , where yj - 0 and where t0 just became

equal to tj . Moving so as to maintain t0-complementarity, the algorithm

then makes yj positive. Notice that in this movement tn~ ~ t~ . It

is important to observe that while yn}h - 1 the latter inequality will

be maintained. If tn~ becomes equal to tp again, the algorithm con-

tinues by decreasing yn~ away from 1, so that t0-complementarity is

maintained.
We now formalize t0complementarity by introducing basic and nonbasic

variables.
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Definition 2.1. A variable yj , j e N1 , is said to be nonbasic if

yj - 0. A variable yj , j e N2 , is said to be nonbasic if yj - o

or 1. With t0 as defined in (2.5), tj is said to be nonbasíc if

tj - t~ . t~ is nonbasic ;f t0 - 0. When not noabasic, a variable

is said to be basíc.

Notice that one among the variables tj , j e N~ , is nonbasíc

by definition. At first glance, the above definition may not appear similar

to the conventional one of línear programming. The link with linear pro-

gramming will be clarified later in this paper.

Definition 2.2. A pair (t,y) is t~complementary if for every j e N~

either or both yj and tj are nonbasic. We also call the point (s,z)

tpcomplementary when the corresponding pair (t,y) is t~-complementary.

A technical point has to be dealt with in order to have a well defined

algorithm. The following assumption entails no loss of generality as a

slight perturbation of the data will be shown to yield nondegeneracy.

Nondegeneracy Assumption 2.1. Among the 2(ntk)fl variables (t~, t, y)

at most n~-kfl are nonbasic at any given time.

The algorithm can now be described more precísely. The starting

point z~ is t~complementary as y~ - 0. The nondegeneracy assump-

tion ensures that there is exaetly one nonbasic variable tj , j e Np .

To leave z~ while maintaining t~-complementarity means that we can move

only by increasing yj . We thus either increase zj if j e Nl or

decrease the zi's with i e Ih if j e N2 with j- n-I-h . We pursue

this movement until one-precisely one by the nondegeneracy assumption

--basic variable becomes nonbasic. As long as t~ ~ 0 , a solution has
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has not yet been reached and there is precisely one pair of nonbasic var-

iables (tj, yj) . The algorithm makes one of these variables basic and
continues its movement along another line of t0-complementary points

where precisely one variable in each pair (th, yh) is nonbasíc.

We formally introduce the lines followed by the algorithm. Recall

that on the boundary of the nonr.egative orthant yj - 1 for some j e N2

For that j, the requírement along the line is tj ~ t0 . Figure 2

identifies the nonbasic t-variables in different regions of z-space for

the case n - 2 .

Definition 2.3. A line of our algorithm consists of points on a line of
solutions for (2.1) such that:

a. exactly one variable in each pair (tj, yj) is nonbasic
(t0-complementarity);

b, tj ~ t0 if yj 6 1 and j e N2 ;

c. t0 ~ 0 .

The number of free (or basic) y-variables is equal to the number of

constraints on the s-variables minus one (one t-variable is always non-

basic by definition; alternatively, eliminate t0 and count the number

of constraints--all independent--imposed on the s-variables). Hence,

a set of t0complementary solutions for (2.1) is indeed a line segment

if the set of nonbasíc variables is fixed. The line segment is relatively

open if exactly one variable in every pair (tj, yj) is nonbasic.
Let us examine the endpoínts of the lines of our algorithm. An end-

point is reached when the set of nonbasic variables changes. If there

is no discontinuity in the value of t0 , and if t0 is still basic,

there is exactly one pair of t~complementary variables which are both



11

-s2 - t~

sl i- sZ ~ -s2 -sl - -s2 - t~

a. n- 2; k- 1 .

-s1-s1fs2-t0

sl t s2 ~ -sl - t~

z2

-s2-slfs2-t~

T

sl~-s2-t0

s1~s2-t~

sl - -s2 - t~

s1-s2-t~

0 s2 ~ sl - t~

-s2 - t0

0z

w

-sl - -s2 - t~

-s1-s2-t~

s2 - t~

s2 ~ -sl - t~

b. n- 2; k- 2 .

zl

z
1

FIGURE 2. The constraínts imposed on the s-variables in different regionsof z-space for a 2-dimensional example. Notice that we have omitted theinequalities that are implicit in the definition of t~ .
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nonbasic. This gives rise to two types of positions for the algorithms.

At a poaition of type a we have that, for some j e ND , y. - 0 and- ~
tj 3 tU ~ 0. At a position of type b we have that, for some j e N2 ,

yj - 1 and tj - t~ ~ 0. If an endpoint is reached where t~ is non-

basic, then the endpoint wíll be shown to be a solution. The same is

true i.f t~ becomes nonpositive during a discontinuous decrease at the

endpoint. A discontinuity ín t~ arises if yj , j e N2 , increases

to 1 with yj being the only nonbasic variable along the line. Upon

reaching this endpoint, t, is no longer considered in the determinationJ
of t~ . t0 then decreases discontinuously since no other variable th

is equal to t~ along the line leading to the endpoint. If after the

discontínuous decrease t~ ís still positive, there is one nonbasic pair

(yh, tn) with th - t~ ~ 0 and yh - 0 for some h e ND . Such an

endpoint is a position of type a. This completes our classifícation

of endpoints into positions of type a or b and t~-complementary points

with t~ ~ 0 .

We now prove the important fact that if t~ becomes nonpositive

(t~ ~ 0) at an endpoint, then a solution has been found. Since

t~ ~ max(ti --si : i E N) , it is clear that s~ 0 at such an endpoint.

We still need to argue that si - 0 whenever zi ~ 0. We distinguish

two cases. If yn}h ~ 1, with i e Ih , then si - 0 easily follows

from the fact that 0~ t~ ~ tn~ - ~ si ~ 0. If yn}h - 1, then
iEIh

the positivity of zi requires the positivity of yi along the line

leading to the endpoint. Hence, ti is nonbasic along the line:

-si - ti ~ 0 (since t0 ~ 0 along the line). This inequality is still

valid at the endpoint and implies si - 0 at the endpoínt.

As a way of summary, we illustrate the incidence between positions
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tj ` to

i. Position of type a: at least one y-variable is basic. No dis-
continuity in value of t0 .

yj - o
tj - to

ii. Position of type a: all y-variables are nonbasic. Let
n~-h - argmin(tn}j : yn}j - 1) . Díscontinuous increase in
value of t~ when leaving positíon along line drawn at the
right of the position.

E

y. ~ 1i yj-1

tj - to

tj ' to

iii. Position of type b: j e N2 . No discontinuity in value of t~
for there is another th - t~ .

FIGURE 3. The incidence between positíons (with t~ ~ 0) and lines
of our algorithm. Notice that in case ii , the line drawn at the right
of the position is defined only if {nfi : yn}i - 1} is nonempty.
If the set is empty, we are at the initial position. The initial posi-
tion is the only position (with t~ ~ 0) incident to only one line
of our algorithm.
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and lines of our algoríthm in Figure 3. The algorithm leaves the initial

position along the vnique line incident to it. Every other position,

which is not a solution, has two lines incident to it. If the position

is reached along one line, then the algorithm leaves it along the other

line. Solutions can be shown to be incident to only one line of our

algorithm.

3. Convergence Issues

The previous section set the stage for an application of the well-
known Lemke-Howson argument. The initial position is íncident to one

line of the algorithm. Every other position which is not a solution is

incident to two lines of our algorithm. The Lemke-Howson argument proves

that under these conditions no position will ever be visited twice.

The number of lines is finite, hence, so is the number of positions.

The algorithm thus either stops at a solution for the LCP or follows

an unbounded line. Following Lemke (1965), we present a class of matrices

--characterized by Garcia (1973)--for which the algorithm fi ds a solution

for any right-hand side vector q. We then show that for~copositive

plus matrices [Lemke (1965)] the existence of an unbounded line implíes

that the LCP is not feasible. Of course, the point behind both results

is that they hold for every initial starting point z0 in R} .[Garcia

and Gould (1980) discuss the possíbility of convergence for a particular

set of starting points.]

Theorem 3.1. Let M satisfy the property that LCP(q,M) admits the unique

solution z- 0 both when q- 0 and when q- e, where

e~(1, 1, ..., 1)t . Then no line of our algorithm is unbounded.
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Proof. An unbounded line of our algorithm implies the existence of a

(2nf1)-directional vector (t0, s, z) verífying the following condítions:

a. s a Mz with z~ 0;

(3.1)
b. if zi ~ 0 then -si ~ t0 '

c. if zi 3 0 then -si ~ t~ ;

d. t~ ~ 0 .

(Notice that the directional vector y associated with z always has

yj - o for j e N2 , for we can't leave the nonnegative orthan t in L-
space. Hence, yi - zi for i s N.) It is clear from (3.1) that z

is nonzero. If t~ - 0 then s is nonnegatíve and complementary with

z, which itself is nonnegative. z represents a nontrivial solution

for LCP(O,M), which is impossible. If t~ ~ 0, we rescale s and z
eo that t~ m.1 , z then satisfies the inequalities Mz f e~ 0, where

the ith inequality is an equality if zi ~ 0. This shows that LCP(e,M)

admits a nonzero solution, again contradicting our assumptíon.

Theorem 3.2. Let M be copositive plus: utMu ~ 0 when u~ 0, with

uthlu - 0 implying that (M-f-Mt)u - 0. If the algorithm generates an

unbounded line then the LCP is infeasible.

Proof. Tlne LCP is infeasible if s- Mz f q, s and z~ 0, is an in-

feasible linear system. Farkas's lemma states that this infeasibility is

equivalent .y~~.th the existence of a nonnegative vector u such that

utM ~ 0 and utq ~ 0.

The arguments of Theorem 3.1 show that an unbounded line ímplies

the existence of a vector (t~, s, z) verifying (3.1). If t~~ 0,

then zMz - zts --(z e)t~ ~ 0 since z is nonzero. This contradicts
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the copositive plus character of M. Hence tQ - 0.

A zero value for t~ implies that ztMz - 0 and, hence, that

Mz--Mz ~ 0, since -Mz --s ~ t~e - 0. Obviously, z ís our

candidate for the Farkas direction. To conclude our proof, we only
need to show that zq ~ 0.

Consider the unique endpoint of the unbounded line, say

(t~, s~, z~) , where

(3.2) s~` - Mz~ f q, z~` ~ 0, and tp ~ 0.

Premultiplying (3..2) with zt yields

z s~` - ztMz~ t ztq

--s z~tztq .

Because of tC-complementarity at (s~, z~) and along the lines of our

algorithm, we have -si - t~ whenever zi ~ 0, for even if yi is
not basic at z~ , it is made basic along the line. Hence

zs~ --(zte)t~ ~ 0 implying that

-s z~ f zq ~ 0 .

If we can argue that stz~ - 0, then our result is obtained.

If si ~ 0--t~ , then it must be that yi is nonbasic along the

path (yi m zi a 0) . At the same time,

(3.3) ~ sh ~ si ~ 0 - t0 ,
heI~

where i e 13 . The first inequality follows from the nonnegativity of
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s. Inequality ~ sh ~ t0 implies that yn}~ - 1 along the unbounded
heIj

line, and thus at its endpoint z~ . Since yn} - 1 and yi - 0 alongJ
the line, we have zi - 0 along the line, and hence zi - 0 at the end-

point. This concludes the argument establishing that stz~ ~ 0.

4. Implementation

We first introduce a matrix E

{Ii : i e K} of N:

(Ei~) to identify the partition

Ei~ - 1 if j e Ii , i e K,

- 0 otherwise.

Vector t can be expressed in matrix form as

(4.1) t -
-s -M

z ~-
-q

EM Eq

It is also convenient to introduce a vector to represent the deviations

of the components of t from t~ :

ft - t~e - t .

By definition of t~ , at least one component of t} must be zero and
ti ~ 0 unless i e N2 and yi - 1. Introducing t} and y, (4.1)

becomes

(4.2) t~e - t} -
-M

Dy t
EM

-M
z~ t

EM

-q

Eq

which can be written more simply as
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(4. 3) tDe-t}-Ayfa

with [A,a] -
-I

E
[~. qo~ . where q~ - Mz~ f q. t~-complementarity

between t and y requires that in every pair (tj, yj) at least one

variable be nanbasic:

yj - 0 or t~ - 0 for j e Nl ,

yj - 0 or 1 or t~ e 0 for j e N2 .

The definition of nonbasic variables given in Definition 2.1 thus coin-

cides with the conventional one of linear programming when upper bounds

are imposed on some of the trariables. Nondegeneracy Assumption 2.1 then

entails no loss of generality as the classical perturbation technique

of linear programming applied to linear system (4.3) yields nondegeneracy.

A line of our algoríthm consists in a partition N11, N12 of N1 and

a partition N21, N22, N23 of N2 such that:

y.~ 0 and t} - 0 for j E N11 'J J

yj - 0 and t~ ~ 0 for j e N12 ,

1 ~ yj~ 0 and t~ - 0 for j e N21 ,

yj - 0 and t~ ~ 0 for j E N22 ,

yj - 0 and t~ ~ 0 for j e N23 .

The algorithm starts with y- 0, t~ - max(ai : i e N~) , and

t} - tDe - a~ Q. By nondegeneracy, t} has only one zero coordinate,

say ti - 0. The fírst step of the algorithm increases yi until a

new positíon is reached. The signal for that is when, for some j e N~ ,
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both yj and t~ become nonbasic. The algorithm leaves a position by

making basic the variable which was nonbasic along the line that was followed

to reach the poaítion. All steps involve pivot steps of linear program-

ming except that the pivot rules need to pay attention to basic variables

of both posítive and negative sign. Introducing t}1 -(t~ : j e Ni) ,

i- 1, 2, it is easy to see that the last k equations in (4.3) are

equivalent to

(4.4) -(Eel f e2) t~ f Etl f t2 - 0,

where el and e2 are vectors of ones of dimensions n and k respec-

tively. These equations are of the GV[JB type [Schrage (1978)] since every

variable wíth a positive coefficient appears only once in (4.4). At every

position (t~ ~ 0) at least one among the variables tnj and
f(ti : i e Ij) is basic. This implies that the basíc matrix, after suitable

permutation of its columns, contains an identity submatrix of order k.
Schrage shows that this property allows an implicit treatment of the last

k equations of (4.3). Every step then involves the updating of a basic

submatrix of order n rather than ntk in an explicit treatment of (4.4).

Between successive LP-like pivot steps, there may be intermediary
steps of a different kind due to a discontinuity in the value of t~ .

First, a discontinuous decrease ín t~ may occur when reaching the boun-

dary of R} where y, becomes equal to 1 for some j e N2 . The term
J

tj , nonbasic along the line leadíng toward the boundary, drops from

maximand (2.5). This causes a discontinuity in t~ if all other coor-

dinates of t are basíc along the line. In that case, t~ is reduced

by an amount
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eto - min(ti : i e No, yi - o) ~ o

and becomes equal to t~ ~ t0 - et0 , while (t})~ - t} - et0e . Notice
~ ,

that (tj) --et0 ~ 0 is now basic while (ti) - ti - et0 is still

negative if ti ~ 0, i e N2 . Assuming t~ ~ 0, a new nonbasic var-
~

iable has been generated, say (th) s 0, and the algorithm leaves the

posítion by increasing yh .

The reverse movement of that described in the preceding paragraph

causes a discontinuous increase in the value of t0 . This discontinuity

occurs whenever y~ becomes zero and the algorithm calls for the increase

of th where th is the only nonbasic t}-variable at the position.

Such increase violates the constraint that at least one t}-variable be

nonbasic. This situation is described in Figure 3(case ii) when one

reaches the position along the line drawn at the left. Leaving along the

other line, the algorithm fírst increases t0 by et0 - min(-ti : yi - 1) ~ 0
~

and updates (t}) - t} f 4t0e . The algorithm then leaves the position
r

by decreasing yg from 1 where et0 --t} and (t}) - 0.g g
The most interesting cases in our class of algorithms appear to be

k~ 1 and k- n. In these two extreme cases, the algorithm treats

all coordinates syumietrically, which is a desirable property unlesa the

matrix M presents very special structure. For k- n, the appropriate

linear system is

(4.5) t0e -
tfl

tf2

-M M

M -M

1
Y

2
Y

I -90 ~t 0q

where after rescaling the bounds on y2 can be written 0 ~ y2 ~ z0 .

Since yjy3 - 0 we can omit y2 by allowing yl to take on negative
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values. The bounds on yl then are -z0 ~ yl and y~ is nonbasic when

equal to 0 or -z~ . The case k- n is analogous to one of Reiser's
algorithms [Reiser (1978)].

For k e 1, linear system (4.3) becomea

(4.6) t~e
flt

tf2
-M -Mz~

etM -etMzC ~

1
Y
2y

t

where t}2 and y2 are two scalars, and q0 - MzC f q. The second

Reiser algorithm, considers only the first n equations of (4.6). That

algorithm corresponds to movements along t~complementary lines where

t0 ~ max(-sl, -s2, ..., -sn, 0) as compared with

t0 - max(-sl, -s2, ...,-sn, ~ si) for our algorithm. The complementarity
íeN

conditions along a line in Reiser's algorithm are

t
(4.7) (ttl) yl ~ 0 and tCy2 ~ 0.

In this setting t~ - 0 no longer identifies a solution. The algorithm

terminates either when y2 reaches its upper bound of 1 or when an end-

point is reached where the variables t0 and t}1 are all nonbasic.

In the first case, t~ - 0 by complementarity along a line and the first

n equations of (4.6) can be written t}1 - Myl t q. This, along with

the complementarity conditions (4.7), shows that (t}1, yl) is a solu-

tion for the LCP. In the second case, (tC, t}1) - 0 and it is easily

seen that (s,z) -(0, yl f(1 - y2)zo) is a solution for the LCP.



a2

S. Concluding Comments

The ideas central to the van der Laan and Talman fixed point algorithms

have been shown to yield a class of algorithms for the LCP. Similar ideas

can be applied to modify other LCP algorithms, like the variable dimension

algorithm of Van der Heyden (1980) [see also Yamamoto (1981)], to accept

an arbitrary startíng point. Flexibility in the choice of the starting

point is desírable, e.g., in solving nonlinear complementarity problems

via a succession of approximatíng LCP's [Josephy (1979)].

So far we assumed the starting point to have only positive coordinates.

For an initial z0 on the boundary, definition (2.4) is modified for an

index nfj e NZ to

tn}j - ~ si

ieI}
J

where I~ -{i E Ij : z~ ~ 0} . The associated direction dn}3 is left
unchanged. If I~ is empty, the term tn}j disappears from the maximand
definíag t0(dn}3 - 0) . The number of rows in linear system (4.3) then
also decreases by one. If z0 - 0, then D - I and z - z0 t Dy - y

so that (4.3) can be rewrítten

Mz f t0e ~- q- t} .

Since N2 is empty, t} is always nonnegative and t0-complementarity
ttakes the form (t}) z- 0. Our aláorithms thus all generalize Lemke's

original algorithm.

The relation of our algorithms with Lemke's algorithm reminds us

that we can scale each coordinate of t before takíng the largest one

whích defines t0 . A vector of scaling factors f-(fl, f2, ...,fn}k) ~ 0
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leads us to rewrite (4.3) as

tDf-t}-Ayta.

Due to the posaibility of this scaling, the vector e in the state~nt

of Theorem 3.1 need no longer be a vector of 1's, but instead can be a

vector wíth positive but otherwise arbitrary coordinates.

Another way of generalizing our algorithms is to consider different

directíonal matrices D. However, in order to have an algorithm whích

generalizes that of Lemke, one needs n positive unit directions at z~ .

Other reasonable choices for the remaining k directions, all pointing
towards the boundary, could not be found. Different directions, however,

could lead to new convergence conditions.
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