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BASZCS OF INVENTORY MANAGEMENT: INTRODIICTION

In the winter of 1989 the idea emerged to document the knowledge
about inventory management models, that had been developed over
almost l0 years of research and 5 years of practícal applications
in a number of consultancy projects. The main motivation to
document the methodology underlying a number of well-proven
algorithms was that most existing literature did not cover the
practical applications encountered. Investigations revealed that
most well-known algorithms were based on the assumptions of
stable demand during lead times and large batch sizes. Both
assumptions do not apply to the JIT environment characterized by
short lead times and high order frequencies.

My starting point was the application of renewal theory to
production-inventory models. It turned out that the same
formalism was applicable to the classical inventory models, like
periodic review and reorder point models. The attention of the
analysis was focused on service levels and average inventories.
The reason for this was that in many cases the problem was to
find a relation between customer service requirements and holding
costs for different planning scenarios. The algorithms developed
turned out to be robust and fast.

The conviction grew that the methodology extended to most
practically relevant service measures and to all classical
inventory models. To be able to prove this sponsors were needed
to provide the time and money to do the required research. The
Catholic University Brabant and the Centre for Quantitative
Methods accepted the research proposal. The result of the
research is the series Basics of Inventorp Manaqement.

From the outset the objective was to develop a unified framework
for all classical inventory models. It was important to relax a
number of assumptions made in most literature. To the knowledge
of the author for the first time arbitrary compound renewal
demand processes are considered, thereby relaxing the assumption
of Poisson customer arrival processes. This is very important in
view of market concentrations (hyper markets, power retailers,



etc.). The outcome of the research should be a comprehensive set
of algorithms, which can be used in practical situations, e.g.
in inventory management modules of MRP and DRP packages.

In the course of the research the so-called PDF-method was
developed, that provided a means to approximately solve all
relevant mathematical equations derived in the analysis. The
results of the approximation schemes were promising, yet under
some conditions the performance was not adequate. Coincidentally,
it turned out that the performance of the PDF-method deteriorated
as the order batch size increased. In the area of large batch
sizes other approximation schemes had already been developed, so
that together with the PDF-method these algorithms covered the
whole range of models.

Though starting from the idea to provide practically useful
material to OR-practitioners, it soon turned out that the
analysis required was quite detailed and mathematically intri-
cate. Nonetheless I felt it necessary to document the derivations
as well, since the analysis extends to other models than
discussed in this series. The consequence of this choice is that
the first 6 parts (c.q chapters) of this series are entirely
mathematical. Yet the reader will find as a result of the
analysis simple-to-use approximation schemes. To illustrate the
applicability of the analysis, part VII is devoted to numerical
analysis, part VIII compares the different inventory management
models and part IX provides a number of practical cases.

Part I provides the background material from renewal theory and
the PDF-method. Part II discusses the (R,S)-model, part III the
(b,Q)-model and part IV the cost-optimal (s,S)-model. Based on
the analysis in part II-IV we analyze in part V and VI the
(R,b,Q)- and the (R,s,S)-model, respectively. A provisional list
of references is given below.
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BASICS OF INVBNTORY MANAGEMENT: PART VI - 1-

THE (R, s, S) -DáODEL

We finalize the discussion of the basic models for the management
of independent demand items with the (R,s,S)-model. The (R,s,S)-
model is an extension of the (R,S)-model, where one need not
reorder every revíew moment. As with the (R,S)-model orders are
such that they raise the inventory position to an order-up-to-
level S. As with the (R,b,Q)-model an order is triggered by an
undershoot of the reorder level s at a review moment.

The analysis of the (R,s,S)-model is quite similar to that of the
continuous review (s,S)-model. Yet the periodic review aspects
cause some additional complexities and we have to resort to a more
approximate analysis. The results of this analysis prove to be
quite accurate for practically relevant cases.

The outline of this chapter is like the outline of the preceding
chapters. First we define the model under consideration. This is
done in section 7.1. In section 7.2. an expression is derived for
the PZ-measure and the P,-measure. In aection 7.3. we focus on the
mean physical stock and the mean backlog.

7.1. The model

The management of the stock keeping facility has decided to review
the inventory periodically each Rm time unit. The products in stock
are typically rather inexpensive and therefore it is economically
infeasible to order every period. Therefore a reorder level s is
introduced. An order is triggered if at a review moment the
inventory position, the sum of physical stock and inventory on
order minus backorders, is below s. To ensure that orders are
triggered only now and then the order should exceed some minimum
quantity 0. Therefore the order size is set equal to 0 plus the
undershoot of s. Or equivalently, when an order is triggered an
amount is ordered at the supplier, such that the inventory
position is raised to an order-up-to-level S and S equals st0.

The quantity 0 is typically based on some mean demand rate and
cost consideration, like fixed order costs and batch stock
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phenomena. The determination of the reorder level s is based on
customer service incentíves. Therefore s depends on both market
uncertainty and supplier reliability.

The supplier reliability is incorporated through the assumptíon
that each order is delívered after some time L. L may be a random
variable. We assume that consecutive orders cannot overtake.

The market uncertainty is incorporated by making assumptions
concerning the demand process. First of all, we assume that demand
is stationary. To be more precise, demand over time intervals of
fixed length does not depend on time itself. This can be modelled
in two ways. Either we assume that demand occurs at discrete
equidistant points in time, or we assume that the demand is a
compound renewal process.

For the case of discrete time demand, we assume that demand occurs
each time unit. The demand per time unit equals D. D is a random
variable. Hence we have a series of {Do}, where D, denotes the
demand in the nm time unit. Each D, is distributed as D. Also we
assume that the Do~s are mutually independent.

For the case of the compound renewal demand process we distinguish
between a series of interarrival times {Ao} and a aeries of demands
per customer {D,}. Both series constitute a renewal procesa, i.e.
the series consist of independent identically distributed random
variables. The series {Ao} and {D,} are independent.

Note that the discrete time case is a special case of the compound
renewal case. We distinguish between these two cases, because we
rely on different approximations in the two cases. So in the
compound renewal case we assume that v(A)~0, where A is the
generic random variable describing the demand per customer. If
v(A)-0 the discrete time results should be applied. In that case
it is reasonable to assume that R is a multiple of E[A].
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7.2. The aervica measurea

We want to determine an appropriate reorder level s, since we
already know 0. For instance, 0 is equal to the Economic Order
Quantity in the deterministic model. Unless stated otherwise, we
assume that the reorder level s is derived from a service level
constraint. As service measures we consider the P2-measure, the
fraction of demand satisfied directly from stock on hand, and the
P,-measure, the fraction of time the net atock is positive.
Expressions for the P1-measure are trivially derived from the
analysis, and is left to the reader.

7.2.1. P2-measure

To derive an expresaion for the PZ-measure for given values of s
and 0 we consider the order cycle (O,Q1] and the replenishment
cycle (Lo, Q1tL,] . The random variables of al, I,o and Ll have been
defined in section 6.2.

At time 0 the inventory position is reviewed and it is found that
the inventory poaition is below s. Therefore an amount is ordered
such that the inventory position is raised to st0. At review
moment a~ the inventory position equals s-U1.R and therefore an
amount ~tU,,R is ordered. At time Ql-RtTU the reorder level s is
undershot by an amount U1. The order at time 0 arrives at time Lo,
the order at time Ql arrives at time ottLl.

We conjecture the following results.

S
X(ho) - st0 - D(O,LoI (7.1)

X(o,}L,] - s-U,~ - D(Q,,O,}Z,~] (7.2)

P{IT,~sx} - E[DRl ~ (1-Fo(y) )dy (7.3)
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Equations (7.1) and (7.2) are based on the arguments applied in
chapter 5 to obtain (5.1). Equation (7.3) is equivalent to (6.3).

Then it follows from (7.1) and (7.2) that

P2 (s,~) - 1-{E[ (D(o~, a1tL1] tUl~-s) `]

- E[ (D(O,I.p] -(s}~) )'] }

~ (OtE [ Ul,~] )

(7.4)

The denominator in (7.4) is the average demand per replenishment
cycle, which is equal to the average demand per order cycle. At
the end of the typical order cycle (O,vl] an amount OtU1,R is
ordered, which is equal to the demand in (O,ol].

We can apply the PDF-method to (7.4). Let us define the pdf y(.)
by

Y (x) - P2 (x-0, A) xZ0

Let X~, denote the random variable associated with y(.). Then

E[X,,] - ~tE[D(O,I,o] ] t (E[~~] -OZ)
2 tE Ul~

E[X;] -(~}E[Ul,x] )-1 j 33 t (S[D(O,Lb] tE[Ui,~l )02

t (E[DZ(O,Lo

ll] ]
}

2E[U~,~l ] }E(~~l )0

t E[D2(O,Iy] ] E[U~~] } E[D(0,~] l E[Ui,~] t E[~~l ~
3

(7.5)

(7.6)

Since (7.4) is identical to (5.2) it sufficed to copy (5.10) and
(5.11) with the appropriate random variables.
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Now we define y(.) as the gamma distribution with its first two
moments given by (7.5) and (7.6), respectively. Then we claim that

P2(s,0) - y(s}~) (7.7)

It remains to derive expressions for the moments of D(O,I,a] and
U,,R. First of all we assume that both random variables are gamma
distributed. Then it suffices to determine their first two
moments.

In the last chapter concerning the (R,b,Q)-model we derived
expressions for the moments of D(O,Lo] and U1,A. These expresaions
apply here as well, since D(O,Ib] is independent of the control
policy applied and U1,~ is approximated identically. Thus we obtain
the appropriate expressions from (6.8)-(6.14) for the discrete
time model and from (6.8), (6.9) and (6.15)-(6.18) for the
compound renewal model.

7.2.2. P1-measure

The analysis of the P,-measure for the (R,s,S)-model will be a
mixture of the related analysís for the (s,S)-model and the
(R,b,Q)-model. As in section (6.2) we immediately distinguish
between the discrete time model and the compound renewal demand
model.

Case I: The discrete time model

We consider the replenishment cycle (Lo, QfLI] . It can be shown that
the long-run fraction of time the net stock is positive equals the
quotient of the expected time the net stock is positive during
(I,o, v~fLl] and the expected length of the replenishment cycle, which
is E[o,]. It is easily derived that

E[vl] -
(OtE[Ul~] ) (7.8)

E D]
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The expected time the net stock is positive during (I,o, v,tLl] is

computed as follows. Recall from section 6.2. that

T}(x,t) - the expected time the net stock is positive during
(O,t], given that the net stock is xa0 at time 0,

is equal to

s

T' (x, t) - M(x) -~ M(x-y) dFncof~ (y)

For the net stock at time Lo we have

~
X(Lo) - st0 - D(O,Ly]

Conditioning on X(I,o) we find for E[T} (s,0) ], the expected time the

net stock is positive during (I,o, a1tL~] ,

E[T'(s,G)] - ~ M( s}0-y) dF'nro,r,] (y)
n

x.n

~ M(s}A-y) dFD~o,o~-~,t (y)

(7.9)

We can rewrite D(0, o1tL1] as

D(0, o~tL~] - OtUI~ } D(o~, v~}Ll] ,

which implies

,.o ,
E[T' (s,0) ]- r M(s}~-y) dFao~~ (Y) -~ M(s-y) dF~l,ao.,.~d (y) (7.10)
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By definition of the demand process,
independent.

UL,R and D( a„ Q,}Ll] are

Let us consider U1.R. This random variable can be written as

v,~-~,tw

with W defined as

t~z-r~

w - ~ Dn

(7.11)

(7.12)

and N(R-TU) is defined as the number of customers arriving in
[Ol-RtTU, Ql) . Substítuting (7.11) into (7.10) and convolving M(. )
with FU (.), we findi

:.c ,

E[ T' ( s, 0) ]-~ M( st0-y) dFaa,~ (Y) -~ S D) dF'w.nro,4l (Y)
(7.13)

We applied the fact that D(O,Lo] is identically distributed as
D( v1, o1tL1] . By combining ( 7. 8) and ( 7. 9) we obtain

P~ (s,~) E [D]
}E Ul,x ~-r M( st0-y) dFao,r,,~ (y)

,

- ~ ( s-y) ~w,nco,t,~ (y)E D

(7.14)

As with the continuous review (s,S)-model we cannot get rid of
M(.) in (7.13), as has appeared to be possible for the (R,b,Q)-
model. This complicates matters, but we can apply the results in
chapter 5 for the (s,S)-model. Indeed, (7.14) is similar to the
second term on the right hand side of (5.22).
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To make the similarity stronger we rewrite (7.14) as

P, (s,~) E [D]

}E ~~,R
M( st0-y) dFo~o~ (Y)

J
- r ( s-y)

~w.nro.i,l (Y)vl E D

( ( s-y) dF ( y)
E D ~~

(7.15)

,
- ~ ( s-y) ~. (Y)

E D ~~ ~}
The above expression is not tractable. Therefore we apply the PDF-
method. Define the pdf y(.) as

y (x) - Pl (x-0,0)

and let X~, be the random variable associated with y(.). Applying
the analyais following equation (5.22) to the first term on the
right hand side of (7.15) and a straightforward analysis to the
second term on the right hand side of.(7.15), we obtain

E[Xyl - 2( }ÉZ~ t E[D(0,~] ) t
( 2[~}E II[Qll )

I,R 1R

f 0 E[~ t E[~]
}E Ut.x 2 tE Ui,x

E[JC~] - 3 }E3Ql,x } }S ~1R (E[W] }E[D(0,~] l )

} E[DZ(o,Lo] ]

(E[~] -2E~ [Ol] }E[~l ) E[D(0,~] ]t
}E Ui.x

(E[~] - 3E[U17 E[~l t3i'~s [Dll tE[~]t
3 }E U1R

(7.16)

(7.17)

We fit the gamma distribution y(.) to E[X,,] and E[X,.] to obtain
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Pi (s,~) - y (s-0) sz-0

The performance of this approximation is tested in figure 7.2.

Case II: ComBound renewal demand

Consider again the replenishment cycle (Lo,QtLl]. We make the
"Arbitrary Points In Time"-assumption (APIT), i.e.

All review and repleníshment moments are arbitrary points in time
from the point of view of the arrival process.

This assumption enables us to apply an approximation for T}(x,t),
which is derived in chapter 2,

T" (x, t) -( 2 1) EfA] (1-F (x) )D(o,r~

S

t EfA] M(x) -~ M(x-y) dFDro.~~ (x)

Proceeding as in the discrete time case this yields

EfT'(3,0) ] -
(C~1)

E[Aj ~ F (st0) - F (st~) ~D(o.Le] D(O.o,~L~l

i l} EfA] M(s}0-y)dFD(o,~(y)

,.n

~
M( s}0-y) dFD(o,, .L ~(y)

(7.18)

The second term on the right hand side with E[A]-1 is identical to
the right hand side of (7.9), the expression for E[T}(s,A)] in the
discrete time model. Therefore we can copy the analysis for the
discrete time case with respect to this part of (7.18). The first
term on the right hand side of (7.18) if identical to the first



- 10 -

term on the right hand side of (5.17) after application of the
identity

D(0, a1tL,l - OtII1R } D(Q~, Q1tL,]

So we can rely on previous results to obtain expressions for the
first two moments of the pdf y(.) associated with Pi(s,~). We
furthermore note that

E[o ] - (~}E[~'~] ) E[Al
1 E[D]

and

P~(s,0) - E[T'(s.0)l
E O~

After application of the above arguments a.nd considerable algebra
we find the following expression for E[X,,] and E[X;] , the first two
moments associated with y(.),

E(X ] - ~ }E IIi~ )02 } E[D(0,~] ] }

t 0 E[~ t EL~]
}E QiR 2 }E Ul,~

E[~] -2E2[Ul]
2 }E III~ ~

(7.19)

- (CÁ-1) E[D]
2
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E[J~l -
~3 Q2

3( tE[U~~ ) } tE U~R
(E[Wj tE[D(O.I,~] ])

t E[D2(O,I,o] ] f (ELU;] -2E(Ul];E[~] )
F.[D(0,~] ]tE Ui,x

(E[Uil -3E[Ull E[~] } 3E3 [Ul] }E[~] )t
3 tE UtR

(c,~,-1) (~2f20 E[Ul~}E[~,~] )- 2 {2E[D]E[D(O,Lo] ] t }F, U E[D(O,Iy] ]
1~ (7.20)

Again the gamma fit y(.) to E[~C,,] and E[XY] provides a good
approximation to P~(s,0),

P,(s,0) - y(s-0)

7 3 Meaa vhyaical stock aad backloc

The measurement of the physical stock is highly dependent on the
monitoring abilities of the inventory management system. Therefore
we again do a separate analysis of the discrete time model and the
compound renewal model. In both cases the approximation obtained
for the mean physical stock yields an approximation for the mean
backlog as a by-product through a relation between mean backlog
and mean physical stock. The results obtained are quite complica-
ted in terms of the size of the expressions. Yet, under the
assumptions made throughout the text, the expressions involve only
standard calculations, which can be routinely and fast executed by
a computer.

Case I: Discrete time case

Suppose we incur a cost of ~ 1 for each item and for each time
unit that this item is on stock. Let

H(s,0) :- the cost incurred in the time interval (I,o,o1tL,] .

Then it follows from renewal-reward arguments that
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E[X'(s,~)l - E[H(3,0)]
E Q1

(7.21)

An expression for E[K(s,0)] is derived from a basic result stated
in chapter 2. Let the function H(x,t) be defined as

H(x,t) .- the expected cost incurred during (O,t], given that
the net stock at time 0 equals xz0 and no orders
arrive in (O,tl.

Then equation (2.56) given an expression for H(x,t),

s s z-y

H(x, t) - ~ (x-y) dM(Y) - ~ ~ (x-y-z) dM(z) dF~o~ (y)

The net stock at time Lo equals S-D(O,La]. The interval (O,t] in
the above equation coincides with the interval (I,o, ol t Ll] . Then
conditioning on the net stock at time I,o and the length of the
replenishment cycle, we obtain after some algebra

,.e :.n-y
E[K(s,~) ] - ~ r (st0-y-z) dM(z) dFD~o~(Y)

i s-Y

- ~ ~ ( s-y-z) dM( z) ~~~,~nco.41(Y)

(7.22)

In (7.22) we used the fact that D(O,Lo] is identically distributed
to D(Q1,Q~tL~] . Furthermore U1,R and D(Ql,ol-Lt] are independent.

By the definition of W we have that

Ul~ - Ul f W

Applying the approximation (6.22) we find
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J J-y

~ ~ (s-y-z) dM(z) dF~,.nro.~,l (y)

J

- ~ ( s-y) Z
~w.nro (Y)2E D ~

and thus

J.c J.c-r
E[K(s,0)] - ~ r (st0-y-z)dM(z)~Dro.c,~(y)

J

- r ( s-y) `
~,w~nro,y~ (Y)4I 2E D

Let us rewrite (7.23) as follows

J~A J~G-Y

E[K(s,~) ]- r r (s}~-y-z) dM(z) dF~o~ (y)

J
- ~ ( s-y) ~

~.w~nco,r,l (Y)2E D

(7.23)

(7.24)

The first term on the right hand side of (7.24) causes problems.
But this term is identical to the second term on the right hand
side of (5.32) in the discussion of the mean physical stoclc for
the (s,S)-model. The analysis following (5.32) builds on a
relation between the backlog and the physical stock. We proceed
analogously.

By our standard cost arguments it can be seen that

E[~ (s,~) ]- E[Y(s,0) ]- S[L] E[D] t E[B(s,0) l (7.25)
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We need an expression for E(Y(s,0)]. Suppose S y is incurred per
time unit if the inventory position equals y during that time
unit. Define

C(s,0) - cost incurred during (O,o~].

Then

E[Y(s,~)l - E[C(s,0)l
E Q1

Also,

r, v,

E[C(s,0) ]- Ds oIS t~ (Y( t) -s) dt -~ (s-Y( t) ) dt

0

and thus

r

(7.26)

E[C(s,A) l - sE[Ql] } E I (s-Y( t) ) dt I(7.27)
Tp o,

~ ( Y( t) -s) dt - E ~
0

Now note that the second term on the right hand side of (7.27) is
the expected cost incurred during an order cycle in the (s,5)-
model. The third term on the right hand side of (7.27) is
equivalent to the complementary holding coat given by (2.67).
Since vl-T„ is homogeneoualy distributed on 0, ...,R-1 we find after
some algebra and using the above arguments

to

EI~ (Y( t) -s) dt] - E D] { 22 -
E[~]

t
2E(D]

(OtEIUI] )~
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E[~ (s-Y( t) ) dtl - (R21) ~ ELITI] t~ 3 R- 6 IE[D] ~

Together with (7.26) and (7.27) this yields

OZ-E[~] } ~[~] ( 0}E[Dll )
E(Y(S,0)] - st

2 (~tE[il~~l )

} 2((RtE IJ[D] 1 E[Ul] t' 3R- 6 1E[D] ~
~,~ l I

(7.28)

It is interesting to give another derivation for (7.28). Note that

o,
E[C(s,0)l - (st0)E[ot] - E ~Dn(Ol-II)

n-I

Furthermore note that

1
o, n,-i

} 2E ~ ~ DnDiw
m~l n~l

Because Q~ is a stopping time we have

E ~ ~ D,rDm
o~ n,-i 1 o, ,~-i

- E[D]E ~~Dn
n~l n~l

o,
- E[D]E ~Dn(Ql-II)

~Eo.,,.s~ Dn - E
n~l

n~~l n~l

n~l 1

1

(7.29)

(7.30)

(7.31)

Together (7.29)-(7.31) yield
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~
"~ 7.32)

E[C(s,~) ]-(st0) E[Q~] - 2E1D E `D" - E[~1] E[D2l

Another useful relation is

o,

L~ Dn - ~} ~1.R
n~l

Then

z
o,

E ~ Dn - OZ t 2GE[Ul~] } E[~,R]
n-l

(7.33)

Substitution of (7.33) into (7.32) yields

E[C(s,0) ]-(s}0) E[Q,] - 2rs1D
(OZt2~E[v,~l t E[t~,~] - E[Q,] E[D2l )

Then an alternative expression for E[Y(s,0)] is

E[Y(s,~) ] - s}~t E[DZ] - (~Zt20E[Ut~] }E[~~l )
2E D 2 tE Ul~ )

- st (~z-E[~~] ) } E[D2]
2 tE Ql~ 2E D

(7.34)

It is easily checked that (7.34) is identical to (7.28). In the
sequel we use (7.34).

From (7.25) and (7.34) we obtain
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E[X"(s,0)] - st (~2-E[~~]) } E[DZ] - E[LlE[Dl
2 ( tE[Ul~ ) 2E D

} E[B(s,0)]

From (7.35) we find for s sufficiently large

E[X' (s,~) l - st
(~Z-E[~~l ) } E[D2] - E[L] E[D]

2 -E iI1R 2E D

(7.35)

(7.36)

This is the first practical approximation for E[X}(s,0)]. However,
not in every practical case we may assume that E[B(s,0)] is
negligible. In that case we proceed as in the analysis for the
(s,S)-model, i.e. we apply the PDF-method to E[B(s,0)]. In order
to do so we derive from (7.24) and (7.35) that

E[B(s,~)] - E [D]
~tE[Dl~]

( s}~-y-z) dM( z) dFD~o,~ (y)

:
- ~ ( s-y) Z

~,w~au,r,~ (y)2E D

t E[L] E[D] - s-
(02-E[~,R] ) - E[D2]

2 (~tE[IIl~ ) 2E[D]

After some algebra we can write E[B(s,0)] as follows
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E[B(s,0) l - E[DI
}E ~i.x

t

I ( ( st0-y-z) dM( z) dFaa~ (y)

- a2(s}~)Z - al(st~)-aa . (7.37)

v
1 r

2 (otE[v,,~] ) J, (y-s) zdFw,~~ (y)

with ao, a, and aZ given below (5.34) .

Now we are in business! The expreasion between brackets is
identical to the second term on the right hand side of (5.34).
When applying the PDF-method to E[B(s,0)] this term gives rise to
the expressions I~ and I2 given by (5.40) and (5.41), respectively,
where we should insert the proper expressions for the moments of
D(O,I,o] .

So we proceed as follows. Define y(.) as

y(.) :- 1- Eta(X-o,o)]
E B(- , )

From (7.37) we obtain

X~o

E[B(-~,0) l - E[D(O,I,o] ] t ( OZt2E[WJ }F.'Ii~] }EI~I -2E2 [r11] )
2 tE Q~~

(7.38)

Let E[X~.] and E[X,.] be the first and second moment, respectively,
of y ( . ) . Then
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E[xYJ - 1 E[D] r
E B(- , tE Ul~ 1

} 2(OtE[O l) l 33 } E[WtD(O,Lb] ]~Z (7.39)
i~

t E[ (WtD(O,I,o] )2] E[ (W}D(O.Lo] )Z] 1 ~
3 J

E [ JCy ] -

t t

2 E[D] I.
tE Ui~E B(- , Z

1 p4 E[WtD(O,I,o] ]03

} 2 (OfE[r7~~] ) 12 } 3

E[ (WtD(O,LoI )2)OZ E[ (WfD(O,Lo] )3]0
2 3

E[ (W}D(O,Lo] )4]

J ~} 12

(7.40)

Assuming WtD(O,I,o] is gamma distributed, it is easy to compute
E [X~.] and E [XY] .

Now E[B(s,~)] is approximated by

E[B(s,o)] - E[B(-n,o)](1-y(stn)) sz-o (7.41)

where y(.) is the gamma distribution with the same first two
moments as y(.). Then it follows from (7.35) and (7.41) that

E[Jf'(s,~) l - st (~Z}E[~~] ) } E[DZ] - E[Ll E[D]
2( tE iTl~ ) 2E D

} E[B(s,0)](1-y(st0))

(7.42)

Substitution of s--~ into (7.42) yields consistency with (7.38).
For sake of completeness we also give the expression for
E(B(s,0)], when ss-0.
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E[B(s,0) ] - ELD(O,Lo] ] } 2 }E Il
(sZt2 (~-s)E[D(O,I,o] ]

~~

- 2sE[Wl t E[[~l t E[~] - 2E2[Qi] s~-A

(7.43)

In the literature usually a linear interpolation formula is
applied,

E[JC' (S,0) l - s-E[Ol~l t 20 - E[D] E[L] (7.44)

We compare ( 7. 3 6) and ( 7. 44 ). S ince E[Ui,A] ZE2 [U1,A] we have that

E[~C'(3,0)] (7.36) S st2 - E[21~1 } E[p~l - E[L]E[D]

S E[X`(s,0) ] (7.44) } E[Ul]

Hence for s large and E(U,] small, we expect that E[X'(s,0)] (7.44)
overestimates stock. In the case of amooth demand (7.36) and
(7.44) are approximately equal. For s.small we expect both (7.36)
and (7.44) yield poor approximations. This is confinned by our
results

Case II: The comnound renewal model

We derive approximationa for E(X} (s,~) ] and E[B (s,0) ] along the
lines of section 6.3. We apply the approxima.tion derived for the
function H(x,t),

H(x,t) .- expected cost incurred during (O,t], assuming no
orders arrive during (O,t], the net stock at time
0 equals xx0.

The coat structure is again as follows. For each item in stock a
cost of S 1 is paid per time unit. To obtain an expression for the
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expected cost incurred during the replenishment cycle (I,o, a1tL1] ,
E[H(s,0)], we condition on the net stock at time La,

X(ho) - st0 - D(O,ha]

This yields

E[H(3,0)] - i ,.c

~ H( st~-y, t) dFpro.411o,.L,-4-~~0.4-4 ( t)

Clearly we have

E[X"(s,0)l - E[H(s,~)l
E Q1

From the analysis in chapter 2 we know that

H(x, t) -
(c21)

E[A] x-~(x- ) dF (y)y aofl

} E [A] il : ~-y
(x-y) dM(Y) - ~ r(x-y-z) dM( t) dF~oji (y)

Combination of the above results yields an expression for
E[Xt(s,0)],
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E[X'(s,~)] - (~-1) E[D]
2 ( }E[~1,~] ) fl ( s}0-y) dFao,,~~ (y)

:.e
r ( st~-y) dFao,, .,~~ (y)

e.e :.e-r

ó ~
t E [D] ( st~-y-z) dM( z) dF'nro,r,l (y)

}E ~i~x

,.e
-

9

J'e-Y

V

( s}0-y-z) dM( z) dF~oA,~~ (y)

Employing the now standard arguments we can rewrite this expres-
sion as

J.e

E[X'(s,0)] -
(~-1) E[D, (

2 ( tE [ v,~] ) ól

,

} E[Dl ( st0-y-z) dM( z) cIF'~,,~ (y)
( tE U,,~ )

- ~ ( s-y) ~~„~nro.ra (Y)

- ~ ( s-y) Z
~,w.nco,r,~ (Y)28 D

(7.45)

Equation (7.45) will be applied after the derivation of an
approximate relation between E[B(s,0)] and E[X}(s,0)].

From another cost argument we can deduce that

E(X'(s,0)] - E[Y(s,~)l - E[Dl B[Á] t E[B(s,~)] (7.46)

We are again confronted with the problem to derive an expresaion
for E[Y(s,~)], the average inventory position. Zn this case we

( s}0-y) dFnro,r.t (y)
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follow the arguments leading to ( 7.28). Assume that ~ y is paid
per time unit when the inventory position equals y. Define

C(s,0) :- cost incurred during (0, v,] .

We write E[C(s,~)] as

E[C(s,0) ] - SE[ol] t E
rp o,

~ (Y(t)-s]dt - E ~ (s-Y(t) )dt (7'47)

0

Remember that T„ is the time at which the reorder level is
undershot. By numerical experimentation we found that

P{Ql-T~St} - R O~t~R

and o,-T~ independent of Ul.

The expectation of the first integral in (7.47) is equal to the
expected cost incurred in an (s,S)-model with s30 and sLO,
corrected for the fact that the first arrival is at Á1 instead of
A1, where Al is an ordinary interarrival time and Á1 is the
stationary residual lifetime associated with A. This yields

r,
E[~

} (CÁ-1)
~[Al2

(7.48)

To obtain an expression for the expectation of the second integral
we proceed as follows.

(Y(t) -s)dtl - E[Al AZ - E[~] } E[DZ] (~fE[iTl] )
ED { 2 2 2ED

We define TNt, by
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N~l

TN. ~ ~ ~ Ani
n~l

where N is defined as

N:- the number of customers arriving in [Tv,~l].

Now we assume that TN}1-ol is independent of N and distributed
according to the stationary residual lifetime of A. This is in
fact in agreement with the APIT-assumption. Hence

s
P{TN,1-olsx} - E[Al ~ (1-F,,(y) )dy

Furthermore we assumed that Ul is independent of ol-fiU homogeneously

distributed on (O,R). Now we can derive the following

E[~ (s-Y(t) ) dt] - E[Ull 2 t E I N

IL~
0

- E (TN.1-~1)

N~1

iw~l

Using the fact that {D,} is independent of N and that Nfi is
stopping time for {Ao,}, we find

o,
E ~(s-Y(t) ) dt - E[Ul] 2} E(Dl E(A] 2(E(1~] }E[NJ )

0 (7.49)

- (1}c~) I's [Al E(Dl S[Nl2
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In principle (7.49) yields a tractable expression for the required
expectation, sínce we have approximations for E[N] and E[NZ] given
by (6.45) and (6.46), respectively. For the convenience of further
analysis we rewrite (7.49) to eliminate E[N] and E[N2] and to write
the expectation on the left hand side of (7.49) in terms of E[W]
and E[WZ]. After some straightforward algebra, where we use
expectations (6.47) and (6.48) for E[W] and E[WZ] , respectively,
we f ind

E ~ (s-Y(t) )dt - E[~l E[A] - (cA-1) E[Al (E[Ul] }E[WJ )
2E D 2

0

Substitution of (7.50) into (7.46) yields

(7.50)

E[x'(s,~) )- s} tE1v I 22 - E[II;l t E[ull ( OtE[v,] )- E[~l

~,R l (7. 1)

t (c2 1) E[DI - E[D(O,Ib] ] t E[B(s,~) ]

Equation (7.51) expresses E[X}(s,0)] in terms of E[B(s,0)] and
vice versa. In the preceding chapters we derived an approximation
for E[B(s,0)] by applying the PDF-method. We proceed accordingly.
Yet, before doing so, we observe that for s sufficiently large,

E[~(s,~) ]- st tElvl.x f 22 - E[u;l t E[Dll (0}E[II,] ) 1
t (c21) E[D) - E[D(O,I,o] l

(7.52)

Approximation ( 7.52) is of use for most practical situations. Yet
a more robust approximation is derived from application of the
PDF-method. Towards this end we substitute (7.45) into (7.51).
Some algebra leads to the following expression for E[B(s,~)],
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E[B(s,0)]
(c,~,-1) E[DJ I ~ (y- (st0) ) dFDro,i,l (Y)2 OtE[L11~] , c

t E(Dl

}E ~i,x

t

- ( (y-s) ~„~~-oro.r,~ (Y)
J,

:,n ,.n
( st0-y-z) dM( z) dF'oro,~ (y)

-( a~ ( s}A) Z t al ( st0) } ao)

~
r (y-s) z ~,w~n~o,r,~ (Y)J 2E D
J

Equation (7.53) is partly identical to the expressions for
E[B(s,0)] in the (s,S)-model and the discrete time (R,s,S)-model.
Taking the right parts from (5.34) and (7.37), we can compute the
f irst two moments of X~,, which has the pdf y(.), defined by

y (x) : - 1- E[B(x-0,0) ] ~
E B - ,

x~0 ,

E[X ]- 1 ~(c2-1) E[Dl I E[D2(O,LoI l
y E[B(-0,0) ] A ~tELQ~~] l 2

E[ (I7}D(O,IqI )Z]
2

- ~ E[I1tD(O,I,o] l)

t E(D] r
tE pi~ 1

(7.53)

(7.54)

} 2( tE U ( 33 } E[WtD(O,I,a] lOz
t,x

} EI (WtD(O,I,a] )2]0

} E[(WtD(O,I,oI)3] 1
3 J i
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E[~] -
2 (c,;-1) E[D] E[D'(0,~] l

E B(- ,) 2 tE Ul~ f 6

- Q' E[DtD(O,I,a] lOz - S[ (IItD(O,Lb] )z] Q

6 - 2 2

- E[ (UtD(O,Iq] )3] ) 1
6 J

t E[D] I2
}E IIi.x

t 1 p' } E[ (WtD(O,Z,o] )] Q
2 tE Ul~ ) 12 3

} E[ (WtD(O,LbI )z] Oz
2

} EI(WtD(~,Lo])4]
)

J ~12

It is easily derived from (7.51) that

(7.55)

E[B(-~,0) ]- ~- tE[p~.x ( 2z -
E[~] - E[~] t E[Ul] (0}E[~i

- (c~-1)
E[Dl } E[D(O,ha] ]2

Let y(.) be the gamma distribution with its first two moments
equal to E[XY] and E[Xy], respectively. This yields

E[B(s,0)] - E[B(-0,~)](1-y(st~)) sz-~ (7.57)

An expression for E[B(s,~)] for s~-0 is again derived from (7.51),
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E[B(s,0)l - -s - }E1II ~ 22 - E[2l } E[Ul] (~tE[iT~] ) - E[22]
t,~

(c~-1)
- 2 E[D] } E[D(O,Lo] ]

1
(7.58)

Substitution of (7.57) into (7.51) yielda the following robust
approximation to S[x}(s,~)],

E[X' (s.~) ]- s t Q}E~II ] ( 22 - EL~I t E[Ul] (OtE[Ul] )- E[~]
J1,R l

- (cÁ-1)
E[Dl - E[D(O,LoI l} E[B(-0,~) l(1-y(st0) )

2 (7.59)

This concludes our analyais of the (R,s,S)-model. We have expres-
sions for the main performance characteristics. We have tested
them by computer aimulation and they have proven to be practically
useful. It is now time to apply the results to gain insight into
the mechanics of inventory management. We want to get some feeling
for the benefits and drawbacks of the various models, both in
terms of servíce performance and in operational costs. This
discussion is subject of chapter 8.
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