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THE 2-RAY ALGORITHM FOR SOLVING EQUILIBRIUM PROBLEMS
ON THE UNIT SIMPLEX

Tim DOUP, Tilburg
Dolf TALMAN, Tilburg

ABSTRACT

In this paper we present a simplicial variable di-
mension restart algorithm to find economic equilibria on the
n-dimensional unit simplex Sn with just two rays to leave
the arbitrarily chosen starting point. From this point the
algorithm generates a sequence of adjacent simplices of
varying dimension in some simplicial subdivision of Sn until
a simplex is found which yields an approximate solution. In
this way the algorithm traces a piecewise linear path of
points which can be considered as an approximation of the
piecewise smooth path followed by some price adjustment pro-
cess. This process solves a sequence of subproblems of vary-
íng dimension.

1. Introduction

In this paper a new simplicial variable dimension
restart algorithm is presented to solve the equilibrium pro-
blem

z(x) - 0 x E Sn (1.1)

where z is a continuous function from the n-dimensional unit
simplex Sn -{x E R}}1~ Ei}i xi - 1} into Rn}1 satísfying
the conditions xTZ(x) - 0 for all x in Sn and, for all
i-1,...,nf1, zi(x) ~ 0 if xi - 0. Simplicial algorithms dif-
fer from each other in the number of rays along which the
algorithm can leave the arbitrarily chosen starting point.
From this point such an algorithm generates a sequence of
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adjacent simplices of varying dimension of a simplicial sub-
division of Sn until an approximating simplex is found. An
algorithm with ntl rays was developed in van der Laan and
Talman (4) (see also Doup and Talman (1)) and with 2n}1-2
rays in Doup, van der Laan and Talman (2).

Simplicial algorithms to solve the zero point pro-
blem on Rn were developed with ntl and 2n rays in van der
Laan and Talman (5), with 2n rays in Wright (8) and with
3n-1 rays in Kojima and Yamamoto (3). These algorithms on Rn
are closely related to the algorithms on Sn mentioned above.
Moreover, a simplicial algorithm on Rn exists with only two
rays. This algorithm, introduced in Saigal (7) and indepen-
dently in Yamamoto (9), solves a sequence of subproblems of
varying dimension.

We now propose a 2-ray algorithm on Sn which solves
for varying t, 1 ~ t ~ n, a sequence of subproblems consis-
ting of the first t equations of (1.1). The dimension t,
however, needs not to increase monotonically from 1 to n.

In section 2 we describe the piecewise smooth path
of points in Sn of the adjustment process which is approxi-
mately followed by the 2-ray algorithm. In section 3 the
steps of the algorithm to follow the approximating piecewise
linear path are presented. This path is traced by the algo-
rithm by alternating linear programming pivot steps and re-
placement steps in some underlying simplicial subdivision of
Sn. In section 4 some concluding remarks are given.

2. The 2-ray process

The equilibrium problem (EP) can be stated as fol-
lows. Let z be a continuous function from Sn into Rn}1 such
that xTZ(x) - 0 for all x in Sn and for all i in the index
set In}1 -{1,...,nfl}, xi - 0 implies zi(x) ~ 0, then the

~problem is to find an x in Sn such that z(x~) - 0. The
first condition is the so-called Walras' law and the second
condition gives us that x~ lies in the interior of Sn.
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Let x- v be an ínterior starting point in Sn, then
the 2-ray process starts by viewing the sign of only zl(v).
If zl(v) is positive, then xl is increased away from vl and
all other components of x are kept relatively to v equal to
each other and lower than xl~vl. If zl(v) is negative, then
xl is decreased away from vl and all other components of x
are kept relatively to v equal to each other and larger than
xl~vl. The first region is described by

A(1) -{x E Sn~ x2~v2 -... - xnfl~vnfl c xi~vl}

whereas the second region is described by

A(-1) - {x E Sn x2~v2 - ... - xnfl,vnfl ~ xl~vl}.

The idea behind the 2-ray process is to solve a sequence of
problems of varying dimension, not necessarily monotonic. We
start by solving the problem zl(x) - 0 and succesively
zl(x) - 0,..., zt(x) - 0 for t-2,...,n. By Walras' law this
implies that a solution x for t-n also satisfies zn~l(x) - 0,
i.e. x is a solution to the EP.

In general, the region A(k), k-t,-t, for t-1,...,n,
is given by

A(t) -{x E Sn~xi~vi - b, i-ttl,...,nt1, xt~vt ~ b, b~ 0}

and

A(-t) -{x E Sn~xi~vi - b, i-ttl,...,nt1, xt~vt c b, b~ 0}.

Furthermore let A(0) be equal to {v}. In A(t) (A(-t)) the
process will generate points x such that zl(x) - 0,...,
zt-1(x) - 0 and zt(x) ~ 0(zt(x) c 0). Therefore, let C(k),
k-t,-t, 1 c t c n, be given by

C(t) - Ck({x E Sn ~zl(x) - 0,...,zt-1(x) - 0, zt(x) ~ 0})
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and

C(-t) - Ck({x E Sn~ zl(x) - 0,...,zt-1(x) - 0, zt(x) ~ 0})

and C(nfl) - C(-(ntl)) -{x E Sn~z(x) - 0}. Furthermore let,
for k-t,-t, 1 c t c n, B(k) be the intersection of A(k) and
C(k). In general, if z is continuously differentiable, each
B(k), k-t,-t, consists of smooth loops and curves (see e.g.
(6)) each curve having two end points in bd B(k), i.e. in
either (bd A(k))~~ C(k) or in A(k)~~ (bd C(k)). More pre-
cisely, the boundary of B(t), 1 c t c n, is equal to

bd B(t) - ( u (A(k) n C(t))) u
k--(t-1),(t-1)

( u (A(t) n C(k)))
k--(ttl),(ttl)

and the boundary of B(-t), 1 c t c n, is equal to

bd B(-t) -( u (A(k) n C(-t)))u
k--(t-1),(t-1)

( u (A(-t) n C(k))).
k--(ttl),(ttl)

We observe that no points in B(k), k-t,-t, lie in the boun-
dary of Sn. This is caused by the fact that xi - 0 implies
zi(x) ~ 0 and for all x in Sn Walras' law holds.

Therefore, if an end point x of a curve in B(t) lies in
(bd A(t)) n C(t), then x is equal to v if t-1 and in the
case t~ 1 x is an end point of a curve in B(-(t-1)) if
xt-l~vt-1 ~ b and in B(t-1) if xt-l~vt-1 ~ b. If the point x
lies in A(t) n bd C(t), then x is a solution of the EP if
t-n and in the case t ~ n the point x is an end point of a
curve in B(-(ttl)) if zt~l(x) ~ 0 and in B(ttl) if
zt~l(x) ~ 0. Similarly, if an end point x of a curve in
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B(-t) lies in (bd A(-t)) ~~ C(-t) then x is equal to v if t-1
and in the case t~ 1, x is an end point of a curve in
B(-(t-1)) if xt-l~vt-1 ~ b and in B(t-1) if xt-l~vt-1 ~ b-
If the point x lies in A(-t)~ bd C(-t) then x is a solution
of the EP if t-n, and in the case t ~ n the point x is an
end point of a curve in B(-(ttl)) if zt~l(x) ~ 0 and in
B(tfl) if zt~l(x) ~ 0. In this way we can link all the
curves in B(k), k-t,-t, 1 c t c n, together.

Let B be given by

B - u B(k)
kEItn

where Itn -{-n,-ntl,...,-l,l,...,n}, then the set B is in
general the union of piecewise smooth curves and loops and
contains one curve, say P, connecting v and a solution point~
x of the EP. All other curves connect two solution points.
This is illustrated in figure 1 for n-2.o~0,

Figure 1. The curve P connects v and x~. The sign of zl(v) is
negative and in the point x we have zl(x) - 0 and z2(x) , 0
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The curve P will be followed approximately by the 2-ray al-
gorithm which we will present in the following section.

3. The 2-ray algorithm on Sn

To follow the piecewise smooth curve P of the 2-ray
process, this curve is approximated by the piecewise linear
path generated by the steps of a simplicial variable dimen-
sion restart algorithm. We call this algorithm the 2-ray
algorithm on Sn. The piecewise linear path traced by the
algorithm is followed by generating a sequence of adjacent
simplices of varying dimension of some simplicial subdivi-
sion of Sn containing this p.l. path. This sequence of sim-
plices is generated by alternating pivot steps in a system
of linear equations and replacement steps in the simplicial
subdivision. The underlying simplicial subdivision is the
so-called V-triangulation, developed in (1). Each t-dimen-
sional region A(t) and A(-t) is triangulated in t-simplices.
More precisely, each A(k), k-t,-t, is subdivided in 2(ttl)!
subsets A(y) for permutations y-(Yl,...,yt) of t elements
of the set I}t -{-t,-ttl,...,-l,l,...,t} such that for all
i, 1 c i c t-1, either i or -i is an element of {y1,...,Yt},
k is an element of this set and such that for some s,
0 ~ s c t,

yl ~ 0,...,Ys ` 0' ysfl ' 0,...,Yt ~ 0.

We call such a permutation a feasible permutation of t ele-
ments in Itt.

Definition 3.1. Let Y-(yl,...,yt) be a feasible permutation
of t elements in Itt. The region A(Y) is given by

A(Y) -{x E Sn ~ x- v f Eh-1 a(Yh)q(Yh),

0 t a(Yt) t... C a(yl) c 1} (3.1)
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where the vectors q(yh), h-1,...,t are given by

q(Yh) - p({yl,...,yh}) - P({y1,....Yh-1})

with for K c I-n -{-n,...,-1}, K~~, p(K) given by

vi,Ek ~ -Kvk i ~ -K

Pi (K) - ~ 1 E Intl
0 i E -K

and for K c Itn, K St I-n, K~ p, p(K) given by

~ vi~Ek E Kt vk

Pi(K) -

i E K}

where K} -{k E K ~ k ~ 0}. In the case K-~, p(K) is given
by p(K) - v.

Some regions A(y) are given in figure 2 for n-2.
P(3):P(-1,-2)

P(-2,1)-P(1) P(2)-P(-1.2)

Figure 2. The 2-dimensional unit simplex subdivided into 2-
dimensional regions A(y)
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The region A(Y)~ Y-(Y1.---.Yt). is t-dimensional for fea-
sible y. The set A(k), k-t,-t, is equal to the union of the
A(y)'s over all y-(yl,...,yt) containing k.

The boundary of A(y) consists of a number of (t-1)-
dimensional subsets. These are obtained by setting one in-
equality in (3.1) to an equality. The following four cases
can occur: i) a(yt) - 0, ii) a(yi) - a(yi-1), i~ stl,
2 ~ i ~ t, iii) a(YSfl) - a(ys) and iv) a(yl) - 1. Let x be
an interior point in bd A(y). In case i, x lies also in
A(y), with y given by

(Y1....~Yt-1) if yt - t or yt --t
Y- íY1....~Yt-1.-Yt) if yt ~ 0 and yt ~-t

íY1,...~Ysr-Yt.YSf1~...,Yt-1) if yt ' 0 and yt t t.

In case ii, x lies also in A(y), with y given by

Y-(Y1~---.Yi-2'Yi'Yi-1'~-~~Yt)- In case iii, which can only
occur if 0 ~ s ~ t, x lies also in A(y), with y given by

- I(Y1r...iYS-1'ySf1~...rYt) lf ys - -t
Y il(Ylr--.rYS-1'Ysfl~...,yt,-ys) lf ys ~ -t.

Finally, if case iv holds, x lies in the boundary of Sn. More
precisely, if y~ is negative, then x lies in the boundary
face Sh -{x E S ~xh - 0}, h--yl, and if yl is positive,
then x lies in Sn(t) -{x E Sn~xh - 0, h- ttl,...,nfl}. So,
if y contains -t, then xh can be equal to zero for some
h-1,...,t, and if y contains t, then xh can be equal to zero
for some h-1,...,t-1 or xh is equal to zero for all h,
h-ttl,...,nt1. This concludes the description of the boundary
of A(y).

The V-triangulation of Sn triangulates each region
A(y) into t-simplices. Let G(y) denote the collection of t-
simplices which triangulates A(y) into t-simplices. Let m be
a positive integer, m-1 denoting the grid size of the V-
triangulation, then the collection is defined as follows.
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Definition 3.2. The collection G(y) of t-dimensional sim-
plices a(yl,n(t)) with vertices yl,...,ytfl is given by

1) yl - v t Ei-1 a(yi)m-lq(yi) for integers a(Yi)'
isl,...,t such that 0 ~ a(yt) ~... ~ a(yl) ~ m-1

2) ,r(t) -(,rl,...,nt) is a permutation of the t elements
in {yl,...,yt} such that p ~ p' if np - Yi-1'np' - yi
for certain i and a(,rp) - a(,rp, )

and
3) yitl - yl f m-1 q(ni), i-1,...,t.

The triangulation of the regions A(y) is illustrated in fi-
gure 3 for n-2 and m-2. The arrows give the directions of the
vectors q(.).

I Ol

[O]~ i ~ ~ 1 t~ f ~toJ0 ~

Figure 3. Triangulation of the regions A(y) in Sn, n-2, with
grid size m-1 - 2
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We call the union of G(Y)~ Y-(Y1~-.-~Yt)~ over all y's such
that y contains k, the triangulation G(k) of A(k), k-t,-t,
1 t t ~ n.

The algorithm in general moves from one t-simplex
a(yl,,r(t)) in A(k), k-t,-t, to an adjacent t-simplex
a(yl,,r(t)) in A(k). If both simplíces lie in G(y), the para-
meters yl,,r(t) and á are obtained from table 1 where p is the
index of the vertex of a such that a and a share the common
facet T(Yl....,yp-l~yptl~...,yttl)~ where aj-a(Yi), j- ~Yi~.
i-1,...,t, aj-0 for j- ttl,...,ntl, and where e(h) is the
h-th unit vector in Rn}l.

yl ,r(t) á

p-1 ylfm-lq(,rl) ( ,r2,...,,rt~,r1) afe( I,rl~ )

l~p~tfl yl (,rl....,np-2',rp~,rp-1,...,,rt) a

p-tf1 1 -1y-m q(,rt) (,rt.,rl,-..,nt-1) a-e( ~,rt~ )

Table 1. p is the index of the vertex to be replaced

We now consider the case that an adjacent simplex of
a(yl,,r(t)) does not lie in G(y). The following three lemmas
describe this case.

Lemma 3.3. Let a(yl,n(t)) be a t-simplex in G(y). 1fie facet
T opposite vertex yl lies in the boundary of A(y) iff

nl - Y1 and a(Y1) - m-1.

In the case yl ~ 0, z is a ( t-1)-simplex in Sny , i.e. all
1

points x in r satisfy x-y - 0. In the case yl ~ 0~ t is a
1

(t-1)-simplex in Sn(t).
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Lemma 3.4. Let Q(yl,,r(t)) be a t-simplex in G(Y). The facet
i opposite vertex yp, for some p, 1 ~ p ~ ttl, lies in the
boundary of A(y) iff

~p-1- Yi-1' np- yi for certain i, 1 ~ i c t, and
a(Yi-1) - a(Yi)-

In this case we consider three subcases:

1) sgn(yi-1) - sgn(yi): the facet T is also a facet of the
t-simplex a(yl,n(t)) in G(Y), where Y-(Y1,...,Yi-2,yi,
yi-1'Yitl~....Yt) and n(t) - (nl~....np-2'np'np-1'npfl'
.. ,nt)

2) yi-1 --t and yi ~ 0: the facet T lies in bd A(-t) and is
the (t-1)-simplex a(yl,,r(t-1)) in G(y), where y-(yl,...

iYl-2'Yi'...rYt) and n(t-1) - (nlr...,n 2r~t ,...r~ft)P- P

3) yi-1 ` 0' yi-1 ~ - t and yi ~ 0: the facet T is also a
facet of the t-simplex Q(yl,,r(t)) in G(y) where y-(yl,
...rYi-2rYirYifl~....Yt'-yi-1)' a(-Yi-1) - 0 and
,r(t) - (,rl.....np-2',rp,np}1,....,rt'-~p-1).

Lemma 3.5. Let v(yl,,r(t)) be a t-simplex in G(y). The facet
i opposite vertex yt}1 lies in the boundary of A(y) iff

nt - yt and a(Yt) - 0.

In this case we again consider three subcases:

1) yt --t or yt - t: the facet r lies in bd A(yt) and is a
(t-1)-simplex Q(yl,,r(t-1)) in G(y), where y-(Y1,...
'Yt-1) and n(t-1) - (,rl....,nt-1)

2) yt ~ 0 and yt :-t: the facet i is also a facet of the t-

simplex a(yl,,r(t)) in G(Y), where Y-(Y1,...,Yt-1.-Yt)r
a(-Yt) - 0 and n(t) - ( nl....~nt-l~-nt)
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3) yt ~ 0 and yt ~ t: the facet r is also a facet of the t-
simplex o(Yl,n(t)) in G(Y), where y-(Y1,...,YS,-Ytr

ystl" "'yt-1)' with s such that ys~ 0 and ys}1 ~ 0,
a(-Yt) - a(YSfl) and n(t) - ( nl.....np-l~-at.np.....nt-1)
where np - ysfl'

This concludes the case that an adjacent simplex of a sim-
plex Q(yl,,r(t)) in G(y) does not lie in G(y).

The algorithm now generates adjacent t-simplices
v(yl,,r(t)) in G(k), k-t,-t, for varying t, 1 c t c n, with
k-complete common facets.

Definition 3.6. A g-simplex a(yl,...,yg}1) ,g-t-l,t, is k-
complete, k-t,-t, if the linear system

~gfl ~ (z(Y1)) } Entl u (e(h)) - (~) (3.2)i-1 i 1 h-t h 0 1

has a solution (a,u) such that ai ~ 0, i-1,...,gt1, and
ut ~ 0 if k-t and ut c 0 if k--t.

Observe that the system has n}2 rows and for g-t-1, nf2 co-
lumns and for g-t one column more. To guarantee convergence
we need the following assumption.

Nondegeneracy assumption. The linear system (3.2) has for
g-t-1 a unique solution (a,u) such that ai ~ 0, i-1,...,t,
and ut ~ 0, whereas for g-t at most one of the variables
ai, i-1,...,tf1, and ut is equal to zero.

If z is the piecewise linear approximation of z with respect
to the underlying triangulation and o(yl,...,ytfl) is a k-
complete simplex, then according to (3.2) the point
x- Eiaiyl lies in o and satisfies

zh(x) - 0 h-1,...,t-1

zh(x) - -uh h-t,...,nf1.
(3.3)
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A k-complete t-simplex contains a whole line segment of
points satisfying (3.3). Such a line segment can be followed
by making an l.p. pivot step in (3.2). At an end point
either ap - 0 for some p or ut - 0.

Let C(k), k-t,-t, be defined as the regions C(k) but with
respect to the function z, then x satisfying (3.3) lies in
C(k). The algorithm now follows the piecewise linear path P
in the union of A(k) ~~ C(k), k E Itn, which starts at the
point v. The algorithm terminates when an approximate solu-
tion to the EP has been found, i.e. when t-n and un becomes
equal to zero. We will now describe the case that for a k-
complete t-simplex a(yl,n(t)) ut becomes equal to zero in
the linear system ( 3.2). If t-n the point x- Ei}1 ~iyl is
an approximate solution to the EP.

Lemma 3.7. Let o(yl,n(t)) be a k-complete t-simplex of G(y)
in A(k), k-t,-t, 1 c t ~ n, with solution (a,u) of the li-
near system (3.2) such that ut - 0. Then, if utfl ~ ~'
o(yl,n(t)) is a facet of the (tfl)-complete (ttl)-simplex
Q(yl,n(tfl)) of G(y) in A(ttl) with y-(yl,...,yt,tfl),
á(ttl) - 0 and n(ttl) -(nl, ...,nt,tfl), and if uttl ` ~'
then a(yl,n(t)) is a facet of the -(tfl)-complete (tfl)-sim-
plex o(Yl,n(tfl)) of G(Y) in A(-(tfl)) with y-(Y1,....YSr
-(tfl).YSf1~...~Yt), a(-(tfl)) - a(Ystl) and n(tfl) - (nl,
...,~p-1,-(ttl),np,...,nt) where np - Ysfl and s is such
that ys ~ 0 and Ystl ' ~'

In both cases of lemma 3.7 the algorithm continues by making
an l.p. pivot step with (zT(y),1) in the linear system (3.2)
where y is the vertex of a opposite the facet a.
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If in the case that for a k-complete t-simplex
o(yl,,r(t)) of G(y) in A(k), ap becomes equal to zero for
some p, 1 c p ~ tfl, then the facet T is either a facet of
another k-complete t-simplex in G(y) or not. The latter case
is described in the lemmas 3.3, 3.4 and 3.5 whereas the for-
mer case is described in table 1. If we consider lemma 3.3,
then we observe that a k-complete facet r cannot lie in Sh,
for certain h, 1 ~ h ~ t-1, since zh(x) is positive for all
x in Sh, so that accordíng to (3.3) such an x cannot lie in
C(k). The same holds in this case for h-t and k--t. If the
algorithm generates a vertex y in A(t) n Sn(t), then we set
zt(y) equal to -e, where e is some arbitrary small positive
number. This prevents the algorithm from generating a t-com-
plete facet T in A(t) n Sn(t). Recall from section 2 that
the 2-ray process cannot generate points in A(t) n Sn(t).

The algorithm starts with the 0-dimensional simplex
a(v). If zl(v) ~ 0, then v is the facet of the 1-dimensional
1-complete simplex a(yl,(1)) in A(1) with yl - v, and if
zl(v) ~ 0, then v is the facet of the (- 1)-complete 1-sim-
plex a(yl,(-1)) in A(-1) with yl - v. In general the algo-
rithm generates for varying k, k-t,-t, 1 ~ t ~ n, in A(k) a
sequence of adjacent t-dimensional k-complete simplices
cr(yl,n(t)) in G(y) for varying y such that y contains k. The
common facet of two adjacent simplices in A(k) is k-complete
and the parameters yl,,r(t) and a of a t-simplex o(yl,n(t))
in A(k) adjacent to a t-simplex a(yl,,r(t)) in A(y) are ob-
tained from yl,n(t) and a as described in table 1 if o lies
also in A(y), and in lemma 3.4 cases 1) and 3) and lemma 3.5
cases 2) and 3) if a lies in A(Y) for some y s y. In these
cases the algorithm continues by making an l.p. pivot step

T - - -in (3.2) with ( z (y),1) where y is the vertex of o opposite
the common facet T. If the k-complete facet T lies in the
boundary of A(k), i.e. when case 2) of lemma 3.4 or case 1)
of lemma 3.5 occurs, then r is a(t-1)-simplex Q( yl,n(t-1))
in either A(t-1) or A(-(t-1)) and the algorithm continues by
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reintroducing e(t-1) in (3.2) by either increasing ut-1 or
decreasing ut-1 from zero. If the algorithm generates a so-
lution (a,u) of the linear system (3.2) with ut - 0, then in
the case t-n the point x given by x- Ei}iaiyl ís an appro-
ximate solution of the EP, and in the case t ~ n, a is a
(ttl)-complete t-simplex in A(tfl) if uttl ' 0 and a-(tfl)-
complete t-simplex in A(-(ttl)) if utfl~ 0. The parameters
of the unique (tfl)-simplex a(yl,n(ttl)) in A(k), k-tt1 or
-(ttl), containing a as facet, are obtained as described in
lemma 3.7.

By the description given above the algorithm traces
a piecewise linear path P in B- uk A(k) n C(k) where the
union is over all k in Itn. The path P connects v with an
approximate solution x of the EP. Notice that according to
(3.3) the path P can be considered as an approximation of
the piecewise smooth path P in B. If the accuracy of the
approximate solution x is not satisfactory, the algorithm
can be restarted with v equal to x and with a smaller grid
size of the triangulation.

4. Concluding remarks

As described in section 3 the 2-ray algoríthm solves
a sequence of subproblems zl(x) - 0,...,zt(x) - 0 for vary-
ing t, 1 c t ~ n. However, it is also possible to solve the
sequence of subproblems z. (x) - 0,...,z. (x) - 0, where

il lt
(il,...,it) is a(fixed) permutation of t elements in Intl'
Once a permutation is chosen it remains fixed during the re-
maining part of the algorithm. If an index it,~l has to be
added, then we can choose it~l in such a way that ~u. ~-

lttl
max{~uh~~h E In}1`{il,...,it}}. For the starting point x-v
this coincides with choosing il in such a way that
~zí (v)~ - maxh E I ~zh(v)~. The regions A(k), k-t,-t, are

1 nfl
adapted such that the permutation (1,...,t) is replaced by
(il,...,it)~ t-1,...,n.
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The 2-ray algorithm for solving the equilibrium pro-
blem can be easily adapted to solve the more general nonli-
near complementarity problem (NLCP) on Sn which can be
stated as follows. Let z be a continuous function from Sn
into Rntl such that xTZ(x) - 0 for all x in Sn, then the
NLCP is to find an x~ in Sn such that z(x~) ~ 0. In this
case a starting point can lie on the boundary of Sn and we
must allow for movements on the boundary.

Algorithms discussed on Sn can be generalized to the
n.

product space S of N, N~ 1, unit simplices S~, j-1,...,N.
A generalization of the 2-ray algorithm would then be the
2N-ray algorithm on S which can be applied to the EP and the
NLCP on S. Again we must take into account that the starting
point can lie on the boundary of S and we must allow for
movements on the boundary.

n.
The 2N-ray algorithm on S- nN- S ~, N~ 1, to~-1

solve the NLCP on S will be discussed in a subsequent paper.
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