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Design of Simulation Experiments

A simulation model is run for different combinations of its para-
meter values. Besides the effects of parameter values the effects
of different model structures are investigated, but for brevity's
sake this introduction speaks of parameters where parameters and
model structures are meant (see Sect. 1). A sizable number of
runs is necessary for validation, sensitivity analysis, what-if
questions, optimization, etc. If the simulation model has many
parameters - as most realistic models do - then the exploration
of the parameters' effects becomes problematic. The following ap-
proaches are popular:

(1) Change one parameter at a time.

(ii) Investigate all parameter combinations.

Both approaches concentrate on relatively few parameters, because
investigating all parameters of possible relevance is thought to
be impossible. This contribution will present designs that are
more efficient and more effective, i.e., fewer simulations runs
are needed than in the approaches (i) and (ii); contrary to ap-
proach (i) interactions among factors can be detected; moreover,
it becomes; possible - if needed - to explore the possible rele-
vance of a great many parameters, say, a thousand parameters. Ap-
plications of the proposed designs are found in Kleijnen (1979)

and in the publications referenced below.

1. Quantitative and gqualitative factors

The introduction spoke of a simulation model's parameters and
structure. The statistical literature speaks of quantitative and

qualitative factors. For example, in a queuing model factor 1 may
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be the traffic load p (= A/p with arrival rate )\ and service rate
u); factor 2 may be the number of servers (a quantitative, dis-
crete variable); factor 3 may reflect the rule determining the
order in which customers are served (a qualitative variable whose
changes affect the simulation program). By definition a factor is
not constant in the experiment but changes over the simulation
runs. This contribution concentrates on factors that can assume
only two values or levels in the simulation experiment. For exam-—
ple, the priority rule (factor 3) is either first-come-first-serv-
ed (FCFS) or smallest-jobs-first (SJF). And the traffic load
(factor 1) is studied only at its "low" value, say p = 0.70, and
at its "high" value, say p = 0.95. Restricting the factors to two
levels means that it is still possible to detect whether the fac-
tors do affect the simulation model's response (apart from patho-
logical situations, i.e., the response curve is hill-shaped and
happens to reach identical values at the two selected factor le-

vels). Obviously interpolation or extrapolation to other factor

levels, makes no sense when the factor is qualitative. For a quant-
itative factor it does make sense. However, this contribution con-
centrates on the qualitative question: do the factors affect the
response-yes or no? In a later phase of the investigation, more
detailed questions can be asked, such as: how much does the re-
sponse change when factor 1 changes by one unit; which combination
of factor levels yields the maximum response? The techniques of
this contribution apply to these more detailed questions but this
issue will not be further discussed; see the general literature

on experimental designs, e.g., Daniel (1976). Text-books tailored
to the needs of simulation practitioners are Kleijnen (1975 and
1983b) . Also see the contribution by Kleijnen (1983a)

The matnematical representation is as follows. Suppose
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the simulation experimenter distinguishes k factors. In the above
example k was only three but k may be much higher, say k = 1000.
Each factor j (j = 1,...,k) can assume only two values or levels
so that k binary variables xij are introduced: xij = -1 if factor
j is "switched off" in run i with the simulation model, and

xij = +1 if factor j is switched on in run i (i = 1;,...,n). PFor
instance, if factor 3 (priority rule) is FCFS then it might be
said that factor 3 is switched off; however, the association be-
tween a factor's two levels and the values minus and plus cne is
completely arbitrary and hence that association may be randomly
determined (toss a coin). Consequently, x2i = -1 may mean that

the number of servers is at its high level. Note that if a guali-
tative factor would assume more than two levels, then binary vari-

ables assuming the values zero and plus one are necessary; see

Kleijnen, 1975.)

2. Three approaches to the design of experiments

Using the binary variables xij three different approaches to the
design of simulation experiment are shown in Table 1, where the
constant one is not explicitly displayed but only its sign.

(i) One-factor-at-a-time.

The first run is made in the base position, i.e., all factors are

off: x1j = -1 (j =1,2,3). Next each factor is changed in turn
while keeping all other factors at their base position: xij = +1
and xij' =-1@ = j+1 and j # j'). This yieldsn responses yi

(i =1,...,n) where n = k+1. Factor effects, say Yj' are estimat-
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Note that the levels+l and -1 were associated arbitrarily so that
the sign of the factor effect has no importance, i.e., in Egn. (1)
the absolute value could have been taken. Approach (i) does yield
valid estimators of the factor effects y. To compare this approcach
to the other approaches the accuracy of the estimators should be
quantified. For simplicity's sake - and in accordance with statist-
ical tradition - the responses are assumed to have a constant vari-
ance oi = 02 (i =1,...n). Then Eqn. (1) implies that the variance
of the effect estimators is a constant, say 02:

y

g = 20 (2)

(ii) All combinations of factor levels: full factorial design.

Approach (ii) requires more runs than approach (i) does. The ad-
vantages are:
- Efficiency: the estimators of y have smaller variance "per run"

(see below) .

- Effectiveness: intcractions among factors can be estimated.
The "common sense" estimator of Yy is obtained by averaging the
responses observed when factor 1 is on respectively off, and taking

the difference between these two averages:
Yy = v by by tyg) /4 - (Y ty gty ty o) /4 (3)

In general:

n
k
= I i =
Y xij.yi/(n/Z) with n 2 (4)

i=1
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Now consider the following regression model, where E represents

noise (capitals denote random variables):
Y, =B . F B, X FootB ok, +oz.bB X, +B, (5)
i ik

Eqn. (4) in the contribution by Kleijnen (1983a) shows that the
Least Squares estimates of Bj in Egn. (5) are equal to half the

; values defined by Eqn. (4): éj = O.S;j {5 = 1;...kK). Since the
experimenter's purpose it to detect whether the response is sensi-
tive to switching a factor on, B and y give exactly the same in-
formation, namely factor j is important if the t statistic corre-
sponding to either éj or ;jis significant; see Egn (16) in Kleijnen
(1983a) . From Egqn. (4) and the assumption of independent responses

2
with variance o , it follows that

2 2

n
o= i%— I (x..)2.c? -2 B with n =
Y o ij i n 2

=}
=

Comparison of Egqn. (6) and Egqn. (2) shows that the variance re-
duced with a factor 4 while the number of observations increased
with a factor 2. In general, the variance reduction becomes dra-
matic as n increases, i.e., as the number of factors increases

k
(since n = 27).

Approach (ii) is not only more efficient than the one—fac-
tor-at-a-time approach, it is also more effective in that it permits
the estimation of interactions among factors. Intuitively formul-
ated, factors 1 and 2 are said to show interaction if the effect
of factor 1 also deﬁends on the levels of factor 2. Graphically,
interaction means that the response curves are not parallel:

AE(Y)/Ax1 is not constant but depends on x In mathematical sym-

2°
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bols, Egn. (5) is augumented with the interactions between two

with j # j'), interactions among three

factors (denoted by Bjj

factors (Sjj'j") and so on. For example, three factors yield:
= + + e - +
L N T TR o
+ B + B S IR & + B X, mne =

. « X, * E

1237 %1 %127 %3 T 5y il
Interactions among three or more factors are difficult to inter-
pretand are usually assumed to be zero. However, if interactions
are assumed to be negligible then approach (iii) becomes relevant.

(iii) Incomplete factorial designs.

If no interactions at all are assumed so that Egn. (5) holds, then
approach (ii) uses 23 = 8 runs to estimate only four parameters,
namely, the factor effects Yj (j=1,2,3) and the overall effect
Yo These four parameters can also be estimated from the four runs
in Table 1 which form a 2]'l design (only a fraction 2_1 of all

23 combinations is actually simulated). The parameters are esti-
mated strictly analogous to Eqn. (3) or Egqn. (4), e.g.,

Ty = (y2+y4)/2 = (y1+y3)/2 (8)

And Eqn. (6) still applies but now with n = k+1'<<2k:

]
=Y

2 2

.= —==y with n = k+l (9)
Comparison with Egn. (2) shows that the approaches (i) and (iii)
use the same number of runs but approach (iii) reduces the variance
by a factor 2 if k = 3. This variance reduction further improves

as k increases: in Egn. (2) the variance remains a constant while
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in Egn. (9) n equals k + 1 (more precisely, n equals k+1 rounded
upwards to the next multiple of 4; notation: n = [k+]; e.g. if

k = 30 then n = 32; see Kleijnen, 1975).

In general, if the interactions are assumed Lo be negli-
gible then k factors can be investigated in only n = [ k+1] runs.
These designs are much more efficient than the one-factor-at-a-
time approach is, and they require fewer runs than a full factorial
design does. The designs of approach (iii) have been tabulated; see

Kleijnen (1975). They are further investigated in the next section.

3. Incomplete factorial designs

If the experimenter has confidence in his assumption of negligible
interactions then he can use only n = [k+1] runs. After he has
estimated the factor effects he may double-check his assumption by
simulating one or more extra factor-level combinations to validate
the (first-order) model of Egn. (5); also see Egn. (27) in the con-
tribution by Kleijnen (1983a). If from the beginning he has doubts
about the assumption of negligible interactions then he should
make more than n = [ k+1] runs. One attractive design type requires
n = 2k runs (more exactly, 2k is rounded upwards to the next
multiple of eight, e.g. k = 5 requires n = 16). The latter type
yields estimators of the main effects (first-order effects) Yj or
Bj which remain unbiased even if two-factor interactions ij, or
Bjj' are important. Note that this type still requires not Zk but

only 2k runs, e.g., if k = 8 then not 256 but only 16 combinations

are simulated.

If actually interactions are important then incomplete
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factorial designs may give very misleading results. For instance,
design (iii) in Table 1 would result in an estimator of 63 with
expected value equal to ﬁ3 plus the two-factor interaction 812 (the
column corresponding to interaction 812 equals xil xi2 and is

identical to xi3; also see Egqn. 7).

Many more types of incomplete factorials can be derived.
For instance, in a harbor simulation Kleijnen et. al. (1979) stu-
died six factors; not all interactions were thought to be impor-
tant; actually six of the fifteen two-factor interactions were su-
spected to be imrportant. A design with sixteen runs yielded esti-
mates of all parameters thought to be relevant. Other types yield
unbiased estimators of Eli two-factor interactions, at the price
of more runs. Special designs have been constructed for optimizing
k variables, applying Response Surface Methodology (then the vari-
ables are not binary but are cardinal); also see Sect. 4 in Kleijnen,

1983a) .

In general, experimental design theory shows how estima-
tors of specific factor effects are biased by other effects. For
instance, design (iii) in Table 1 yields an estimator of Y5 which
is biased if the interaction le is important. The choice of a
design is baséd on the postulated regression model. For instance,
the simple model of Eqn. (5) leads to design (iii) of Table 1.
More on regression (meta)models can be found in the contribution

by Kleijnen (1983a).

4. Too many factors: screening

For pedagogical reasons first designs were presented for the case
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that the experimenter wishes to investigate relatively few factors.
Actually in the first stage of an investigation the simulation mo-
del usually contains a great many conceivably important factors.
The model builder hopes that of these many factors only a few are
really important; otherwise he would have to report that "every-
thing depends on everything else" and a parsimonious, scientific

explanation breaks down.

Several approaches are possible
(i) Simply assume that the response is insensitive to changes in
most parameters and structural relationships, and concentrate on
a few remaining factors. In this approach the experimenter will
never become aware of the limitations of his conclusions.
(ii) vary all factors randomly. Suppose the experimenter has a
list of, say,a thousand potentially important parameters: k = 1000.
The designs listed in Table 1 require at least 1001 runs. Suppose
further that it is impractical to make so many runs (limited com-
puter time, etc.),i.e., a practical restriction is: n<<k. A simple
solution 1is provided by a random design: sample the plus
one respectively minus one values in an n X k table (such as Table
1) with probability a half respectively. This sampling process can
be refined (make each column have an egual number of plus and
minus one values; reject column j if the correlation with column
j' is plus or minus one, where j' < j). Factor effects can still be
estimated by Egn. (4). However, these estimators are no longer
Least Squares estimators! (Mathematically speaking, Least Squares
requires inversion, but the matrix x = {xij} is singular because

1)

n < k.) Egn. (4) results in biased estimators.

1) E(B) = E(x'.y/n) = (1/n).x'.E(y) = (1/n) .x".x.8. In orthogonal
designs, such as listed in Table 1, §'.§ = L by definition.
Then E(B) = B. If n < k than not all columns of X can be ortho-

gonal: x'.x # n.I so that E(B) # 8.
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(iii) Group the k individual factors into g groups of factors

(g <<k) and investigate these groups as if they were factors. For
example, if k = 1000 then g = 10 groups each of 100 factors can be
formed. Suppose that the individual factors 1 through 100 are im-
portant. Changing the individual factors 1 through 100 from minus
one (off) to plus one (on) when going from run 1 to run 2 will then
not affect the response. Conversely, if runs 1 and 2 yield the
same response, then the experimenter may conclude that none of the
first hundred individual factors are important (this conclusion
can be proved to be correct under mild assumptions; see Kleijnen,
1975). Group-screening enables the experimenter to eliminate many
factors after very few runs: n <<k (since n = g+l or n = 2g where
g << k). After the screening phase the important factors can be
further investigated, applying the designsof the preceding section.
Applications of group screening are rare. One explanation may be
that experimental designs have been applied mainly to physical sys-
tems, not to abstract systems like simulation models. In physical
systems it is extremely difficult to control a thousand factors
from run to run. In simulation, however, all factors are control-
led by the computer program and its input, so that group screening
should become more popular. This type of design was indeed applied
in the simulation of a strategic airlift and a computer system;

see (Nolan and Mastroberti 1972) and (Schatzoff and Tillman, 1975).
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Table 1. Experimental Designs for Three Factors

(i) One-factor-at-a-time

(ii) All combinations of factor levels

Run i % X X

1 2 3
] = - _
2 + - -
3 - + -
4 t + -
5 = @
6 + - +
7 - + +
8 + + +

3=
(iii) An incomplete factorial design: 2 : design

Run i X X X
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