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Abstract

Generally, structural job search models are taken to be stationary, which
is unrealistic in most cases. In this paper we examine models in which
every exogenous variable can cause nonstationarity, for instance because
its value is dependent on unemployment duration. A general differential
equation that describes the evolution of the reservation wage over time,
is derived. We present comparative dynamics for the reservation wage and
the unemployment duration distribution. Some numerical examples show the
restrictiveness of the stationarity assumption. Finally, it is outlined
how the results can be used for empirical analysis.
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1. Introduction

This paper examines the movement of a job seeking individual's
reservation wage over time, in a general non-stationary job model. Also,
results concerning comparative dynamics and the distribution of the dura-
tion of unemployment are derived.

Recently, the use of job search models for the analysis of unem-
ployment duration has become widespread. The reduced form approach in
empirical studies (see e.g. Lancaster (1979) and Kooreman d~ Ridder
(1983)), in which only hazards of the duration distribution are estimated,
seems to be replaced gradually by a more structural approach. The latter
way of modeling is characterized by the explicit use of a reservation wage
equation in empirical analysis. Lancaster 8~ Chesher (1983) and
Narendranathan 8~ Nickell (1985) use the complete theoretical framework of
job search theory to make inferences about search behaviour.

However, the structural models used in these two studies are sta-
tionary. This implies that variables like the unemployment benefit or the
rate of arrival of job offers are assumed to be constant over the spell of
unemployment which is often at variance with reality. What's more, various
reduced form empirical studies indicate a significant duration dependence
of the reemployment probability (see e.g. Blau ~. Robins (1986), Kooreman 8~
Ridder (i983), Lancaster (1979) and Narendranathan, Nickell 8~ Stern
(1985)). Consequently, there is a need to model reservation wage movements
over time based on a nonstationary theoretical framework.

In the last fifteen years, a few papers have been published that
pay some attention to nonstationarity in job search theory (see e.g.
Burdett (~979), Gronau (1971), Heckman 8~ Singer (1982), Lippman 8~ McCall
(1976b) and Mortensen (1984)). Although these articles draw important
qualitative conclusions concerning the movement of the reservation wage
over time, generally no attention is paid to a rigorous derivation of
formulas for the time dependence of the reservation wage. Furthermore,
only very specific departures from stationarity are examined, like finite
lifetimes or shifting wage offer distributions. Most models are specified
in discrete time.

In this paper we examine the consequences of nonstationarity in
continuous-time job search models in a rather general setting. Section 2
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gives a brief overview of job search theory. Various causes of nonstatio-
riarity Ltiat may arise are discussed, like macro-economic events and
changes in the personal situation of individuals during the spell of unem-
ployment. In section 3 and 4 we present the main theorems concerning the
movement of the reservation wage over time in nonstationary models. The
exogenous variables like unemployment benefits and wage offer distribu-
tions are allowed to vary over time in a very general way. The more speci-
fic the assumptions about the time paths of the exogenous variables, the
more detailed our inferences about the time path of the reservation wage
are. In section 3, we also give some comparative dynamics results. These
results concern the shift in the optimal reservation wage path if we re-
place some particular time path of an exogenous variable by another. We
also examine the unemployment duration density in case of nonstationarity.

In section 5 we illustrate by means of numerical examples the
importance of allowing for nonstationarity. Section 6 concludes. It is
outlined how the results of this paper can be used for estimation purposes
and for policy analysis.

2. Job search theory and the introduction of nonstationarity

Job search theory tries to describe the behaviour of unemployed
individuals in a dynamic and uncertain world. Job offers arrive at random
intervals folowing a(semi-)Poisson process with arrival rate a. Such job
offers are random drawings (without recall) from a wage offer distribution
with distribution function F(w). Once a job is accepted, it will be kept
forever at the same wage. It is assumed that individuals know ~ and F(w).
During the spell of unemployment, e benefit b is being received. One can
think of b as unemployment benefits minus the costs of searching for a
job. Unemployed individuals aim at maximization of their own expected
present value of income (over an infinite horizon).

The job search model described here contains three exogenous vari-
ables (~, b and F(w)) and one constant parameter p, which is the subjec-
tive rate of discount (p ~ 0). We now discuss the concepts of stationarity
and nonstationarity in this model. Let time T~ denote the point of time at
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which an individual becomes unemployed. We call the job search model that
describes the search behaviour of this individual stationary, if the exo-
genous variables, ~, b and F(w) are constant on the time interval [TC,m).
In combination with the infinite horizon assumption, this means that in
case of stationarity, the unemployed individual's perception of the future
is independent of time or unemployment duration. Consequently, the optimal
strategy is constant during the spell of unemployment.

Let us assume that F(w) is continuous in w, that this distribution
has a finite first moment and that 0 C a~ o and ~b~ ( m. For a stationary
job search model satisfying these conditions, it has been shown many times
that the optimal strategy can be characterized by a reservation wage pro-
perty (see e.g. Lancaster 8~ Chesher (1983)) Jobs will be accepted if their
wages exceed the reservation wage ~ while a wage below p~ induces one to
reject the offer and search for a better one. The reservation wage is
determined by

(1) p- b ~ P. ~fo F(w)dw F:- 1-F

Nonstationarity arises if one or more of the exogenous variables
change after T0. Such a change may be due to business cycle effects. For
instance, an increase in the aggregate unemployment level may induce a
fall in a. Changes may also occur because of policy changes like a reduc-
tion of all unemployment benefits. Finally, for a job searcher the exoge-
nous variables may change because of changes in his personal situation.
Unemployment benefits and F(w) may be dependent on the elapsed unemploy-
ment duration. Sooner or later these features of the labour market and
personal characteristics of job searchers are recognized and used in de-
termining the optimal strategy. So, generally, the optimal strategy is not
constant in case of a nonstationry model.

In this paper we consider nonstationarity as a result of time
dependence and duration dependence of exogenous variables. Dependencies of
exogenous variables on the number of rejected offers or the levels of
wages associated with rejected offers are ruled out. Further, throughout
the paper we will be concerned with rational job searchers; they are as-
sumed to correctly anticipate changes in the values of the exogenous vari-
ables. For instance, we expect people to know how unemployment benefits
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are related to unemployment duration. Unanticipated changes are trivial to
model, using (1).

3. The reservation wage in nonstationary job search models

3.1. Assumptions

In order to be able to derive an expression for the optimal search
strategy in a nonstationary model, we have to examine the exogenous vari-
ables more closely. For ease of exposition we let calender time start at
the moment that one becomes unemployed, so that calender time and unem-
ployment duration coincide. In this way we can consider duration depen-
dence and other forms of nonstationarity simultaneously. If the job offer
arrival rate ~ depends on time, the waiting time until the next job offer
does not have an exponential distribution. Consider someone whose elapsed
unemployment duration equals t. The job offer probability in a small in-
terval (ttu, t}utdu) conditional on not having received an offer between t
and ttu, is ~(ttu)du. Defining g(u;t) to be the density of waiting time u
for someone whose elapsed duration equals t, we have

(2) ~(ttu)du - u.t du
1-G(u;t)

in which G(u;t) represents the distribution function of u. By integration,

(3) S(u;t) - a(t;u). exp{-Gfu~(ttw)dw} u~ 0.

In order to obtain properly defined present values and in order to
restrict attention to economically meaningful cases, we impose the follow-
ing weak conditions concerning the exogenous variables in our model.

1. Wage of,~ers at tfine t are draam randomly from a distrtbutton ~ith a

dtstrtbution function F(w;t), mhich is a contirncous functton of w and

monotonically tncreasing in w on some interval Ca(t), ~(t)) r~ith

0~ oc(t) ~~(t) ( m, F(a(t);t) - 0 and lim F(w;t) - 1. This hotds- - ru~R ( t )
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for every t) 0. The mean of the dtstributton ts a uniformly bounded

function of t.

2. For every t) 0, 0(~(t) ( n( m and ~b(t)~ ~ B(
fixed numbers.

n and B being

3. F(w;t), ~(t) and b(t) are cont{nuous functtons of t on [0,~) except

possibly for a fintte number of points. If an exogenous variable is
x

dtscontinuous tn t at some potnt, say t, then tt is right-continuous,
s

and the Zeft-hand Zimit of this vartable at t does exist ( e.g., in

case of b:

M
lim b(t) - b(t ) and lim b(t) exists)

tlt~` tTt~`

4. There exists some number T such that all exogenous vartables are con-

stant on [T,m).
5. 0 ~ p ~ m

We allow for negative b, in order to capture the case in which
search costs exceed unemployment benefits. Further, from assumptions 2 and
4, we infer that g(u;t) as defined in equation (3) is a properly defined
density for every t) 0.
Note that a model which satisfies assumptions 1-5 allows for quite general
patterns of movement of the exogenous variables over time, comprising
virtually every nonstationary situation that may arise in practice.

3.2. The optimal path of the reservation wage

Let R(t) denote the expected discounted lifetime income at t, if
from t onwards the optimal search strategy is followed. It can be proven
that under assumptions 1-5, R(t) is a bounded continuous function of t. We
now present a characterization of the time path of the optimal strategy.

Theorem 1

Let assumptíons 1-5 be sattsfted. Then the optimal strategy of a

,job searcher at time t can be characterized by a reservation t~age P(t).
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~(t) is a bounded and conttnuous functton of t and it satisfies the fol-
lowtng differential equation for every potnt tn time at whtch b(t), a(t)
and F(w;t) are continuous tn t.

l4) 9~'(t) - P.9~(t) - p.b(t) - ~(t).Q(9~(t);t).

where Q(so(t);t) is defined as

Q(P(t);t) :- ~(t)fm F(w;t)dw

If one or more of the exogenous variables are discontinuous in t at some
point, then the right-hand side of (4) gtves the rtght-hand dertvattve of
p with respect to t at that potnt. The Left-hand dertvative can be calcu-
Zated by repZacing the values of the exogenous vartables at t in the
right-hand stde of (4) by their Zeft-hand Ztmtts at that dtsconttnuity
point.

The proof is Qiven in the appendix. It also contains a discussion
of the uniqueness of the reservation wage.

The differentisl equation (4) is also given by Mortensen (1984).
However, in Mortensen's model the exogenous variables are forced to have
very simple functional forms; in fact the only departure from stationarity
is (in terms of our model) a simultaneous discrete change in ~ and b when
the unemployment duration equals T time-units. This change is interpreted
to be a consequence of liquidity constraints.

Let us now try to get an intuitive feeling for equation (4). First
notice that if p~'(t) - 0, equation (4) reduces to equation (1). This was
to be expected as 9~'(t) - 0 is a necessary condition for stationarity. Let
So~(t) be the optimal reservation wage at time t if the environment remains
stationary after t, i.e., from equation (1),

(5) P~(t) - b(t) t~Pt .Q(4~0(t);t) t) 0

We want to compare y~(t) and g~~(t). Of course, 9~(t) -~~(t) implies
p~(t) - 0. (Right-hand derivatives are indicates by a subscript R.)



Further, from equation (4), for every ~(t),

(6)
c~ ~pR(t)
J~(t) - P t a(t).F(9~(t);t) - P t 8(t) ) 0

in wtiich 9(t) denotes the rate of escape from unemployment at time t(see
subsection 3.4). Consequently, if 9~(t) ~ 9~G(t) then pR(t) ~ 0. Let RG(t)
and R(t) denote the value of search at t for the cases in which the opti-
mal reservation wages are given by 9~G(t) and ~(t), respectively. It is
clear that PG(t) - p.RG(t) and 9~(t) - p.R(t) ( see appendix 1). UsinS these
eqations we can show that the relationship between 9~ and ~G that we found
above is perfectly plausible. If for example 9~(t) ) g~G(t) then
R(t) ) R~(t) which means that there are future changes in the values of
the exogenous variables that altogether benefit the value of search R(t)
as compared to the "stationary state" value of search RG(t). As time pro-
ceeds, these future changes come nearer. Both because future income is
discounted by a positive rate p and because the probability of not findint
a job before the changes take place (following the optimal strategy) in-
creases as time proceeds, this implies that R will rise at t(compare
equation (6)). So the right-hand derivative of R with respect to time at t
is positive and consequently pR(t) ) 0. Note that the argunent applies to
every two possible reservation wages at t, in the sense that it makes
clear that given the values of the exogenous variables at t, ~1(t) ) 9~2(t)
implies 9~iR(t) )~2R(t). This is exactly what equation (6) says. In sec-
tion 4, where we make an additional assumption concerning the exogenous
variables, we return to the interrelations between ~, p'and 9~G.

Theorem 1 can be used in order to determine 9~ as a function of
time. First solve for ~ at the point T after which all exogenous variables
are constant (thís is easily done using equation (1)). ~(t) is a conti-
nuous function of t. Therefore 9~(T) serves as an initial condition for the
differential equation (4) in the time interval ending at T within which
the exogenous variables are continuous. Thus ~(t) can be solved for every
t in this interval. Backward reduction leads to the solution p(t) for
every t) 0. In most cases solving the differential equation can only be
done numerically. Generally not even Q(~(t);t) cannot be expressed in
closed form, for instance if wage offers are lognorvally distributed.
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If we place restrictions on the way that exogenous variables may
vary over time, then we can sometimes draw qualitative conclusions con-
cerning the time path of q~. As an example, consider models in which b(t),
~(t) and the mean and variance of F(w;t) do not increase as a function of
t on the time interval [O,T~. Then, from a simple revealed preference
argument, it follows that ~(t) will never increase on [O,T]. Sufficient
conditions for a strictly decreasing reservation wage are, however, less
simple. In appendix 2 a result is presented.

3.3. Comparative dynamics

In this subsection we examine the consequences for the optimal
reservation wage path when replacing some particular time path of an exo-
genous variable by a different (higher) path. For sake of convenience we
will be using the term "reference model" in case every exogenous variable
follows the reference path, while the term "alternative model" denotes
cases in which one exogenous variable dces not follow its reference path
while the others do. Variables in the reference model will be labelled
with a subscript r. Consider two arbitrary points in time tl and t2, such
that 0 5 tl C t2 5 m . We consider four different departures from the
reference model:

C1) dt E[tl, t2~ b(t) ) br(t)

C2) vt E[tl, t2~ ~(t) ) Ar(t)

C3) vt E[tl, t2~ F(w;t) first order stochastically dominates
Fr(w;t), that is, vw E(ar(t), ~(t)), F(w;t) ~ Fr(w;t).

C4) b't E[tl,t2) F(w;t) is a mean preserving spread of Fr(w;t),
that is, E(w;t) - Er(w;t) and
dx E~a(t), ~(t)) a(t)fx F(w;t)dw ~ a(t)fx Fr(w;t)dw

It is important to remark that in every case Ci, for every exogenous vari-
able the time paths in the reference model and the alternative model are
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equivalent outside the interval [tl,t2). Notice that chaneing location and
scale of the wage offer distribution are special cases of C3 and C4, res-
pectively.

Theorem 2

Consider one of the deviations C1, C2, C3 or C4 from a referenee

model. Let the exogenous variables of both the referenee modeZ and the

aZternative modet satisfy assumptions 1-5. In addition ~e assume that in

cases CZ, C3 and C4 there is a t3 E[O,t2~ such that vt E[t3,t2)
pr(t) ( p(t) ,~hile in ease C4 also vt E[t3,t2) ~r(t) ~ a(t). Then, as
a result,

(i) `dt E [O,t2~ 4~(t) ) 9~r(t)

(ii) vt E [t2,v~ 9~(t) - PrÍt)

(iii) vt E[O,tl) p' (t) ) 9~r(t) if t ts a point at r~hich 9~ and

(iv)

pr are di,~ferentiable t~ith respeet to ttme. If they are not diffe-

rentiable at some point t E[O,t1~ then the inequality stiZl hoLds
in that point for the left- and rtght-hand derivatives. Further,

~L(tl) ~~rL(tl)' ( A subscrípt L denotes Zeft-hand derivattves)

~L(t2) ~ ~rL(t2)'

The proof is given in appendix 3. By reversint the reference model
and the alternative model, we obtain the results in case of "downward"
shifting exogenous variables. Simultaneous occurrance of some C1, C2, C3,
C4 can be examined by sequential application of theoreu 2. In theorem 2,
the inequality restrictions concerning p~r(t) are imposed only for exposi-
tional elegance; they rule out uninteresting cases in which changing exo-
genous variables do not influence the reservation waóe path. Sufficient
conditions in terms of the exogenous variables are given in appendix 3.
Note that if we take for every t ~ 0 that a(t) - 0, ~(t) -~(which holds
for example in case of lognormally districtured wages) and b(t) ~ 0, then
the restrictions are always satisfied.

The intuition behind (i) and (ii) is straightforward. Any future
shift in the time path of exogenous variables that benefits the expected
discounted lifetime income, induces job searchers to be aore selective in
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their search process. As for the period up to tl, the shift in exogenous
variables after point tl becomes more important when going forward in
time. This implies that ~(t) will shift away from ~r(t) when t comes clo-
ser to tl. However, it is not always true that dt E(tl,t2) ~'(t) (~r(t),
if properly defined. It is easy to find time paths of the exogenous vari-
ables in the alternative model that cause ~'(t) ) ~r(t) for some
t E ~tl,tZ~.

Mortensen (1984) gives the signs of the derivatives of the reser-
vation wage with respect to exogenous variables in a stationary model.
Those results are in accordance with theorem 2(take the reference model
and the alternative model to be stationary, so tl - 0, t2 - m).

3.4. The unemployment duration distribution

Given our results concerning the time path of the reservation
wage, we can construct the unemployment duration distribution in a nonsta-
tionary job search model and extend the comparative dynamics analysis
using this distribution. Define the hazard 8(t) of leavins unemployment at
time t as

(7) g(t) - a(t).F(~(t);t)

By virtue of assumption 1, 8(t) is a continuous function of ~(t). From
theorem 1 and assumption 3 then, 8(t) is a continuous function of t except
for points of time at which ~(t) or F(w;t) are discontinuous functions of
t.

tion
The unemployment duration density is given by the well known equa-

(8) h(t) - S(t).exp{-Oftg(u)du}

From the continuity of ~(t) and the piecewise continuity of F and a as a
function of t and from the boundedness of È and a, it is clear that the
integral in equation (~) exists for every t) 0. For points of time at
which 8(t) is a continuous function of t, h(t) is continuous as well, and
vice versa. Note that though h(t) is discontinuous at points where ~(t) or
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F(w;t) are discontinuous functions of t, the distribution function asso-
ciated with h(t) is a continuous function of t on the whole interval
[O,m~.

If it exísts, the expected unemployment duration can be written as

(9) E(t) - pf~exp{-CftB(u)du}dt

From (7) we infer that if for some t a(t) ~~(t) ~ S(t), then shifts in
net benefits that cause a rise of ~(t) will also cause a fall of 8(t).
Because of the continuity of p(t) and F(w;t) as functions of t and w res-
pectively, 8(t) will fall in at least a neighbourhood of t. Consequently,
we have as a corollary from theorem 2,

Corollary

Let assumptions 1-5 be satisfied. If ine raise b(t) for every

t E[tl,tz) ~íth 0 C tl ~ t2 5~, and if there is a potnt t3 mith

0~ t3 ( t2 at which a(t3) ~~(t3) ~~(t3), then the expected unemployment

duration rises, tf it extsts.

In appendix 3 sufficient conditions for a(t3) ~~(t3) C S(t3) are
given.

4. Exogenous variables as step functions of time

In the sequel we adopt an additional assumption, namely:

6. F(w;t), ~(t) and b(t) are step functtons of t on [0,~~.

For b(t) in particular this is what we often see in practice. Further,
every continuously changing exogenous variable can be approximated by a
step function.

We can now split the positive real axis on which time is measured
into intervals within which the exogenous variables are constant. On such
an interval, equation (4) reduces to a constant coefficient differential
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equation. Moreover, this differential equation has a stationary solution,
(i.e. the solution for which 9~'(t) - 0) which is constant on that inter-
val. This solution corresponds to ~~ as it is defined by equation (5) in a
more general setting. In subsection 3.2 we showed that pR(t) can be con-
sidered to be a monotonically increasing function of p(t). This also holds
for 9~L(t). Further, we infer that if in a model that satisfies assumptions
1-6 for some t y~'(t) exists, then so does 9~" (t). By differentiating the
constant coefficient differential equation with respect to t we find that
p'(t) and p"(t) have equal sign. Thus we have the following information
about the shape of ~(t) within intervals on which the exogenous variables
are constant:

Theorem 3

Let asswrrptions 1-6 be sattsfied. Let the exogenous variables bes s~
constant on an tnterval [t,~,t ~, 0 C tw C t C m. Then for every~ - -
t E Ctw,t ~ me have

~(t) ~ ~o ~ y~' (t) ~ o ~, ~„ (t) ~ o a

~(t.) ~ ~o .-~ ~R(tw) ~ o a. ~(tN) ~ ~o b ~L(t~`) ~ o

Deviations of ~o(t) from p~ arise because of anticipations of fu-
ture changes of the values of exogenous variables. As time proceeds, these
changes come nearer. Now the rate of discount is positive and the probabi-
lity of finding a job before the end of the present interval when follow-
ing the optimal strategy, decreases when t rises. Therefore anticipations
become stronger and ~ shifts away further fron p0. As ~ is the only vari-
able that changes within the interval, this in turn implies that 9~' in-
creases in absolute value, which explains the sign of ~" . (Note the dif-
ferences and similarities with the analysis of equation ( 6) in subsection
3.2; in this section 9~" (t) -~'(t)~~(t) . p'(t) holds.) Note that the
sign of ~-~oD at the end point of an interval can be thought of as deter-
mining the sign of the slope of 9~ within the interval.

Now suppose there is only one point in time, T, at which exogenous
variables are ellowed to change values. In addition, suppose that only one
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exogenous variable changes in value at T, according to one of the follow-
ing four rules: (if necessary, values of the exogenous variables before
and after T will be distinguished by subscripts 1 and 2, respectively)

D1) bl ~ bZ

DZ) ~1 ) ~2 while ~(T) C ~
D3) F1 first order stochastically dominates while ~(T) C S1
D4) F1 is a mean preserving spread of F2 while al C~(T)C ~1.

Then we have two intervals, [O,T) and [T,m) with each its own stationary
solution which will be denoted by ~1 and ~2, respectively. Whether ~1 ~~2
can be examined by calculating the well;known derivative of ~1 with res-
pect to the exogenous variable that changes at T. If the derivative is
negative, then ~2 C~1 and consequently ~(T) C~1, as ~(t) -~2 for t~ T.
We can then apply theorem 3 in order to obtain the following

Corollary

Let assumpttons 1-6 be satisfied. Let T be the only one potnt tn

time at mhich exogenous variables are allo~ed to change values, accordtng

to D1, D2, D3 or D4. Then ~1 ~~2 and

(i) for every t E [O,T ) ~2 C ~(t) C ~1, ~'(t) ( 0, ~ " (t) ~ 0
(ii) ~(T) - ~Z. ~L(T) ~ 0, ~R(T) - 0.

Note that a part of this corollary can also be proven using theorem 2.
Burdett (1979) and Mortensen (19~7) proved that in case D1, for every
t E[O,T~ ~'(t) C 0, in e model in which time devoted to search is endo-
genous. Mortensen (1984) also proved that for every t E[O,T~
~'(t) C 0 if, in terms of our model, both ~ and b decrease at T.

5. Numerical examples

In order to illustrate the results so far, we give some numerical
examples. We consider two different models. In both models waQe offers are
assumed to be distributed uniformly between 1500 and 3000 units of money
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per month. The first model (I) is nonstationary because of a decrease in
benefits from 2400 to 1200 when current unemployment duration equals 24
months. p and ~ are taken to be 0.01 and 0.1, respectively. In model II
both b and a change when duration equals 24 months: for t( 24, b- 24~5
and a- 0.5, while for t) 24 b- ~50 and ~- 0.05. Again, p equals 0.01.
Both models satisfy assumptions 1-6 and we can apply the results from
sections 1-4.

Figures 1 and 3 give the optimal reservation wage paths. The
changes in exogenous variables at t- 24 cause the job searcher to lower
his reservation wage long before he reaches that point. Note that the
results are in accordance with the corollary in section 4. Figure 2 shows
several duration densities which follow from model I. The solid line re-
presents the density of the job searcher who uses the optimal reservation
wage function ~(t) as his strategy. The dotted line is the density func-
tion of a so-called naive searcher. Such a person does not anticipate
changes in the values of exogenous variables at all, so if t( 24, his
reservation wage equals the stationary solution of the differential equa-
tion that holds on t C 24, while if t) 24, it equals the optimal ~(t).
Therefore his density is discontinuous at t- 24. Now if a search model is
stationary. then ~(t) and 8(t) are tiae-invariant and, from equation (8),
the duration is distributed exponentially. In order to examine whether the
nonstationary model I has a distribution which is radically different from
an exponential one, we drew the dashed line in figure 2. This line repre-
sents the (exponential) density in a model. in which exogenous variables
are set at the average value they have at the moment of getting employed
according to the nonstationary model. So in our case we set b- 2400~
P(t ~ 24) t 1200.P(t)24) - 1859. Note that on the interval [24,m) both the
density of the naive searcher and the density of the rational searcher
have an exponentiel shape (i.e. a constant hazard). Of course, the naive
searcher has an exponentisl-like density on [0,24) too.

Figure 5 gives duration densities in case of model II. The solid,
dashed and dotted lines have the same interpretation as in figure 2. Note
that the decrease in A at t- 24 causes the duration density of the job
searcher who uses the optimal strategy, to be discontinuous at t- 24.
This is also shown in figure 4, which gives the hazard rate of the sear-
cher who uses the optimal strategy. As time proceeds, ~(t) decreases and
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8(t) increases until t- 24. At that point, the value of 8 drops to one
tenth of its left limit at this point, because a decreases from 0.5 to
0.05 while P(t) is continuous at t- 24.

Using these special examples as a guideline, we can try to derivc~
somewhat infor-mally some general properties of 9~(t) and h(t), in a model
in wliich exogenous variables only change value at t- 24. First, if b is
the only variable that changes value at t- 24, then the duration density
will look more like an exponential density than if ~ or F(w) change value
at t- 24. This is because changing ~ or F(w) results in a discontinuous
density.

Now let us call anticipation (of changes of the values of exoge-
nous variables) strong if ~(t) is close to ~(24) for even very small t and
~n(t) is much smaller than the stationary solution on [0,24). (Clearly,
then, anticipation is strong if e.g. ~ and ~ are small, S-a is large and
exogenous variables decrease substantially.) If anticipation is strong or
if the exogenous variables do not change substantially at t- 24, then
p(t) lies close to ~(24) for all values of t and consequently 8(t) does
not show much variation in time. Therefore h(t) will not differ very much
from an exponential density in such cases. If, on the other hand, antici-
pation is very weak, then of course h(t) will look like the duration den-
sity of a naive searcher.

It is clear that assuming stationarity in the model while it is
not present in reality gives rise to errors when estimating the model. We
saw that sometimes a nonstationary model has a density h(t) that does not
differ much from an exponential density, e.g. if b decreases at T while a
and F(w) are constant and anticipation is strong. Even in such cases sub-
stantial errors can be made if one assumes stationarity and uses duration
data to estimate structural coefficients.

6. Conclusion

In this paper we have examined nonstationarity in job search theo-
ry. The optimal reservation wage path over time has been derived under
some weak assumptions concerning the exogenous variables. We also have
given comparative dynamics results. Furthermore, by assuming the exogenous
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variables to be step functions of time we were able to derive additional
properties of the reservation wage path. Generally these properties are in
accordance with economic intuition. In section 5 we considered somewhat
informally the restrictiveness of the stationarity assumption.

The results of this paper can be used for estimating stuctural
nonstationarity job search models, in order to make inferences about
search behaviour. For such purposes, data on durations and post-unemploy-
ment wages, and (interview) data on reservation wages can be used. As for
the exogenous variables, b can be taken to represent observed official
benefits. It is well known that in the estimation of structural job search
models, one easily runs into identification problems (see Flinn á. Heckman
(1982) and Ridder 8~ Gorter (1986)). Generally it is necessary to have a
parametrized F(w) and to have a or the parameters of F(w) be dependent on
some observables.

Once a nonstationary structural job search model is estimated, it
can be used for policy analysis. By means of simulations, the consequences
of alternative unemployment benefit policies on search behaviour can be
examined.

Tilburg University

January 198~
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Appendix

1. Proof of theorem 1

Consider a moment t at which an offer is pending. Let I(t) denote
the expected present value of income when following the optimal strategy
at t. An acceptance policy at time t can be characterized by p(w;t),
0( p C 1, giving the probability that a wage offer w will be accepted. We
define R(t) to be the return of the optimal strategy, if the offer at t is
rejected.

m
(A1) I(t) - P(u;t) Of [P(w;t) p t(1-P(w;t)).R(t)]dF(w;t)

Assumption 1 guarantees the existence of the integral in (A1). From (A1)
M

it follows that the optimal acceptance policy p(.;t) is given by
w

(A2) p(w;t) - 1 if w~ p.R(t)

x
p (w;t) - 0 otherwise

thus ( A1) can be written as

(A3) I(t) - R(t) t p.Q(pR(t);t)

From assumptions 2, 3, 4 and 5 and from the boundedness and continuity of
R(t) as a function of t, R(t) is properly defined by

(A4) R(t) - Cfmó(u;t)[Cfub(tts)e-psds f e-puI(ttu)]du

The optimal policy ( A2) can be characterized by a reservation wage p(t),
which is continuous in t and bounded,

(A5) ~(t) - p.R(t)

Substitution of (A3) and (A5) in (A4) gives
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P(t) - OfOg(u;t)[P.Ofub(tts)e-Psds

t e-pu{4~(ttu) t Q(~(t4u); tfu)}]du

Using ( 3), this can be transformed into

(A6) P(t) - exp{Ofta(v)dv t pt}.tfmg(Y;0)[p.Ofyb(v)e-p~dv

; e-py(Q(P(Y);Y) t ~(Y))~dY

- pePt.Oftb(v)e-P~dv

If we differentiate (A6) with respect to t we obtain

(A7) P'(t) - P.P(t) - Pb(t) - a(t).Q(~(t);t)

As can be seen from (A6), differentiation is only allowed in points at
which ~(t), b(t) and F(w;t) are continuous in t. However, because these
variables are always right-continuous in t, the right-hand side of (A~)
gives the right-hand derivative of ~o(t) with respect to t at points at
which exogenous variables are discontinuous. Similarly, because the left-
hand limits of these variables exist, the left-hand derivative of p(t)
with respect to t at such discontinuity points is defined by

(A8) ~i(t) - P.v~(t) - P.TTt b(T) - ~Tt a(T).~Tt Q(~(t);~)

This completes the proof of theorem 1.
It can be proven that the results in theorem 1 remain valid if we

replace ~(t) ~ 0 in assumption 2 by ~(t) 2 0, that is, if we allow for
situations that people remain unemployed forever in the sense that
Of~g(u;t)du ~ 1.

Zf p(t) (as defined by (A5)) does not lie within the upper and
lower bound of the interval on which the waee offer density is positive,
then there are generally many other reservation wages that describe the
optimal policy at t. Still, the reservation wage as defined by (A5) can be
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used any time to describe optimal behaviour of job searchers during their
spell of unemployment.

2. Strictly decreasing exogenous variables

We consider models in which one exogenous variables is time depen-
dent in a way that is described by one of the following four cases, while
the others are constant on the interval [O,m)

K1) dt E[O,T) d2 ) 0 b(t) ) b(t}2)
K2) b~t E[O,T) dT ) 0 ~(t) )~(ttT)
K3) dt E[O,T) VT ) 0 F(w;t) first order stochastically dominates

F(w;t}T), that is, vw E~a(t}T), p(t) ) F(w;t) ) F(w;ttT)
K4) vt E[O,T) dT ) 0 F(w;t) is a mean preserving spread of F(w;ttt'),

that is, E(w;t) - E(w;ttT) and

vx E Ca(t), p(t)) a(t)fxF(w;t)dw ) a(t)fxF(w;tt~t)dw

Note that in all cases we allow the exogenous variable to be discontinuous
in a finite number of points. In order to rule out uninteresting situa-
tions in which decreasing exogenous variables do not make the reservation
wage time dependent, we impose some restrictions on ~(t). In cases K2 and
K,~ we impose for every t E[O,T) that 9~(t) ( p(t), while in case K4 for
every t E[O,T) a(t) ~ 9~(t) ~ p(t) has to hold. Let fL(s) denote the
left-hand limit of f(x) at x-s, if it exists. The restrictions can be
characterized by the following restrictions on the exogenous variables.

K2 ) b C ~B

K3) b C pL(T)
K4) aL(T).(ltp) - P. E(w;T) ( b~ pL(T).

Theorem A1

Let assumptions 1-5 be sattsfied. Let in addttton one exogenous vart-
able be time dependent according to K1, K2, K3 or K4 ~hile the others are

constant on the ttme interval [O,m). Then
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(i) dt E [O,T) w(t) ~ PD(t)

(ii) vt E[O,T) g~'(t) C 0 if this derivative exists. At potnts t mhere

p'(t) does not exist ( i.e. points at whtch one of the exogenous

variables is discontinuous), both pi(t) ~ 0 and pR(t) ~ 0 hold. If an

exogenous vartable ts discontinuous at T, then y~L(T) ~ 0, othermtse

p'(T) - 0.

Clearly, these results make economic sense. Any future decrease in b, ~ or
the mean or variance of F will make the value of search in the present
smaller than it would have been if the exogenous variables were constants.
From the discussion of equations (4), (5) and ( 6) in subsection 3.2, this
means that P(t) C SoC(t) for every t E[O,T) and that g~ decreases as lower
values of the exogenous variables come nearer.

Proof of theorem A1

1'he structure of the proof is as follows. First we restrict attention
to an unspecified time interval within which the exogenous variables are
continuous. In lemma A1 we show that sufficient for (i) and (ii) to hold
in the interval is that, loosely speaking, g~C(t) is strictly decreasing
within that interval. The remainder of the proof is concerned with finding
conditions that impose the required property to 9~C(t) for every interval,
using backward induction.

We split the time axis into a finite number of intervals, within

which every exogenous variable is continuous in time. The intervals are

closed to the left side and open to the right. The last interval is [T,e).
M

Now consider one such interval, say [tM,t ). From theorem 1, q~ is a diffe-
N

rentiable function of t and 9~ is a continuous function of t, on [t,~,t ).
~r r ~ x w w

Further, pL(t )- 9~(t ) but it may be that 9~L(t )~ VR(t ) or pQL(t )~
k

S~C(t ) -

Lemma A1

r
Let assumptions 1-5 be satisfied. Consider the interval [t,,,t ) as

r w
defined before. If ~(t )~~CL(t ) and if
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w ~
(A9) et E[t,,,t ~ dT E~O,t -t~~0(ttT) ~ g~0(t)

r w
then rt E[t~,t ~ p(t) ~ p (t) , rt E(t~„t ) 9~' (t) ( 0; g~' (t~) ~ 0 and

a a 0 w M R ~
if p(t )~ 9~(t ) then ~'(t )~ 0 while if p(t )- p(t ) then„ OL L OL
4~L(t ) - 0.

Proof of lemma A1

~
Suppose that at some t E[t,~,t ~ 9~0(t) ~~o(t) holds. Then, from the

discussion of equations (5) and (6) in subsection 3.2, p'(t) ~ 0 if
w :

t ~ t~, while 9~R(t) ~ 0 if t- t~. On the oth~r hand, p(t ) C g~OL(t ). p
and p0 are continuous functions of t on [tw,t ~ and pQ is decreasing in t.
Therefore p~0(t) C~(t) cannot hold for any t E[t,,,t ~. If p0(t) ) p(t)
for every t E[t,,,t ~ then, again from subsection 3.2, p'(t) C 0 for everyw r ~
t E Ct„,t ) and pR(t,~) ~ 0. Furthermore, if 9~OL(t )~ p(t ) thenr w w w
pL(t )( 0 while if 9~OL(t )- y~(t ) then 9~L(t )- 0. This completes the
proof of lemma A1.

Basically, we now only have to prove that 9~0 is decreasing in t.
Consider case K2. For every t) T ~(t) - 9~0(t) holds, due to the statio-
narity after T. If A is discontinuous at T, then ~L(T) ) a(T). Because
b~ p holds, we have for every t) 0 that ~0(t) C s holds (see equation
(5)). Consequently, Q(~0(t) ~ 0 and therefore aL(T) ) a(T) implies

~OL(T) ) p0(T), as can be seen from equation (5). If ~L(T) - a(T), then

~OL -~p(T). So in any case 9~(T) ~~OL(T). Now consider the intervalN M M-
[t,,,t ) with t- T. Take a t E[t,,,t ~ and a T ~ 0. Then, because b and
F(w) are constant in case K2,

(Alo) y~o(tfT) - 9~o(t) - ~ tPT {Q(~o(t.Y)) - Q(~o(t))}

f P.Q(v~o(t)) {a(tfT) - a(t)}

Again, Q(9~0(t)) ~ 0. Further, a(tt2) ~~(t). Inspection of (A10)
shows that therefore 9~0(ttT) ) 4~0(t) cannot hold. Because this is true for~ -
every t E[t~,t ) and for every T~ 0, we infer that ( A9) holds for the
interval ending at T.



So the conditions of lemma A1 are satisfied and we can apply it,
N N N N N N

noting that ~pOL(t ~ ) ~0(t ) if aL(t ) ) ~(t ) Mhile 9~OL(t ) - ~0(t ) if a
is continuous at t. In the latter case ~cL(t )- 0 of course implies
9~' (T) - 0.

N M
As for the interval [u,t„~ before [tN,t ~ with t- T, we can go

through the same lines of argument. We have seen that 9~(tN) ~ p0(tN).
Again, ~ may be discontinuous at t,,. In that case it follows that

~OL(tN) ~ 9~0(tN). So p(tN) C~OL(tN) holds in any case. Furhter, p0 de-
creases in t on [u,t„~ and lemma A1 can be applied again. Going backwards
in time, one thus obtains theorem A1 for case K2. Proof of the other cases
are analogous.

Lippman ~. McCall (1976b) consider a generalization of case K3, for
which they derive a result similar to theorem A1 in a discrete-time model
with the property that in every period exactly one job offer arrives.

3. Proof of theorem 2

We split the time axis into a finite number of intervals, within
which all exogenous variables from both models are continuous functions of
time. The intervals are closed to the left and open to the right. We let
tl and t3 be left-hand bounds of an interval and we let t2 be the right-
hand bound of an interval. Now consider one of the intervals, say,N
[tN,t ~. From theorem 1, p and 9~ are differentiable functions of t onN r .
[tN,t ~. Further, p and pr are continuous at tN and t but they may not be
differentiable at those points.

We outline the proof of case C2. Just like the proof of theorem
A1, we work backward in time. First, suppose t2 ~ m. For every t~ t2
~p(t) -~ar(t) holds, due to the equivalence of the exogenous variables of
both models on [t2,m~. Consider the interval [u,t2~. (By definition
t3 C u.) From equation (4), we have for every t E Cu,tZ)

(Ali) ~'Ít) - 4~r(t) - P(~(t) - 9~r(t)) - ~Ít){Q(PÍt);t) - e(r~r(t);t)}

t {~r(t) - ~(t)}.QÍ9~r(t):t)
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If t- u, we replace ~'(t) -~r(t) by ~R(u) -~rR(u). As for every
t E[u,t2) ~r(t) ~~(t) holds, we have Q(~r(t);t) ) 0 on [u,t2). So if
there is a t E(u,t2) at which y(t) ~~r(t) then it follows from (All)
that ~'(t) ~~r(t). Also, if ~(u) ( pr(u) then ~R(u) C~rR(u). But
~(t2) -~r(t2) and ~ and ~r are continuous functions of t. Therefore for
every t E[u,t2) ~(t) )~r(t) has to hold. Further, according to theorem
1,

(A12) ~L(t2) - ~rL(t2) - {~rL(t2) - ~L(t2)}.QL(~r(t2):t2)

which is nonpositive.
Now consider the interval [y,u). We just derived that ~(u) )

~r(u). Going through the same line of argument, if follows that for every
t E[y,u) ~(t) )~r(t). Whether t3 - u or t3 C y does not matter for this
result. We can proceed this way until we arrive at the interval of which
tl is the right-hand bound, say [v,tl). We now have for every t E(v,tl)

(A13) ~'(t) - ~r(t) - P(~(t) - ~r(t)) - ~(t) {Q(~(t):t) - Q(~r(t):t)}

For t- v we have to replace ~'(t) - yr(t) by ~R(v) -~rR(v). If there is
a t E(v,tl) at which ~(t) C~r(t) holds, then it follows from (A13) that
~'(t) C~r(t), regardless of t~ t3. Similarly, ~(v) (~r(v) implies
~R(v) (~rR(v). But p(tl) )~r(tl) and ~ and ~r are continuous functions
of t. Therefore for every t E[v,tl) ~(t) )~r(t) has to hold. Further,

(A14) ~~(tl) - ~rL(tl) - P(~(tl) - ~r(tl)) - AL(tl) {QLI~(tl):tl) -

QL(~r(tl);tl)}

which is positive. Also, from (A13) it follows that for every t E~v,tl)
~(t) ) ~r(t) implies that ~'(t) ) ~r(t) while ~(v) ) pr(v) implies that
~'R(v) )~rR(v). Backward induction leads to the results for t~ v.

If t2 - m we first examine the interval [T,m) on which the exoge-
nous variables are constant. Because T ) t3 we have Q(~r(t);t) ) 0 on this
interval. Therefore increasing ~ in this interval induces an increasing
reservation wage. Now we can Qo through the same lines of argument as



29

before concerning the intervals that lie to the left of T. This completes
the proof in case C2. Proofs of the other cases are analogous.

We now give sufficient cond3tions for the inequality restrictions

on ~r(t) on the interval [t3,t2~. Without loss of generality we take
t3 ) tl. Suppose that for every t~ t3 it holds that br(t) (~r(t), while

~r(t) does not increase as a function of t on [t3,m). Using theorem 1, we

can then prove that as a result ~r(t) ~~r(t) for every t E[t3,t2~. In

case C2 ~r(t) ~~(t) while in cases C3 and C4 Sr(t) C S(t) on [tl,t2).

Further, in all three cases br(t) ~ b(t). This gives the sufficient condi-

tion for ~r(t) ~~(t) on [t3,t2). Analogously, we can prove that in case

C4 sufficient for ~r(t) ~ a(t) on [t3,t2) is, that ar(t) does not decrease
on [t3,m~ and that for every t~ t3

b(t) ) ar(t) - ~ P {E(w;t) - ar(t)}
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