

OPTIMAL DELIVERY STRATEGIES FOR HETEROGENEOUS GROUPS OF PORKERS
 Jan de Klein, Jacques Roemen
 FEW 628

KU, B .
BUBLOTHEEK TILBURG

Communicated by Prof.dr. F.A. van der Duyn Schouten

Optimal Delivery Strategies for Heterogeneous Groups of Porkers

Jan de Klein Jacques Roemen

November 3, 1993

Abstract

In this study the question is considered how a farmer should arrange the delivery of groups of porkers, taking into account that each group consists of subgroups differing in growth rates, that the pork price varies with time, and that the next fattening round can only start when all animals in the current. round have been delivered for slaughtering. The feeding-regime is assumed to be given, so the central question is how a farmer should react upon the variability of the pork price. For the solution of this problem a Markov decision model is formulated. This model provides a system of critical prices for pork during the periods in which the animals are slaughter-ripe. The comparison of the pork price in a week with the critical level(s) holding for the current group of animals can be of help to the farmer in making his decision whether he should sell a subgroup or combination of subgroups, or proceed with fattening for another period. By exploiting the special structure of the Markov decision problem the optimal delivery strategy can be determined very efficiently. Some examples are presented that show typical courses of the critical levels.

1 Introduction

In this study we deal with the problem at what times a farmer should sell a group of animals to achieve a maximal profit, taking into account that the animals show different rates of growth, that the selling price varies with time, and that the next fattening round can only start when all animals in the current round have been delivered for slaughtering. For convenience the investigation of this general problem is restricted to the fattening of pigs.
(Dis)investment problems related to stocks of "living" commodities (for instance cattle or crops) have been considered by Burt [1], Chavas, Kliebenstein and Crenshaw [2], Feinerman and Siegel [3], Paarsch [4], and Rausser and Hochman [5], among others. By solving a dynamic programming problem or an optimal control problem they derive optimal feeding and selling strategies. In contrast with the present study they restrict their attention to the situation with one growth function. Also, the marketing strategy for the situation where the prices in two consecutive periods are mutually dependent is elaborated in this study. However, no attention is paid to the determination of an optimal feeding-regime.

Nowadays, the production of pork mostly takes place on specialized farms. Such a farm has at its disposal a number of barns, which are divided into compartments. The number of animals that can be placed in a compartment varies from a few tens
to well over one hundred, depending on the size of the compartment. Because of health considerations the so-called "all in-all out" system is usually employed for the production of pork. This system means that a compartment is occupied by young pigs at one time, and that all these animals have to be delivered before the next fattening round in this compartment can start. The successive periods of fattening are separated by a short period in which the compartment is cleaned thoroughly. When the young pigs are placed in a compartment, they all have much the same weight. By a balanced feeding-regime the animals are then fattened during a certain period, that is, until they have reached a weight suitable for slaughtering. This feeding-regime is carefully composed from earlier experiences and we suppose that it cannot be changed by the farmer in order to influence the rates of growth. It usually turns out that during the period of fattening the animals in one compartment show a large variation in the growth rates, that is, in the weight gains per kg feed intake. As a consequence, the animals reach a certain weight at different times. For our aim it suffices to distinguish two groups: fast growers and slow growers. However, within these groups there exist no differences in growth properties. As soon as an animal reaches a certain minimal weight, the farmer has the opportunity to sell it to the slaughterhouse. Because of the differences in the weights and the meat qualities of the supplied animals, the slaughterhouses usually do not use one single price but a system of prices. The basic price is paid for an animal with a standard weight and meat quality. Deviations from this standard are taken into account by means of a system of bonuses and (penalty) discounts. In the present study we leave the aspect of quality out of consideration, and we assume that the price per kg is the same for all weights. This price is not constant with respect to time but varies from period to period. In general, the price in an arbitrary period is found in a restricted interval around the price in the preceding period. Therefore we assume that the price of pork in an arbitrary period is a stochastic variable, which only depends on the price in the preceding period. The feed price and interest rate also show variability, but this variability is of a much smaller order of magnitude than that of the pork price. Therefore it is no restriction to regard the feed price and interest rate as deterministic. The heterogeneity of the animals in one compartment together with the "all in-all out" system and the stochastic behaviour of the pork price now in particular raises the question whether it is profitable for the farmer to sell the animals in one compartment at different times.

In this study a micro-economic model is formulated for the decision problem of the farmer, and a method is presented to solve this problem. A preliminary analysis for the case that the pork price is deterministic and constant with respect to time is carried out in Sections 2 and 3. In Section 2 we restrict ourselves to a one-time fattening round. Using a simple model a delivery arrangement that maximizes the net result is derived for both a homogeneous and a heterogeneous group. The situation in which the fattening rounds succeed each other uninterruptedly is discussed in Section 3. In a similar way as in Section 2 an optimal delivery arrangement is derived for both a homogeneous and a heterogeneous group. In Section 4 we then formulate a Markov decision model for the situation where the group of animals in one compartment is homogeneous, but the pork prices in successive periods are mutually independent and identically distributed stochastic variables. By using this model the optimal delivery strategy can be readily determined. This determination boils down to the computation of a critical value for the pork price in each possible period of delivery. For realizations of the pork price above the (current) critical level all animals are sold, whereas the sale is postponed for realizations below this critical level.

By using the techniques developed in Section 4 we discuss in Section 5 the situation where one compartment contains a heterogeneons group of animals, maintaining the assumption of mutually independent and identically distributed pork prices. After these preparations we are in a position to solve the main problem of the present study. In Section 6 the optimal delivery strategy is determined for the situation where the animals in one compartment are heterogeneous, the pork prices in two successive periods are dependent, and the "all in-all out" system of production is pursued. For modelling the dependence of the successive pork prices a first-order Markov scheme is chosen. Finally, in Section 7 we indicate some ways the models discussed in this study can be extended.

2 Preliminary Analysis

We first consider the situation where once a group of N pigs is fattened, all pigs having the same growth properties. At time 0 the (young) pigs are purchased at a price of p_{a} per animal. At that time they all have the same starting weight, $w(0)$. By a balanced feeding-regime the animals are then fattened during a certain period. Here we assume that this feeding-regime is given and cannot be changed by the farmer. Denoting the feeding ration at time t by $\dot{u}(t)=\frac{d u(t)}{d t}$, the weight development of a porker at time $t, \dot{w}(t)$, is described by a growth function h, which is assumed to depend on the weight of an animal and the feeding ration:

$$
\dot{w}(t)=h(w(t), \dot{u}(t), t) .
$$

Note that the weight is added as argument, because a part of the feeding ration is needed for the maintenance of the animal. We assume that the function $u(t)$ is strictly convex and the function $w(t)$ strictly concave, that is,

$$
\begin{aligned}
\frac{d u(t)}{d t}>0, & \frac{d^{2} u(t)}{d t^{2}}>0 \\
\frac{d w(t)}{d t}>0, & \frac{d^{2} w(t)}{d t^{2}}<0
\end{aligned}
$$

Finally, the price of feed per kg, p_{u}, and the price of pork per kg, p_{s}, are assumed to be given.

When the ferding, regime is given, the varions prices are fixed and all animals in a group grow according to the same growth function, the farmer only needs to take a decision with respect to the moment of delivery, T. His decision problem can be formulated as follows:

$$
\begin{equation*}
\max _{T} F(T)=-N p_{a}-N p_{u} \int_{0}^{T} \dot{u}(t) e^{-i t} d t+N p_{s} w(T) e^{-i T}, \tag{1}
\end{equation*}
$$

where i stands for the interest rate by which expenses and revenues are discounted to the starting moment. By choosing the moment of delivery according to problem (1) the farmer maximizes the present value of the net profit from a one-time fattening round.

The first-order condition for an optimal delivery moment reads

$$
\begin{equation*}
p_{s} \frac{d w(T)}{d T}=p_{u} \frac{d u(T)}{d T}+i p_{s} w(T) \tag{2}
\end{equation*}
$$

A solution of this equation represents a maximum if

$$
p_{s} \frac{d^{2} w(T)}{d T^{2}}-p_{u} \frac{d^{2} u(T)}{d T^{2}}-i p_{s} \frac{d w(T)}{d T}<0
$$

This condition is satisfied since the function $u(t)$ is strictly convex and the function $w(t)$ strictly concave and monotonically increasing. In other words, the equation (2) possesses at most one solution and this solution determines a maximum of problem (1). The economic interpretation of expression (2) is simple. The delivery of the animals is optimal at that time where the marginal profit of delay of the sale, $p_{s} \frac{d w(T)}{d T}$, equals the marginal cost of delay, consisting of a marginal feeding cost, $p_{u} \frac{d u(T)}{d T}$, and an opportunity cost in the form of interest, $i p_{s} w(T)$. The unique solution of equation (2), T°, is called the optimal slaughter age or the optimal delivery moment.

After these preparations we now consider the situation where once a heterogeneous group of porkers is fattened. Heterogeneity means that the animals in one compartment grow differently, that is, they differ in weight gains per kg feed intake. For convenience it is assumed that out of a total of N animals, a number of N_{1} grows relatively fast and a number of N_{2} relatively slow. The increase in weight of a fast grower is described by

$$
\dot{w}_{1}(t)=h_{1}\left(w_{1}(t), \dot{u}_{1}(t), t\right)
$$

and that of a slow grower by

$$
\dot{w}_{2}(t)=h_{2}\left(w_{2}(t), \dot{u}_{2}(t), t\right)
$$

where the starting weight of a fast grower is the same as that of a slow grower, that is, $w_{1}(0)=w_{2}(0)$. We assume that the functions $w_{1}(t)$ and $w_{2}(t)$ are both strictly concave, while the functions $u_{1}(t)$ and $u_{2}(t)$ are both strictly convex. By heterogeneity within the group is meant that for all $t>0$,

$$
\begin{equation*}
u_{1}(t) \geq u_{2}(t) \text { and } w_{1}(t)>w_{2}(t) \tag{3}
\end{equation*}
$$

Because only one round of fattening takes place, so that the "all in-all out" requirement does not influence the delivery times of the two groups, which are therefore independent of each other, the reasoning given above applies to both groups separately. The optimal slaughter age of the fast growers is denoted by T_{1}° and that of the slow growers by T_{2}°. Note that inequality (3) does not imply that $T_{1}^{\circ}<T_{2}^{\circ}$. Because only an arrangement in which the fast growers are delivered before the slow ones is of interest, it, is henceforth assumed that $T_{1}^{\circ}<T_{2}^{\circ}$.

Denote the net profit from a one-time fattening round of a heterogeneous group of porkers by $F\left(T_{1}, T_{2}\right)$. Then the decision problem of the farmer can be described by the following model:

$$
\begin{align*}
\max _{T_{1}, T_{2}} F\left(T_{1}, T_{2}\right)=-N p_{a} & -N_{1} p_{u} \int_{0}^{T_{1}} \dot{u}_{1}(t) e^{-i t} d t+N_{1} p_{s} w_{1}\left(T_{1}\right) e^{-i T_{1}} \\
& -N_{2} p_{u} \int_{0}^{T_{2}} \dot{u}_{2}(t) e^{-i t} d t+N_{2} p_{s} w_{2}\left(T_{2}\right) e^{-i T_{2}} \tag{4}
\end{align*}
$$

subject to $T_{1}-T_{2} \leq 0$.
This nonlinear programming problem can be solved by means of the Kuhn-Tucker conditions. To this end we introduce the Lagrangian associated with the decision problem (4), defined by

$$
L\left(T_{1}, T_{2}, \lambda\right)=F\left(T_{1}, T_{2}\right)+\lambda\left(T_{2}-T_{1}\right)
$$

Necessary and also sufficient conditions for the determination of the maximum of the programming problem (4) are now given by the following system:
i. The solution has to be feasible:

$$
\begin{equation*}
T_{1}-T_{2} \leq 0 \tag{5}
\end{equation*}
$$

ii. The Lagrange multiplier has to be nonnegative:

$$
\begin{equation*}
\lambda \geq 0 \tag{6}
\end{equation*}
$$

iii. The product of constraint and Lagrange multiplier has to be zero:

$$
\begin{equation*}
\lambda\left(T_{1}-T_{2}\right)=0 \tag{7}
\end{equation*}
$$

iv. The first-order conditions for a maximum of the Lagrangian $L\left(T_{1}, T_{2}, \lambda\right)$ with respect to T_{1} and T_{2} have to be satisfied:

$$
\begin{align*}
\frac{\partial L\left(T_{1}, T_{2}, \lambda\right)}{\partial T_{1}}= & -N_{1} p_{u} \frac{d u_{1}\left(T_{1}\right)}{d T_{1}} e^{-i T_{1}}+N_{1} p_{s} \frac{d w_{1}\left(T_{1}\right)}{d T_{1}} e^{-i T_{1}} \\
& -i N_{1} p_{s} w_{1}\left(T_{1}\right) e^{-i T_{1}}-\lambda=0, \\
\frac{\partial L\left(T_{1}, T_{2}, \lambda\right)}{\partial T_{2}}= & -N_{2} p_{u} \frac{d u_{2}\left(T_{2}\right)}{d T_{2}} e^{-i T_{2}}+N_{2} p_{s} \frac{d w_{2}\left(T_{2}\right)}{d T_{2}} e^{-i T_{2}} \\
& -i N_{2} p_{s} w_{2}\left(T_{2}\right) e^{-i T_{2}}+\lambda=0 . \tag{8}
\end{align*}
$$

After multiplying by $e^{i T_{j}}, j=1,2$, and substituting

$$
\begin{equation*}
C_{j}\left(T_{j}\right)=p_{s} \frac{d w_{j}\left(T_{j}\right)}{d T_{j}}-p_{u} \frac{d u_{j}\left(T_{j}\right)}{d T_{j}}-i p_{s} w_{j}\left(T_{j}\right) \tag{9}
\end{equation*}
$$

the last conditions can be shortly represented as follows:

$$
\begin{align*}
& N_{1} C_{1}\left(T_{1}\right)-\lambda e^{i T_{1}}=0 \\
& N_{2} C_{2}\left(T_{2}\right)+\lambda e^{i T_{2}}=0
\end{align*}
$$

The conditions (5) (8) are sufficient for the determination of the maximum of the programming problem (4), because the function $F\left(T_{1}, T_{2}\right)$ is strictly concave, which can be easily verified by using the assumptions concerning the functions $u_{1}(t), u_{2}(t), w_{1}(t)$ and $w_{2}(t)$. So the matrix of second-order partial derivatives of the function $F\left(T_{1}, T_{2}\right)$ is negative definite. A stationary point of the function $F\left(T_{1}, T_{2}\right)$, therefore, represents a global maximum and not only a local maximum. Obviously, the last statement also holds for the Lagrangian $L\left(T_{1}, T_{2}, \lambda\right)$, which implies the sufficiency of the conditions (5)-(8) for the case $\lambda>0$.

The starting-point for the analysis of the system (5)-(8) is the complementary slackness condition (7). When $\lambda=0$, the first-order conditions (8^{\prime}) imply that $C_{1}\left(T_{1}\right)=C_{2}\left(T_{2}\right)=0$. The fast and the slow growers are then delivered at the moments that they reach the optimal slaughter ages. For the fast growers this is the case at time T_{1}° and for the slow growers at time T_{2}°, where $T_{1}^{\circ}<T_{2}^{\circ}$ on account of the assumption made below (3). For the case $\lambda>0$, and hence $T_{1}=T_{2}$, the system (5) (8) possesses no solution, since the first equation of (8), or equivalently (8^{\prime}),

Figure 1: The moment T_{12}°
implies $T_{1}<T_{1}^{\circ}$ and the second $T_{2}>T_{2}^{\circ}$, which give a contradiction. Consequently, on fattening a heterogeneous group of animals once, a maximum profit is achieved when each group is delivered at the optimal slaughter age. This conclusion is obvious, because the decisions with respect to the delivery moments of the two groups may be taken independently.

If the farmer decides to deliver not at two times but at one time, then the net result is given by

$$
\begin{aligned}
F(T, T)= & -N p_{a}-p_{u} \int_{0}^{T}\left[N_{1} \dot{u}_{1}(t)+N_{2} \dot{u}_{2}(t)\right] e^{-i t} d t \\
& +p_{s}\left[N_{1} w_{1}(T)+N_{2} w_{2}(T)\right] e^{-i T}
\end{aligned}
$$

This result is maximal when the moment T is chosen such that the marginal cost of delay of the sale of the fast growers equals the marginal profit of acceleration of the delivery of the slow growers, that is,

$$
-N_{1} C_{1}(T)=N_{2} C_{2}(T)
$$

The unique solution of this equation is denoted by T_{12}°. Owing to the properties of the functions C_{1} and C_{2} the optimal delivery moment T_{12}° has to be found between T_{1}° and T_{2}°. (For an illustration see Figure 1.) If the fast and the slow growers are delivered at one moment, which differs from the optimal slaughter ages of both groups, the net result is smaller than with a two-time delivery. Without a further specification of the growth functions and the feeding functions, however, it is impossible to derive a readily interpretable expression for the loss in profit resulting from a one-time delivery.

3 Infinite Chain of Fattening Cycles

The preceding section has been concerned with the situation of one fattening cycle. In this section we treat the situation where the fattening cycles succeed each other uninterruptedly. Of course, such a treatment is only meaningful if the net result of each fattening round is nonnegative, which is henceforth assumed. Although the
length of the investment period is infinite, so that it is possible to change the capacity of the compartment in which the animals are fattened in course of time, we keep this capacity constant for convenience. Again the farmer has to determine a delivery arrangement for a heterogeneous group of animals that maximizes the net result.

We first consider the situation where the animals placed in a compartment have the same growth properties. Moreover, we suppose that these growth properties do not change from cycle to cycle. With $F(T)$ the net result from an infinite chain of fattening cycles for one compartment, the compartment continually being occupied by a homogeneous group of animals, the optimal time of delivery in each cycle can be determined by means of the following model:

$$
\begin{aligned}
\max _{T} F(T) & =\sum_{n=0}^{\infty} e^{-i n T}\left\{-N p_{a}-N p_{u} \int_{0}^{T} \dot{u}(t) e^{-i t} d t+N p_{s} w(T) e^{-i T}\right\} \\
& =\left(1-e^{-i T}\right)^{-1}\left\{-N p_{a}-N p_{u} \int_{0}^{T} \dot{u}(t) e^{-i t} d t+N p_{s} w(T) e^{-i T}\right\} .
\end{aligned}
$$

(For the various notations we refer to the preceding section.) The first-order condition for the optimal time of delivery reads

$$
\begin{aligned}
& \left(1-e^{-i T}\right)^{-1}\left\{-N p_{u} \frac{d u(T)}{d T} e^{-i T}+N p_{s} \frac{d w(T)}{d T} e^{-i T}-i N p_{s} w(T) e^{-i T}\right\} \\
& \quad-i e^{-i T}\left(1-e^{-i T}\right)^{-2}\left\{-N p_{a}-N p_{u} \int_{0}^{T} \dot{u}(t) e^{-i t} d t+N p_{s} w(T) e^{-i T}\right\}=0 .
\end{aligned}
$$

Multiplying this condition by $e^{i T}\left(1-e^{-i T}\right) / N$ and denoting the net result per fattening cycle per animal by $\xi_{1}(T)$ we have (compare Paarsch [4])

$$
\begin{equation*}
p_{s} \frac{d w(T)}{d T}=p_{u} \frac{d u(T)}{d T}+i p_{s} w(T)+i\left(1-e^{-i T}\right)^{-1} \xi_{1}(T) \tag{10}
\end{equation*}
$$

In comparison with the condition (2) for one fattening cycle the condition (10) possesses one additional term, namely $i\left(1-e^{-i T}\right)^{-1} \xi_{1}(T)$. This term represents the interest on the present value of the net profit per animal over all future cycles. The economic interpretation of expression (10) is as follows. The time of delivery has to be chosen such that the marginal profit of delay of the sale compensates for the extra cost of feed and also the loss of interest. The amount of interest forgone consists of two components, namely the interest on the returns of the sale of the animals that are fattened in the current cycle and the interest on the present value of the net profit per animal over all future cycles. Observe that we can also interpret the second interest component as the (constant) net result per animal per unit of time. For, denoting this net result by η, we have

$$
\xi_{1}(T)=\int_{0}^{T} \eta e^{-i t} d t=\eta\left(1-e^{-i T}\right) / i
$$

Because of the assumption that the net result per cycle is nonnegative, the total marginal cost is here at least equal to that in the situation with one fattening cycle. As a consequence, the optimal length of a fattening cycle for the situation with an infinite number of cycles, T^{*}, is at most equal to T°, the optimal length with a one-time fattening cycle.

We next proceed with the situation where the animals placed in one compartment have different growth properties. For simplicity we again distinguish only two classes:
fast growers and slow growers. The required notations have been introduced in the preceding section. The decision problem of the farmer for the heterogencous situation can be described by the following model:

$$
\begin{align*}
\max _{T_{1}, T_{2}} F\left(T_{1}, T_{2}\right)=\left(1-e^{-i T_{2}}\right)^{-1}\{ & -N p_{a} \\
& -N_{1} p_{u} \int_{0}^{T_{1}} \dot{u}_{1}(t) e^{-i t} d t+N_{1} p_{s} w_{1}\left(T_{1}\right) e^{-i T_{1}} \\
& \left.-N_{2} p_{u} \int_{0}^{T_{2}} \dot{u}_{2}(t) e^{-i t} d t+N_{2} p_{s} w_{2}\left(T_{2}\right) e^{-i T_{2}}\right\} \tag{11}
\end{align*}
$$

subject to $T_{1}-T_{2} \leq 0$.
The programming problem (11) can be solved in a similar way as problem (4). The Lagrangian associated with the problem (11) is given by

$$
L\left(T_{1}, T_{2}, \lambda\right)=F\left(T_{1}, T_{2}\right)+\lambda\left(T_{2}-T_{1}\right) .
$$

The Kuhn-Tucker conditions for the nonlinear programming problem (11) now read

$$
\begin{gather*}
T_{1}-T_{2} \leq 0 ; \tag{12}\\
\lambda \geq 0 ; \tag{13}\\
\lambda\left(T_{1}-T_{2}\right)=0 ; \tag{14}\\
\frac{\partial L\left(T_{1}, T_{2}, \lambda\right)}{\partial T_{1}}=\left(1-e^{-i T_{2}}\right)^{-1}\left\{-N_{1} p_{u} \frac{d u_{1}\left(T_{1}\right)}{d T_{1}} e^{-i T_{1}}+N_{1} p_{s} \frac{d w_{1}\left(T_{1}\right)}{d T_{1}} e^{-i T_{1}}\right. \\
\left.-i N_{1} p_{s} w_{1}\left(T_{1}\right) e^{-i T_{1}}\right\}-\lambda=0, \\
\frac{\partial L\left(T_{1}, T_{2}, \lambda\right)}{\partial T_{2}}=\left(1-e^{-i T_{2}}\right)^{-1}\left\{-N_{2} p_{u} \frac{d u_{2}\left(T_{2}\right)}{d T_{2}} e^{-i T_{2}}+N_{2} p_{s} \frac{d w_{2}\left(T_{2}\right)}{d T_{2}} e^{-i T_{2}}\right. \\
\left.-i N_{2} p_{s} w_{2}\left(T_{2}\right) e^{-i T_{2}}\right\} \\
-i e^{-i T_{2}}\left(1-e^{-i T_{2}}\right)^{-2} \xi_{2}\left(T_{1}, T_{2}\right)+\lambda=0 . \tag{15}
\end{gather*}
$$

Here $\xi_{2}\left(T_{1}, T_{2}\right)$ stands for the net result per fattening round. The conditions (12)(15) are necessary for an optimal solution of the problem (11). In general, the KuhnTucker conditions are not sufficient. The maximum of the problem (11), however, can be readily determined by means of the conditions (12)-(15), as is shown below. Multiplying the first relation of (15) by $e^{i T_{1}}\left(1-e^{-i T_{2}}\right)$ and the second relation by $e^{i T_{2}}\left(1-e^{-i T_{2}}\right)$, and using the substitutions $C_{1}\left(T_{1}\right)$ and $C_{2}\left(T_{2}\right)$, introduced in (9), we obtain

$$
\begin{align*}
& N_{1} C_{1}\left(T_{1}\right)-\lambda e^{i T_{1}}\left(1-e^{-i T_{2}}\right)=0 \\
& N_{2} C_{2}\left(T_{2}\right)+\lambda e^{i T_{2}}\left(1-e^{-i T_{2}}\right)=i\left(1-e^{-i T_{2}}\right)^{-1} \xi_{2}\left(T_{1}, T_{2}\right)
\end{align*}
$$

We first consider the case $\lambda=0$. The equations (15^{\prime}) then change into

$$
\begin{align*}
& N_{1} C_{1}\left(T_{1}\right)=0 \\
& N_{2} C_{2}\left(T_{2}\right)=i\left(1-e^{-i T_{2}}\right)^{-1} \xi_{2}\left(T_{1}, T_{2}\right) \tag{16}
\end{align*}
$$

The conditions (16) are the same as the conditions $\left(8^{\prime}\right)$ with $\lambda=0$ except for the atditional term $i\left(1-e^{-i T_{2}}\right)^{-1} \xi_{2}\left(T_{1}, T_{2}\right)$. This term can be interpreted as the (constant) net result per unit of time, as is explained above. The first condition of (16) is satisfied if $T_{1}=T_{1}^{\circ}$, that is, in each cycle the fast growers are delivered at the optimal slaughter age. From the second condition of (16) it is seen that the slow growers are delivered at that time where the marginal result for the slow growers, $N_{2} C_{2}\left(T_{2}\right)$, equals the net result per time unit for the two groups together, $i\left(1-e^{-i T_{2}}\right)^{-1} \xi_{2}\left(T_{1}, T_{2}\right)$. Because of the assumption that the net result per cycle is nonnegative, the delivery of the slow growers takes place before or at the optimal slaughter time T_{2}°. If the (unique) solution of the conditions (16) also satisfies the feasibility condition (12), that is, the slow growers are not delivered before the fast growers, then this solution satisfies the Kuhn-Tucker conditions (12)-(15), and thus represents a maximal solution of the programming problem (11). In the sequel we denote this maximal solution by $\left(T_{1}^{*}, T_{2}^{*}\right)$. In conclusion, the optimal delivery arrangement corresponding to $\lambda=0$ satisfies

$$
T_{1}^{\circ}=T_{1}^{*} \leq T_{2}^{*} \leq T_{2}^{\circ}
$$

This result differs from that found for the situation with one fattening round in that respect that for $\xi_{2}\left(T_{1}^{*}, T_{2}^{*}\right)>0$ the delivery of the slow growers is advanced to an earlier time, and this advancement is more significant as the net result per unit of time is greater. For $\xi_{2}\left(T_{1}^{*}, T_{2}^{*}\right)>0$ the optimal length of one fattening round in an infinite chain is therefore shorter than T_{2}°, the optimal length with a one-time fattening round. Note that, if the net result per time unit is so large that $T_{2}^{*}=T_{1}^{*}\left(=T_{1}^{\circ}\right)$, then both groups are delivered simultaneously at time T_{1}°, the optimal slaughter age of group 1 animals.

We now consider the case $\lambda>0$. Since the constraint corresponding to problem (11) is active for this case we have $T_{1}=T_{2}$, so that by taking $T_{1}=T_{2}=T$ in the equations (15^{\prime}) and then eliminating λ from the resulting equations we obtain

$$
\begin{equation*}
N_{1} C_{1}(T)+N_{2} C_{2}(T)=i\left(1-e^{-i T}\right)^{-1} \xi_{2}(T, T) \tag{17}
\end{equation*}
$$

Because the functions $C_{1}(T)$ and $C_{2}(T)$ are both monotonically decreasing, the equation (17) possesses a unique solution $T_{12}^{*}>0$. Additional information concerning the delivery time T_{12}^{*} can be obtained from the first relation of (15'), which reads with $T_{1}=T_{2}=T_{12}^{*}$,

$$
N_{1} C_{1}\left(T_{12}^{*}\right)=\lambda e^{i T_{12}^{*}}\left(1-e^{-i T_{12}^{*}}\right)
$$

By using that the function $C^{\prime}\left({ }^{\prime} T^{\prime}\right)$ is monotonically dereasing and vanishes for T_{1}°, the optimal slaughter age of a fast grower, it follows that $T_{12}^{*}<T_{1}^{\circ}$. Relation (17) can now be interpreted as follows. The delivery is optimal at that time where the marginal profit of acceleration of the sale of all animals equals the net result per unit of time. Consequently, for an infinite chain of fattening cycles with a continually heterogeneous group the delivery of the fast and the slow growers at the same time is also a possibility. Finally we note that the two cases $\lambda=0$ and $\lambda>0$ lead to mutually disjunct solutions, namely $T_{2}^{*} \geq T_{1}^{*}=T_{1}^{\circ}$ for $\lambda=0$ and $T_{12}^{*}<T_{1}^{\circ}$ for $\lambda>0$.

4 Markov Decision Model

Until now we have assumed that all prices remain constant in the course of time. This assumption is not very realistic. In particular, the pork price may show quite
some variability. In this section we consider the farming model in which the prices of young pigs and feed, and also the rate of interest are constant, but the price of pork at an arbitrary time is uncertain, or random. For convenience it is assumed that the pork price changes periodically, say cvery week, and is governed by a discrete probability distribution. In this and the following section we restrict ourselves to a market in which the pork prices in successive periods are independent of each other and identically distributed. The more realistic model with dependent pork prices is considered in Section 6. The price of pork in period t, denoted by \mathbf{Y}_{t}, possesses the following probability distribution:

$$
\begin{equation*}
q_{j}=\operatorname{Pr}\left\{\mathbf{Y}_{t}=y_{j}\right\} \tag{18}
\end{equation*}
$$

where the possible prices are numbered in ascending order, that is, $0<y_{1}<y_{2}<$ $\cdots<y_{m}$. Because the price of pork changes only periodically, we formulate the decision problem of the farmer not in continuous but in discrete time. At the start of each period the farmer decides whether to sell animals in that period or not. During each period the farmer has only one opportunity to sell animals. If animals are sold, then they are removed from the compartment immediately, that is, at the beginning of the period. In order to make the decision whether to sell or not, the farmer has to know the weights of the animals and the current price of pork. We suppose that only animals that possess a weight within a certain range, say $80-130 \mathrm{~kg}$, can be sold. Animals with a weight outside this range do not satisfy the quality requirements imposed by the slaughterhouses, and hence yield no profit. If the weight of an animal lies between the minimal and the maximal allowable weight, then we call this animal slaughter-ripe. The price of pork is determined by extrancous circumstances, so the farmer cannot influence this price by the quantity supplied. Finally we assume that the successive cycles are separated by a week in which the compartment is made ready for the next fattening round. The cost for the cleaning of the compartment is given by p_{c}.

Before answering the question how the farmer has to arrange the delivery of a heterogeneous group, we first derive the decision rule for the situation where the animals have the same growth properties. When a compartment is empty and clean at the beginning of a period, it is filled with N young pigs at a price of p_{a} per animal. The young pigs have a starting age of x_{0} weeks. By a balanced feeding-regime the animals are then fattened during a number of weeks. An animal of age x receives a feeding ration of $u(x)$, which must be purchased at a price of p_{u} per kg. Without restricting the generality we assume that the growth process is discrete, that is, weight increases occur only at the end of a feeding week. The weight of an animal of age x is denoted by $w(x)$. Further we denote the minimal and maximal weight at which an animal can be slaughtered by $w_{\min }$ and $w_{\max }$, and the corresponding minimal and maximal slaughter age by $x_{\min }$ and $x_{\max }$. The relation between the age and the weight of an animal is illustrated in Figure 2.

The total financial result is determined by the decisions that the farmer takes in the successive weeks. In each week he decides whether to sell the animals or to postpone the sale and carry on the fattening. We denote the decision taken in week t by a_{t}. In order to make the decision whether to sell or not, the farmer has to know the weight of the animals and the price of pork. As long as the animals have not reached the minimal slaughter weight the farmer has no choice but to proceed with fattening. The farmer also has no choice if the animals are of such a weight that by feeding them for another week they will exceed the maximal slaughter weight. In

Figure 2: An example of the weight function
this case the animals are sold immediately. In the other weeks the farmer can always choose from two possibilities. He can decide to sell the animals at the current price or he can decide to dispose of the animals in one of the coming weeks at the price valid then but currently unknown. Such a sequence of decisions for the successive weeks is called a strategy and denoted by the symbol π. By terminating each fattening cycle at a suitable moment, that is, by choosing a suitable strategy, the farmer can realize a maximal financial result.

For the determination of the optimal fattening strategy we make use of a Markov decision model. In accordance with the terminology of this method we introduce the stochastic process $\left\{\left(\mathbf{X}_{t}, \mathbf{Y}_{t}\right), t=0,1,2, \ldots\right\}$, where \mathbf{X}_{t} stands for the age of an animal and \mathbf{Y}_{t} for the price of pork in week t. The age varies from $x_{0} u p$ to $x_{\max }$ and the pork price from y_{1} up to y_{m}. Suppose that in an arbitrary week the system is in state (x, y_{i}) and the farmer chooses action a. Then the farmer receives a reward $r\left(x, y_{i} ; a\right)$ in that week and the system changes into a new state $\left(\hat{x}, y_{j}\right)$. The probability that such an event occurs is denoted by $p_{x, y_{i} ; \hat{x}, y_{j}}(a)$. If the farmer employs the strategy π, that is, in week t he chooses action a_{t}, and the system is initially in state $\left(x, y_{i}\right)$, then the expected total discounted return is given by

$$
v_{\pi}\left(x, y_{i}\right)=\mathrm{E}_{\pi}\left\{\sum_{t=0}^{\infty} r\left(\mathbf{X}_{t}, \mathbf{Y}_{t} ; a_{t}\right) \alpha^{t} \mid \mathbf{X}_{0}=x, \mathbf{Y}_{0}=y_{i}\right\}
$$

where α stands for the weekly rate of discount. Note that E_{π} represents the conditional expectation, given that strategy π is employed. The farmer now attempts to maximize the expected total discounted return when starting with a new group of
animals and the initial pork price is y_{i}. Thus the problem faced by the farmer is to find a strategy π^{*} that maximizes $v_{\pi}\left(x_{0}, y_{i}\right)$, that is,

$$
v_{\pi^{*}}\left(x_{0}, y_{i}\right)=\max _{\pi} v_{\pi}\left(x_{0}, y_{i}\right)
$$

To determine the strategy π^{*} we apply the optimality principle of Bellman. This principle states that when starting in state $\left(x, y_{i}\right)$ and taking action a there, one cannot do better than following the optimal strategy starting from the new state. In other words, if in any week the system is in state $\left(x, y_{i}\right)$, then the expected total discounted return from this week onwards is maximized by employing the strategy π^{*}. This argument leads to the following optimality equation (see Ross[6]):

$$
\begin{equation*}
v_{\pi^{*}}\left(x, y_{i}\right)=\max _{a}\left\{r\left(x, y_{i} ; a\right)+\alpha \sum_{\left(\hat{x}, y_{j}\right)} p_{x, y_{i} i \hat{x}, y_{j}}(a) v_{\pi^{*}}\left(\hat{x}, y_{j}\right)\right\}, \tag{19}
\end{equation*}
$$

where the summation is over all possible states $\left(\hat{x}, y_{j}\right)$.
For the decision problem of the farmer the optimality equation (19) can be specified as follows. If the animals are not yet slaughter-ripe, that is, $x_{0} \leq x<x_{\min }$, then we have

$$
v_{\pi^{*}}\left(x, y_{i}\right)=-N p_{u} u(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi^{*}}\left(x+1, y_{j}\right)
$$

If the animals have gained sufficient weight, then the farmer can decide to proceed with fattening or he can decide to sell and start a new fattening round. So for $x_{\text {min }} \leq x \leq x_{\text {max }}$ we have

$$
\begin{aligned}
& v_{\pi^{*}}\left(x, y_{i}\right)=\max \left\{-N p_{u} u(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi^{*}}\left(x+1, y_{j}\right),\right. \\
&\left.N w(x) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{j} v_{\pi^{*}}\left(x_{0}, y_{j}\right)\right\},
\end{aligned}
$$

where the first possibility cancels for $x=x_{\text {max }}$, because animals of age $x_{\text {max }}$ will exceed the maximal slaughter weight $w_{\max }$ by feeding them for another week (compare Rausser and Hochman [5]). Hence selling the animals is optimal if

$$
N w(x) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{j} v_{\pi^{*}}\left(x_{0}, y_{j}\right)>-N p_{u} u(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi^{*}}\left(x+1, y_{j}\right)
$$

so there exists a critical value of the pork price for each age at which the animals can be delivered. If in a week the animals have age x and the pork price is above the corresponding critical level, then the animals are sold immediately, whereas the sale is postponed if the opposite is true.

5 Delivery Strategy for a Heterogeneous Group

In this section we consider the question how the farmer should organize the delivery in case the compartment contains a (homogeneous) group of fast growers and a (homogeneous) group of slow growers. It is assumed that out of a total of N animals placed in a compartment, a number of N_{1} grows relatively fast and a number of N_{2}
relatively slow. A fast grower of age x receives a feeding ration of $u_{1}(x)$ and a slow grower of age x a feeding ration of $u_{2}(x)$. The weight of a fast grower of age x is denoted by $w_{1}(x)$ and that of a slow grower of age x by $w_{2}(x)$. At the beginning of each cycle all animals have the same weight, that is, $w_{1}\left(x_{0}\right)=w_{2}\left(x_{0}\right)$. The fast growers reach the minimal weight for which a positive pork price holds at the age of $x_{\min }^{(1)}$ weeks, while they can be delivered at latest at the age of $x_{\max }^{(1)}$ weeks. With the delivery of the slow growers the farmer can only start at a later age, namely at the age of $x_{\min }^{(2)}\left(>x_{\min }^{(1)}\right)$. At latest these animals leave the farm at the age of $x_{\max }^{(2)}\left(>x_{\max }^{(1)}\right)$. In the sequel it is assumed that $x_{\max }^{(1)} \geq x_{\min }^{(2)}$, which is the most common configuration. We again restrict ourselves to a market in which the pork prices in successive weeks form a sequence of independent and identically distributed stochastic variables with common distribution q_{j}, introduced in (18).

In Sections 2 and 3 we have seen that each of the two groups within the heterogeneous livestock is delivered in its entirety, usually at different times for both groups. Also for the farming model in which the price of pork varies from week to week each of the two (homogeneous) groups is always sold in its entirety. For, if it is advantageous to sell one animal from a homogeneous group in a certain week, then it is also advantageous to sell the other animals from that group in this week, and nothing can be gained by spreading the selling of the animals over several periods. Whether the periods in which the two groups are sold differ from each other, cannot be said in advance. Surely, one would expect that the fast growers are always delivered before or at the same time as the slow growers, but this need not be the case. The feeding and weight progresses could be such that in fact the opposite occurs, for instance if group 2 animals grow relatively very slowly. Here we leave this theoretical possibility out of consideration and we assume that the growth functions and the feeding functions have such courses that the fast growers are never delivered after the slow ones.

For the determination of the optimal delivery strategy for a heterogeneous group of porkers we again formulate a Markov decision model. To this end we introduce the stochastic process $\left\{\left(\mathbf{X}_{t}, \mathbf{C}_{t}, \mathbf{Y}_{t}\right), t=0,1,2, \ldots\right\}$, where \mathbf{X}_{t} stands for the age of an animal, \mathbf{C}_{t} for the composition of the livestock and \mathbf{Y}_{t} for the price of pork in week t. The composition indicates whether both groups are present $\left(\mathbf{C}_{t}=12\right)$ or whether only group 2 is present and group 1 is already sold $\left(\mathbf{C}_{t}=2\right)$. Denote the expected total discounted return by $v_{\pi}\left(x, c, y_{i}\right)$, given that the farmer employs the delivery strategy π and the system is initially in state $\left(x, c, y_{i}\right)$. The weekly rate of discount is given by α. The farmer now attempts to find a strategy that maximizes $v_{\pi}\left(x_{0}, 12, y_{i}\right)$. The optimality equations can be written down as follows (compare the similar derivation given in the preceding section). We need to distinguish 4 different cases:
i. If the animals are not yet slaughter-ripe, the farmer can only proceed with fattening. So for $x_{0} \leq x<x_{\min }^{(1)}$ we have

$$
v_{\pi}\left(x, 12, y_{i}\right)=-N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,12, y_{j}\right)
$$

ii. If the fast growers have gained sufficient weight but the slow growers are still too light, the farmer can choose between two possibilities. He can decide to proceed with the fattening of both groups or he can decide to sell the fast growers and proceed with the fattening of only the slow growers. His choice of course depends
on the value of the pork price. So for $x_{\text {min }}^{(1)} \leq x<x_{\text {min }}^{(2)}$ we have

$$
\begin{aligned}
& v_{\pi}\left(x, 12, y_{i}\right)=\max \left\{-N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,12, y_{j}\right)\right. \\
&\left.N_{1} w_{1}(x) y_{i}-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,2, y_{j}\right)\right\}
\end{aligned}
$$

If the fast growers are already sold while the slow growers are not yet slaughterripe, the farmer must proceed with fattening the remaining animals. Hence for $x_{\min }^{(1)}<x<x_{\min }^{(2)}$,

$$
v_{\pi}\left(x, 2, y_{i}\right)=-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,2, y_{j}\right) .
$$

iii. If both groups are slaughter-ripe, the farmer can choose from three possibilities. He can proceed with fattening both groups, he can sell the fast growers and proceed with fattening the slow growers, or he can sell both groups. So for $x_{\min }^{(2)} \leq x \leq x_{\max }^{(1)}$ we have

$$
\begin{aligned}
& v_{\pi}\left(x, 12, y_{i}\right) \\
&=\max \{ -N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,12, y_{j}\right) \\
& N_{1} w_{1}(x) y_{i}-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,2, y_{j}\right) \\
&\left.\left(N_{1} w_{1}(x)+N_{2} w_{2}(x)\right) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x_{0}, 12, y_{j}\right)\right\}
\end{aligned}
$$

where the first possibility cancels for $x=x_{\max }^{(1)}$, because the sale of the fast growers can no longer be postponed.
iv. If the fast growers are already sold and the slow growers are slaughter-ripe, the farmer can decide to proceed with fattening or he can decide to sell. So for $x_{\text {min }}^{(2)} \leq x \leq x_{\text {max }}^{(2)}$ we have

$$
\begin{aligned}
v_{\pi}\left(x, 2, y_{i}\right)=\max \{- & N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x+1,2, y_{j}\right), \\
& \left.N_{2} w_{2}(x) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{j} v_{\pi}\left(x_{0}, 12, y_{j}\right)\right\}
\end{aligned}
$$

where of course the first possibility cancels for $x=x_{\max }^{(2)}$.
From the above system of optimality equations it is easily seen that there exist three critical levels for the pork price. The first level holds for only the fast growers at each slaughter-ripe age and is denoted by $\gamma_{1}(x)$. If in a week the animals have age x and the pork price is above the critical level $\gamma_{1}(x)$, then the fast growers are sold immediately. Whether the slow growers are also sold depends on the second critical level, denoted by $\gamma_{12}(x)$. This critical level holds for the two groups together at each age at which both the fast and the slow growers are slaughter-ripe. If in a week the animals have age x and the pork price is above the critical level $\gamma_{12}(x)$, then
both groups are sold immediately. It is obvious that $\gamma_{12}(x) \geq \gamma_{1}(x)$. In case the fast growers are already sold, the decision whether to sell the remaining slow growers depends on the third critical level. This critical level holds for the slow growers at each slaughter-ripe age and is denoted by $\gamma_{2}(x)$. For realizations of the pork price above the critical level $\gamma_{2}(x)$, given that the remaining slow growers have age x, these animals are sold immediately and a new fattening round is started.

Several numerical methods are available for the computation of the critical levels $\gamma_{1}(x), \gamma_{12}(x)$ and $\gamma_{2}(x)$. The Markov decision problem formulated above can be solved by the value-iteration method, by the strategy-iteration method and by linear programming. A detailed discussion of these methods can be found in Ross[6] or Tijms[7]. For the present problem we have used the strategy-iteration method to compute the optimal solution. In this method the special structure of the problem can be exploited to reduce the system of linear equations to be solved in each iteration step to a considerably smaller system of linear equations on only the (initial) states $\left(x_{0}, y_{i}\right), i=1, \ldots, m$. If $x_{0}<x_{\min }^{(1)}$, the resulting system can be further reduced to a (simple) linear equation, because the values $v_{\pi}\left(x_{0}, 12, y_{i}\right)$ with π an arbitrary strategy do not depend on i. The developed algorithm turns out to be very efficient.

To conclude this section we present a numerical example that gives some insight in the critical prices as functions of the age. The example concerns the following model:

$$
\begin{array}{rlrl}
N & =100, N_{1}=40, N_{2}=60, p_{a}=125, p_{u}=0.45, p_{c}=250, \alpha=0.996 ; \\
y_{i} & =2+0.25(i-1), \quad q_{i}=1 / 9, & \quad i=1, \ldots, 9 ; \\
x_{0} & =5, w_{\min }=80, w_{\max }=130, x_{\min }^{(1)}=12, x_{\max }^{(1)}=21, x_{\min }^{(2)}=14, x_{\max }^{(2)}=27 ; \\
u_{1}(x) & =0.1 x^{2}-0.1 x+10, & & x_{0} \leq x \leq x_{\max }^{(1)}-1 ; \\
u_{2}(x) & =0.05 x^{2}-0.28 x+9.35, & & x_{0} \leq x \leq x_{\max }^{(2)}-1 ; \\
w_{1}(x) & =-0.2 x^{2}+11.67 x-28.38, & & x_{0} \leq x \leq x_{\max }^{(1)} ; \\
w_{2}(x) & =-0.13 x^{2}-8.88 x-16.18, & & x_{0} \leq x \leq x_{\max }^{(2)} ;
\end{array}
$$

Note that the pork price is uniformly distributed on the equidistant points $2,2.25$, $2.5, \ldots, 3.75,4$. In Figures 3 and 4 we display the numerical results obtained for this model. These typical results clearly illustrate the effects of the age on the critical prices and need no further discussion. Worth mentioning is only that the numerical procedure requires a total of 5 iterations and a total computation time of 3 seconds.

6 Dependent Pork Prices

In the preceding sections we have assumed that the pork prices in successive weeks are independent and identically distributed stochastic variables. This assumption is not very realistic. In general, the pork price in an arbitrary week only slightly differs from the price in the week just expired. In this section we consider the farming model in which the pork prices in successive weeks are dependent. We restrict ourselves to a first-order dependence, that is, the pork price in an arbitrary week only depends on the price in the week just expired. So, in contrast with the models considered in the preceding sections, knowledge of the price in the current week gives information on the price in the next week. For convenience we assume that the pork price in any week possesses a discrete distribution. The possible pork prices are given by $y_{1}, y_{2}, \ldots, y_{m}$

Figure 3: Critical prices for the two groups together

Figure 4: Critical price for only group 2
with $y_{1}<y_{2}<\cdots<y_{m}$. Further we assume that the transition probabilities are independent of time. Denoting the pork price in week t by \mathbf{Y}_{t}, it is easily seen that the process $\left\{\mathbf{Y}_{t}, t=0,1, \ldots\right\}$ constitutes a Markov chain with stationary transition probabilities. These transition probabilities are given by

$$
q_{i j}=\operatorname{Pr}\left\{\mathbf{Y}_{t+1}=y_{j} \mid \mathbf{Y}_{t}=y_{i}\right\}
$$

With the exception of the pork price, the model being considered in this section is the same as that in the preceding section. Once again, the farmer wants to determine a delivery strategy for a heterogeneous group of porkers that maximizes his net result. To solve this problem we make use of a Markov decision model. Suppose the farmer employs the strategy π, which consists of a sequence of selling decisions for the successive weeks. The decision in an arbitrary week depends on the current state of the system described by the age of an animal, the composition of the livestock and the pork price. The corresponding stochastic process is denoted by $\left\{\left(\mathbf{X}_{t}, \mathbf{C}_{t}, \mathbf{Y}_{t}\right), t=0,1, \ldots\right\}$. Starting with a new group of animals of heterogeneous composition the farmer wants to maximize the present value of all future returns discounted with a weekly rate of α. Denote the expected total discounted return by $v_{\pi}\left(x, c, y_{i}\right)$, given that the farmer employs the strategy π and the system is initially in state $\left(x, c, y_{i}\right)$. The optimality equations are derived in a similar way as in the preceding section. Note that the introduction of dependence between the pork prices in two successive weeks does not result in fundamental changes in the structure of the system of optimality equations. For the four cases that need to be distinguished within a cycle of maximal length the optimality equations read:
i. If both groups are not yet slaughter-ripe, the farmer can only proceed with fattening. So for $x_{0} \leq x<x_{\min }^{(1)}$ we have

$$
v_{\pi}\left(x, 12, y_{i}\right)=-N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,12, y_{j}\right)
$$

ii. If the fast growers are slaughter-ripe but the slow growers not yet, the farmer can proceed with fattening both groups or he can sell the fast growers and proceed with fattening the slow growers. So for $x_{\min }^{(1)} \leq x<x_{\text {min }}^{(2)}$ we have

$$
\begin{aligned}
v_{\pi}\left(x, 12, y_{i}\right)=\max \{ & -N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,12, y_{j}\right), \\
& \left.N_{1} w_{1}(x) y_{i}-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,2, y_{j}\right)\right\}
\end{aligned}
$$

If the fast growers are already sold and the slow growers are not yet slaughterripe, the farmer must proceed with fattening the remaining animals. Hence for $x_{\min }^{(1)}<x<x_{\min }^{(2)}$,

$$
v_{\pi}\left(x, 2, y_{i}\right)=-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,2, y_{j}\right)
$$

iii. If both groups are slaughter-ripe, the farmer can proceed with fattening both groups, or he can sell the fast growers and proceed with fattening the slow growers,
or he cath sell both groups. So for $r_{\text {min }}^{(2)} \cdot x \cdot r_{\text {max }}^{(1)}$ we have

$$
\begin{aligned}
& v_{\pi}\left(x, 12, y_{i}\right) \\
& =\max \left\{-N_{1} p_{u} u_{1}(x)-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,12, y_{j}\right),\right. \\
& \\
& N_{1} w_{1}(x) y_{i}-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,2, y_{j}\right), \\
& \\
& \left.\left(N_{1} w_{1}(x)+N_{2} w_{2}(x)\right) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x_{0}, 12, y_{j}\right)\right\},
\end{aligned}
$$

where the first possibility cancels for $x=x_{\text {max }}^{(1)}$.
iv. If the fast growers are already sold and the slow growers are slaughter-ripe, the farmer can proceed with fattening or he can sell. So for $x_{\min }^{(2)} \leq x \leq x_{\max }^{(2)}$ we have

$$
\begin{aligned}
& v_{\pi}\left(x, 2, y_{i}\right)=\max \left\{-N_{2} p_{u} u_{2}(x)+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x+1,2, y_{j}\right),\right. \\
&\left.N_{2} w_{2}(x) y_{i}-p_{c}-N p_{a}+\alpha \sum_{j=1}^{m} q_{i j} v_{\pi}\left(x_{0}, 12, y_{j}\right)\right\},
\end{aligned}
$$

where the first possibility cancels for $x=x_{\max }^{(2)}$.
It is easily seen that the above system of optimality equations does not necessarily result in critical levels for the pork price. However, delivery strategies to be employed in practice should be based on a comparison of the current pork price with certain critical levels. Therefore we restrict ourselves to delivery strategies of this form. The critical prices are again denoted by $\gamma_{1}(x), \gamma_{12}(x)$ and $\gamma_{2}(x)$. For an interpretation of these critical prices see the preceding section.

To conclude this section we present a numerical example that sheds some additional light on the critical levels $\gamma_{1}(x), \gamma_{12}(x)$ and $\gamma_{2}(x)$. The critical levels are computed by the strategy-iteration method (see preceding section). Note that in each iteration step we need to solve a system of m linear equations, because the reduction to a single linear equation is not possible for the model with dependent pork prices, because the values $v_{\pi}\left(x_{0}, 12, y_{i}\right)$ now depend on i. The numerical example concerns the following model:

$$
\left.\left.\begin{array}{rl}
N & =100, N_{1}=40, N_{2}=60, p_{a}=125, p_{u}=0.45, p_{c}=250, \alpha=0.996 ; \\
y_{i} & =2+0.25(i-1), \quad i=1, \ldots, 9 ;
\end{array}\right\} \begin{array}{ll}
0.2 \quad \text { if } i=1,2 ; j=1, \ldots, 5 ; \\
\text { if } i=3, \ldots, 7 ; j=i-2, i-1, i, i+1, i+2 ; \\
\text { if } i=8,9 ; j=5, \ldots, 9 ; \\
0 & \text { otherwise; } ;
\end{array}\right\} \begin{array}{ll}
q_{i j} & = \begin{cases} \\
x_{0} & =5, w_{\min }=80, w_{\max }=130, x_{\min }^{(1)}=12, x_{\max }^{(1)}=21, x_{\min }^{(2)}=14, x_{\max }^{(2)}=27 ; \\
u_{1}(x) & =0.1 x^{2}-0.1 x+10, \quad x_{0} \leq x \leq x_{\max }^{(1)}-1 ; \\
u_{2}(x) & =0.05 x^{2}-0.28 x+9.35, \quad x_{0} \leq x \leq x_{\max }^{(2)}-1 ; \\
w_{1}(x) & =-0.2 x^{2}+11.67 x-28.38, \quad x_{0} \leq x \leq x_{\max }^{(1)} ; \\
w_{2}(x) & =-0.13 x^{2}-8.88 x-16.18, \quad x_{0} \leq x \leq x_{\max }^{(2)} ;\end{cases}
\end{array}
$$

Figure 5: Critical prices for the two groups together

Figure 6: Critical price for only group 2

In Figures 5 and 6 we display the mumerical results obtained for this model. These typical results clearly illustrate the efferes of the age on the critical prices and weol no further discussion. Note that the mumerical procedure to compute the optimal strategy for this model requires a total of 5 iterations and a total time of 2 seconds.

7 Conclusion

In this study we formulate a Markov decision model by which the optimal delivery strategy for a heterogeneous group of porkers can be determined. In formulating the model it is assumed that the feeding-regime is given and cannot be changed by the farmer. For simplicity we restrict our attention to a group of porkers consisting of two homogeneous subgroups, that is, the animals in each subgroup have the same growth properties. The farmer starts a fattening round with only young pigs and he does not fill the vacant places created by the selling of a subgroup until the current round is terminated. Further it is assumed that only the pork price is random.

The model formulated in this study applies to an individual firm only. In contrast with the sector as a whole such a firm cannot influence the pork price by the quantity supplied. The central question of this study is how a farmer striving after a maximal financial result should react upon the variability of the pork price in exploiting the firm.

The optimal delivery strategy can be characterized by a system of critical prices. A critical price holds for a (homogeneous) group at a slaughter-ripe age or for a combination of (homogeneous) groups at a slaughter-ripe age. If in a week the pork price exceeds the critical level for a group or a combination of groups, then it is worth while to sell that group or combination of groups in this week. If on the other hand the pork price lies below the critical level for a certain group, then the sale of this group should be postponed to a later time. So the critical prices can be characterized as a micro-supply function.

We have paid no attention to the possibility that by choosing a suitable feedingregime the farmer can influence the weight progresses of the animals within certain bounds. Here it is assumed that the feeding-regime is fixed. The motivation for this is that in practice the farmers usually follow the feeding sehemes that are advised by agricultural experiment stations. However, by speeding up or slowing down the tempo of feeding the farmer could anticipate a favourable or an unfavourable development of the pork price. The possibility of controlling the weight progresses by the feeding-regime can be included in the model by changing the state description to the triplet (w_{1}, w_{2}, y), where w_{i} stands for the weight of group i animals for $i=1,2$, and ${ }_{y}$ for the current price of pork, and by allowing for different feeding rations at each age.

In this study we distinguish two groups, namely fast and slow growers. It is assumed that all animals within a group show the same weight progress. The variability that in reality occurs within a group is neglected. Without introducing additional complications this variability can be taken into account by enlarging the number of distinct groups. Of course, this generalization leads to a larger dimension of the resulting Markov decision model. Also the fineness of the lattice that is used to characterize the distribution of the pork price influences the dimension of the Markov decision model. In the application of the proposed model one has to decide upon the number of different prices.

References

[1] Burt, ().R., Derzison Raless for the Dynathic Animal Piceling I'roblem. American Journal of Agricultural Economics 75, 1993, 190202.
[2] Chavas, J.P., Kliebenstein, J. and Crenshaw, Th., Modeling Dynamic Agricultural Production Response: The Case of Swine Production. American Journal of Agricultural Economics 67, 1985, 636-646.
[3] Feinerman, E. and Siegel, P.B., A Dynamic Farm-Level Planning Model for Beef Feedlot Production and Marketing. Journal of Agricultural Economics 39, 1988, 413-425.
[4] Paarsch, H.J., Micro-Economic Models of Beef Supply. Canadian Journal of Economics 18, 1985, 636651.
[5] Rausser, J.C. and Hochman, E., Dynamic Agricultural Systems: Economic Prediction and Control. North Holland, New York, 1979.
[6] Ross, S. M., Applied Probability Models with Optimization Applications. HoldenDay, San Francisco, 1970.
[7] Tijms, H. C., Stochastic Modelling and Analysis: A Computational Approach. Wiley, New York, 1986.

IN 1992 REEDS VERSCHENEN

```
532 F.G. van den Heuvel en M.R.M. Turlings
    Privatisering van arbeidsongeschiktheidsregelingen
    Refereed by Prof.Dr. H. Verbon
533 J.C. Engwerda, L.G. van Willigenburg
    LQ-control of sampled continuous-time systems
    Refereed by Prof.dr. J.M. Schumacher
534 J.C. Engwerda, A.C.M. Ran & A.L. Rijkeboer
    Necessary and sufficient conditions for the existence of a positive definite solution
    of the matrix equation X + A*X A = O.
    Refereed by Prof.dr. J.M. Schumacher
535 Jacob C. Engwerda
    The indefinite LQ-problem: the finite planning horizon case
    Refereed by Prof.dr. J.M. Schumacher
536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
    Effectivity functions and associated claim game correspondences
    Refereed by Prof.dr. P.H.M. Ruys
```

537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study
Refereed by Prof.dr.ir. C.A.T. Takkenberg
538 V. Feltkamp and A. van den Nouweland
Controlled Communication Networks
Refereed by Prof.dr. S.H. Tijs
539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert
540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community
Refereed by Prof.dr. A.B.T.M. van Schaik
541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema
542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis

```Uniform Approximations of the Stationary and Palm Distributions of Marked PointProcessesRefereed by Prof.dr. B.B. van der Genugten
```

544 R. Heuts, P. Nederstigt, W. Roebroek, W. SelenMulti-Product Cycling with Packaging in the Process IndustryRefereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. EngwerdaCalculation of an approximate solution of the infinite time-varying LQ-problemRefereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw
547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelen- koersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an under- standing of hybrid vertical inter-firm relations
Refereed by Prof.dr. S.W. Douma
552 Ton Storcken and Harrie de Swart
Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys
553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik

555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas
"Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie
Refereed by Prof.dr. Th.M.M. Verhallen
556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continu-ous-time systems
Communicated by Prof.dr. J. Schumacher
557 Ton Geerts
Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher

558 Ton Geerts

Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma

560 Ton Geerts

Free end-point linear-quadratic control subject to implicit continuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys

[^0]567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman
569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N -person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments
Communicated by Prof.Dr. F.A. van der Duyn Schouten
573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructur Communicated by Prof.Dr. S.W. Douma

574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs

577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys

578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens
Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts
Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten
580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma
582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a Batch Process Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten

585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten

586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten
587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman

IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World
Communicated by Prof.dr. Th. van de Klundert
589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector
Communicated by Prof.dr. B.B. van der Genugten
590 Niels G. Noorderhaven
Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma
591 Henk Roest and Kitty Koelemeijer
Framing perceived service quality and related constructs A multilevel approach Communicated by Prof.dr. Th.M.M. Verhallen

592 Jacob C. Engwerda
The Square Indefinite LQ-Problem: Existence of a Unique Solution
Communicated by Prof.dr. J. Schumacher
593 Jacob C. Engwerda
Output Deadbeat Control of Discrete-Time Multivariable Systems
Communicated by Prof.dr. J. Schumacher
594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices Communicated by Prof.dr. P.W. Moerland

595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructuur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers
Quasi-symmetric designs related to the triangular graph
Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in historisch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert
598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland
599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregration in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman

600 René Peeters

On the p-ranks of Latin Square Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
601 Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado
Maximum Likelihood Equilibria of Random Games
Communicated by Prof.dr. B.B. van der Genugten
602 Prof.dr. Robert Bannink
Size and timing of profits for insurance companies. Cost assignment for products with multiple deliveries.
Communicated by Prof.dr. W. van Hulst
603 M.J. Coster
An Algorithm on Addition Chains with Restricted Memory
Communicated by Prof.dr. M.H.C. Paardekooper
604 Ton Geerts
Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems
Communicated by Prof.dr. J.M. Schumacher
605 B.B. van der Genugten
Beat the Dealer in Holland Casino's Black Jack
Communicated by Dr. P.E.M. Borm
606 Gert Nieuwenhuis
Uniform Limit Theorems for Marked Point Processes
Communicated by Dr. M.R. Jaïbi
607 Dr. G.P.L. van Roij
Effectisering op internationale financiële markten en enkele gevolgen voor banken Communicated by Prof.dr. J. Sijben

608 R.A.M.G. Joosten, A.J.J. Talman
A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using $n(n+1)$ rays
Communicated by Prof.Dr. P.H.M. Ruys
609 Dr. A.J.W. van de Gevel
The Elimination of Technical Barriers to Trade in the European Community
Communicated by Prof.dr. H. Huizinga
610 Dr. A.J.W. van de Gevel
Effective Protection: a Survey
Communicated by Prof.dr. H. Huizinga
611 Jan van der Leeuw
First order conditions for the maximum likelihood estimation of an exact ARMA model
Communicated by Prof.dr. B.B. van der Genugten

612 Tom P. Faith
Bertrand-Edgeworth Competition with Sequential Capacity Choice Communicated by Prof.Dr. S.W. Douma

613 Ton Geerts

The algebraic Riccati equation and singular optimal control: The discrete-time case Communicated by Prof.dr. J.M. Schumacher

614 Ton Geerts

Output consistency and weak output consistency for continuous-time implicit systems
Communicated by Prof.dr. J.M. Schumacher
615 Stef Tijs, Gert-Jan Otten
Compromise Values in Cooperative Game Theory
Communicated by Dr. P.E.M. Borm
616 Dr. Pieter J.F.G. Meulendijks and Prof.Dr. Dick B.J. Schouten
Exchange Rates and the European Business Cycle: an application of a 'quasiempirical' two-country model
Communicated by Prof.Dr. A.H.J.J. Kolnaar
617 Niels G. Noorderhaven
The argumentational texture of transaction cost economics
Communicated by Prof.Dr. S.W. Douma
618 Dr. M.R. Jaïbi
Frequent Sampling in Discrete Choice
Communicated by Dr. M.H. ten Raa
619 Dr. M.R. Jaïbi
A Qualification of the Dependence in the Generalized Extreme Value Choice Model Communicated by Dr. M.H. ten Raa

620 Dr. J.J.A. Moors
Limiting distributions of moment- and quantile-based measures for skewness and kurtosis
Communicated by Prof.Dr. B.B. van der Genugten
621 Job de Haan, Jos Benders, David Bennett
Symbiotic approaches to work and technology
Communicated by Prof.dr. S.W. Douma
622 René Peeters
Orthogonal representations over finite fields and the chromatic number of graphs
Communicated by Dr.ir. W.H. Haemers
623 W.H. Haemers, E. Spence
Graphs Cospectral with Distance-Regular Graphs
Communicated by Prof.dr. M.H.C. Paardekooper

624 Bas van Aarle

The target zone model and its applicability to the recent EMS crisis Communicated by Prof.dr. H. Huizinga

625 René Peeters

Strongly regular graphs that are locally a disjoint union of hexagons Communicated by Dr.ir. W.H. Haemers

626 René Peeters
Uniqueness of strongly regular graphs having minimal ρ-rank Communicated by Dr.ir. W.H. Haemers

627 Freek Aertsen, Jos Benders
Tricks and Trucks: Ten years of organizational renewal at DAF? Communicated by Prof.dr. S.W. Douma

Bibliotheek K. U. Brabant

17000011385615

[^0]: 566 Harry G. Barkema
 The significance of work incentives from bonuses: some new evidence
 Communicated by Dr. Th.E. Nijman

