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Abstract

In this stndy the question is considered how a farmer should arrange the
delivery of groups of porkers, taking into account that each group consists of
subgroups differing in growth rates, that the pork price varies with time, and
that the next fattening round can only start when all animals in the current
round have been delivered for slaughtering. The feeding-regime is assumed to be
given, so the central question is how a farmer should react upon the variability
of the pork price. For the solution of this problem a Markov decision model is
formulated. This model provides a system of critical prices for pork during the
periods in which the animals are slaughter-ripe. The comparison of the pork
price in a week with the critical level(s) holding for the current group of animals
can be of help to the farmer in making his decision whether he should sell a
subgroup or combination of subgroups, or proceed with fattening for another
period. By exploiting the special structure of the Markov decision problem the
optimal delivery strategy can be determined very efficiently. Some examples
are presented that show typical courses of the critical levels.

1 Introduction

In this study we deal with the problem at what times a farmer should sell a group
of animals to achieve a maximal profit, taking into account that the animals show
different rates of growth, that the selling price varies with time, and that the next
fattening round can only start when all animals in the current round have been
delivered for slaughtering. For convenience the investigation of this general problem
is restricted to the fattening of pigs.

(Dis)investment problems related to stocks of “living” commodities (for instance
cattle or crops) have been considered by Burt [1], Chavas, Kliebenstein and Cren-
shaw (2], Feinerman and Siegel [3], Paarsch [4], and Rausser and Hochman [5], among
others. By solving a dynamic programming problem or an optimal control problem
they derive optimal feeding and selling strategies. In contrast with the present study
they restrict their attention to the situation with one growth function. Also, the
marketing strategy for the situation where the prices in two consecutive periods are
mutually dependent is elaborated in this study. However, no attention is paid to the
determination of an optimal feeding-regime.

Nowadays, the production of pork mostly takes place on specialized farms. Such
a farm has at its disposal a number of barns, which are divided into compartments.
The number of animals that can be placed in a compartment varies from a few tens



to well over one hundred, depending on the size of the compartment. Because of
health considerations the so-called “all in-all out” system is usually employed for the
production of pork. This system means that a compartment is occupied by young
pigs at one time, and that all these animals have to be delivered before the next
fattening round in this compartment can start. The successive periods of fattening
are separated by a short period in which the compartment is cleaned thoroughly.
When the young pigs are placed in a compartment, they all have much the same
weight. By a balanced feeding-regime the animals are then fattened during a certain
period, that is, until they have reached a weight suitable for slaughtering. This
feeding-regime is carefully composed from earlier experiences and we suppose that it
cannot be changed by the farmer in order to influence the rates of growth. It usually
turns out that during the period of fattening the animals in one compartment show
a large variation in the growth rates, that is, in the weight gains per kg feed intake.
As a consequence, the animals reach a certain weight at different times. For our aim
it suffices to distinguish two groups: fast growers and slow growers. However, within
these groups there exist no differences in growth properties. As soon as an animal
reaches a certain minimal weight, the farmer has the opportunity to sell it to the
slaughterhouse. Because of the differences in the weights and the meat qualities of
the supplied animals, the slaughterhouses usually do not use one single price but a
system of prices. The basic price is paid for an animal with a standard weight and
meat quality. Deviations from this standard are taken into account by means of a
system of bonuses and (penalty) discounts. In the present study we leave the aspect
of quality out of consideration, and we assume that the price per kg is the same for
all weights. This price is not constant with respect to time but varies from period to
period. In general, the price in an arbitrary period is found in a restricted interval
around the price in the preceding period. Therefore we assume that the price of
pork in an arbitrary period is a stochastic variable, which only depends on the price
in the preceding period. The feed price and interest rate also show variability, but
this variability is of a much smaller order of magnitude than that of the pork price.
Therefore it is no restriction to regard the feed price and interest rate as deterministic.
The heterogeneity of the animals in one compartment together with the “all in-all
out” system and the stochastic behaviour of the pork price now in particular raises the
question whether it is profitable for the farmer to sell the animals in one compartment
at different times.

In this study a micro-economic model is formulated for the decision problem of
the farmer, and a method is presented to solve this problem. A preliminary analysis
for the case that the pork price is deterministic and constant with respect to time
is carried out in Sections 2 and 3. In Section 2 we restrict ourselves to a one-time
fattening round. Using a simple model a delivery arrangement that maximizes the
net result is derived for both a homogeneous and a heterogeneous group. The situ-
ation in which the fattening rounds succeed each other uninterruptedly is discussed
in Section 3. In a similar way as in Section 2 an optimal delivery arrangement is
derived for both a homogeneous and a heterogeneous group. In Section 4 we then
formulate a Markov decision model for the situation where the group of animals in one
compartment is homogeneous, but the pork prices in successive periods are mutually
independent and identically distributed stochastic variables. By using this model the
optimal delivery strategy can be readily determined. This determination boils down
to the computation of a critical value for the pork price in each possible period of
delivery. For realizations of the pork price above the (current) critical level all ani-
mals are sold, whereas the sale is postponed for realizations below this critical level.



By using the techniques developed in Section 4 we discuss in Section 5 the situation
where one compartment contains a heterogencous group of animals, maintaining the
assumption of mutually independent and identically distributed pork prices. After
these preparations we are in a position to solve the main problem of the present study.
In Section 6 the optimal delivery strategy is determined for the situation where the
animals in one compartment are heterogeneous, the pork prices in two successive pe-
riods are dependent, and the “all in-all out” system of production is pursued. For
modelling the dependence of the successive pork prices a first-order Markov scheme
is chosen. Finally, in Section 7 we indicate some ways the models discussed in this
study can be extended.

2 Preliminary Analysis

We first consider the situation where once a group of N pigs is fattened, all pigs
having the same growth properties. At time 0 the (young) pigs are purchased at a
price of p, per animal. At that time they all have the same starting weight, w(0). By
a balanced feeding-regime the animals are then fattened during a certain period. Here
we assume that this feeding-regime is given and cannot be changed by the farmer.
Denoting the feeding ration at time ¢ by u(t) = d—';(tg, the weight development of a
porker at time ¢, ww(t), is described by a growth function h, which is assumed to
depend on the weight of an animal and the feeding ration:

w(t) = h(w(t), u(t),t).

Note that the weight is added as argument, because a part of the feeding ration is
needed for the maintenance of the animal. We assume that the function u(t) is strictly
convex and the function w(t) strictly concave, that is,

du(t) d*u(t)
g = Tgp Fh
dw(t) d*w(t)
@ 0% T <0

Finally, the price of feed per kg, p,, and the price of pork per kg, p,, are assumed to
be given.

When the feeding, regime is given, the various prices are fixed and all animals in
a group grow according to the same growth function, the farmer only needs to take
a decision with respect to the moment of delivery, 7. His decision problem can be
formulated as follows:

T
max F(T)=—Np, — NP“A a(t)e " dt + Np,w(T)e ", (1)
where ¢ stands for the interest rate by which expenses and revenues are discounted to
the starting moment. By choosing the moment of delivery according to problem (1)
the farmer maximizes the present value of the net profit from a one-time fattening
round.

The first-order condition for an optimal delivery moment reads

dw(T)  du(T)

Ps dT = Pu dT +1paw(T)' (2)




A solution of this equation represents a maximum if

d*w(T) d*w(T) . dw(T)

Ds arz Pu ar: Ps dT <
This condition is satisfied since the function w(t) is strictly convex and the fune-
tion w(t) strictly concave and monotonically increasing. In other words, the equa-
tion (2) possesses at most one solution and this solution determines a maximum of
problem (1). The economic interpretation of expression (2) is simple. The deliv-
ery of the animals is optimal at that time where the marginal profit of delay of the
sale, p,%rﬂ, equals the marginal cost of delay, consisting of a marginal feeding cost,

0.

p.,%ﬂ, and an opportunity cost in the form of interest, ¢p,w(7T"). The unique solu-
tion of equation (2), T, is called the optimal slaughter age or the optimal delivery
moment.

After these preparations we now consider the situation where once a heteroge-
neous group of porkers is fattened. Heterogeneity means that the animals in one
compartment grow differently, that is, they differ in weight gains per kg feed intake.
For convenience it is assumed that out of a total of N animals, a number of N, grows
relatively fast and a number of N, relatively slow. The increase in weight of a fast
grower is described by

Wy (t) = ha (i (2), i (2), ),
and that of a slow grower by
wa(t) = ha(wa(t), a(t), t),

where the starting weight of a fast grower is the same as that of a slow grower, that
is, w;(0) = wy(0). We assume that the functions w,(t) and wy(t) are both strictly
concave, while the functions u,(t) and uy(t) are both strictly convex. By heterogeneity
within the group is meant that for all ¢t > 0,

wr(t) > uy(t) and wy(t) > wa(t). 3)

Because only one round of fattening takes place, so that the “all in-all out” require-
ment does not influence the delivery times of the two groups, which are therefore
independent of each other, the reasoning given above applies to both groups sepa-
rately. The optimal slaughter age of the fast growers is denoted by 7} and that of the
slow growers by T;. Note that inequality (3) does not imply that 77 < Tj. Because
only an arrangement in which the fast growers are delivered before the slow ones is
of interest, it is henceforth assumed that 77 < Ty,

Denote the net profit from a one-time fattening round of a heterogeneous group
of porkers by F'(T),T,). Then the decision problem of the farmer can be described
by the following model:

T) ) 2
ax F(T),T;) = —=Np, — Nlpu/O 1 (t)e™ dt + Nypsw; (T;)e™ "
1,42

7 : )
- szu/ ¥ ip(t)e™* dt + Nopywq(Tp)e "™
0
subject to Ty — T, < 0. (4)

This nonlinear programming problem can be solved by means of the Kuhn-Tucker
conditions. To this end we introduce the Lagrangian associated with the decision
problem (4), defined by

L(T\,T, ) = F(T1,T2) + X(T> — Th).



Necessary and also sufficient conditions for the determination of the maximum of the
programming problem (4) are now given by the following system:

i. The solution has to be feasible:
T, -T, <0; (5)
ii. The Lagrange multiplier has to be nonnegative:
A>0; (6)
ili. The product of constraint and Lagrange multiplier has to be zero:
MT, - T,) = 0; (7

iv. The first-order conditions for a maximum of the Lagrangian L(T},T5,A) with
respect to 77 and T, have to be satisfied:

aL(Tl,Tz,/\) _ d'll.l(Tl) —iTy dwl(Tl) —iTy
oo T neg e Nl
- iN,pswul(Tl)(’,_"T‘ -A=0,
OL(T,,T»,\) duy(Ty) dwy(Ty) i,
ar, - Netnyp A Nape— e
— iNyp,wy(Tp)e T2 + A = 0. (8)

After multiplying by €73, j = 1,2, and substituting

dwi(T;) _ dui(T;)

CJ(T}) =DPs dT] Pu dT]

= ipswj(Tj)1 9)
the last conditions can be shortly represented as follows:

NlCl(Tl) = /\CiTl = 0,
NQCg(Tz) + e’ = 0. (8')

The conditions (5) (8) are sufficient for the determination of the maximum of the pro-
gramming problem (4), because the function F(Ty,T5) is strictly concave, which can
be easily verified by using the assumptions concerning the functions u;(t), ua(t), w(t)
and wy(t). So the matrix of second-order partial derivatives of the function F (T}, T3)
is negative definite. A stationary point of the function F'(T),T3), therefore, represents
a global maximum and not only a local maximum. Obviously, the last statement also
holds for the Lagrangian L(T},T5, A), which implies the sufficiency of the conditions
(5)—(8) for the case A > 0.

The starting-point for the analysis of the system (5)—(8) is the complementary
slackness condition (7). When A = 0, the first-order conditions (8') imply that
C\(Ty) = Cy(T2) = 0. The fast and the slow growers are then delivered at the
moments that they reach the optimal slaughter ages. For the fast growers this is the
case at time TP and for the slow growers at time T, where 77 < Ty on account of
the assumption made below (3). For the case A > 0, and hence T} = T3, the sys-
tem (5) (8) possesses no solution, since the first equation of (8), or equivalently (8"),



Figure 1: The moment T},

implies Ty < T7 and the second T, > Ty, which give a contradiction. Consequently,
on fattening a heterogeneous group of animals once, a maximum profit is achieved
when each group is delivered at the optimal slaughter age. This conclusion is obvious,
because the decisions with respect to the delivery moments of the two groups may be
taken independently.

If the farmer decides to deliver not at two times but at one time, then the net
result is given by

T o
F(T’ T) = —Np, — pu./o [Nlﬁl(t) T+ Ng’dz(t)]e_“ dt
+ pa[Nwn(T) + Nyws(T)] e 7.

This result is maximal when the moment T is chosen such that the marginal cost of
delay of the sale of the fast growers equals the marginal profit of acceleration of the
delivery of the slow growers, that is,

—N|C| (T) = NzC'z(T)

The unique solution of this equation is denoted by 77,. Owing to the properties of
the functions C; and C, the optimal delivery moment 77, has to be found between
TY and T;. (For an illustration see Figure 1.) If the fast and the slow growers are
delivered at one moment, which differs from the optimal slaughter ages of both groups,
the net result is smaller than with a two-time delivery. Without a further specification
of the growth functions and the feeding functions, however, it is impossible to derive a
readily interpretable expression for the loss in profit resulting from a one-time delivery.

3 Infinite Chain of Fattening Cycles

The preceding section has been concerned with the situation of one fattening cycle.
In this section we treat the situation where the fattening cycles succeed each other
uninterruptedly. Of course, such a treatment is only meaningful if the net result
of each fattening round is nonnegative, which is henceforth assumed. Although the



length of the investment period is infinite, so that it is possible to change the capacity
of the compartment in which the animals are fattened in course of time, we keep this
capacity constant for convenience. Again the farmer has to determine a delivery
arrangement for a heterogeneous group of animals that maximizes the net result.

We first consider the situation where the animals placed in a compartment have
the same growth properties. Moreover, we suppose that these growth properties do
not change from cycle to cycle. With F(T) the net result from an infinite chain of
fattening cycles for one compartment, the compartment continually being occupied
by a homogeneous group of animals, the optimal time of delivery in each cycle can
be determined by means of the following model:

T A ;
max F(T Z e“"T{—Np,, - Np"/o a(t)e * dt + Np,w(T)e“’T}

—ir\ ™! QT —iT
=(1-¢T) " ~Np, - Np, /0 (t)e " dt + Np,sw(T)e T},

(For the various notations we refer to the preceding section.) The first-order condition
for the optimal time of delivery reads

S < du(T) _, dw(T ;
(1 - e_'T) l{—Npu—::(T )e"T + Np, 1251’ ) g1 _ in,w(T)e“T}

- ie"T(l - e“'T) —2{—Np,, - Npu/ u(t)e " dt + Np,w(T)e"T} =1,
0

Multiplying this condition by eiT(l - e“T) / N and denoting the net result per
fattening cycle per animal by &,(T) we have (compare Paarsch [4])

dw(T)  du(T)
Ps dT = Pu dT

In comparison with the condition (2) for one fattemng cycle the condition (10) pos-

+ipaw(T) +i(1 - ) "y (T). (10)

sesses one additional term, namely z(l - e“T) & (T). This term represents the
interest on the present value of the net profit per animal over all future cycles. The
economic interpretation of expression (10) is as follows. The time of delivery has to
be chosen such that the marginal profit of delay of the sale compensates for the extra
cost of feed and also the loss of interest. The amount of interest forgone consists of
two components, namely the interest on the returns of the sale of the animals that are
fattened in the current cycle and the interest on the present value of the net profit per
animal over all future cycles. Observe that we can also interpret the second interest
component as the (constant) net result per animal per unit of time. For, denoting
this net result by 7, we have

&H(T) = /OT ne " dt = 17(1 - e“T)/i.

Because of the assumption that the net result per cycle is nonnegative, the total
marginal cost is here at least equal to that in the situation with one fattening cycle.
As a consequence, the optimal length of a fattening cycle for the situation with an
infinite number of cycles, T*, is at most equal to 7°, the optimal length with a
one-time fattening cycle.

We next proceed with the situation where the animals placed in one compartment
have different growth properties. For simplicity we again distinguish only two classes:



fast growers and slow growers. The required notations have been introduced in the
preceding section. The decision problem of the farmer for the heterogencous situation
can be described by the following model:

max F(T,,T,) = (l - r"“"‘)i I —~Np
T Ty 1y £2 2 (0
i : 2y
- Nlp.,/o wy(t)e " dt + Nyp,w, (T))e "

T ‘ )
= NQP,‘/0 ’ uy(t)e " dt + sz,wz(Tg)e"T"‘}
subject to T} — T, < 0. (11)

The programming problem (11) can be solved in a similar way as problem (4). The
Lagrangian associated with the problem (11) is given by

L(T], T, /\) = F(Tl,Tz) + A(Tg == T])

The Kuhn-Tucker conditions for the nonlinear programming problem (11) now read

5L =126 (12)
A>0; (13)

OL(Ty, Ty, )) _ —iry\ ! dui(Th) i, dwi(Th) _p
— =(1-e™) { Nipu—gpoe Nip,——e

— iNpsw; (Tl)e*m} -A=0,

dw,(T,) e—iT2

BL(TI ) T2, /\) _ —iT, —l{ d’le(Tg) ~iT4
o7, — (1 e ) Napy a7, e + Nop, T,
= isz,wg(Tg)e'iT’}
. —iT} —iry\ 2
—ie™ (1 - e7™) T gy(T1, T) + A = 0. (15)

Here &(T1,T) stands for the net result per fattening round. The conditions (12)-
(15) are necessary for an optimal solution of the problem (11). In general, the Kuhn-
Tucker conditions are not sufficient. The maximum of the problem (11), however,
can be readily determined by means of the conditions (12)-(15), as is shown below.
Multiplying the first relation of (15) by e’ (1 - e“Tg) and the second relation by

e'T2 (1 - e“T’), and using the substitutions C(T}) and Cy(T3), introduced in (9), we
obtain

N,C\(T)) — Xe'T (1 - e“iT’) =10,
N,Co(T) + AeT (1= e7T2) = i(1 - =T ' g(Ty, Ty). (15)
We first consider the case A = 0. The equations (15’) then change into
NCi(Th) =0,
NCo(Ty) = i(1 - ™) " &(Ty, Ta). (16)



The conditions (16) are the same as the conditions (8) with A = 0 except. for the ad-
ditional term i(l — c‘”"l)#lﬁz(Tl, T,). This term can be interpreted as the (constant)
net result per unit of time, as is explained above. The first condition of (16) is satisfied
if T} = T7, that is, in each cycle the fast growers are delivered at the optimal slaughter
age. From the second condition of (16) it is seen that the slow growers are delivered
at that time where the marginal result for the slow growers, N,C»(T3), equals the net

result per time unit for the two groups together, i(l - e"""“)_lfz(Tl,Tg). Because
of the assumption that the net result per cycle is nonnegative, the delivery of the
slow growers takes place before or at the optimal slaughter time T5. If the (unique)
solution of the conditions (16) also satisfies the feasibility condition (12), that is, the
slow growers are not delivered before the fast growers, then this solution satisfies the
Kuhn-Tucker conditions (12)-(15), and thus represents a maximal solution of the pro-
gramming problem (11). In the sequel we denote this maximal solution by (77, T5).
In conclusion, the optimal delivery arrangement corresponding to A = 0 satisfies

TE=T R TF 2 TD.

This result differs from that found for the situation with one fattening round in that
respect that for &(77,T;) > 0 the delivery of the slow growers is advanced to an
earlier time, and this advancement is more significant as the net result per unit of
time is greater. For & (77, T5) > 0 the optimal length of one fattening round in an
infinite chain is therefore shorter than 77, the optimal length with a one-time fattening
round. Note that, if the net result per time unit is so large that Ty = Ty ( = 1Y),
then both groups are delivered simultaneously at time 77, the optimal slaughter age
of group 1 animals.

We now consider the case A > 0. Since the constraint corresponding to prob-
lem (11) is active for this case we have T} = T5, so that by taking T}, = T, = T in the
equations (15') and then eliminating A from the resulting equations we obtain

NiGi(T) + NoGo(T) = i(1 - e=7) " &(T, T). (17)

Because the functions C)(T') and Cy(T) are both monotonically decreasing, the equa-
tion (17) possesses a unique solution T}, > 0. Additional information concerning the
delivery time T}, can be obtained from the first relation of (15'), which reads with
Tl = T2 — Tl‘z,

N\Cy(T},) = Ae'Tiz (1 —e7Th).

By using that the function ¢'(7') is monotonically decreasing and vanishes for 77,
the optimal slaughter age of a fast grower, it follows that 77, < T7. Relation (17)
can now be interpreted as follows. The delivery is optimal at that time where the
marginal profit of acceleration of the sale of all animals equals the net result per unit
of time. Consequently, for an infinite chain of fattening cycles with a continually
heterogeneous group the delivery of the fast and the slow growers at the same time
is also a possibility. Finally we note that the two cases A = 0 and A > 0 lead to
mutually disjunct solutions, namely T; > T} = T7 for A = 0 and T3, < T} for A > 0.

4 Markov Decision Model

Until now we have assumed that all prices remain constant in the course of time.
This assumption is not very realistic. In particular, the pork price may show quite
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some variability. In this section we consider the farming model in which the prices
of young pigs and feed, and also the rate of interest are constant, but the price of
pork at an arbitrary time is uncertain, or random. For convenience it is assumed that
the pork price changes periodically, say every week, and is governed by a discrete
probability distribution. In this and the following section we restrict ourselves to a
market in which the pork prices in successive periods are independent of each other
and identically distributed. The more realistic model with dependent pork prices is
considered in Section 6. The price of pork in period ¢, denoted by Y, possesses the
following probability distribution:

g = Pr{Y, = y;}, (18)

where the possible prices are numbered in ascending order, that is, 0 < ¥, < ¥y <

© < Y. DBecause the price of pork changes only periodically, we formulate the
decision problem of the farmer not in continuous but in discrete time. At the start of
each period the farmer decides whether to sell animals in that period or not. During
each period the farmer has only one opportunity to sell animals. If animals are sold,
then they are removed from the compartment immediately, that is, at the beginning
of the period. In order to make the decision whether to sell or not, the farmer has
to know the weights of the animals and the current price of pork. We suppose that
only animals that possess a weight within a certain range, say 80-130 kg, can be sold.
Animals with a weight outside this range do not satisfy the quality requirements
imposed by the slaughterhouses, and hence yield no profit. If the weight of an animal
lies between the minimal and the maximal allowable weight, then we call this animal
slaughter-ripe. The price of pork is determined by extrancous circumstances, so the
farmer cannot influence this price by the quantity supplied. Finally we assume that
the successive cycles are separated by a week in which the compartment is made ready
for the next fattening round. The cost for the cleaning of the compartment is given
by pe.

Before answering the question how the farmer has to arrange the delivery of a
heterogeneous group, we first derive the decision rule for the situation where the
animals have the same growth properties. When a compartment is empty and clean
at the beginning of a period, it is filled with N young pigs at a price of p, per animal.
The young pigs have a starting age of xy weeks. By a balanced feeding-regime the
animals are then fattened during a number of weeks. An animal of age z reccives a
feeding ration of w(x), which must be purchased at a price of p, per kg. Without
restricting the generality we assume that the growth process is discrete, that is, weight
increases occur only at the end of a feeding week. The weight of an animal of age x
is denoted by w(z). Further we denote the minimal and maximal weight at which
an animal can be slaughtered by wyi, and wpay, and the corresponding minimal and
maximal slaughter age by Zmin and Zmax. The relation between the age and the weight
of an animal is illustrated in Figure 2.

The total financial result is determined by the decisions that the farmer takes
in the successive weeks. In each week he decides whether to sell the animals or to
postpone the sale and carry on the fattening. We denote the decision taken in week ¢
by a;. In order to make the decision whether to sell or not, the farmer has to know
the weight of the animals and the price of pork. As long as the animals have not
reached the minimal slaughter weight the farmer has no choice but to proceed with
fattening. The farmer also has no choice if the animals are of such a weight that
by feeding them for another week they will exceed the maximal slaughter weight. In
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Figure 2: An example of the weight function

this case the animals are sold immediately. In the other weeks the farmer can always
choose from two possibilities. He can decide to sell the animals at the current price or
he can decide to dispose of the animals in one of the coming weeks at the price valid
then but currently unknown. Such a sequence of decisions for the successive weeks is
called a strategy and denoted by the symbol 7. By terminating each fattening cycle
at a suitable moment, that is, by choosing a suitable strategy, the farmer can realize
a maximal financial result.

For the determination of the optimal fattening strategy we make use of a Markov
decision model. In accordance with the terminology of this method we introduce the
stochastic process { (X Yt =10,0,2s 0 }, where X, stands for the age of an animal
and Y, for the price of pork in week ¢. The age varies from o up to Zmax and the pork
price from y; up to y,,. Suppose that in an arbitrary week the system is in state (z, y;)
and the farmer chooses action a. Then the farmer receives a reward 7(z, y;; a) in that
week and the system changes into a new state (Z,y;). The probability that such an
event occurs is denoted by pz ..z, (a). If the farmer employs the strategy =, that is,
in week t he chooses action a;, and the system is initially in state (z,;), then the
expected total discounted return is given by

ve(z,9:) = Ew{ ZT(Xt, Yt;at)at Xo=1r, YYo=y }’

t=0

where « stands for the weekly rate of discount. Note that E, represents the condi-
tional expectation, given that strategy = is employed. The farmer now attempts to
maximize the expected total discounted return when starting with a new group of
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animals and the initial pork price is y;. Thus the problem faced by the farmer is to
find a strategy 7* that maximizes v.(zo, y;), that is,

Ur+ (To, i) = m;;iwi(zo,yi)-

To determine the strategy 7* we apply the optimality principle of Bellman. This
principle states that when starting in state (z,y;) and taking action a there, one
cannot do better than following the optimal strategy starting from the new state.
In other words, if in any week the system is in state (z, y;), then the expected total
discounted return from this week onwards is maximized by employing the strategy 7*.
This argument leads to the following optimality equation (see Ross[6]):

Ve (T, 95) = mf.x{'r(.’l:, vi;a) + « Z Pz y;iz,y; (a)vae (2, :’Jj)}» (19)

(#,y5)

where the summation is over all possible states (&, ;).

For the decision problem of the farmer the optimality equation (19) can be speci-
fied as follows. If the animals are not yet slaughter-ripe, that is, 9 < £ < Zmi,, then
we have

Ve (Z, 9) = —Npyu(z) + anjv,,.(m ¥+ 1,111')-
i=1

If the animals have gained sufficient weight, then the farmer can decide to proceed
with fattening or he can decide to sell and start a new fattening round. So for
Tmin < T < Tmax We have

m
BB = max{ el e et L
i=1

m
Nw(z)yi —Pe— Npa ¥ az qjVUn (-7701 yj)}v

=t

where the first possibility cancels for £ = Zp.x, because animals of age T, will
exceed the maximal slaughter weight wyax by feeding them for another week (compare
Rausser and Hochman [5]). Hence selling the animals is optimal if

m m
Nw(z)y; — pe — Npa + @ Y 40z (20,9;) > —Npyu(z) + Y gjve-(z + 1, 3;),
i=1 J=1

s0 there exists a critical value of the pork price for each age at which the animals can
be delivered. If in a week the animals have age x and the pork price is above the
corresponding critical level, then the animals are sold immediately, whereas the sale
is postponed if the opposite is true.

5 Delivery Strategy for a Heterogeneous Group

In this section we consider the question how the farmer should organize the delivery
in case the compartment contains a (homogeneous) group of fast growers and a (ho-
mogeneous) group of slow growers. It is assumed that out of a total of N animals
placed in a compartment, a number of N} grows relatively fast and a number of N,
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relatively slow. A fast grower of age x receives a feeding ration of u;(x) and a slow
grower of age z a feeding ration of uy(x). The weight of a fast grower of age & is
denoted by w,(z) and that of a slow grower of age = by ws(z). At the beginning
of each cycle all animals have the same weight, that is, w;(zo) = wa(zo). The fast
growers reach the minimal weight for which a positive pork price holds at the age of
2{1) weeks, while they can be delivered at latest at the age of z(1), weeks. With the

dehvery of the slow growers the farmer can only start at a later age, namely at the age
of 22 (> z{})). At latest these animals leave the farm at the age of z3) (> z{L)).
In the sequel it is assumed that z{}) > xg,)n, which is the most common configuration.
We again restrict ourselves to a market in which the pork prices in successive weeks
form a sequence of independent and identically distributed stochastic variables with
common distribution g¢;, introduced in (18).

In Sections 2 and 3 we have seen that each of the two groups within the heteroge-
neous livestock is delivered in its entirety, usually at different times for both groups.
Also for the farming model in which the price of pork varies from week to week each
of the two (homogeneous) groups is always sold in its entirety. For, if it is advanta-
geous to sell one animal from a homogeneous group in a certain week, then it is also
advantageous to sell the other animals from that group in this week, and nothing can
be gained by spreading the selling of the animals over several periods. Whether the
periods in which the two groups are sold differ from each other, cannot be said in
advance. Surely, one would expect that the fast growers are always delivered before
or at the same time as the slow growers, but this need not be the case. The feeding
and weight progresses could be such that in fact the opposite occurs, for instance if
group 2 animals grow relatively very slowly. Here we leave this theoretical possibil-
ity out of consideration and we assume that the growth functions and the feeding
functions have such courses that the fast growers are never delivered after the slow
ones.

For the determination of the optimal delivery strategy for a heterogeneous group
of porkers we again formulate a Markov decision model. To this end we introduce
the stochastic process { (X, Ch: Y1), 2 =10, 1,2...... . }, where X, stands for the age of
an animal, C, for the composition of the livestock and Y, for the price of pork in
week t. The composition indicates whether both groups are present (C, = 12) or
whether only group 2 is present and group 1 is already sold (C; = 2). Denote the
expected total discounted return by v.(z,c,¥;), given that the farmer employs the
delivery strategy m and the system is initially in state (z,c,y;). The weekly rate of
discount is given by . The farmer now attempts to find a strategy that maximizes
vx (20,12, y;). The optimality equations can be written down as follows (compare the
similar derivation given in the preceding section). We need to distinguish 4 different
cases:

i. If the animals are not yet slaughter-ripe, the farmer can only proceed with fatten-
ing. So for zo < z < zfji’,, we have

m
Ux (7,12, 4i) = —N1puur(z) — Napuua(z) + @Y gjva(z + 1,12, 3;).
i=1

ii. If the fast growers have gained sufficient weight but the slow growers are still too
light, the farmer can choose between two possibilities. He can decide to proceed
with the fattening of both groups or he can decide to sell the fast growers and
proceed with the fattening of only the slow growers. His choice of course depends
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(1)

min

(2

on the value of the pork price. So for a,j, < x < x5, we have

m

a0, 12, 9:) = umx{—N.p.m.l(.r) — Nopta(e) + o3 quoa(e + 1,12,9,),
J=1

Nywy (z)y; — Nopuua(z) + a Y gjve(z + 1,2,111‘)}-
g=1

If the fast growers are already sold while the slow growers are not yet slaughter-
riPe, the farmer must proceed with fattening the remaining animals. Hence for
1 2

Tan S B <,

m

vx(z, 2,9;) = —Napyua(z) + Z givs(z + 1, 2,9;).

j=1
If both groups are slaughter-ripe, the farmer can choose from three possibilities.
He can proceed with fattening both groups, he can sell the fast growers and proceed
with fattening the slow growers, or he can sell both groups. So for zfﬁ?,, <z <z
we have

'Uvr(w: 127 yl)

= ma-x{_Nlpuul(I) = N2puu2($) +a Z ijar(x +1,12, yj)a
i=1

Nywy(z)y: — Noputia(z) + @ Y gjva(z + 1,2,9;),

=1
(lel (z) + Nzwz(l‘))yi —pe— Npa+ @ qjvxr(20,12, yj)},
j=1
where the first possibility cancels for z = z{l)_, because the sale of the fast growers

can no longer be postponed.

. If the fast growers are already sold and the slow growers are slanghter-ripe, the

farmer can decide to proceed with fattening or he can decide to sell. So for
@ <z < 2@, we have

Uﬂ’(‘ri 2, yi) = max{_NZPuUZ(z) =t anJ"UI(ZL‘ + 152, yj)'l
j=1

m
Nowy(T)yi — pe — Npa + @Y, qjvx(z0, 12, yj)},
i=1

where of course the first possibility cancels for z = z(2), .

From the above system of optimality equations it is easily seen that there exist three
critical levels for the pork price. The first level holds for only the fast growers at
each slaughter-ripe age and is denoted by +;(z). If in a week the animals have age z
and the pork price is above the critical level v,(z), then the fast growers are sold
immediately. Whether the slow growers are also sold depends on the second critical
level, denoted by 7;2(z). This critical level holds for the two groups together at each
age at which both the fast and the slow growers are slaughter-ripe. If in a week
the animals have age z and the pork price is above the critical level v)5(z), then



both groups are sold immediately. It is obvious that Y2() > v (). In case the
fast growers are already sold, the decision whether to sell the remaining slow growers
depends on the third critical level. This critical level holds for the slow growers at
cach slaughter-ripe age and is denoted by y2(x). For realizations of the pork price
above the critical level v,(z), given that the remaining slow growers have age z, these
animals are sold immediately and a new fattening round is started.

Several numerical methods are available for the computation of the critical lev-
els v1(z), 12(z) and v,(z). The Markov decision problem formulated above can be
solved by the value-iteration method, by the strategy-iteration method and by lin-
ear programming. A detailed discussion of these methods can be found in Ross|6]
or Tijms(7]. For the present problem we have used the strategy-iteration method to
compute the optimal solution. In this method the special structure of the problem
can be exploited to reduce the system of linear equations to be solved in each iteration
step to a considerably smaller system of linear equations on only the (initial) states
(w0, %), i=1,...,m. if 2y < 15,’,?", the resulting system can be further reduced to a
(simple) linear equation, because the values Ux (20,12, %;) with 7 an arbitrary strategy
do not depend on i. The developed algorithm turns out to be very efficient.

To conclude this section we present a numerical example that gives some insight
in the critical prices as functions of the age. The example concerns the following
model:

N =100, Ny = 40, N; = 60, p, = 125, p, = 0.45, p, = 250, @ = 0.996;
$i=2+025(i-1), ¢=1/9, i=1,...,9;

%0 = 5 Wmin = 80, Wpax = 130, ), = 12,2{), = 21,23, = 14,20) = 27,

ul(z)=0.1m2—0.1z+10, xogxga:ﬂ?“—-l;
uy(x) = 0.052% — 0.28z + 9.35, m<z<Led —1;
wi(z) = —0.222 + 11.67x — 28.38, Tp<z< xf,};x;
wy(z) = —0.132° -~ 8.882 — 16.18, 1y <z < z(2) .

max’
Note that the pork price is uniformly distributed on the equidistant points 2,2.25,
2.5,...,3.75,4. In Figures 3 and 4 we display the numerical results obtained for this
model. These typical results clearly illustrate the effects of the age on the critical
prices and need no further discussion. Worth mentioning is only that the numerical
procedure requires a total of 5 iterations and a total computation time of 3 seconds.

6 Dependent Pork Prices

In the preceding sections we have assumed that the pork prices in successive weeks
arc independent and identically distributed stochastic variables. This assumption is
not very realistic. In general, the pork price in an arbitrary week only slightly differs
from the price in the week just expired. In this section we consider the farming model
in which the pork prices in successive weeks are dependent. We restrict ourselves to
a first-order dependence, that is, the pork price in an arbitrary week only depends on
the price in the week just expired. So, in contrast with the models considered in the
preceding sections, knowledge of the price in the current week gives information on
the price in the next week. For convenience we assume that the pork price in any week
possesses a discrete distribution. The possible pork prices are given by y,, s, ..., Y
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with y; < yp < +++ < ¥,,. Further we assnme that the transition probabilities are
independent of time. Denoting the pork price in week t by Y, it is easily seen that
the process { Y, t=0,1,...} constitutes a Markov chain with stationary transition

probabilities. These transition probabilities are given by
¢ = Pr{Y1 = y; | Ye = ui}.

With the exception of the pork price, the model being considered in this section is
the same as that in the preceding section. Once again, the farmer wants to deter-
mine a delivery strategy for a heterogeneous group of porkers that maximizes his net
result. To solve this problem we make use of a Markov decision model. Suppose
the farmer employs the strategy 7, which consists of a sequence of selling decisions
for the successive weeks. The decision in an arbitrary week depends on the cur-
rent state of the system described by the age of an animal, the composition of the
livestock and the pork price. The corresponding stochastic process is denoted by
{ (X Cp Ye) b= 001, } Starting with a new group of animals of heterogeneous
composition the farmer wants to maximize the present value of all future returns
discounted with a weekly rate of a. Denote the expected total discounted return
by v,(z,c,y;), given that the farmer employs the strategy m and the system is ini-
tially in state (z, ¢, y;). The optimality equations are derived in a similar way as in the
preceding section. Note that the introduction of dependence between the pork prices
in two successive weeks does not result in fundamental changes in the structure of
the system of optimality equations. For the four cases that need to be distinguished
within a cycle of maximal length the optimality equations read:

i. If both groups are not yet slaughter-ripe, the farmer can only proceed with fat-
tening. So for zp < z < J:f,l")n we have

m
Ur (7,12, ;) = —N1puur () — Napuua(z) + @ Y gijur(z + 1,12, ;).
j:l

ii. If the fast growers are slaughter-ripe but the slow growers not yet, the farmer
can proceed with fattening both groups or he can sell the fast growers and proceed
with fattening the slow growers. So for zfm)n Lo :zfm)n we have

m
O (@, 12,3;) = max{—Nlpuul(x) — Nypyus(z) + Z aivx(z + 1,12, y;),
3=1

Nywy (2)yi — Noputia(z) + @Y gijva(z + 1,2, y])}

¥=1

If the fast growers are already sold and the slow growers are not yet slaughter-

I‘IPG', the fan?()ar must proceed with fattening the remaining animals. Hence for
2

<TLZT

mm min?

'”1(:1:1 2, ?/i) = *Nlpuu‘l(z) + C!Z q:'jv‘;r(-'t 1, 2» yj)'
Jj=1

iii. If both groups are slaughter-ripe, the farmer can proceed with fattening both
groups, or he can sell the fast growers and proceed with fattening the slow growers,
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. (2)
or he can sell both gronps. So lor ot e have

i Tonax

ol 12, 9:)
- nmx{ —Nipuuy () — Nopyus(x) + v Z Gt (4 1, 12,,),
7=1
NﬂUx(-T)yi = N2Puu2(1') + o Z qijvw(x +1,.2, yj)a
Jj=1
(lel(m) ¥ Ngwg(z))yi ~Pe — Npa+ @) gijvr(z0,12, yj)},
=1

where the first possibility cancels for z = z{}) .

iv. If the fast growers are already sold and the slow growers are slaughter-ripe, the
farmer can proceed with fattening or he can sell. So for z{2), < z < z(2), we have

m

vl 2, 45) = lll&lX{—sz,"ll,z(.‘lf) + Z giive(z + 1,2, 95),
=1

Now(T)yi — pe — Npa + @Y ijvn(zo, 12, yj)},

i=1
P e
where the first possibility cancels for z = z{2)_ .

It is easily seen that the above system of optimality equations does not necessarily
result in critical levels for the pork price. However, delivery strategies to be employed
in practice should be based on a comparison of the current pork price with certain
critical levels. Therefore we restrict ourselves to delivery strategies of this form. The
critical prices are again denoted by «,(z), 7i2(z) and 7y3(z). For an interpretation of
these critical prices see the preceding section.

To conclude this section we present a numerical example that sheds some ad-
ditional light on the critical levels v,(z), y2(z) and vy(x). The critical levels are
computed by the strategy-iteration method (see preceding section). Note that in
cach iteration step we need to solve a system of m lincar equations, because the re-
duction to a single linear equation is not possible for the model with dependent pork
prices, because the values v,(z¢,12,y;) now depend on i. The numerical example
concerns the following model:

N =100, Ny = 40, N, = 60, p, = 125, p,, = 0.45, p, = 250, o = 0.996;
¥i =2+0.25(i — 1), (=
02 Hi=129=1,....5;
ifi=3,...,7j=1—-2,i—1,4,i+1,i + 2;

—
hi Hi=8,9§=5....0
0 otherwise;
To = 5, Wmin = 80, Wmax = 130,250, =12,z =21,z?) = 14,2@) = 27
uy(z) = 0.1z2 — 0.1z + 10, T <<zl —1;
uy(z) = 0.05z% — 0.28x + 9.35, r<z<z® —1;

wy(z) = —0.222 + 11.67z — 28.38,  zp <z < z{});
wy(x) = —0.132% — 8.88z — 16.18, Ty LE< rsl‘f‘)“,
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5 and 6 we display the numerical results obtained for this model. These

tyvpical results elearly illustrate the eflfeets of the age on the eritical prices and need

In Figures

no further discussion. Note that the numerical procedure to compute the optimal

strategy for this model requires a total of 5 iterations and a total time of 2 seconds.

7 Conclusion

In this study we formulate a Markov decision model by which the optimal delivery
strategy for a heterogeneous group of porkers can be determined. In formulating the
model it is assumed that the feeding-regime is given and cannot be changed by the
farmer. For simplicity we restrict our attention to a group of porkers consisting of
two homogeneous subgroups, that is, the animals in each subgroup have the same
growth properties. The farmer starts a fattening round with only young pigs and he
does not fill the vacant places created by the selling of a subgroup until the current
round is terminated. Further it is assumed that only the pork price is random.

The model formulated in this study applies to an individual firm only. In contrast
with the sector as a whole such a firm cannot influence the pork price by the quantity
supplied. The central question of this study is how a farmer striving after a maximal
financial result should react upon the variability of the pork price in exploiting the
firm.

The optimal delivery strategy can be characterized by a system of critical prices.
A critical price holds for a (homogeneous) group at a slaughter-ripe age or for a
combination of (homogeneous) groups at a slaughter-ripe age. If in a week the pork
price exceeds the critical level for a group or a combination of groups, then it is worth
while to sell that group or combination of groups in this week. If on the other hand
the pork price lies below the critical level for a certain group, then the sale of this
group should be postponed to a later time. So the critical prices can be characterized
as a micro-supply function.

We have paid no attention to the possibility that by choosing a suitable feeding-
regime the farmer can influence the weight progresses of the animals within certain
bounds. Here it is assumed that the feeding-regime is fixed. The motivation for this
is that in practice the farmers usually follow the feeding schemes that are advised
by agricultural experiment stations. However, by speeding up or slowing down the
tempo of feeding the farmer could anticipate a favourable or an unfavourable devel-
opment of the pork price. The possibility of controlling the weight progresses by the
feeding-regime can be included in the model by changing the state description to the
triplet. (wy, wy,y), where w; stands for the weight of group ¢ animals for i = 1,2, and
y for the eurrent price of pork, and by allowing for different feeding rations at each
age.

In this study we distinguish two groups, namely fast and slow growers. It is as-
sumed that all animals within a group show the same weight progress. The variability
that in reality occurs within a group is neglected. Without introducing additional
complications this variability can be taken into account by enlarging the number of
distinct groups. Of course, this generalization leads to a larger dimension of the
resulting Markov decision model. Also the fineness of the lattice that is used to char-
acterize the distribution of the pork price influences the dimension of the Markov
decision model. In the application of the proposed model one has to decide nupon the
number of different prices.
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