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Abstract

Eigenvalue algorithms belonging to the class of the Rayleigh-Ritz methods
(Krylov-space methods for example) use `projections' on subspaces to produce

approximations to eigenvalues and eigenvectors of a matrix. This paper focuses

on the eigenvectors. Two angles are important when considering an eigenvector:
the angle between the eigenvector and the best approximating Ritzvector and

the angle between the eigenvector and the subspace involved. It is studied how

an upperbound for the �rst angle can be expressed in terms of the second one.
This results in a theoretical expression for the case of two-dimensional subspaces

and a conjecture for higher dimensional subspaces supported by numerical ex-

periments.

1 Introduction

In many problems it is important to calculate eigenvalues and/or eigenvectors of
a matrix. For this purpose a variety of algorithms exists. An important class of
algorithms is based on the `projection' of the matrix on a series of subspaces. Let
A : IRn ! IRn be a linear transformation. V � IRn is a linear subspace of dimension
k, AjV : V ! IRn is the restriction of A to V and PV the orthogonal projection onto
V. The eigenvalues of PVAjV : V ! V are called the Ritzvalues of A with respect
to V and the corresponding eigenvectors are called Ritzvectors. The Ritzvalues and
-vectors can be considered as approximations to the eigenvalues and -vectors of A. If
A is a matrix representing A and V is a matrix whose columns are an orthonormal
basis of V then the matrix of PVAjV with respect to the columns of V is given by
V TAV . This method is known as the Rayleigh-Ritz Procedure.
A special series of subspaces is formed by the Krylov subspaces. The k-th Krylov
subspace with respect to matrix A and vector v 2 IRn is de�ned by:

Kk(A; v) = spanfv;Av; : : : ; Ak�1vg
Many important eigenvalue algorithms are based on series of Krylov subspaces (see [5,
1]). For an increasing row of values k, the Ritzvalues form a series of approxima-
tions to the eigenvalues with very good `convergence' properties in many cases. The
Ritzvectors also `converge' to the eigenvectors.
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In this paper we will focus on the Ritzvectors. Suppose we are interested in an
eigenvector x, corresponding to an eigenvalue �. For the series of Krylov-spaces we
have that the angle �(k) between an eigenvector x and Kk(A; v) decreases when k

increases. Bounds for �(k) can be given, for example in the case of a symmetric
matrix we have:

tan�(k) = min
p2P�

k�1

kp(A)(I � �x)vk
k(I � �x)vk

tan�(1)

where P�
k�1 is the set of polynomials of degree k�1, having the value 1 in � and �x is

the orthogonal projection onto x (see [2]). However, in the case of approximating an
eigenvector we are not interested in �(k), but in the angle �(k) between x and the best
approximating Ritzvector. So we need a relation between those two angles. Such a
relation is known (see 3.3), but it uses more information than �k and the eigenvalues
only.
Here we will look at other bounds and do not restrict ourselves to Krylov spaces. If
a result is valid for general subspaces, it is also valid for Krylov spaces, but of course
it is possible that better bounds can be derived for the latter ones. This paper is
concerned with the following question.

Problem 1.1 Let A be a matrix, V a subspace, x an eigenvector of A, � the angle

between x and V and � the angle between x and the best approximating Ritzvector.

What is the largest possible value of �, expressed in � and the eigenvalues of A?

For general matrices this is a di�cult problem, therefore this paper considers sym-
metric matrices only. If A is symmetric, it has an orthonormal basis of eigenvectors.
The corresponding matrix with respect to that basis is a diagonal matrix. Therefore
it is no restriction considering diagonal matrices only.
After the notation in section 2, some upperbounds are given in section 3. In section 4
theoretical and experimental results about subspaces of dimension two are presented.
Section 5 is concerned with subspaces of higher dimension, but here only experimental
results are available. It contains a conjecture which remains to be proved.

2 Notation

Let n 2 IN, n � 3. A denotes a n�n real diagonal matrix with n distinct eigenvalues:

A =

0
B@

�1 0 0

0
.. . 0

0 0 �n

1
CA (1)

We are interested in the eigenvalue � and the corresponding eigenvector x. Without
loss of generality it may be assumed that � = �1 and x = e1. The rest of the
eigenvalues is ordered ascending: �2 < : : : < �n. Let k 2 IN, 2 � k � n. V � IRn is a
subspace of dimension k and PV is the orthogonal projection on V . z1; : : : ; zk are the
Ritzvectors of A with respect to V . They are chosen such that their �rst components

2



are nonnegative. Pi denotes the orthogonal projection on zi. � denotes the angle
between x and V and �i the angle between x and zi. The Ritzvectors are ordered
such that �1 � �2 � : : : � �k, so z1 is the Ritzvector which approximates x best. See
�gure 1 for a visualization of the case k = 2.

x

PV x

P1x

P2x

z1

z2

V

�
�1

�2

Figure 1: The approximation of an eigenvector by Ritzvectors.

Z is the matrix containing the Ritzvectors:

Z = [z1z2 � � �zk] =

0
BBB@

z11 : : : z1k
z21 : : : z2k
...

...
zn1 : : : znk

1
CCCA (2)

It should be kept in mind that � and �i can be considered as functions of V , so they
may be written as �(V ) and �i(V ). In the next sections it occurs often that �(V ) is
�xed to a certain value � and V is varied over all subspaces leading to the same �(V ).
So the expression min

V
E(V ) should be interpreted as

minfE(V )jV � IRn; dim(V ) = k; �(V ) = �g

The analogue holds for max
V

E(V ). In particular expressions like max
V

sin2 �1(V ) will

be considered. So problem 1.1 can be rewritten as:

Given � 2 IR, 0 � � � �
2
, what is the value of max

V
�1(V )?

3 Bounds for �1

Some simple bounds can be proved without problems. The �rst lemma gives the
relation between all the �i expressed in �.
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Lemma 3.1

kX
i=1

sin2 �i = k � 1 + sin2 �

Proof:

cos2 � = kPV xk22 = k
kX

i=1

Pixk22 =
kX

i=1

kPixk22 =
kX
i=1

cos2 �i

sin2 � = 1� cos2 � = 1�
kX

i=1

(1� sin2 �i) = 1� k +

kX
i=1

sin2 �i

The next lemma gives a bound which will be sharp in a lot of cases.

Lemma 3.2 sin2 � � sin2 �1 �
k � 1 + sin2 �

k

Proof: From lemma 3.1 we have:

cos2 � =

kX
i=1

cos2 �i � cos2 �1

sin2 �1 � sin2 �

sin2 �1 =

Pk

i=1 sin
2 �1

k
�
Pk

i=1 sin
2 �i

k
=

k � 1 + sin2 �

k

Another upperbound for sin2 �1 is given by Parlett and Saad.

Theorem 3.3 Let 
 = kPVA(I � PV )k2 and � the distance between � and the set of

Ritzvalues other than the one corresponding to z1. Then:

sin2 �1 � (1 +

2

�2
) sin2 �

Proof: See [6], page 246 or [7], theorem 4.6.

It must be noticed that this bound depends not on � only, but also on the projection
PV and the Ritzvalues. So this is not the answer to question 1.1 since it requires
more information than just the angle �. Later this bound is revisited and compared
to another bound to be derived in the next section.
It is obvious that the sharpest bound possible for sin2 �1 which only depends on A

and � is max
V

sin2 �1(V ). This leads to an optimization problem which is formulated

in the following theorem.
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Theorem 3.4 Let Dk be the set of diagonal matrices of order k and Z the n�k matrix

with elements (zij), then:

max
V

sin2 �1 = 1�minfz211 j 8j : z211 � z21j;

kX
j=1

z21j = cos2 �; ZTZ = I; ZTAZ 2 Dkg

Proof: Every subspace V corresponds to a matrix Z as de�ned in (2). Z is a matrix
of Ritzvectors if and only if ZTZ = I and ZTAZ 2 Dk.

cos2 � = kZZT e1k22 = kZT e1k22 =
kX

j=1

z21j

cos2 �i = kzizTi e1k22 = (zTi e1)
2 = z21i

The fact that 8j : �1 � �j corresponds to 8j : z211 � z21j . This proves the theorem

together with max
V

sin2 �1 = 1�min
V

cos2 �1.

4 Subspaces of dimension two

4.1 A sharp upperbound

In theorem 3.4 a bound is given in the shape of a minimization problem which is not
easy to solve. In the case of k = 2 however its solution can be formulated as a single
expression in term of the eigenvalues of A and �. To achieve this, the following lemma
is needed.

Lemma 4.1 Let n 2 IN; n � 2; r; s 2 IR; r; s � 0, then:

f(x1y1; : : : ; xnyn) 2 IRnj kxk2 = r; kyk2 = sg = fz 2 IRnj kzk1 � rsg

Proof:

� Let x; y 2 IRn; kxk2 = r; kyk2 = s and 8i 2 f1; : : : ; ng : zi = xiyi. Then:

kzk1 =
nX

i=1

jxiyij � kxk2kyk2 = rs

� Let z 2 IRn; kzk1 � rs. z =

�
ẑ

zn

�
with ẑ 2 IRn�1 and zn 2 IR. Because:

j kẑk1 � zn j � kzk1 � rs
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�; � 2 IR can be found such that

kẑk1 + zn = rs cos�

kẑk1 � zn = rs cos �

If kẑk1 = 0, then zn = rs cos�. Choose a random x̂ 2 IRn�1 satisfying kx̂k2 = r sin�

and let ŷ 2 IRn�1 be the zero vector. Let x =

�
x̂

r cos�

�
and y =

�
ŷ

s

�
, then

kxk2 = r, kyk2 = s and 8i 2 f1; : : : ; ng : xiyi = zi.
If kẑk1 6= 0, let 
 = (� + �)=2 and � = (� � �)=2.

kẑk1 = rs(cos�+ cos �)=2 = rs cos 
 cos �

zn = rs(cos�� cos �)=2 = rs sin 
 sin �

De�ne for 1 � i � n� 1:

xi =

r
r cos 


s cos �

p
jzij

yi =

s
s cos �

r cos 


p
jzij sgn(zi)

and:

xn = r sin 


yn = s sin �

then:

kxk22 =
r cos 


s cos �
kẑk1 + x2n = r2 cos2 
 + r2 sin2 
 = r2

kyk22 =
s cos �

r cos 

kẑk1 + y2n = s2 cos2 � + s2 sin2 � = s2

and:

8i 2 f1; : : : ; n� 1g : xiyi = jzij sgn(zi) = zi

xnyn = rs sin 
 sin � = zn

Now the solution to the minimization problem can be given.

Theorem 4.2 Let k = 2 and � =
(�n��2)

2

(�2��1)(�n��1)
. If �1 < �2 and sin2 � < �2��1

�n��1
or

�1 > �n and sin2 � < �1��n
�1��2

then:

max
V

sin2 �1 =
1

2
(1 + sin2 ��

q
(1� sin2 �)2 � � sin2 �)

Otherwise:

6



max
V

sin2 �1 =
1

2
(1 + sin2 �)

Proof:

For the case of simplicity of notation we put: c = cos� , s = sin � , ci = z1i ,
si =

p
1� c2i . Let S1 � IR2n be the set

S1 = f(zij)1�i�n;1�j�2jz211 � z212; z
2
11 + z212 = c2; ZTZ = I; ZTAZ 2 D2g

The we have according to theorem 3.4

min
V

cos2 �1 = minfc21j(zij) 2 S1g

S1 can be rewritten as:

S1 = f(zij)jz211 � c2 � z211; z
2
11 + z212 = c2;

nX
i=1

z2ij = 1;

nX
i=1

zi1zi2 = 0;

nX
i=1

�izi1zi2 = 0g

= f(zij)jc21 �
c2

2
; c21 + c22 = c2;

nX
i=2

z2ij = s2j ;

nX
i=2

zi1zi2 = �c1c2;
nX
i=2

�izi1zi2 = ��1c1c2g

The constraints of this set are nonlinear. To linearize part of the problem the set
S2 � IR3n�1 is introduced.

S2 = f((zij)1�i�n;1�j�2; (xi)2�i�n)j(zij) 2 S1; xi = zi1zi2g

The variables xi do not occur in the objective function, so

minfc21j(zij) 2 S1g = minfc21j((zij); (xi)) 2 S2g

Then using lemma 4.1:

S2 = f((zij); (xi))jc21 �
c2

2
; c21 + c22 = c2;

nX
i=2

xi = �c1c2;

nX
i=2

�ixi = ��1c1c2; xi = zi1zi2;

nX
i=2

z2ij = s2jg

= f((zij); (xi))jc21 �
c2

2
; c21 + c22 = c2;

nX
i=2

xi = �c1c2;

nX
i=2

�ixi = ��1c1c2;
nX
i=2

jxij � s1s2g
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The objective function and the constraints do no longer contain the zij for i � 2, so
if S3 � IRn+1 is de�ned by

S3 = f(c1; c2; (xi)2�i�n)jc21 �
c2

2
; c21 + c22 = c2;

nX
i=2

xi = �c1c2;

nX
i=2

�ixi = ��1c1c2;
nX
i=2

jxij � s1s2g

Then

minfc21j((zij); (xi)) 2 S2g = minfc21j(c1; c2; (xi)) 2 S3g
The constraints contain two equations which are linear in the xi's, so two of them
can be eliminated. For this purpose x2 and xn are selected.

S3 = f(c1; c2; (xi))jc21 �
c2

2
; c21 + c22 = c2; x2 + xn = �c1c2 �

n�1X
i=3

xi;

�2x2 + �nxn = ��1c1c2 �
n�1X
i=3

�ixi; jx2j+ jxnj � s1s2 �
n�1X
i=3

jxijg

De�ne

fi =
�n + �2 � 2�i

�n � �2

then:

x2 � xn =
�n + �2

�n � �2
(x2 + xn) �

2

�n � �2
(�2x2 + �nxn)

=
�n + �2

�n � �2
(�c1c2 �

n�1X
i=3

xi)�
2

�n � �2
(��1c1c2 �

n�1X
i=3

�ixi)

= �c1c2f1 �
n�1X
i=3

xifi

Because

jaj+ jbj � c, a+ b � c ^�a � b � c ^ a � b � c ^�a + b � c

we have that for the set S4 � IRn�1 de�ned by

S4 = f(c1; c2; (xi)3�i�n�1)jc21 �
c2

2
; c21 + c22 = c2;

�c1c2 �
n�1X
i=3

xi � s1s2 �
n�1X
i=3

jxij;�c1c2f1 �
n�1X
i=3

xifi � s1s2 �
n�1X
i=3

jxij;

c1c2 +

n�1X
i=3

xi � s1s2 �
n�1X
i=3

jxij; c1c2f1 +
n�1X
i=3

xifi � s1s2 �
n�1X
i=3

jxijg

the equality
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minfc21j(c1; c2; (xi)) 2 S3g = minfc21j(c1; c2; (xi)) 2 S4g

holds.

S4 = f(c1; c2; (xi))jc21 �
c2

2
; c21 + c22 = c2;

c1c2 + s1s2 �
n�1X
i=3

(jxij � xi);�c1c2 + s1s2 �
n�1X
i=3

(jxij+ xi);

c1c2f1 + s1s2 �
n�1X
i=3

(jxij � xifi);�c1c2f1 + s1s2 �
n�1X
i=3

(jxij+ xifi)g

If S5 � IR2 is the set

S5 = f(c1; c2)jc21 �
c2

2
; c21 + c22 = c2; c1c2 + s1s2 � 0;

�c1c2 + s1s2 � 0; c1c2f1 + s1s2 � 0;�c1c2f1 + s1s2 � 0g

then

S4 � f(c1; c2; (xi)) 2 S4j8i 2 f3; : : : ; n� 1g : xi = 0g
= f(c1; c2; (xi))j(c1; c2) 2 S5; 8i 2 f3; : : : ; n� 1g : xi = 0g

On the other hand

jxij � xi � 0

and for 3 � i � n� 1 : �1 � fi � 1, so

jxij � xifi � jxij � jxifij � 0

leading to

S4 � f(c1; c2; (xi))j(c1; c2) 2 S5g

and

minfc21j(c1; c2; (xi)) 2 S4g = minfc21j(c1; c2) 2 S5g

eliminating the rest of the xi. Furthermore two inequalities in the constraints of S5
are trivial since

s1s2 =

q
1� c21

q
1� c22 =

q
1� c21 � c22 + c21c

2
2 =

q
s2 + c21c

2
2 � jc1c2j � �c1c2

so

S5 = f(c1; c2)jc21 �
c2

2
; c21 + c22 = c2; s1s2 � jc1c2f1jg

Now all variables xi have disappeared from the constraints, so with S6 � IR2 given
by
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S6 = f(c1; c2)jc21 �
c2

2
; c21 + c22 = c2; s1s2 � jc1c2f1jg

we have

minfc21j(c1; c2; (xi)) 2 S5g = minfc21j(c1; c2) 2 S6g

For the �nal reduction to a problem of one variable we use:

s1s2 � jc1c2f1j , s21s
2
2 � c21c

2
2f

2
1 , s2 + c21c

2
2 � c21c

2
2(1 + 2

�2 � �1

�n � �2
)2

, s2 � 4c21c
2
2((

�2 � �1

�n � �2
)2 +

�2 � �1

�n � �2
)

, s2 � 4c21c
2
2

(�2 � �1)(�n � �1)

(�n � �2)2
= 4��1c21c

2
2

, 4��1c21(c
2
1 � c2) + s2 � 0, 4��1c41 � 4��1c2c21 + s2 � 0

De�ne f(x) = 4��1x2 � 4��1c2x+ s2 and the set S7 � IR by

S7 = fxjc
2

2
� x � c2; f(x) � 0g

then

minfc21j(c1; c2) 2 S6g = minS7

This minimum is equal to c2

2
if and only if f( c

2

2
) � 0, so it is important to evaluate

this value.

f(
c2

2
) = ��1c4 � 2��1c4 + s2 = s2 � ��1c4 = 1� c2 � ��1c4

= ���1(c2 � �n � �2

�1 � �2
)(c2 � �n � �2

�n � �1
)

We consider the following cases:

1. If �2 < �1 < �n (�1 is not an extreme eigenvalue) then ��1 < 0, so 8c : f( c2
2
) � 0.

2. If �1 < �2 or �1 > �n (�1 is an extreme eigenvalue) then ��1 > 0.

2.1. �1 < �2

2.1.1. If c2 � �n��2
�n��1

then f( c
2

2
) � 0.

2.1.2. If c2 > �n��2
�n��1

then f( c
2

2
) < 0.

2.2. �1 > �n

2.2.1. If c2 � �n��2
�1��2

then f( c
2

2
) � 0.

2.2.2. If c2 > �n��2
�1��2

then f( c
2

2
) < 0.
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The zeroes of f are given by

f(x) = 0, x =
1

2
(c2 �

p
c4 � �s2) =

1

2
(c2 �

r
��f(c

2

2
))

If ��1 > 0 and f( c
2

2
) < 0 then f has two real zeroes, situated respectively in the

intervals [0; c
2

2
] and [ c

2

2
; c2]. In that case the minimum of S7 is equal to the rightmost

zero 1
2
(c2 +

p
c4 � �s2).

This leads to:

min
V

cos2 �1 =

�
c2

2
in the cases 1 , 2.1.1 , 2.2.1

1
2
(c2 +

p
c4 � �s2) in the cases 2.1.2 , 2.2.2

Writing out the cosines in terms of sines proves the theorem.

The behaviour of the upperbound for small � is described in the next corrolary.

Corrolary 4.3 If �1 < �2 or �1 > �n:

max
V

sin2 �1 = (1 +
(�n � �2)

2

4(�2 � �1)(�n � �1)
) sin2 �+ O(sin4 �)

Proof: Let �, s, s1 be as in theorem 4.2. For s small enough:

max
V

s21 =
1

2
(1 + s2 �

p
1� 2s2 +O(s4)� �s2)

=
1

2
(1 + s2 � (1� s2 � �

2
s2 + O(s4)))

=
1

2
(2s2 +

�

2
s2 +O(s4)) = (1 +

�

4
)s2 + O(s4)

From theorem 4.2 a bound for sin2 �1 can be derived that is linear in sin2 �.

Corrolary 4.4

If �1 < �2 : 8� : sin2 �1 � (1 +
1

2

�n � �2

�2 � �1
) sin2 �

If �1 > �n : 8� : sin2 �1 � (1 +
1

2

�n � �2

�1 � �n
) sin2 �

Proof: If �1 < �2, the line which goes through (0; 0) and ( �2��1
�n��1

; 1
2
(1 + �2��1

�n��1
)) in

the (sin2 �; sin2 �1)-plane is an upperbound for sin2 �1:

sin2 �1 �
�n + �2 � 2�1
2(�n � �1)

� �n � �1

�2 � �1
� sin2 � =

�n + �2 � 2�1
2(�2 � �1)

� sin2 �

If �1 > �n, the line which goes through the points (0; 0) and (�1��n
�1��2

; 1
2
(1 + �1��n

�1��2
))

is an upperbound for sin2 �1:
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sin2 �1 �
2�1 � �n � �2

2(�1 � �2)
� �1 � �2

�1 � �n
� sin2 � =

2�1 � �n � �2

2(�1 � �n)
� sin2 �

Example 4.5 If n = 5; k = 2; �i = i; i 2 f1; : : : ; 5g then:

sin2 � � sin2 �1 �
(

1
2
(1 + sin2 ��

q
(4 � sin2 �)(1

4
� sin2 �)) if sin2 � < 1

4
1
2
(1 + sin2 �) if sin2 � � 1

4

If sin2 �� 1, then max
V

sin2 �1 �
25

16
sin2 �. 8� : sin2 �1 � 5

2
sin2 �. See also �gure 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sin2 �

si
n

2
� 1

Figure 2: The set of points f(sin2 �; sin2 �1)j dim(V ) = 2g in the case �i = i; i 2
f1; : : : ; 5g.

4.2 Quality of the bound

Theorem 4.2 gives a bound for sin2 �1 and it is a sharp bound. This means that
subspaces V exist for which sin2 �1(V ) is equal to the value of the bound, but the
question remains how good it is on the average. It is also interesting to know how
it compares to the bound in 3.3. We should keep in mind however that this latter
bound uses more information than the one in 4.2, so it can be expected to be a better
bound.
To check this some numerical experiments have been performed with the matrix
A = diag(1; 2; 3) ans �1 = 1. Random subspaces V have been generated and for each
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subspace the numbers s2 = sin2 � and s21 = sin2 �1 have been calculated. Now the
bounds b1 and b2 from respectively 4.2 and 3.3 have been evaluated:

b1 =

�
1
2
(1 + s2 �

p
(1� s2)2 � �s2) if s2 < �2��1

�n��1
1
2
(1 + s2) otherwise

(3)

b2 = (1 +

2

�2
)s2 (4)

The quality qi of these bounds is de�ned as follows:

qi =
s21
bi

(i 2 f1; 2g) (5)

All the qi lie between 0 and 1; the better the bound bi, the closer qi to 1. b1 has also
been compared to b2 by the quantity:

r =
b1

b2
(6)

The results are shown in �gure 3. In (a) the distribution of (s; s1) was made visible
by dividing the square [0; 1]� [0; 1] in 100�100 subsquares and storing the fraction of
instances in each square in a matrix. The plot shows the contour lines of the density
at the heights 0.0001, 0.0003, 0.0004, 0.0006, 0.0010, 0.0020, 0.0040. The highest
density occurs near the points (0,0) and (1,1) and the lowest near the point (1

2
; 3
4
).

(b) and (c) show the distributions of the qi and (d) that of r. These distributions
have been approximated by plotting the fractions in certain small intervals.
As can be seen from the �gures the bounds b1 and b2 are rather good with average
qualities of respectively 0.9055 and 0.8983. The value r has an average of 0.9872, so b1
is approximately as good as b2, despite the fact that the latter uses more information.
Of course A is a very simple matrix, so it is too early to generalize these results.

5 General subspaces

5.1 Experimental results

Now the case of subspaces of general dimension can be considered. The maximum
value for sin2 �1 is given by the minimization problem in theorem 3.4. Unfortunately,
solving this problem for k > 2 is much more di�cult than the case k = 2 and a
theoretical expression has not been found yet.
To compensate this lack of theoretical results a number of computer experiments have
been performed. These experiments have followed the following scheme. A matrix
A of size n and an extreme eigenvalue �1 have been chosen and a large number of
subspaces V of dimension k have been generated. For each subspace the Ritzvectors
and the values of sin2 � and sin2 �i; i 2 f1; : : : ; kg have been calculated. The sin2 � axis
was divided into 100 intervals and for each interval the value of the maximal sin2 �1
thus far was stored, together with the corresponding sin2 �, sin2 �i; i 2 f2; : : : ; kg and
Z. In this way the curve connecting the maximal sin2 �1 can be seen as the empirical
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Figure 3: (a) Distribution of (s; s1). (b) Distribution of q1. (c) Distribution of q2.
(d) Distribution of r.
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equivalent for the theoretical upperbound of the type shown in �gure 2. At �rst the
subspaces V were chosen completely random, but after some time there was hardly
any improvement with this method. The second phase of the algorithm used small
perturbations of the Z already found to improve the rate of useful subspaces.
The �rst experiment used n = 5, A = diag(1; 2; 3; 4; 5), �1 = 1. The case k = 2
was considered in example 4.5 and the corresponding curve for k = 3 is shown in
�gure 4(a). The left and the right of the curve resemble the shape of the curve in
�gure 2, but the middle section is di�erent.
Things get clearer if we also plot the values of sin2 �2 and sin2 �3 corresponding to the
maximal sin2 �1. The result can be seen in �gure 4(c). At each value of sin2 � three
dots are plotted, representing the three values of the sin2 �i.
The following events are visible in this �gure. When we look from the right to the
left we �nd that �rst all sin2 �i are equal to eachother and to the upperbound given
in lemma 3.2. Then at a certain point there occurs a sort of bifurcation. sin2 �1 and
sin2 �2 remain equal, but sin2 �3 takes larger values and ascents to reach the value
one. At that point the sin2 �1 and sin2 �2 seperate while sin

2 �3 remains equal to one.
At sin2 � = 0, sin2 �2 has also reached one and sin2 �1 is zero. The most remarkable
thing is that the point where the second bifurcation occurs is the same point where
the discontinuity occurs in the curve for the case k = 2. The values of sin2 �1 and
sin2 �2 for k = 2 are plotted in �gure 4(b). To the left of the bifurcation at (1

4
; 5
8
) the

curves of sin2 �1 and sin2 �2 are identical in (b) and (c). It is hard to believe that this
is a coincidence, for k = 3 it indicates a reduction to the 2-dimensional case.
The experiment was repeated for k = 4, leading to �gure 4(d). For each sin2 � the
four values sin2 �i are plotted. In the plot we see three bifurcations. To the left of the
middle one is sin2 �4 = 1 and the graphs of sin2 �i; i 2 f1; 2; 3g are identical to those
in (c). So there is a reduction to the case k = 3 and further to the left to k = 2.
The next experiment used a slightly larger matrix n = 10, A = diag(1; 2; : : : ; 10),
�1 = 1. The cases k 2 f2; : : : ; 9g have been considered and the �gures 5 and 6
contain the results. In these experiments more or less the same behaviour as described
before is visible. It should be noted however that there are more irregularities in the
curves. It is true that there are always k � 1 bifurcations, but the reductions to
lower-dimensional cases are not always obvious except for the cases k = 2 and k = 3
which are repeated in each plot. It seems that this is due to the di�culty of �nding
the subspace maximizing sin2 �1 by generating random V . During the experiments it
became clear that the probability of choosing an nearly maximizing subspace is very
small.

5.2 Conclusions from the experiments

In the previous section the theoretical upperbound for sin2 �1 was approximated from
below by experimental results. De�ne s = sin2 � and for all k � 2 and i 2 f1; : : : ; kg
: ski (s) = sin2 �i where sin

2 �1 is maximal with respect to all subspaces of dimension
k. The experimental results indicate that the ski are uniquely de�ned. They look
di�erentiable except in k � 1 points pk1; : : : ; p

k
k�1 where bifurcations in the values of

the sines occur. Figure 4 and part of the results in the �gures 5 and 6 suggest that only
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Figure 4: (a): Experimentally generated maximum values of sin2 �1 for dim(V ) = 3.
(b), (c), (d): Experimentally generated maximum values of sin2 �1 together with the
corresponding values of sin2 �i(i 2 f2; : : : ; kg) for dim(V ) = k. k is respectively 2,3,4.
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Figure 5: Experimentally generated maximum values of sin2 �1 together with the
corresponding values of sin2 �i(i 2 f2; : : : ; kg) for dim(V ) = k, k 2 f2; 3; 4; 5g.
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Figure 6: Experimentally generated maximum values of sin2 �1 together with the
corresponding values of sin2 �i(i 2 f2; : : : ; kg) for dim(V ) = k, k 2 f6; 7; 8; 9g.
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the number and not the position of these points depend on k, so their superscripts
can be dropped. To the left of p1 the curves of sk1 and sk2 look identical to the case
k = 2 which is theoretically understood. In general can be said that to the left of pj
the ski for i � j + 1 seem to be identical to the case k = j + 1, while the rest of the
ski is equal to one. To the right of pk�1 all s

k
i are equal to eachother, resulting in the

worst possible case, described in lemma 3.2.
These observations lead to the proposal of the next conjecture which summarizes the
paragraph above.

Conjecture 5.1 Let the symmetric matrix A be given and let �1 be an extreme eigen-

value of A. De�ne s = sin2 � and for all k � 2 and i 2 f1; : : : ; kg : ski (s) = sin2 �i
where sin2 �1 is maximal with respect to all subspaces of dimension k.

1. The functions ski are well de�ned and continuous.

2. There is a ascending row of points pj (j � 1) such that all ski are di�erentiable on

the intervals (0; p1), (pj; pj+1) (j 2 f1; : : : ; k � 2g) and (pk�1; 1).

3. For all j � k � 2 on the interval [0; pj] is: 8i � j + 1 : ski = s
j+1
i and 8i > j + 1 :

ski = 1.

4. On the interval [0; p1] is s
k
1 described by theorem 4.2.

5. On the interval [pk�1; 1] is 8i : ski = k�1+s
k

.
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