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The Gewirtz graph - an exercise in the theory of graph spectra

A.E. Brouwer Bc W.H. Haemers

ABSTRACT

We prove that there is a unique graph (on 56 vertices) with spectrum 10' 235 (-4)~
and examine its structure. It tums out that e.g. the Coxeter graph (on 28 vertices) and the
Sylvester graph (on 36 venices) are induced subgraphs. We give several descriptions of
this graph.

1. Goal
Let I' - (X,E) be a strongly regular graph with parameters (v,k, l,~) -(56,10,0,2). Then I' (that is, its 0-1
adjacency matrix A) has spectrum 10~ 2~s (~)~, where the exponents denote multiplicities. We will show
that up to isomorphism there is a unique such graph f', a fact that was Ptrst proved by Gewttrtz [8]. How-
ever, Gewirtz used (20 pages oF) tedious combinatorial arguments where we use more powerful spectral
techniques. [n addition we find several new descriptions of the Gewirtz graph and rather precise infotma-
tion about its subgraphs. We show uniqueness in two ways, namely directly and by embedding I- in the
Higman-Sims graph. For the direct proof, we want to show the following:
(i) I' contains an induced subgraph 6C, (the disjoint union of siz quadrangles).
(ii) If T is a 24-subset of X inducing 6C4, then X~ T is the bipartite point-block incidence graph of AG (2,4)
from which a parallel class of lines has been removed.
(iii) The adjacencies between T and X~ T are uniquely determined.
Parts (i) and (ii) have short and elegant proofs, but part (iii) is too detailed. This detailed analysis can be
avoided by going up instead of down. For the embedding proof, we want to show the following:

(iv) I- has 42 16-cocliques, and the graph ~ with [hese 42 16-cocliques as vertices and where two 16-
cocGques are adjacent when they are disjoint, is the point-line incidence graph of the projective plane
PG (2,4).
(v) I' can be embedded as the subgraph of points nonadjacent to a given edge in the Higman-Sims graph.

2. Tools
We use the following spectral tools:
(A) A positive semidejnite symmetric matrix M of order n and rank f is the Gram matrix (or inner product
rnutrix) of a set of n vectors in Rf .

(B) Let A and 8 be real symmetric matrices of orders n and m(where m 5 n) and with eigenvalues
e, ~...~ e„ and 11~ ?...? rl,~, respectively. We say that the eigenvalues of B interlace those of A
when e; ? n; ~ e„-,~,; for all j(1 5 j 5 m). We say that the interlacing is tight when for some integer 1 we
have ~; - A; for l 5 j 5 l and ~; - 9„-~,.; for 1tl 5 j 5 m. If B is a principal submatrix of A then [he
eigenvalues of B interlace those of A. Another case of interlacing is given by the following theorem.
Theorem. Given a symntetric partition of tht rows and coltunns of a symmttric matriz A, let B be tht
marrix wirh as entries the average row sums of the parts of A. Then rht eigenvalues ojB interlace those of
A, and when the interlacing is tight, the parts of A have constant row swnr. Conversely, if tite parts of A
have constant row sums, then each eigenvalue of B is an eigenvalue of A.
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(C) Given a symmetric partition of a symmetric matrix A with two eigenvalues into four submatrices:

A- Att Aiz
AZt A~ '

the eigenvalues of AZZ can be computed from ihose of A tt: If A has eigenvalues a and (i (wkere a~~i)
with multiplicities j and n-f, respectively, and A 11 (ojoráer m) has eigenvalues 81 ?~..? 6,~, tken A~
(of order n-m) has eigenvalues Tl~ ?-.~? r1„-,,,, where

a if 1 5 i 5 f-m,

i); - (3 iff} 1 5 i 5 n-m,
atR-er-;t~ otherwise.

For proofs of the above statements, see, e.g., Chapter 1 ofHwe~es [9].

Notation: we shall call an eigenvector ofa mauix with eigenvalue 9 a 9-eigenvector of that matrix.

Extremal subgraphs. As an example of the use of (B) above, let us derive bounds for the number of ver-
tices of a regular subgraph of a regular graph. Let [' - (X,E) be regular of valency k on v vertices, and let
G be a subset of size u of X, inducing a regular graph of valency g. Let A be the adjacency matrix of I, and
B the matrix of average row sums of A for the partition (G, X`G ). Then

8 k-8 u k- )1 k dB- u(k-8) k- u(k-g) wtth etgenva ues an g- v-u ~
v-u v-u

~us, if I' has eigenvalues k- Ai ? 92 ?--~? A„ then

9i?g- u(~?6~,v-u

and equality holds on one side if and only if each point outside G has u(k-g)I(v-u) neighbours in G.

[n particular, for our strongly regular graph I' with parameters (v,k, ~,lt) -(56,10,0,2) (and 0Z - 2,
0~ - -4) we find
(D) !f G is a subgraph ojTojsèze u and regularojvalency g, then 7(g-2) 5 u 5 4(g ~-4). Equafiry kolds in

the right (resp. lejt) hand inequality if and only ij each point outside G is adjacent to g t4 (resp. g-2) ver-
tices of G.

There are numerous examples of equality, and we shall discuss them in the second part of this paper. For

the uniqueness proof only the cases (u,g) -(16,0) or (24,2) will play a róle.

Distance-regularity from the spectrum.
Propositioo. A graph Iwith the spectrum of a disrance-regular graph with diameter d and girth at least

2d-1, is suck a graph.

Proof. Let f' have adjacency matrix A, and distance-i matrix A;, so that A o-! and A~- A. As is well-
known (cf. [2], 3.2.2) one can see from [he specwm of a graph whether it is regular and connected. The
number of nontrivial g-cycles can be Cound from ir A d , so we can find the girlh from the spectrum. If
90, ~- , 9d are the distinc[ eigenvalues of I-, with 90 ? 0 of multiplicity 1, then

~ At -~.
,Zo

A2-AZ-k1 (ifd~2),

A; -AA;-1 -(k-1)A;-Z (for 2 ~ i ~ d),

d 1 d
R(A-e;l)- - n(eo-e;)r.
;at v ;3t

Since Ihas diameter at most d, this means that we can ezpress each A; as a polynomial of degree i in A,
and hence f' is distance-regular. ~
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In particular, any graph with spectrum 5' 216 (-1)ta (-3)9 is distance-regular with intersection array
(5,4,2; 1,1,4), and hence isomorphic to the Sylvester graph (cf. [2), 13.1.2). Note that one cannot see from
the spectrum of a graph whether it is distance-regular (cf. [2], 9.2.b). It is unlmown whether 'distance-
regularity of diameter 3' can be recognised.

3. First uniqueness proof
(i). Let T be the collection of subgraphs of I' on 24 vertices that aro regular of degree 2. [Then T is the col-
lection of subgraphs of I' induced by the special sers of CwMEteoN, Goenuis ~ St:roa. [4], p. 279. We shall
see eventually that ~T~ - 105, and that T- 6C, for all T e T.] We show first that each quadrangle is con-
tained in a unique T E T. Next, we show that at least one T e T is isomorphic to 6C.. Let Q be a quadran-
gle in C. Then we find a partition (Q,R,S } of the vertex set X of C, where S is the 32-set containing neigh-
bours of points in Q, and R is the 20-set containing the remaining points. (Note that since ~. - 0 and ~- 2,
each point of S has a unique neighbour in Q.) Now since each r e R has two common neighbours with
each q e Q, the vertex r has 8 neighbours in S, so R is regular of valency 2, and so is T:- Q v R. Clearly,
T is the unique member of T containing Q.
Now let T be an arbitrary element of T, with adjacency matrix AT. We fvst show that T is a union of
polygons, each of which has a length divisible by four. Let Q' be a connected component of T, and put
R' - T~ Q', and S - X~ T. Consider the mavix B' corresponding to the panition (Q',R',S ) of X. If ~Q'~ - c,
then

2 0 8
B' - 0 2 8 with eigenvalues 10, 2 and -4.

c~4 6-c14 4

Interlacing is tight, so the row sums of the submatrices of A corresponding to this partition are constant,
and since these row sums are clearly integral, we find that c is a multiple of4.

The matrix A- ~J has spectrum 2~ (~)m. So, by interlacing, AT- ~J has eigenvalue 2 with multiplicity

at least 36- 32 - 4. In addition, 1 is a 2-eigenvector of AT but not of AT- ~ J. So the multiplicity of the
eigenvalue 2 of Ar is at least 5. It follows that T has at least five connected components, so that T is either
6C4 or 4C4 fC`. Being in the same member of T clearly defines an equivalence relauon on the quadran-
gles of i'. But the total number of quadrangles in 1' is 56.4514 - 630, which is not a multiple of four, so that
T- 6C, occurs at least somewhere in I-.
(ii) Choose a T E T with - 6C4. Then T has known spectrum 26 0'Z (-2)6 and A- ~J has two eigenvalues,
so we can compute the spectrum of S by use of tool C, and find 4' 2'Z O6 (-2)12 (~l)'. Since this spectrum
is symmetric around 0, S is bipartite, and we may regard S as the point-block incidence graph of a design
with 16 points and 16 blocks, block size 4 and 4 blocks on each point. Let D be the point-block incidence

0 D
matrix of order 16 of this design. (Then the adjacency matr'uc of S is D, 0.) Then DD' has spectrum

16' 4' Z 0~ and entries 4 on the diagonal and 0, 1 or 2 off the diagonal. It follows that E :- J} 41-DD' has
spectrum 44 0'2 and entries in (-1,0,1). In particular, E is a positive semidefinite matrix of rang 4 and we
can view E as the Gram matrix of 16 unit vectors in R' with inner products in (-1,0,1). Thus, these unit
vectors can be taken to be }e, (1 5 i 5 4), and since E has row sums 4, each e, occurs four times, and no -1
entries occur. For our design this means that any two blocks meet in at most one point, and that the blocks
come in four parallel classes. Also the points come in four parallel classes, and it follows that our design is
AG (2,4) from which one parallel class of lines has been removed (i.e., GD [4,1,4;16]).

(iii) Consider the panition (T,P,L ) of X into T and the points and the lines. Since P and L are 16-cocliques,
we find from (D) above that each venex of T is joined to four points and four lines. For r E T, consider its
4 neighbours x; in P and its 4 neighbours ll in L. The set P` ( zt,xZ,x~,xd) is covered by the l~, while
never z; E l~, no three x, on a line and no three !~ on a point, so the picture of these points and lines is

I
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that is, two pairs of parallel tines and two pairs of parallel points ( i.e., pairs of points determining the `miss-
ing' direction). Now consider the point t'e T opposite to t in the same quadrangle, so that the common
neighbours of t and r' lie in T. Then t' is adjacen[ to two point.s on each of the lines l~, and it follows that r'
determines the 'complementary' picture

that is, ilte remaining two lines in the two parallel classes of lines deterrnined by t, and similarly for the
points. Let l~NIZ. Then ll and lZ have another common neighbour u; let the other two lines adjacent to u
be m[ and m2. Since we have seen the [wo common neighbours of r and u already ( they are 11,12), u is not
adjacent to any of the points x„ and this forces the 8 neighbours of u to be

, , . .
The common neighbours s and s' of t and t' determine lines in the other two directions, and so do the com-
mon neighbours v and v' of u and u'. This shows that quadrangles come in pairs detet~nining the same par-
tition of 2t2 directions.
Now label the vertices of each of the siz quadrangles with 0. 1, 2, 3(consecutively) and label the 16 points
and 16 lines with the 6-tuples of their neighbours in T. Without loss of generality the 16 lines have labels

000000 021111 110213 131320
002222 023333 112031 133102
220022 201133 330231 311302
222200 2033t1332013 313120

(where the choice between 131302 and 131320 is forced by considering the point of intersection of 000000
and 021111) and then the 16 points have labels ( without loss of generality)

212323231212123221322132
210101 233030 121003 320310
032301011230303203 102110
030123 013012 301021 100332.

This shows uniqueness of the graph I'.

4. Second uniqueness proof
Now, let us embark upon the second uniqueness proof. In seven steps we detertnine the properties of ~,
the graph defined on the 16-cocliques in I', where disjoint cocliques are adjacent. We make use of the
results in (i) and (u).
(0) Let C be a coclique in I" of size 16. Then each vertex z e X~ C is adjacent to preclsely 4 vertices in C.

[Indeed, this is a special case of (D) above.]

(1) If T E T then T is disjoint from some 16-coclique ijand only if T- 6Cy.

[Indeed, X~ T is regular of degree 4 on 32 vertices; if X~T contains a 16-coclique, then X~ T is bipar-
tite and Iherefore has an eigenvalue -4. Using tool C we f5nd that T has eigenvalue 2 with multipli-
city at least 6, so T- 6C,. The converse implication follows from (ii).j

(2) Each 16-coclique C is disjoint from five 6C4's (thret on tach paint ofX`C).

[Indeed, given a 16-coclique C, there are 120 quadrangles meeting it in a pair (15 on each point of C,
6 on each point of X`C), and 16~(45-15) - 480 quadrangles meeting it in a single point (30 on each
point of C, 4.6t 12 - 36 on each point of X`C), which leaves 630-120-480 - 30 quadrangles
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disjoint from C ( 3 on each point of X~ C). But if Q is a quadrangle disjoint from C, then each of the
four vertices of Q have 4 neighbours in C, and none occurs twice, so each point of C has a ( unique)
neighbour in Q, and the 6C4 containing Q is disjoint from C.]

(3) There are at most 42 1 t5-cociiques. each disjoint fiom 5 others. (I.e., 0 is regular of valency 5.)

[Indeed, if C is a 16-coclique, and T is a 6C, disjoint from C, then X~(C v T) is again a 16-
coclique, disjoint from C. Conversely, if C and D are disjoint 16-cocliques, then X ~(C ~ D) is regu-
lar of valency 2 on 24 vertices, hence a 6C4. Thus, by (2) it follows that ~ is regular of valency 5
and has at most 630l6 - 105 edges.]

(4)fjC-D -E in A,andCtE, rhen ~CnE~-4.
[Indeed, let T- X~(C ~ D) and T' - X~( D v E). If X`(C v D v E) contains a path of length two
(on three points), then it is contained in both T and T', and in both completes to a quadrangle. But
since {~- 2, this must be the same quadrangle, and T - T', contradiction. Thus, E contains [wo oppo-
site points from each of the six quadrangles of T and hence meets C in four points.]

(5) The union of two disjoint 16-cocliques does not contain a quadrangle.

[Indeed, this was shown in part (ii): two points are not joined by two lines.]
(6)IfC-D-E-Fin~,andCxE,DxF,then~CnF~-6.

[Indeed, T :- X`(C v D) is a 6C4, and we show that F contains precisely one point of each of its six
quadrangles. Since also ~F n D ~- 4, it then follows that ~F n C ~- 6. If F is disjoint from a qua-
drangle in T, then F is disjoint from T, so that F ~ C v D, and ~F n C ~- 12. But this is ridiculous:
we would find (by (0)) a K4,4 on (F `C) v(C ~ F), but lt - 2, contradiction. Thus, F contains at least
one point from each quadrangle Q of T, and since ~E n Q ~ - 2 it follows from (5) [hat F cannot con-
tain more than one point from Q.]

From ( 4) and (6) it immediately follows that 0 has girth at least 6. With (3) this implies that 0 is distance-
regular with distance-disvibution diagram

1 S I 5 4 1 ~ 4 S
16 v-42

with relations: do(B,C) - 0, 1, 2, 3 if and only if ~B n C~- 16, 0, 4, 6, respectively. [Since equality holds
in the estimates of (3), we now see that T- 6C4 for all T e T.] In particular, A is bipanite, say with bipar-
tite halves Y and Z. Now we can embed I- and 0 in a graph H on 100 vertices with venex set
X v Y v Z v (a,b) where X induces f, Y v Z induces 0, (a,b) induces an edge K2, a is adjacent to the
points of Y, and b to the points of Z, and finally x E X is adjacent to C e Y u Z when x e C. We show that
H is strongly regular with parameters (v',k',~',~t~ -(100,22,0,6). It is immediately clear that v' - 100 and
J~' - 0. And k' - 22 and {í - 6 follow immediately from the following observations (~-(9).

(7) Each x e X lies in 12 16-cocliques, 6 fiom eoch bipartite half of A.

[Indeed, each x e X lies in 45 quadrangles, hence in 45 6C,'s, hence (by (2)) misses 9013 - 30 16-
cocliques. Again by (2), 0 induces on these 30 16-cocliques a bipartite graph of valency 3, so there
are equal numbers from each bipartite half.]

(8) If x é B, where x E X and B is a l6-cociique, then there are two 1t5-cocliques containing x and disjoint
jrom B.

[Indeed, this is immediate from (2).]
(9) Every two nonadjacent points x, y e X lie in 4 16-cocliques, two jrom each bipartite haljof0.

[Indeed, for x e X, let Y, be the set of elements of Y containing x, and for s f u e X, let
aY :- ~Y, n Y„~. Since any two elements of Y, meet in three elements different from z, we Find
~ 1- 45, ~ aY - 6.15 - 90 and ~ aY(aY - 1) - 6.5~3 - 90, so that ~(aY - 2)2 - 0.]

Y Y Y Y

Now it is well-Imown and very easy to prove (see Gewutrz [7], Theorem 6.4) that there is a unique strongly
regulaz graph with parameters (100,22,0,6), namely the Higman-Sims graph, and this graph has an auto-
morphism group acting transitively on the edges, so it follows that i' is uniq~ly determined.
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[The uniqueness of the Higman-Sims graph is derived frvm the uniqueness of the Steiner system S (3,6,22)
by a short and simple argument (cf. BeouweR [1]), while the uniqueness of S(3,6,22) follows by a simple
coding-theoretic argument (maybe due to E.S. Lander): the binary code spanned by the lines of PG (2,4)
has dimension 10, and so has the extended code C. Now C is selforthogonal with word Iength 22, so C 1 is
a code of dimension 12 containing C, and the words of minimum weight in the three codes of dimension 11
between C and C 1 give just the three ways of extending PG (2,4) to S(3,6,22). Many other proofs can be
found in the literature.]

5. Descriptions of the Gewirtz graph
We give several descriptions of I', useful in ezhibiting (paru of) its automorphism group and showing the
existence of various subgraphs.
(a) [n the Steiner system S(3,6,22), take all 56 blocks missing a fixed symbol. Join two blocks when they
are disjoint. This shows the presence of a group of automorphisms M21.2 - G~(4).22, a subgroup of index
2 in the full automorphism group of I'.

(b) In the Higman-Sims graph H(on 100 vertices), take the graph induced on the 56 vertices at distance 2
from both endpoints of a fixed edge. This shows the presence of the full group L3(4).2Z. The Higman-
Sims graph can be split into two Hoffman-Singleton graphs (on 50 points). Taking the edge inside one of
them, we fmd that the Gewirtz graph is split into a Sylvester graph (on 36 points) and a lOK2. Taking an
edge meeting both parts, we find that 1he Gewirtz graph is split into two Coxeter graphs. (For more details,
cf. BROtrwEx, Cot~ 8c Ne~~x [2], ~ 13.1 J

(c) The latter partition leads to a description of fin terms of the Fano plane. The Coxeter graph can be

delined on the 28 an[itlags of the Fano plane, where two antiflags (P~,l,) and (PZ,IZ) are adjacent when-

ever P 1 s P2, ll x l Z, P~ e 1Z and PZ e l l(see [2], ~ 12.3). Now the Gewirtz graph is defined on two

copies of this set of antifiags. Adjacency within one set is the same as for the Coxeter graph. An anuflag

(P1,11)' from the first set is adjacent to an antiflag (PZ,IZ)" from the second set if (Pi,ll)-(P2,12) or

(Pi E l2 andP2é l~).

(d) It is possible to split the collinearity graph of the unique generalized quadrangle GQ (3,9) (on 112 ver-
áces) into two copies of the Gewirtz graph: In the Steiner system S(5,8,24), take all 112 blocks starting
110... or 101...; join two blocks of the same kind when they have only two symboLs in common, and join
two blocks starting differendy when they have four symbols in common. This produces the collinearity
graph ? of GQ (3,9), and clearly shows two copies of f'. (The presence of subgraphs IOKZ in I' is also
visible here: the ten lines on a fixed point in one half of a split of ? into two Gewirtz graphs hit the other
half in lOK2.) Adding the 56 blocks starting 011... we Find a partial linear space on 168 points and with

280 lines of size 6, with a partition into three Gewirtz graphs, and such that the union of any two Gewirtz
graphs induces a GQ (3,9). (See also BROUweat Bc vnr~ Lt.vr [3], p. 1 l3.)

(e) The McLaughlin graph A(on 275 vertices) is locally GQ (3,9). If we fiz two nonadjacent vertices x
and y, then both A(z) n A( y) and A(x)~ A(y) are isomorphic to the Gewirtz graph. In particular, the
second subconstituent E of A(on 162 vertices) is locally Gewirtz. It is strongly regular with distance distri-
bution diagram

t 36 t ~~ 45 2a
v - 162

10 32

and its {t-graphs are 6C,~S. (CAV~ROV, GoerHAts 8c SEIOE~ [4] proved uniqueness of this graph (given ils
parameters) using the uniqueness of the Gewirtz graph. The fact that the p-graphs are disconnected leads

to the ezistence of a distance-regular antipodal 3-cover of this graph, found by L. Soicher.) Thus, the
incidence graph of the symmetric GD [4,1,4;16] (on 32 vertices) is found as the graph on the common
neighbours of thtee pairwise nonadjacent vertices of the McLaughlin graph.

(f) For a conswction in terms of the ternary Golay code, see below.
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6. Subgraphs
It is of interest to determine what subgraphs have equality in (D) above. Thus, we want to fmd the sub-
graphs of I' ihat are regular of degree k on u - 7k-I4 or u- 4kt16 vertices. If u- 7k-14, then k is even
(since no regular graph with odd valency has an odd number of vertices), and the nontrivial possibilities are
k e (4,6,8).
(1) k- 4 or k - 8. This is re.alised by the 120 subgraphs isomo~hic to the Heawood~h on 14 vertices,
and their complements on 42 venices ( with specua (t4)' (td3 )6 and 8' 2~ (-Z 3)6 (-4)'). The'v dis-
tance distribution diagrams are

1 4 3 2 6 2 4 3
v- 14

and

2
v-42

Their pn;sence can be seen from construction (a): if I' consists of the blocks of S(5,8,24) starting with
110, then fix a block B starting with 001. There are 7, 42, 7 blocks in I- that have 4, 2, 0 symbols in com-
mon with B. Each Heawood graph is fixed pointwise by an involution from My, fixing B pointwise. T'hat
there are no other embeddings can be seen as follows: In the Heawood graph, if one starts with a 3-claw
and repeatedly completes a path of length two (on 3 vertices) to a quadrangle, one finds the entire graph.
Now Autf' is transitive on 3-claws, so each 3-claw in I' is contained in a unique Heawood subgraph, and
there are precisely 120 Heawood subgraphs. The presence of the Heawood graph also follows from con-
struction (c): take as incidence matrix of the Fano plane ~he circulant with top row (0110100). Then the
7t7 antitlags corresponding to the zeros on the diagonal induce a Heawood graph.

(2) Subgraphs with u- 28, k- 6 can be found as follows: Above we found that a GD [4,1,4; 16] (AG (2,4)
minus a parallel class of lines) is obtained from PG(2,4) by fixing a flag (x,l), and throwing away the
points and lines incident with 1 and x(respectively). Now pick a unital U in PG (2,4) (i.e., a subplane
AG (2,3)) containing z with tangent l. [n the GD [4,1,4; 16] this unital determines 8 points and 8 Gnes such
that each of these points (resp. lines) is on three of these lines (resp. points), i.e., we find a GD [3,1,2; 8].
In the 6C4 in the complement (in i) of the incidence graph of GD [4,1,4; 16], pick three quadrangles. It is
straightforward to check that the 12 vertices of these quadrangles and the 8 points and the 8 lines of our
GD [3,1,2; 8] induce a graph on 28 vertices, regular of degree 6.

If u- 4kt16, then k E(0,1,2,3,4,5,6,10). We shall see that all possibilities do in fact occur.

(0) k- 10. This is the entire graph.
(1) k- 0 or k- 6. These are the 42 16-cocliques and their complements on 40 vertices. Tiie distance distri-
bution diagram of a complement is

v-40
- 4 -

and its spectrum is 6' 2~ (-2)'S (~i)'. it is a four-fold cover of the Petetsen graph.

(2) k- 1 or k- S. These are the l 12 subgraphs lOK2 and their complements on 36 vertices. These comple-
ments on 36 venices have specwm 5' 216 (-1)'0 (-3)9 by tool C, and hence are distance-regular with
distancedistribuuon diagram
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1 S I S 4 1 ~ 2 4 10 v-36

- 2 1

that is, are Sylvester graphs. The presence of subgraphs IOKZ allows a consttuction of I' in tetms of the
perfect ternary Golay code C: First of all, the Sylvester graph is obtained as the graph on the 36 words of
weight 6 statting with 1 in C, where two such words are adjacent when their Hamming distance is 9. And
then the Gewirtz gtaph is obtained by adding the 20 words of weight 2 starting with 1, joining one of them
with any other vertez when they have inner product 0.

(3) k- 2 or k - 4. These an: the 105 subgraphs 6C4 and their complements, the incidence gtaphs of the
symmetric 4-nets as discussed above.
(4) k- 3. This is realised by the 240 subgraphs ísomorphic to the Coxeter graph (CoxerEx [6]), the unique
distance-regular graph with distance-dístribution diagram

v-28.

(Its spectrttm is 31 2` (-1)' (-lt~)6.) Thus, we have found one more example of a`remarkable split' into
two isomorphic halves: GQ ( 3,9) can be split into two Gewirtz graphs, the Higman-Sims graph can be split
into two Hoffman-Singleton graphs, the Gewirtz graph can be split into two Coxeter graphs, and the
Hoffman-Singleton graph can be split into two SCS's. (See also BROUwt.x 8c v,~.y Ln,rr [3], ~ 10.)

Completely regular codes. A subset C of the vertex set X of a graph f' is called completely regular if for
all x e X and all incegers j the number of vertices in C at distance j from x dces not depend on x but only
on j and the distance d(x,C) from x to C. When [' is distance-regular, an equivalent condition is that the
distance~istribution diagram around C is linear. The covering radius of C is the maximum value of
d(x,C) for x e X. A completely regular subset C of covering radius I is an extremal subgraph as studied
above. Remains to examine the case of completely regular subsets C of covering radius 2. Let
C; :- {z e X ~d (x,C) - i), where each vertex of C; has c; neighbours in C;-~ , a; neighbours in C; and b;
neighbours in C;,~. Then the tridiagonal matrix

ao bo 0
c~ a~ bt
0 c2 aZ

has 3 distinct eigenvalues occurring among the eigenvalues of I-. In our case this means that this matrix has
eigenvalues 10, 2, ~, and by computing determinant and trace we find

aoa2-ao61-aZC1--8

aotal taZ-8

al tbi tci - 10.

Combining these yields (aotl)z-9-ci(ao-aZ). Moreover, since also C2 is completely regular, and

C-(CZ)2, we may assume that ao 5 a2. We find solutions:

ao bo ci a~ b~ cZ a2 panition C

0 10 1 0 9 2 8 It10t45 venex
0 10 2 4 4 6 4 6-F30t20 Desargues subgraph
1 9 1 1 8 4 6 2t18t36 edge
2 8 j 4 trj 8 2 4jt32t4(CYj) jCa. 1 5 j 5 5

In each case except for the second it is immediately clear what the graphs are, and that there are no other
examples [han those given. For the second type, see the next section.
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7. Group and subgroups
The automorphism group of I- is G~(4).22, and according to the Arlos [5] the maximal subgroups of this

group are as given in the following table.

Index Group Orbit sizes Associated subqraph in f'
42 2`:SS 16f-40 16-coclique
56 A 6.2Z 1 t 10i-45 vertex

105 2Z~.3.22 24t32 6C4
112 Mlo 20t36 lOK2, Sylvester graph
120 L2(7):2~C2 7t7i-42 Heawood graph
240 LZ(7):2 28t28 Coxeter graph
280 3~Qg.2~CL 2t18t36 edge
336 SSiQ 6t20t30 Desargues graph

We have seen all of these already, except for the last type, which can be found inside the Higman-Sims
graph by fixing a path of length three a - b- c- d (with a f d) and taking all vertices adjacent to either a
or d(but not both). ihis yields a graph on 20 vertices, the eztended bipartite double (cf. [2], p. 26) of the
Petersen graph, with spectrum 4' 25 1` (-1)' (-2)S (-4)'.

Concetning the last type but one, we may note that the 280 edges may be identiFied with the 280 unitals
(subplanes AG (2,3)) in PG (2,4); indeed, the complement of two disjoint hyperovals from the same L3(4)
orbit is such a unital. The graph on the 280 edges, where two edges are adjacent when they are opposite
edges of a quadrangle, is distance-transiàve with spectrum 91464 1'~ (-3)~ (-5)m and distance distribu-
tion diagram

t 9 1 9 8 1 ~Z 6 j 144 3 a 54 v - 280.
- 2 3 1

Its automorphism gtnup Aut(L3(4)) is three times larger than that of I. The uniqueness of this graph (given
its parameters) was shown in LnvmecK (10].

8. The p-raak of the adjacency matrix
Proposition. The adjacency rnatrisA oj the Gewirtz graph I- har 2-rank 20, 5-rank 55, and p-rank 56 for

p s 2, 5. The matrisAt! has 3-rank 20, 11-rank 55, and p-rank 56 for p x 3, 11.

ProoL (i) If A dces not have full rank over FP, its determinant equals 0(mod p). Thus p- 2 or p- 5,
and clearly the 5-rank of A is 55 (since det (!-A) s 0 (mod 5)). So, let us consider p- 2. Since [has a
subgraph lOK2, the 2-rank of A is at least 20. On the other hand, the matrix 7A -141-! has rank 20 over R
and hence A-J has rank at most 20 over F2. A Coxeter subgraph of I' shows that 1 is in the rowspace of
A-J, so A has rank at most 20 over F2.
(ii) For A tI we proceed similarly. Its e envlalues are 1 l, 3 and -3 with multiplicities 1, 35 and 20, so the

only interes[ing case is p- 3. Put A-~N.
~J

, where C represents the Coxeter graph. Then u-(1, -1)' is

a(~)-eigenvector of A, hence 28A -
5111

61 t 3uu' has rank 20 over R. So A t 1 has rank at most 20 over F3.
For a lower bound, consider a subgraph 6Ca. The 12 rows of Atl cortesponding to 3C4 have 3-rank (at
Ieast) 10. The same holds for the 12 columns cortesponding to the remaining 3C4. Since these rows and
columns intersect in a zem matrix, we find that A t I has 3-rank at least 20. ~

April 10, 1991
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