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Abstract

A mathematical model is a description of an Economic system if it reflects the char-
acteristics of the system. This determines the form of the mathematical model as well
as the posed conditions. Specific economic systems and special classes of mathematical
equations or functions will therefore be joined together.

In this article we will study a class of M-type functions and some related topics in
connection with input-output models. One of the referred characteristics will be the
existence of a non-negative solution of the mathematical model. Moreover, we will
show that the mathematical model is feasible in the sense that it has some properties

of comparative static nature.
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1 Introduction

The mathematical model that describes a linear input-output model is a (square) system
of linear equations. The descriptive matrix of the model is a matrix with positive diagonal
elements and non-positive off-diagonal elements. It is feasible with respect to an input-
output model if its inverse is at least a non-negative matrix.

The appropriate conditions that will be imposed on a matrix of the above sign-structure are
mainly stated in terms of rowsums or columnsums or, equivalently, the input-output ma-
trix should be a strictly diagonally dominant matrix. The results of a linear input-output
model could be made more stringent if the non-negative matrix of input-output coefficients
is irreducible. In that case, if the matrix is irreducibly diagonal dominant the solutions of
the model are even positive.

The condition on the rowsums of the matrix of input-output coefficicnts has been given the
economic interpretation of availability for a socalled final demand and the condition on the
columnsums of a non-negative value added (c.f. [3]).The assumption of irreducibility of the
matrix means economically that all sectors do depend in some way on all other sectors in
the model (c.f. [1],[3] or [8]).

When proving that the appropriate conditions give rise to a non-negative (or even positive)
inverse matrix it is obvious to account on the theory of Perron-Frobenius on non-negative

matrices.

One way to study non-linear models is via the matrix of derivatives of the function de-
scribing the non-linear model. One transfers the characteristics of the matrix of the linear
model to the matrix of derivatives and subsequently tries to translate things to the function
itself [2],[7). In this paper we choose for a more direct way, direct in the sense that no dif-
ferentiability condition has to be imposed on the function. To that end we will derive first
some results on linear models without using the Perron- Frobenius theory. This will lead
us to the class of the so-called M-matrices. At the same time , with respect to the feasi-
bility condition on an input-output matrix the irreducibility-condition as well as the strict

diagonal-dominancy will be weakened to a new condition: the matrix should be weakly



irreducibly diagonally dominant. In economic terms, there should be so-called “surplus-
sectors” and any non- surplus is an intermediate supplier of a surplus-sector, directly or
indirectly.

These results on linear models enable us to generalize the feasibility conditions directly to
a non-linear function describing an input-output model. Starting point for the study of
non-linear input-output models will be a function whose diagonal-subfunctions are isotone
and whose off-diagonal subfunctions are antitone. Provided again with the condition that
there exists a growth-direction and that the sectors are connected in some way we will
prove that a so-called M- function will be feasible with respect to an input-output model
in the sense that the model has a non-negative solution for all non-negative demands and
that the model answers similar features of comparative static nature as the linear model,
at least as much as possible. As distinct from the linear problem, where injectivity implies
surjectivity we now also get the problem of surjectivity. In a separate section we will link

an M-function and its M-matrix of partial derivatives.

In section 4 we introduce the class of socalled M-functions as a generalization of the input-
output matrices. In the main theorem of that section we formulate conditions to be imposed
on an off-diagonally antitone function in order to become an M-function: the function should
be weakly irreducible and diagonally isotone.

In section 5 we use the concept of order-coerciveness to show the surjectivity of the re-
ferred M-type function. In section 6 we enter the comparative static features of a model
described by an M-function. In section ?? we formulate conditions on the matrix of partial

derivatives of a Gateaux-differentiable function to become an M-function.

2 An Input-Output Model

An input-output model describes an economy which is devided into n (industrial-)sectors,
each producing one commodity, and one non-producing sector. The last sector is called the

open sector. The output of each industrial sector is supplied as inputs to other industrial-



sectors, inclusive the sector itself or goes to meet the final demand of the open sector. The
model contains only goods which cease to exist once they are used up in production. There
is no production-lag.
Let z; be the total output of sector ¢, and f;;(x) the amount of output of industry i absorbed
by industry j.The function f;; might be a function of the one variable z; only. The net
output of each sector, i. e. the excess of z; over 3_7_; fi;(x) , is available for outside use and
will meet the final demand. Then the overall input-output balance of the whole economy
can be exprglssed in terms of n equations:

z;:Ef.',-(x)+c.- =" .
where ¢; reJ;r:asents the final demand for output <.
Let f represent the vectorvalued function on R} with components f;, fi(x) = 3"7=y fi;j(x)-
Then the set of n equations can be written as

x=f(x)+c
or simply as

F(x)=c
where F(x) = x — f(x). A generally ackowledged specification on F is that F(0) = 0.
We will call x the (gross) production and c¢ the final demand vector of the input-output
model.

If the model is linear it is assumed that f;j(x) = t;jz;. Let T denote the n X n matrix of
the non-negative technology coefficients t;;, then the model is described by
(I-T)x=c

An input-output system has a variety of properties of comparative static nature. For
example an increase of the level of production of any sector will correspond with a decrease
of the net-output of any other sector. An increase in the final demand of a sector will
correspond with an increase of the intermediate delivaries. A mathematical model will be
called feasible with respect to an input-output model if some of these properties could be

derived.

3 Preliminaries

Throughout this paper R™ is the n—dimensional real linear space of columnvectors x

with components zj,...,z,. The set {1,...,n} will be denoted by N. The vectors



e; € R™ ,i € N are the unit basisvectors with i-th component one and all others zero.
The vector e € R™ is the one-vector with all components one.
By L(R™) we denote the linear space of real n X n matrices A = [ ai; ]
On R™ and L(R™) we use the coordinatewise partial orderings; that is, if x and y € R",
then

x<y if VieN z; <y

x<y if x<yand {i|z; <y} #0

xLy il Vie N z;<vy.
A vector x > 0 is called a positive vector and a vector x > 0 as well as a vector x > 0 is
a non-negative vector. If necessary, in the case of non-negative vectors distinction will be
made by adding the mathematical symbol. Similar definitions and agreements hold for the
inequalities >, >, and > and for matrices A and B € L(R"). The non-negative orthant
of R" is denoted by R .
In R™ we will use the lo,-norm, || x ||coc= max{| z; | | ¢ € N} and in L(R"™) the correspond-

ing induced operatornorm, || A ||oo= max{3}"7_, | a;; || i € N}.

Definition (Principle Subfunction) Consider F : R} — R" and letw = (1,...,%),1 <

k < n. For a fired y € R} we define
k
Dl = {l.l = (ul,...,uk)T | Zuje;j + Eyjej € R'_"_} C R,

=1 Jgw
Then FI¥1: Dlvl ¢ R* — R™ is a principle subfunction of F aty € R7} if
k
l"}“’](u) = H,(Zuje;, + Zyjej), 4= ek
=1 Jg¢w
fw={l,...,k} we will write FI* in stead of FI['»-+¥. If w = {3} the principle subfunction

F1¥] is just the i-th diagonal subfunction ¢;; of F at y ( see definition ).

4 On M-Matrices and M-Functions

As has been derived in section 2 a matrix that describes a linear input-output model is of
the form A = [ — T, where T denotes the non-negative technology-matrix. In literature the

technology-matrix T is often required to be an irreducible matrix, or even a positive matrix.



Definition (Irreducible Matrix) A non-negative matriz T is irreducible if, for any two

indices 1,j € N there is a sequence of positive elements of T of the form {tii,,ti iy, .. ti,j}-

Irreducibility is a kind of “connectivity condition” : in the graph associated with the non-
negative matrix there is a path from every vertex to any other vertex. If T' is a technology-
matrix it has the economic interpretation that each sector is connected with any other
sector of the economy in the sense of intermediate delivaries.

Since the technologymatrix T is a non-negative matrix it is obvious to study input-output
models with the results of the Perron-Frobenius theory on non-negative matrices. A non-
negative matrix has a non-negative eigenvalue that is at least as large as the absolute value
of any eigenvalue of the matrix and a non-negative eigenvector corresponding to that eigen-
value. The eigenvalue is called the mazimal eigenvalue of the matrix. If the matrix is an
irreducible (non-negative) matrix the maximal eigenvalue is positive and the corresponding
eigenvector is a positive eigenvector, c. f. [4].

A matrix of the form A = I — T, with T' > 0 is feasible with respect to an input-output if

its inverse A~! is a non-negative matrix.

Lemma 4.1 Let T € L(R") be a (/ irreducible) non-negative matriz.
I — T is non-singular and (I = T)"' >0 (/> 0) if and only if r(T) < 1, where r(T)

denotes the marimal eigenvalue.

The condition on the maximal eigenvalue, 7(T') < 1, could be related to a condition on the

row (or column-) sums of the technology-matrix 7.

Lemma 4.2 Let T € L(R™) be a non-negative matriz.

a If

tij <1, foreachi € N  (, all row sums are less than one,)

n
=1

i
then r(T) < 1
(the input-output matrix I — T satisfies the conditions of a strictly diagonally

dominant matriz).



b If T is irreducible and

n

Z t;j <1, for eachi € N and for at least one i € N strict inequality holds,
i=1
then r(T) < 1

(the input-output matrix I — T is an irreducibly diagonally dominant matriz).

The conditions on the row sums have been given an economic interpretation by several
authors (c. f. [3] or [8] ).

The proof of a lemma of this kind is mainly based on the existence of a non-negative (c.
q. positive) maximal eigenvector of the technology-matrix. However, the eigenvalue the-
ory of Perron-Frobenius is not very appropriate for an extension to nonlinear input-output
models. These deserve a more direct treatment. Moreover, the direct treatment gives us
the opportunity to replace the diagonal dominancy of the technology matrix by the weaker
condition of what will be called weakly irreducible diagonal dominancy.

We will first give the definition of a class of matrices that contains matrices describing a

linear input-output model.

Definition (M-Matrix) A matriz A € L(R™) is an M-matriz ifa;; <0, i,j € N, i #

j and A~ ezists and is non-negative.

Unlike the usual definition (c. . [1] or [4]) the existence of the inverse is included in the def-
inition of an M-matrix, anticipating the theory of non-linear input-output functions. The
‘almost’ equivalence of the class of M-matrices with input-output matrices is given by the

following lemma.

Lemma 4.3 For any M-matriz A there ezists a non-negative matriz B with mazimal eigen-
value r(B) such that

A=sl— B, wherer(B)<s.
Proof:



Define s = max;{a;;}. Then B = sI — A is a non-negative matrix. Let 7(B) be its maximal
eigenvalue and let x be a non-negative eigenvector. We have
Ax = (s = B)x = (s—r(B))x
and therefore
x = (s —r(B))A™x.
But x and A~'x are non-negative and s — 7(B) # 0 , since A is non-singular. Hence

s—r(B)>0,and A=s[-B.

It is clear that, if A is an M-matrix, for any x and y € R}, Ax < Ay implies x < y
(having the following economic interpretation in the case A is an input-output matrix: an
increase in the final demand of any sector leads to an increase of the level of production of
at least one sector).

Moreover, the diagonal elements of an M-matrix as well as the diagonal elements of its
inverse A~1 are positive (c. f. lemma A.1) (having the following economic interpretation:
an increase of the final demand of a sector will correspond with an increase of the level of
production of that sector and v. v. ).

In the first theorem of this section we will formulate two conditions for a matrix to be an
M-matrix when the off diagonal elements of the matrix are non positive. The proof of the
theorem is straightforward and not based on the theory of Perron-Frobenius.

Note that a matrix A is non-singular and its inverse is non-negative, if for any x € R" :
Ax > 0 implies x > 0.

(a linear function that is injective is bijective , c. f. lemma A.2)

Theorem 4.4 Let A = [ a;; ] € L(R™) with a;; < 0,i,5 € N,i # j.

Assume that
- there ezists a vector u> 0 with Au=v >0

- for anyi € Jy(v) = {j € N | v; > 0} there is a sequence of negalive (non-diagonal)
elements {aii,, ..., @i} with 1 =1(i) € J4(v).

Then A is an M-Matriz.

Proof:



Let Ax > 0 for some x € R™ and suppose there exists an index ¢ € N for which z; < 0.
Define the diagonal matrix U = diag(u1,...,un) and the index set Jomin(U~1x) = {j € N |
u;'z,- = mingen u;'zk}.

If i € Jmin(U~'x) then i € J4(v) or there exists an index j € N with a;; < 0. In the last

case we will prove that j € Jin(U~1x).

]

Suppose j € Jmin(U~1x), then u'z; < u;l:c_,- and hence a;;u'z; > a;ju;

z;. Using the
inequalities u7'z; < uy 'z, forany k € N,k # iand k # j and thus airu7'z; > ajeupzi,we
find that

n n
> anze = Y anur(ugzx)
k=1 k=1

& Z aikuk(u,:lzk) + a;juj(u‘-’:c;) < Z a,-kuk(u'-'la:,-) + a,-ju,-(u,-"::g)
k#5 k#5

= (3 airwr)(ui'2i) = vi(u]'z:) = 0
which is a cor':t=rla.dicion.
By the second assumption of the theorem there exists at least one index ¢ € Jin(U—1x)
such that i € J4(v). But then z; < 0, v; > 0 and, for any k € N, ui“z.- < u;';ck lead to

the contradiction
n n

3 aizi = Y ainur(up'zr)
k=1 k=1

n n n
< Z a.-kuk(u,:‘zk) — Z a;kuk(ui‘l:t,-) = Z a;kuk(u;'zk - u,-":c,-) <0.
k= = k=
Thus we must ‘lave z; > 0 and ﬁer:ce x> 0. v

If in the first assumption of theorem 4.4 u = e, the matrix A is a diagonally dominant
matriz (c. f. [6] ). Since u is a strictly positive vector a matrix that satisfies the first as-
sumption of theorem 4.4 will still be considered a diagonally dominant matrix.

The second assumption is a weaker form of irreducibility: in the graph that could be as-
sociated with the matrix A there should exist a path from any vertex not in J4(v) to a
vertex in J4(v). We will call a matrix that satisfies an assumption of this kind a weakly

irreducible matriz (with respect to a set) .

Definition (Weakly Irreducible) Let J be a subset of the indezset N.

A matriz A € L(R™) is weakly irreducible if there ezists a non-emply set J such that for any



i @ J there is a sequence of non-zero (non-diagonal) elements of A, {aii,,aii,, ..., i1}

with | = I(i) € J.

A matrix that satisfies both the condition of diagonal dominancy and the condition of weak
irreducibility is a weakly irreducibly diagonally dominant matriz.

If a matrix T satisfies the conditions of lemma 4.2, the input-output matrix A = I — T
satisfies both assumptions of theorem 4.4 with u =e :

if A=1I —T is strictly diagonally dominant, Ae >> 0 and hence J4(Ae) = N,

if A= I —T is irreducibly diagonally dominant, Ae > 0 and any sector is connected with
any other sector and the required sequence of negative non diagonal elements will surely
exist.

The inverse of a weakly irreducible matrix need not be positive, however, as can be seen by

the following numerical example.

Example Consider the matriz T,

1
0 .5 .5
T=10 0 0
0 0 0
Let A= I — T, where I denotes the 3 x 3 unit-matriz, then A satisfics the assumptions of
r T
theorem 4.4 withu =1 1 1 ] and J4(Au) = {2,3}. Its inverse is the non-negative
matriz ]
1 5 .5
A'=10 1 1
0 0 1

If A represents an input-output matrix, weakly irreducibly diagonally dominancy (, where
J = J4(Au) ) has the following economic interpretation :

since the vector u is determined apart from a constant it reflects the ratio’s of the level
of production of the different sectors. If any sector i € J4(Au) is called a surplus sector
then the first assumption asserts that at least one sector is a surplus sector. The second
assumption asserts that any non-surplus sector should be connected with a surplus sector

in the sense of intermediate delivaries. In other words, a matrix is feasible with respect to



i

an input-output model if there are surplus sectors and any non-surplus sector is a (probably
indirect) intermediate supplier of a surplus sector.

The conclusion of theorem 4.4 also holds if in the diagonally dominancy assumption of the
theorem the matrix A is replaced by the transponed matrix A7. The assumptions could
then be given an economic interpretation in terms of the financial profitability of the sec-
tors.

In order to generalize further to non-linear functions we replace the different signs of the el-
ements of an M-matrix A and its inverse A~! by concepts of monotonicity . The conditions
of the different concepts can easily be checked in case of the linear function F(x) = Ax ,

where A is an M-matrix.

Definition (monotonicity) Consider a function F': D C R" — R™.

a F is isotone (/ antitone) on D if x <y, x,y € D implies that F(x) < F(y) (
/ F(x) > F(y) ) and strictly isotone (/ strictly antitone ) if, in addition, it follows from
x € y,x,y € D thatalso F(x) < F(y) (/F(x)> F(y))

b F is off-diagonally antitone on D if for any x € D and for any i,5 € N,i # j,
#i; : {te R|x+tej € D} — R, ¢;;(t) = Fi(x+te;) is antitone ( ¢;; is sometimes called
an off-diagonal subfunction of F)

¢ F is diagonally isotone (/ strictly diagonally isotone ) if for any x € D and for any i € N
$ii: {t e R| x +te; € D} — R, ¢;i(t) = Fi(x + te;) are isotone (/ strictly isotone ).(
¢ii is called the i-th diagonal subfunction of F.

d F is inverse isotone on D if F(x) < F(y), x,y € D,implies that x <y.

The class of functions that contains the set of off-diagonally antitone functions feasible with

respect an input-output model is the class of M-functions.

Definition (M-function) A function F : D C R® — R" is an M-function on D if F

is off-diagonally antitone and inverse isotone on D



T

The next lemma shows that the definition of an M-function represents a generalization of

the M-matrix.

Lemma 4.5 A malriz A € L(R™) is an M-matriz if and only if the induced mapping
F :R" — R, F(x) = Ax is an M-function.

With respect to the diagonal subfunctions of F' the following result hold.

Lemma 4.6 Let F: D C R* — R" be an M-function.
Then I and F~1: R™ — R" are strictly diagonally isotone.

Proof:
c. f. Appendix, lemma A.3

Lemma 4.6 has the following economic interpretation: an increase in the level of production
of one industrial sector causes an increase in the netoutput of that sector and, conversely,
an increase in the netoutput of one industrial sector causes an increase in the level of pro-
duction of that sector. Because of properties of this kind an M- function will be considered
feasible with respect to an input-output model.

The next theorem is a generalization of theorem 4.4.

Theorem 4.7 Let F : R} — R™ be an off-diagonally antitone function.

Assume that

- there ezists a positive vector u € R™,u > 0 such that, for any x € R} the function
P:Ry — R" P(t)= Fi(x+tu), 1€ N, is isolone,

- Jy ={j€ N| for any x € R}, P; is strictly isotone } is not empty

- for any i ¢ Jy there ezists a chain of strictly antitone ( off-diagonally sub- )functons
{d);,‘l, i .,45,‘"‘1} where | = l(t) € J+.
Then F is inverse isotone and hence an M-function.

Proof:
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Let x,y € R} with Fx < Fy.

Define the diagonal matrix H = diag(ui,...,u,) and 0 = maz{u!(z;—y;)| i € N}. Then
U-(x—y)<oceor x <y+ ou. Notice that & < 0 if and only if x < y.

Suppose o > 0. Define Jyaz(x,y) = {i € N | z; = y; + ou;} and, hence, z; < y; + ou; if
i f Jmaz(X,Y) -

For i € Jmaz(x,y) the componentfunction P; is strictly isotone or there exists an (off-
diagonal sub-) function ¢;; that is strictly antitone at x. In the last case we will prove that
J € Jmaz(x,¥).

Suppose j & Jinaz(X,y) in which case z; < y; + ouj, whereas z; = y; + ou;. Because of the
isotony of P; and the strict antitonicity of ¢;; we have

Fi(x) < Fi(y)< F(y+ou)

A

Fi(y1 + ot1,.. ., ¥j-1 + 0Uj_1, T, Yj1 + OUjp1,- .-, Yn + OUy)

IA

Fi®1, - - onTim1p Ui + 10Uz, « 2y Bi) = Fi(X)-

Hence j € Jnaz(X,¥)-

Because of the connectivity condition of the theorem there exists an index i € Jyaz(X,y)
for which the component function P; is strictly isotone. Together with the off-diagonally
antitonicity of F and the assumption o > 0 we have

Fi(x) < F(y)< Fi(y+ou)

= Fi(y1+0uy, ..., ¥i-1 + 0Ui_1, Tis Yig1 + OUig1,- - -, Un + Oup) < Fi(X).

Hence, c < 0and x<y.

After the matrix-terminology a function that satisfies the three conditions of theorem 4.7

will be called a weakly irreducibly diagonally isotone function.

5 On Surjective M-Functions

In this section we examine the surjectivity of an M-function on R} . Preceding the actual
theorem on a surjective M-function we start with a lemma that replaces surjectivity by

the equivalent concept of order-coerciveness. The function in question is a continuous M-
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function that satisfies the (natural input-output ) condition 0 = 0.

Definition (Order-coerciveness)
a For any sequence {x*} C R™ we write

lim x* = o0 if lim zf =00
k—o0 k—oo

for at least one indexz t.

b The function F : RT — R" is order-coercive if for any sequence x* C R"

xF g xktl. E=0,1,..c, klim x* =00
—00

implies that limg_o F(x*) = o0

Lemma 5.1 Let F : R} — R”" be a continuous M-function, F(0) = 0. Then F is
surjective if and only if F' is order-coercive.

Proof:

We will start with the ‘only if’ part.

An M-function is injective and hence in this case bijective. Any sequence {x*} in RY} for
which Fx* < a is bounded since x* < F~'a for k = 0,1,.... Hence for a sequence {x*} for
which x* < x*+1 and limj_,co X*¥ = 0o must hold limk—c FxF = 0o. A surjective function
is therefore order-coercive.

In order to prove that order-coerciveness implies surjectivity we will show first that for any
z € R% there exists an y° € R} such that z < Fy° ( then F0 <z < Fy?).

From lemma 4.6 we allready know that F is strictly diagonally isotone. We will show that
for any vector x > 0 and for any i € N lim¢oo Fy(x + te;) = oo so that F'is surjectively
diagonally isotone. Because of the continuity of F it is equivalent to show that for any
vector x € R}, for any sequence {t*}, limg_ oo t* = oo holds limk—co Fi(x + tke;) = oo.

Suppose there exists an x € R} , an index i € N and a sequence {tk} c [0,00) with
limg—oo t¥ = oo for which Fi(x + tke;) < a; < 00. Suppose t* < t**1. The ofl-diagonal
antitonicity of F' implies

Fj(x +t*e;) < Fj(x)=aj < oo, j#4i, jEN, k=0,1,2,...
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and hence
F(x + tFe;) < a.
The order-coerciveness of F leads to the contradiction that the sequence {t*} is bounded.
Therefore F is surjectively diagonally isotone.
Let u® € R be an arbitrary point. Define z' € R} by 2z} = max{ F;(u®),z}, 1 € N.
Because F is surjectively diagonally isotone we can solve successively the following set of
equations
F}(uf,...,uf_l,u;,uf+1,...,uﬁ) =zl TeN,kE=0,1L.::
The solution uf‘” is unique and satisfies the following inequalities
uf < uk*! and F(uF) <z, k=0,1,....
Clearly F(u®) < z/. Assume F(u*) < 2’ for some k > 0, then
Fi("’l‘v--w"f—v“?“»“?ﬂv- -’“ﬁ) =z > Fu‘(“k)a
and, because F is strictly diagonally isotone we have ukt! > uk, i € N. Because F is
off-diagonally antitone we have
Zl = Fi(ub, ... uf ek, Luk), ie N.
From the ordercoercivity of I it follows that the increasing sequence {u*} is bounded
above and hence convergent. Thus limk_ u¥ = y° and by the continuity of F' we have
F(y°) =2 >z
Now, since there exists a vector 0 < y° for which F0 < z < Fy® we can prove the existence
of a vector x € R} such that Fx = z.
Consider the Jacobi processes (w = 1)
R(zf,...,xf_l,:c;,zfﬂ,...,:c,',‘,) = izi 416 N, E=0,1,..0
with x° = 0 and
F,-(y{‘,...,yf‘_l,yg,y,"“,...,y,‘:) =z,1EN, k=0,1,...«

k+

Each of these equations has a unique solution, z ! respectively y!‘“. In a simsilar way as
above we prove the following set of inequalities
x0 < xk < xFH1 < ykHl < vk < y°
and
Fx* < z < Fy*.
Assume for some k£ > 0

Fx* <z < Fy* andx"gy“



.

then l",-(:r'f,...If_l,xf*'l,zfﬂ,...,zﬁ) = 2z; > Fi(xF)
and Fi(y%, ..., o5 f vk, 0) = 4 < Fi(y*), i € N. By the strictly diagonal iso-
tonicity we have

aitl S z¥ and yf*! < yF, ie N.
By the off-diagonal antitonicity we have

Fi(zk, .. .,xf-‘_l,t,mf‘“,. .z > Fi(yf, .. .,y!‘_,,l,y!‘“, oo yS) forallte (2,49,
aud hence Ilk“ < y,k“, t€ N.
Morcover,

= l",-(z“",...,xf_l,xf“,zf"“,...,zﬁ) > Fy(x*t), ie N.
The monotonic sequences {x*} and {y*} are bounded and hence convergent. Thus
limy_o x¥ = x* and limimoo y*¥ = y*, x* < y*. By the continuity of F' we have

F(x*) = F(y*) = z.
We now state the main theorem of this section.

Theorem 5.2 Let F : R} — R" be a continuous, off-diagonally antitone function . We

assume Lhal

- there ezists a positive vector u € R™,u > 0 such that, for any x € R} the function

P:R; — R™ P(t)= Fi(x+tu), i €N, is isotone,
-Jy={jeN| foranyx € R}, P; is strictly isolone } is nol emply ,

- for any i € J there exists a chain of ( off-diagonally sub-) funclions {@iiys---» Pimi}
which , for any x € R} ,are surjective , strictly isotone and such that Py s strictly

isotone and surjective.

Then F is a surjective M-function.

Proof:

According to theorem 4.7 an off-diagonally antitone function that satisfies the conditions
of theorem 5.2 is an M-function on R%. According to lemma 5.1 it suffices to show that F
is an order-coercive function on R%.

Consider the sequence {x*} C R%, x¥ < x*+! and limi_co x*¥ = 0o. Suppose there exists
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a vector a € R% such that F(x*) < a, k = 1,2,..... There exists a subsequence of {x¥},
that will be indicated again by {x*}, such that z§ = max;z¥, k = 1,2,... for some fixed
index ig. The index set Jo, = {i € N | lim—o z¥ = 00} is not empty.
Define the diagonal matrix U = diag(u1,...,u,) and consider the subset J., C Joo,

J!, = {i € N | 3B; € RsuchthatVk € N U™ 'x* < u7(z¥ + B;)e.
For i = i € J!, we have 3;, = 0, else 3; > 0.
With respect to the index set J/, we will prove that there exists an index i € J., for which
P; is strictly isotone and surjective.
Take an 7 € J. . If P; is strictly isotone and surjective we arc ready. Else P; is isotone and
there exists an off-diagonal subfunction ¢;; that is ,(for any x € R%, surjective and strictly
antitone.
We will show that there exists a constant 8; such that u'(z¥ + ;) < uj'(z% + §;) and
hence j € J,.
Suppose for any n € IN there exists a number k, with u;l(zf" + 6:) > u;l(z;‘" +n). A
subsequence will be created, that will be indicated by {x*} with the property that

x* < M1 xF < url(2f + Bi)u and 2 < wjuM(zF 4+ Bi) - k.
Consider the following sequence {y*} C R},

y* = u7'(zf + Bi)u — Bie; — ke;.
Then, because ¢;; is strictly antitone,

Fi(y*) < F(ui'(zf*' + Bi)u - Biei — ke;)

< Fi(u7'(a}* + Bi)u - fiei — (k+1)e;) = Fi(y**")

and , because ¢;; is surjective

Jim Fi(y**) = .
Furthermore, F;(x¥) > F;(y*) and hence limy_,o Fi(x¥) = 00
This contradicts the assumption F;(x*) < a; thus j € J..
By vitue of the connectivity assumption of the theorem we know that there exists an index
i € J!_for wich P; is strictly isotone and surjective. Moreover,

a; > Fi(x*) > Fi(u7"(2¥ + Bi)u - Bie;).
Because P; is ( strictly ) isotone and surjective

sup{t |t >0, Fi((t+ u,-'lﬂ;)u —Be;)<a;} =7 < o0.



TP

Hence zF < u;vy, k = 1,2,... which contradicts 7 € J!, C Jso. The assumption that there
exists a vector a such that FxF < a is false and the conclusion is now that F' is order-

coercive and hence a surjective M-function.

6 Comparative Statics

For any off-diagonally antitone function that is weakly irreducibly diagon ally dominant we
can prove the following theorem.

Theorem 6.1 Let F': R} — R" be an off-diagonally anlilone Junction. Assume that

- for any x € R%, the function P: Ry — R7, P(t) = Fi(x+te), i€N,

is isotone
- Jy ={j € N|, for any x € RY, P; is strictly isotone } is not empty

- for any j ¢ J4 there ezists a chain of ( off-diagonally sub-) functions {di, 5o s Dical ¥

which, for any x € R}, are strictly antitone and such that l € J .
For each x € R and F(x) < F(y) for some y € R} (hence x <y ) there holds
a for anyi€ Jy Fx = Fyy implies y; — z; <|| y — x ||oo

b foranyi€ N Fix = Fyy implies y; — z; <|| y — X ||

or yi — z; =|| y — X |lo= yj — z; if j € N and ¢;; is strictly antitone.

c there ezists i € N for which y; — z; =|| ¥ — x ||o and Fix < Fy (and hence
(vi — zi)(Fiy — Fix) > 0.

Proof:
a Suppose y; — z; =|| y — X ||co. Because i € J; we have
Fi(x) < Fi(x+ ||y = x [lo €) < Fi(y)

which is a contradiction.
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b If yi —z; <|| ¥y — X ||oo there is nothing to prove. Assume y; —z; =|| y —x ||cc and suppose
yi—zi >y; —zjforj€ N where ¢;; is strictly antitone. Because y; — z; > yx — Zk

for k # j and ¢;; is strictly antitone we have
Fi(x) < Fi(x+ ||y —x |l ©) < Fi(y)

which is a contradiction.

¢ Assume there exists an index i € N for which y; — z; =|| ¥ — X |l and Fix = Fy.
Then ¢ ¢ J4 and there exists an index j € N for which ¢;; is strictly antitone
and y; — z; =|| ¥y — X |lo= y; — zj. I Fj(x) < Fj(y) we are ready, else j & J,.
According to the connectivity assumptions of the theorem eventually there should
exist an index | € N for which y; — z; =|| ¥ — X || and P, is strictly isotone. In that

case Fi(x) < Fi(y)-

If F describes an input-output model and y is the level of production after the demand
F(x) has been increased (until F(y) ) then the conclusions of theorem 6.1 have the following

economic interpretation:
- There is no sector with a decreasing level of production.

- The increase in the level of production of a productive sector without a change in the
demand will be less than the maximum of all increments (part a). In the case J = N
the sector with the greatest change (in the absolute sense) in the level of production

has a nonzero increase in the demand.

- If the increase in the level of production of a non-productive sector without a change in
the demand is the maximum of all increments then there should be another sector to
which production that sector is actively contributing. Moreover, the increment of the

other sector also equals the maximum of all increments.

- There is a sector with an increasing demand whose increment in the level of production

is the maximum of all increments.
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The following corollary is a direct consequence of property c) of theorem 6.1.

Corollary 6.2 Let F : R — R" be an off-diagonally antitone function, that is J-
irreducibly diagonally isotone where J is the (non-empty) set of indices of strictly isotone
diagonal subfunctions.
If

F(y) = F(x) + yex where ¥ > 0 then yx — zx =|| y — % ||o
Proof:

Index k is the unique index that suits the index i in property c) of theorem 6.1.

The comparative statics results of this section have been derived for the special case that
u = e. Similar results could easily be obtained in the general case of a positive vector u if

we apply the transformation U~!(y — x, where U = diag(u1, ..., un)-

8 Diagonal Dominancy

In section 4 we imposed conditions on an off-diagonally antitone function in order to be an
M-function. In the main theorem of that section no differentiability condition was required.
In this section we examine the inverse isotony of an off-diagonally antitone function from
the matrix of derivatives.

In the first part of this section we replace the conditions of lemma 4.2 on the rowsums of the
technology-matrix 7' by an equivalent statement that enables us to generalize the concept

of diagonal dominancy to non-linear functions.

Theorem 8.1 Consider the matriz A= I—T € L(R"), where T is a non-negative matriz.

Then the following statements are equivalent:
aVkeN Y7t <1 (henceAisa strictly diagonally dominant matriz)

b Vk € N and Vx € R, x # 0, zx — 37—, tjz; = 0 implies zx <|| x los =
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Proof:
If a) holds and for some k € N zx — Y= tkjz; = 0, x € RY, x # 0, then
Etkak <(1- tek)Tk = Ztijj <|| x ”00 Ztkj.
i#k 1k i#k
Hence zx <|| X ||oo -
Conversely, if b) holds, assume that for some k€ N 1—tie < 3 jzktks- Then
1—the = A2k thj with 0 < A < 1. Define x € R} with z, =1 and z; = A, j # k. Then

| X llo= & = 1 and zx — Y7, t;z; = 0. This contradicts b) since x # 0. Hence, a) holds.

Note that the statement in part b) of theorem 8.1 is equivalent to property a) of theo-
rem 6.1 (in the case of a strictly diagonally dominant matrix the set J of strictly isotone
diagonal functions is just the whole set V).

Because of the equivalence of the two statements in the linear case the statement in part

b) of theorem 8.1 will therefore be used to define a strictly diagonally dominant function.

Definition (Strictly Diagonally Dominant Function) A function F:R} — R"

is strictly diagonally dominant if for each k € Nthe k-th component function of F, Fy, is

strictly dominant with respect to the k-th variable, that is, for every x andy € R}, x#y
Fi(x) = Fi(y) implies that | yx — z |<|| ¥ — X [|oo -

Next we state three lemma’s preparing a theorem on a differentiable function that is off-
diagonally antitone , whose derivative is a strictly diagonally dominant matrix (see [5] for

a detailed treatment on diagonally dominant functions).

Lemma 8.2 Let F: R} — R", be an off-diagonally antitone and differentiable function
whose derivative DF(x) is a strictly diagonally dominant matriz on RY. Then F is a
strictly diagonally dominant function on RY.
Proof:
Let k € N and Fi(x) = Fi(y) with x # y € R}. The function % : [0,1] — R,

P(t) = Fe(x + t(y — x))
is a differentiable function on [0, 1] with the property that ¥(0) = 9(1). According to Rolle’s

theorem there exists a to € (0, 1) such that
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P(to) = D Fi;(x + to(y — x))(y; — 25) =0
=1
or, equivalently,

Fiu(x + to(y — %))k — 21) = = D Fij(x + to(y — x))(; — ;)-
#k
Because DF(x + to(y — x)) is a strictly diagonally dominant matrix there holds

Fip() |l ye — 2| < — ZFllej(Eo) |y — ;|
I#k
£ _ZFl:j(fo) ly — x|l
i#k
< Fal&) 1y = X lloos
where £ = x + to(y — x). From wich it follows that

lye =z I<ly = % loo -

The next lemma is a generalization of the property that a principal submatrix of a strictly

diagonally dominant matrix is a strictly diagonally dominant matrix.

Lemma 8.3 A principle subfunction of a strictly diagonally dominant function that is off-

diagonally antitone on R’ is a strictly diagonally dominant function.
+

The proof of lemma 8.3 is an immediate consequence of lemma 8.2 and the remark that a
principle submatrix of a strictly diagonally dominant matrix is a strictly diagonally domi-

nant matrix.

Lemma 8.4 Let F : R} — R”" be a continuous function.

If F is a strictly diagonally dominant and strictly diagonally isotone function on R then
Vx,y € R}, x #y, 3k = k{x,y} : (yk — 2&)(Fi(y) — Fi(x)) > 0.

Proof:

Let k € N and | zx — %k |=|]| X = ¥ |lo - Because F is strictly diagonally dominant

Fi(x) # Fi(y)-

Assume that yx — zx > 0. Consider the (convex) set
K={z€R}|z#x, 2k — 2k =|| 2 — X ||}

and the function Hy : K x [0,1] — R,
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Hi(z,t) = Fe(x + t(z — x)).
Then

- ¥Vt € [0,1] the function H(.,t) is a continuous function on K ,

- Vz € K the function Hi(z,.) is a continuous and injective function on [0, 1]:

let s < t,p = x+t(z— x) and q = x + s(z — x); then

Tr+ U2k — zk) — Tk — 8(2k —zk) = (E = 3)(zk — zk)
(t=3) |l 2 =x|loo=ll (£ = 8)(z = X) [lo

| x+t(z—x)—x—(t=3)(z—x)llo=ll P~ q [l -

Pk — 9k

in which case Fx(p) # Fx(q) and hence Hi(y,t) # Hi(y,s).

For z = x + (yx — zx)ex € K the function Hi(z,.) is strictly isotone, hence Vz € K Hi(z,.)
is strictly isotone, especially for z = y:

Fi(x) = Hi(y,0) < Hik(y,1) = Fi(y)-
Hence (yx — z)(Fr(y) — Fr(x)) > 0.

Theorem 8.5 Let F : RT — R" be a differentiable function that is off-diagonally anti-
tone.
If¥x € R} DF(x) is a strictly diagonally dominant matriz then F is inverse isotone and
hence an M-function.
Proof:
Let x,y € R}, x # y and F(x) < F(y).
Define the indexset J5 = {i € N | z; > y;} and suppose that J, # (. Moreover assume
that Jo = Ljuwuky, 1 < kL.
Consider the principle subfunction F,, of F' at y with w = (Lyroe o5 By

F iy, e esti) = Fi(tiy - ooty Ubgte:oat)s £ =100,k

Since F' is an off-diagonally antitone function we have
F,i(yw) Fi(y) 2 Fi(x)
F‘i(zlv' oy ThyYk+15 Tk42y - "7171) 2 2 F’i(zly' oy ThkyYk41,- -',!ln)

F, l(xw)

v

Hence
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(i — zi)(Fui(yw) — Foi(x,)) £0, i=1,....k
According to lemma 8.2 F' is a strictly diagonally dominant function on R% and hence,
according to lemma 8.3 the principle subfunction F,, is also a strictly diagonally dominant
function.
Since F is a strictly diagonally isotone function the principle subfunction F, is also
strictly diagonally isotone. Following lemma 8.4 there exists an index k = k(xu,Yw) €
{1,..., k}such that

(yk — &) (Fu k(Yw) — Fu k(%)) > 0.
This contradicts the forgoing inequality. Hence J5 = Pand x<y.

A Appendix

Lemma A.1 Let A € L(R") be an M-matriz.

Then the diagonal elements of A and A~' are posilive.

Proof:

Define A~ = [ bi; ] Then Vi € N aibii = 1 — 34 a;;bj;. Since a;; <0, jEN, j # 1

and b;; <0, j € N we have a;;:b;; > 1 from which follows a;; and b;; are positive.

Lemma A.2 Let A € L(R") and x € R™.

Ax > 0 implies x > 0 if and only if A is nonsingular and A1 > 0.

Proof:

Let Ax = O for some vector x € R®. Then Ax > 0 and hence x > 0. Also A(-x) >0
and —x > 0 which means that x = 0 and hence A1 is non-singular. Moreover, since
e; = A(A~'e;) > 0 we have A~'e; > 0, i € N. Hence AL >0,

Let Ax > 0 for some x € R™. Since A=! > 0 we have x = A~1(Ax) > A"'0 = 0.

Lemma A.3 Let F: D C R® — R" be an M-function.
Then F and F~': F(D) C R® — R™ are strictly diagonally isotone.
Proof:



.94 -

Takex € D, i € N and s < t with x + se;, x + te; € D. Suppose Fi(x + se;) > Fi(x + te;).
The off-diagonal antitonicity then implies F(x + se;) > F(x + te;. By the inverse isotonic-
ity this leads to the contradiction s > t, which shows that F' must be strictly diagonally
isotone.

Takey € F(D),i € N and s < t with y + se;,y + te; € F(D). The inverse isotonicity of
F implies F~'(y + se;) < F~'(y + te;). Suppose F7'(y + se;) = F7'(y + tei). By the
off-diagonal antitonicity this lead to the inequality Fi(F~'(y + se;)) > F;(F~!(y +te;)) or,
equivalently, to the contradiction s > t. Hence F7'(y + sei) < F7'(y + te;) which shows

that F'~! must be strictly diagonally isotone.

Lemma A.4 Leta € R™ with a; <0,j # i (,i € N is some fized indez,) and aTe > 0.
Consider a vector v € R™ with aTv = 0.

IfaTe >0 then | v;|<||V |loos

ifaTe=0 then |v|<||Vlleo or |vi|=l|V|l=|v;|ViEN with a; < 0.
Proof:
Let v € R be such that 3°7_, a;v; = 0. Assume that Y 7=1; > 0.Then

a; | v |< Z(—aj) | v; 1< Z_(—aj) | v lloo< @i || v lleo

I#1 I#
from wich follows | v; |<|| V [[co-

Let us assume next that 37, a; = 0 and that | v [=|| v lloo- Suppose that | v; |<|| v [l

for any j € N with aj < 0. Then
@ ||V lloo= @i | 6 1< D(—a5) [0 1< D_(=a) 1 v lloo
i#i i
from which follows the inequality a; < ¥_;4;(—a;). This contradicts the assumed equality

on a.
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