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Abstract

A mathematical model is a description oC an Economic system if it reflects the char-

acteristics of the system. This determines the form of the mathematical model as well

as the posed conditions. Specific economic systems and special classes of mathematical

equations or functions will therefore be joined together.

In this article we will study a class of M-type functions and some related topics in

connection with input-output models. One of the referred characteristics will be the

existence of a non-negative solution of the mathematical model. Moreover, we will

show that the mathematical model is feasible in the sense that it has some properties

of comparative static nature.
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1 Introduction

The mathematical model that describes a linear input-output modcl is a(square) system

of linear equations. The descriptive matrix of the model is a matrix with positive diagonal

elements and non-positive off-diagonal elements. It is feasible with tespect to an input-

output model if its inverse is at least a non-negative matrix.

The appropriate conditions that will be imposed on a matrix of the above sign-structure are

mainly stated in terms of rowsums or columnsums or, equivalently, the input-output ma-

trix sliould be a strictly diagonally dominant matrix. The results of a lincar input-output

model could be made more stringent if the non-negative matrix of input-output coefficients

is irreducible. In that case, if the matrix is irreducibly diagonal dominant the solutions of

thc rnodel arc even positive.

The condition on the rowsums of the matrix of input-output c.oe(ficients has been given the

economic interpretation of availability for a socalled final demand and the condition on the

columnsums of a non-negative value added (c.f. [3]).The assumption of irreducibility of tíre

matrix means economically that all sectors do depend in some way on all other sectors in

the model (c.f. [1],[3] or [8]).

Whcn proving that Lhc appropriatc conditions givc rise to a non-negative (or even positive)

inverse ura.l.rix it is obvious to account on the theory of 1'erron-l~robenius on non-negative

ruatric~~s.

One way to study non-linear models is via the matrix of derivatives of the function de-

scribing the non-linear model. One transfers the characteristics of the matrix of the linear

modcl Lo tlic niatrix of derivatives and subseqnently trics to translate tl~ings to the fanction

itself [2],[7]. In this paper we choose for a more direct way, direct in the sense that no dif-

ferentiability condition has to be imposed on the function. To that end we will derive first

some results on linear models without using the Perron- Frobenius theory. This will lead

us to the class of the so-called M-matrices. At the same time , with respect to the feasi-

bility condition on an input-output matrix the irreducibility-condition as well as the strict

diagonal-dominancy will be weakened to a new condition: the matrix should be weakly
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irreducibly diagonally dominant. In economic terms, there should be so-called "surplus-

sectors" and any non- surplus is an intermediate supplier of a surplus-sector, directly or

indirectly.

These results on linear models enable us to generalize the feasibility conditions directly to

a non-linear function describing an input-output model. Starting point for the study of

non-linear input-output models will be a íunction whose diagonal-subfunctions are isotone

and whose off-diagonal subfunctions are antitone. Provided again with the condition that

there exists a growth-direction and that the sectors are connected in some way we will

prove that a so-called M- function will be feasible with respect to an input-output model

in the sense that the model has a non-negative solution for all non-negative demands and

that the model answers similar features of comparative static nature as the linear model,

at least as much as possible. As distinct ftom the linear problem, where injectivity implies

surjectivity we now also get the problem of surjectivity. In a separate section we will link

an M-function and its M-matrix of partial derivatives.

In section 4 we introduce the class of socalled M-functions as a genetalization of the input-

output matrices. In the main theorem of that section we formulate conditions to be imposed

on an off-diagonally antitone function in order to become an M-function: the function should

be wcakly irreducible and diagonally isotone.

In section 5 we use the concept of order-coerciveness to show the surjectivity of the re-

ferred M-type function. In section 6 we enter the comparative static features of a model

described by an M-function. In section ?? we formulate conditions on the matrix of partial

derivatives of a Gateaux-differentiable function to become an M-function.

2 An Input-Output Model

An input-output model describes an economy which is devided into n(industrial-)sectors,

each producing one commodity, and one non-producing sector. The last sector is called the

open sector. '1 he output of each industrial sector is supplied as inputs to other industrial-
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sectors, inclusive the sector itself or goes to meet the final demand of the open sector. The

model contains only goods which cease to exist once they are used up in production. There

is no production-lag.

Let x; be the total output of sector i, and f;~(x) the amount ofoutput of industry i absorbed

by industry j.The function f;~ might be a function of the one variable x~ only. The net

output of each sector, i. e. the excess of x; over ~~-1 f;~(x) , is available for outside use and

will meet the final demand. Then the overall input-output balance of the whole economy

can be exprnssed in terms of n equations:

x;-~jt~(x)fc~ i-1,...,n

where c; représents the final demand for output i.

Let f represent the vectorvalued function on lt} with components j;, J;(x) - ~~-t j;~(x).

Then the set of n equations can be written as

x-f(x)~c

or simply as

F(x) - c

where F(x) - x- f(x). A generally ackowledged specification on F is that F(0) - 0.

We will call x the (gross) production and c the final demand vector of the input-output

model.

If the model is linear it is assumed that f;~(x) - t;~x~. Let T denote the n x n matrix of

the non-negative technology coefFicients t;~, then the model is described by

(I-T)x-c

An input-output system has a variety of properties of comparative static nature. For

example an increase of the level of production of any sector will correspond with a decrease

of the net-output of any other sector. An increase in the final demand of a sector will

correspond with an increase of the intermediate delivaries. A mathe~natical model will be

called feasible with respect to an input-output model if some of these properties could be

derived.

3 Preliminaries

Throughout this paper R" is the n-dimensional real linear space of columnvectors x

with components x~,...,x,,. The set {1,...,n} will be denoted by N. The vectors
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e; E Rn , i E N are the unit basisvectors with i-th component one and all others zero.

The vector e E Rn is the one-vector with all components one.

By L(Rn) we denote the linear space of real n x n matrices A- L a;i J.

On R" and L(R") we use the coordinatewise partial orderings; that is, if x and y E R",

then

xGy if diEN x;Cy;

xGy if xGyand{i~x;Gy;}~0

xGCy if ViEN x;Gy;.

A vector x~ 0 is called a positive vector and a vector x~ 0 a.s well as a vector x 1 0 is

a non-negative vector. If necessary, in the case of non-negative vectors distinction will be

made by adding the mathematical symbol. Similar definitions and agreements hold for the

inequalities 1, ~, and ~ and for matrices A and B E L(R"). The non-negative orthant

of Rn is denoted by R~.

In Rn we will use the l~-norm, ~~ x ~~oo- max{~ x; ~ ~ i E N} and in L(Rn) the correspond-

ing induced operatornorm, ~~ A ~~~- max{~~-~ ~ a;j ~ ~ á E N}.

Definition ( Principle Subfunction) Consider F: Il,} -a R" aiad letw -(il,...,ik), 1 G

k C n. For a fixed y E Rt we define
- k

1~lWl -{u -(ul,...,uk)T ~~uie;~ f~yjej E R~} C Rk.

7-1 J~W

7'heti h'1Wl : DIWI C IZk ----~ R" i.s a principle subjunction oj F al y E 12,~ ij
k

1'~Wl(u) - F~,(~T~ie~, f~yiei), 7- I,...,k.

i-i i~w

If w-{1,...,k} we will write F~kl in stead of F~~~~ ~ ~kl. If w-{i} the principle subfunction

F1Wl is just the i-th diagonal subfunction ~;; of F at y( see definition ).

4 On M-Matrices and M-Functions

As has been derived in section 2 a matrix that describes a linear input-output model is of

the form A- I-T, where T denotes the non-negative technology-matrix. In literature the

technology-matrix T is often required to be an irreducible matrix, or even a positive matrix.
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Definition ( Irreducible Matrix) A non-negative matrix T is irreducible if, for any two

indices i, j E N there is a sequence of positive elemenls of T of the form {t;;, , t;,;,, ..., t;m~ }.

Irreducibility is a kind of "connectivity conditionn : in the graph associated with the non-

negative matrix there is a path from every vertex to any other vertex. If T is a technology-

matrix it has the economic interpretation that each sector is connected with any other

sector of the economy in the sense of intermediate delivaries.

Since the technologymatrix T is a non-negative matrix it is obvious to study input-output

models with the results of the Perron-Frobenius theory on non-negative matrices. A non-

negative matrix has a non-negative eigenvalue that is at least as largc as the absolute value

of any eigenvalue of the matrix and a non-negative eigenvector corresponding to that eigen-

value. The eigenvalue is called the maximal eigenvalue of the matrix. If the matrix is an

irreducible (non-negative) matrix the maximal eigenvalue is positive and the corresponding

eigenvector is a positive eigenvector, c. f. (4~.

A matrix of the form A- I- T, with 7' ~ 0 is feasible with respect to an input-output if

its inverse A-1 is a non-negative matrix.

Lemma 4.1 Let T E L(R") be a(~ irreductible) non-negative matrix.

!- T is non-singular and (! - T)-~ ~ 0( ~~ 0) if and only if r(T) C 1, where r(T)

denotes the maxima! eigenvalue.

The condition on the maximal eigenvalue, r(T) G 1 , could be related to a condition on the

row (or column-) sums of the technology-matrix T.

Lemma 4.2 LetT E L(Rn) be a non-negative matriz.

a If
n

~ t;~ G 1 , jor each i E N (, all row sums are less than one,~
~-i

then r(7') G 1

(the input-output matrix I- T satisfies the conditions of a slrictly diagonally

dominant matrix).
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b If T is irreducible and

n

~ t;~ C 1 , for each i E N and for at least one i E N slrict inequality holds,
i-i

then r(T ) G 1

(the input-output matrix I- T is an irreducibly diagonally dominant matrizf.

The conditions on the row sums have been given an economic interpretation by several

authors (c. f. [3] or [8] ).

`I'he proof of a. Icmma of this kind is mainly bascd on the existcncc of a non-negative (c.

q. positive) maximal eigenvector of the technology-matrix. However, the eigenvalue the-

ory of 1'erron-I~robenius is not very appropriate for ati extension to nonlinear input-output

models. These deserve a more direct treatment. Moreover, the direct treatment gives us

the opportunity to replace the diagonal dominancy of the technology matrix by the weaker

condition of what will be called weakly irreducible diagonal dominancy.

We will first give the definition of a class of matrices that contains matrices describing a

linear input-output model.

Definition (M-Matrix) A matrix A E L(Rn) is an M-matrix if a;~ C 0, i,j E N, i~

j and A-1 exists and is non-negative.

Unlike the usual definition (c. f. [1] or [4]) the existence of the inverse is included in the def-

inition of an M-matrix, anticipating the theory of non-linear input-output functions. The

`almost' equivalence of the class of M-matrices with input-output rnatrices is given by the

following lemma.

Lemma 4.3 For any M-matrix A there exists a non-negative matrix B with maximal eigen-

value r(B) such that

A- sl - B, where r(B) C s.

Proof:
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Define s- max;{a;;}. Then B- sl - A is a non-negative matrix. Let r(B) be its maximal

eigenvalue and let x be a non-negative eigenvector. We have

Ax - (sl - B)x - (s - r(B))x

and therefore

x - (s - r(B))A-lx.

But x and A-lx are non-negative and s- r(B) ~ 0 , since A is non-singular. Hence

s-r(B)~O,andA-si-B.

It is clear that, if A is an M-matrix, for any x and y E R~, Ax G Ay implies x G y

(having the following economic interpretation in the case A is an input-output matrix: an

increase in the final demand of any sector leads to an increase of the level of production of

at least one sector).

Moreover, the diagonal elements of an M-matrix as well as the diagonal elements of its

inverse A-1 are positive (c. f. lemma A.1) (having the following economic interpretation:

an increase of the final demand of a sector will correspond with an increase of the level of

production of that sector and v. v. ).

In the first theorem of this section we will formulate two conditions for a matrix to be an

M-matrix when the off diagonal elements of the matrix are non positive. The proof of the

theorem is straightforward and not based on the theory of Perron-Frobenius.

Note that. a matrix A is non-singular and its inverse is non-negative, if for any x E Rn :

Ax ~ 0 implies x 1 0.

(a linear function that is injective is bijective , c. f. lemma A.2)

Theorem 4.4 Let A- I a;~ I E L(Rn) with aí~ c 0, i, j E N, i~ j.

Assume that ` 1

- there exists a vector u ~ 0 with Au - v~ 0

- for any i~ J~(v) -{j E N ~ v~ ~ 0} lhere is a sequence oj negative (non-diagonat)

elements {a;;~,...,a;,,,t} with l- l(i) E Jt(v).

Then A is an M-Matrix.

Proof:
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Let Ax ~ 0 for some x E Rn and suppose there exists an index i E N for which x; C 0.

Define the diagonal matrix U - diag(ul,...,un) and the index set Jm;n(U-lx) - {j E N ~

1t~ l xj - minkEN uk lxk~.

If i E Jmin(U-lx) then i E J~(v) or there exists an index j E N with a;j G 0. In the last

case we will prove that j E J,,,;n(U-~x).

Suppose j ~ J,,,;n(U-lx), then u;~x; G u~ lxj and hence a;ju~ lx; ~ a;ju~ l xj. Using the

inequalities u~lx; C uk lxk for any k E N, k~ i and k~ j and thus a;ku; l x; i aikuk lxk,we

find thatn n
~ aikxk - ~ a;kuk(uk lxk)

k-1 k-1

C~ a;kuk(uk txk) } aijuj(u; lx~) G ~ askuk(u. txi) f a;jui(u~ ~xi)
k~j - k~j

n
- (~atkuk)(u~ ~x~) - v;(u~ ~x~) - ~

which is a contradicion.

By the second assumption of the theorem there exists at least one index i E Jm;n(U-lx)

such that i E J~(v). Bnt then x; C 0, v; 1 0 and, for any k E N, u~ ~x; C uk~xk lead to

the contradictionn n
~ aikxk - ~ aikuk(uk lxk)
k-1 k-1

n n n

C~ a:kuk(uk lxk) -~ aikuk(ui lxi) - ~ aikuk(7tk txk - 1t~ t2;) C ~.

k- -l k-1 -
Thus we must ~~ave x; ~ 0 and lience x~ 0.

If in the first assumption of theorem 4.4 u- e, the matrix A is a diagonally dominanl

matrix (c. f. [6] ). Since u is a strictly positive vector a matrix that satisfies the first as-

sumption of theorem 4.4 will still be considered a diagonally dominant matrix.

The second assumption is a weaker form of irreducibility: in the graph that could be as-

sociated with the matrix A there should exist a path from any vertex not in J~(v) to a

vertex in .l~(v). We will call a matrix that satisfies an assumption of this kind a weakly

irreducióle matrix (with respect to a set) .

Definition (Weakly Irreducible) Let J 6e a subse.t of the indexset N.

A matrix A E L(ltn) is weakly irreducible ij there exisls a nota-cmply set J sucla lhal jor any
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i~ J there is a sequence oj non-zero (non-diagonal) elements of A, {a;;, , a;,;, ,..., a;mr }

with 1- 1(i) E J.

A matrix that satisfies both the condition of diagonal dominancy and thc condition of weak

irreducibility is a weakly irreductióly diagonally dominant matrix.

If a matrix T satisfies the conditions of lemma 4.2, the input-output matrix A- I- T

satisfies both assumptions of theorem 4.4 with u- e:

if A- I- T is strictly diagonally dominant, Ae ~ 0 and hence Jt(Ae) - N,

if A- I- T is irreducibly diagonally dominant, Ae ~ 0 and any sector is connected with

any other sector and the required sequence of negative non diagonal elements will surely

exist.

The inverse of a weakly irreducible matrix need not be positive, however, as can be seen by

the following numerical examplc.

Example Consider the matrix T,

000
Gel A- 1- T, where I denotes lhe 3 x 3 unit-malrix, lhen A satisfics the assumplions oj

( jT
theorem .(.4 with u- I 1 1 1 1 and J~(Au) -{2, 3}. Its inverse is the non-negative

matrix L
1 .5 .5

A-1 - 0 1 1 .

0 0 1

If A represents an input-output matrix, weakly irreducibly diagonally dorninancy ( , where

J- Jt(Au) ) has the following economic interpretation :

sin~~c th~, vorLor u is d~~tcrrninr~d :4part frorn a coustanL iL r~~fl~~rl.ti I,hr~ ratio'ti nf Llic levcl

of production of the di(ferent sectors. If any sector i E J~(Au) is called a surplus sector

then the first assumption asserts that at least one sector is a surplus sector. The second

assumption asserts that any non-surplus sector should be connected with a surplus sector

in the sense of intermedíate delivaries. In other words, a matrix is feasible with respect to
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an input-output model if there are surplus sectors and any non-surplus sector is a(probably

indirect) intermediate supplier of a surplus sector.

The conclusion of theorem 4.4 also holds if in the diagonally dominancy assumption of the

theorern the rna.trix A is replaced by the transponed matrix A~~. 'Che assurnptions could

then be given an economic interpretation in terms of the financial profitability of the sec-

tors.

In order to generalize further to non-linear functions we replace the different signs of the el-

ements of an M-matrix A and its inverse A-1 by concepts of monotonicity . The conditions

of the di(frrr~nL concepts can easily be checked in case of the linear function F(x) - Ax ,

where A is an M-matrix.

Definition (monotonicity) Consider a function F: D C R" --~ Rn

a F is isotone (~ antitone) on D if x C y, x, y E D implies that F'(x) G F(y) (

~ h'(x) ~ F(y) ) and slrictly isolone (~ slriclly antilone j if, in addition, it jollows from

x K y, x, y E D that also F(x) K F(y) ( ~ F(x) ~ F(y) )

b F is o„Q-diagonally antitone on D if jor any x E D and for any i, j E N, i~ j,

~;i :{t E R ~ x-l-te~ E D} -. R, ~;~(t) - F;(x~te~) is antitone ( ~;~ is sometimes called

an o,()`-diagonal subfunction of F~

c F is diagonally isotone (~ strictly díagonally isotone ) if jor any x E D and jor any i E N

~;; :{t E R ~ x f te; E D} -. R, ~;;(t) - F;(x {- te;) are isotone (~ strictly isotone ).(

~;; is called the i-th diagonal subfunction oj F.

d F is inverse isotone on D if F(x) C F(y), x,y E D,implies that x G y.

The class of functions that contains the set of off-diagonally antitone functions feasible with

respect an input-output model is the class of M-functions.

Definition (M-function) A function F: D C Rn -~ R" is an M-junction on D ij F

is o„(j'-díagonally antitone and inverse isotone on D
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The next lemma shows that the definition of an M-function represents a generalization of

the M-matrix.

Lemma 4.5 A malrix A E L(It") is an M-malrix iJ and only ij lhc induced rnapping

F : Rn --~ R", F(x) - Ax is an M-Junction.

With respect to the diagonal subfunctions of F the following result hold.

Lemma 4.6 Let F: D C Rn -~ Rn be an M-Junction.

Then I' and F'-~ : Rn ~ R" are strictly diagonally isotone.

ProoJ.-

c. f. Appendix, lemma A.3

Lemma 4.6 has the following economic interpretation: an increase in tlie level of production

of one industrial sector causes an increase in the netoutput of that sector and, conversely,

an increase in the netoutput of one industrial sector causes an increase in the level of pro-

duction of that sector. Because of properties of this kind an M- function will be considered

feasible with respect to an input-output model.

The next theorem is a generalization of theorem 4.4.

Theorem 4.T Let F: R~ -~ R" be an o,Q-diagonally antitone junction.

Assume that

there ezists a positive vector u E R", u~ 0 such that, Jor any x E R~ the Junction

!' : R.t --~ R", 1;(l) - F;(x f tu), i E N , is isotone,

~ J~ -{ j E N ~ Jor any x E R~, P~ is strictly isotone } is not empty

~ jor any i~ J} there exists a chain of strictly antitone ( off-diagonally sub- )Junctons

{~;;,,...,~;m~} where l - !(i) E Jt.

Then F is inverse isotone and hence an M-junction.

ProoJ:
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Let x, y E R~ with Fx C Fy.

Define the diagonal matrix H - diag(ul,...,un) and Q- ~nax{u~ 1(x;-y;) ~ i E N}. Then

U-1(x - y) G ae or x C y-}- au. Notice that o C 0 if and only if x G y.

Suppose o~ 0. Define J„iax(x,y) - {i E N ~ x; - y; f ou;} and, hence, x; C y; ~ ou; if

Z ~ Jmax(x, Y) .

For i E J,nax(x, y) the componentfunction P; is strictly isotone or there exists an (off-

diagonal sub-) function ~;~ that is strictly antitone at x. In the last case we will prove that

7 E Jmax(x, Y).

Suppose j ~ J,,,a~(x, y) in which case x~ G y~ f au~, whereas x; - y; ~- vu;. Because of the

isotony of P; and the strict antitonicity of ~;i we have

F;(x) ~ F;(y) c F;(y f au)

G Fi(yr -1-oul,...,yi-1 } au.i-r,xi~yitl -F~u~fl,.. ,yn ~- au„)

~ Fi(xl,...,xi-1,yi ~ Uu;,...,xn) - F;(x).

Hence j E Jmax(x,Y).

Because of the connectivity condition of the theorem there exists an index i E J,,,az(x, y)

for which the component function P; is strictly isotone. Together with the off-diagonally

antitonicity of F and the assumption a~ 0 we have

F;(x) ~ F;(y) ~ F;(y f ou)

Fi(TJl f Oul,...,yi-1 ~ Dui-1, xi,yitl ~ Quitl,...,yn ~ 01L,y) C ~i(X).

Hence,vCOandxGy.

After the matrix-terminology a function that satisfies the three conditions of theorem 4.7

will be called a weakly irreducióly diagonally isotone junction.

5 On Surjective M-~nctions

In this section we examine the surjectivity of an M-function on R~. Preceding the actual

theorem on a surjective M-function we start with a lemma that replaces surjectivity by

Lhe equivalent concept of order-coerciveness. The function in question is a continuous M-
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function that satisfies the (natural input-output ) condition FO - 0.

Definition (Order-coerciveness)

a For any sequence {xk} C R" we write

lim xk - oo if lim xk - o0
k~~ k~oo

for at least one index i.

6 The function F: R~ --~ Rn is order-ccercive if for any sequence xk C R~

xk G 7Ckf1, ~- 0, 1,..., lim Xk - OO
k-.oo

implies that limk-.oo F(xk) - o0

Lemma 5.1 Let F: R~ --~ Rn be a continuous M-function, F(0) - 0. Then F is

surjective if and only if F is order-ccercive.

Proof..

We will start with the `only if' part.

An M-function is injective and hence in this case bijective. Any sequence {xk} in R~ for

which Fxk G a is bounded since xk G F-la for k- 0, 1, .. .. Hence for a sequence {xk} for

which xk G xktt and limk.-,~ xk - oo must hold limk-,~ Fxk - oo. A surjective function

is therefore order-coercive.

In order to prove that order-coerciveness implies surjectivity we will show first that for any

z E R~ there exists an yo E R~ such that z G Fyo ( then FO G z C Fyo).

From lemma 4.6 we allready know that F is strictly diagonally isotone. We will show that

for any vector x 1 0 and for any i E N limi-.~ F;(x ~ te;) - oo so that F is surjectively

diagonally isotone. Because of the continuity of F it is equivalent to show that for any

vector x E R~, for any sequence {tk}, limk-,a, tk - oo holds limk~~ F;(x ~- tke;) - oo.

Suppose therc exists an x E R~ , an index i E N a.nd a sequence {f.k} C[O,oo) with

limk-,~ lk - oo for which F;(x ~ lke;) G a; G oo. 5upposc lk G l~`f~. 'I'hi~ o(f-diagonal

antitonicity of F implies

F~(x ~ tke;) C F~(x) - a~ G oo, 7~ i, J E N, ~- ~, 1,2,...
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and hence
F(X f ~kei) C 8.

The otder-coerciveness of F leads to the contradiction that the sequence {tk} is bounded.

Therefote F is surjectively diagonally isotone.

Let uo E R~ be an arbitrary point. Define z' E R~ by z; - max{F;(uo),z;}, i E N.

Because F is surjectively diagonally isotone we can solve successively the following set of

equations
.

Fi(lli,...,11k-]~ui~~}1~...,TLn) - Z„ t E N, k- ~, 1,... .

The solution uktl is uni ue and satisfies the followin p ine ualities, q b~ q

uk G uk}1 and F(uk) G z', k- 0, 1,....

Clearly F(uo) G z'. Assume F(uk) G z' for some k~ 0, then

Fi(TL~,...,Tlk l~,u,k}1'u-z}1,...,tln) - zi ~ Fi(uk),

and, because F is strictly diagonally isotone we have uk}I ~ uk, i E N. Because F is

off-diagonally antitone we have

zt - Fi(Tli,...,TLk-l,Tlk}l,uk}1,...,TLn), i E N.

Hrom the ordercoercivity of I' it follows that the increasiug seyuence {uk} is bounded

above and hence convergent. Thus limk~~ uk - yo and by the continuity of F we have

~'(Yu) - z' ~ z.

Now, since there exists a vector 0 G yo for which FO G z C Fyo we can prove the existence

of a vector x E R~ such that Fx - z.

Consider the Jacobi processes (w - 1)

Fi(x~,...,xk 1,xii2tl,...,xn) - zi, i E N, k - Q,1,~--,

with xo - 0 and

Fi(yl,...,yk l,yi,y}1,...,yn) - zi, i E N, k- ~,1,....

Each of these equations has a unique solution, xk}' respectively y;}'. In a simsilar way as

above we prove the following set of inequalities

xo G Xk G Xktl G y,kfl G ~,k G Yo

and
FXk G Z G Fyk.

Assume for some k~ 0

FXk G z G Fyk and Xk ~ yk
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k
then F~(2~,...2k-r,yk}1'zk}r,...,2n) - Z{ i ~{(X )

and F;(yi,...,y;` r,yk}r, y~r, yn) - zi C F;(yk), i E N. I3y the strictly diagonal iso-

tonicity we have

zktl ~ 2k and ykfl C y;`, i E N.

By the off-diagonal antitonicity we have

I'~;(l~, . ,r.k-~,l,T ~~,.. ,xn) J Fi(JI, ',7~k-I~l~7itl,.. ,yk) fnr a.ll l E[x~,y~],

a.ud h~~u~'~~ rA }~ G y~ t~, i E N.

Momovc~r,

k k ktl k k k}~
,~~ - l'i(:Lr,...,2i-r,it ,Sit~,...,2n) i I'i(x ), 2 E N.

The monotonic sequences {xk} and {yk} are bounded and hence convergent. Thus

limk~~ xk - x' and limk~~ yk - y', x' S y'- By the continuity of F we have

F(x') - F(Y') - z.

We now statc the main theorem of this section.

Theorem 5.2 Let F: R~ -~ ltn 6e a continuous , off-diugonully untitone junclion . We

assume lhat

there er.ists u positive vector u E Itn, u 1) 0 such that, for any x E It~ the junction

P: R~ ---~ R.n, P;(t) - F,(x -F tu), i E N , is isotone,

J~ -{ j E N ~ Jor any x E R~, P~ is slriclly isolonc } is nol emply ,

jor any i~ Jt there exists a chain oj ( ofJ'-diayonally sub-) furaclions {~;;,, ...,~;mi}

which , for any x E R~ ,are surjective , strictly isotone and such thul P~ is striclly

isotone and surjective.

Then I' is a surjective M-function.

Proof:

According to theorem ~1.7 an off-diagonally antitone function that satisfies the conditions

of theorem 5.2 is an M-function on R}. According to lemma 5.1 it suífices to show that F

is an ordcr-cocrcive function on Rf.

Consider the sequence {xk} C It~, xk C xktr and limk~~ xk - oo. Suppose there exists
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a vector a E R~ such that F(xk) C a, k- 1,2,..... There exists a subsequence of {xk},

that will be indicated again by {xk}, such that xó- max; zk, k- 1, 2, ... for some fixed

index ia. The index set J~ -{i E N ~ limk-..~ xk - oo} is not empty.

Define the diagonal matrix U - diag(ui,...,un) and consider the subset J~ C J~,

J~ -{i E N ~ 3,Q; E Rsuchthat`dk E N U-rxk C us1(xk -h Q;)e.

For i- io E J~ we have ,Q;o - 0, else p; ~ 0.

With respect to the index set J~ we will prove that there exists an index i E J~ for which

P; is strictly isotone and surjective.

Take an i E J~. If Y; is strictly isotone aud surjective we are ready. Llse 1; is isotone and

there exists an off-diagonal subfunction ~;~ that is ,for any x E R~, surjective and strictly

antitone.

We will show that there exists a constant ,Qi such that u~ r(xk -~ ,Q;) C u~ t(x~ ~~3~) and

hence j E J~.

Suppose for any n E N there exists a number k„ with u~1(xk" f,Q;) ~ u~1(x~" f n). A

subsequence will be created, that will be indicated by {xk} with the property that

Xk C JCktl xk C uí 1(xk -{' Ni)u and x~ C 7Lju~ 1(xk ~ Ni) - k.

Consider the following sequence {yk} C R},

Yk - u; 1(zk f Qt)u - Qte; - ke~.

Then, because ~;~ is strictly antitone,

F;(Yk)
~ F~(ui r(xktr .{. Q;)u - Q~e; - ke~)

G F;(u;r(xkti ~~~)u - Q;e~ -(k -f- 1)ei) - F;(Yk}1)

and , because ~;~ is surjective

lim F;(yktr) - ~
kyoo

Furthermore, F;(xk) ~ F;(yk) and hence limk-,~ F;(xk) - o0

This contradicts the assumption F;(xk) G a; thus j E J~.

By vitue of the connectivity assumption of the theorem we know that there exists an index

i E J~for wich P; is strictly isotone and surjective. Moreover,

n; ~ F;(xk) ~ F:(u; 1(zk f Q;)u - Qte~).

Because P; is ( strictly ) isotone and surjective

sup{t ~t~O,F;((t~-uir(3t)u-Qe;) Ga;}-yC oo.
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Hence xk c u;y, k- 1, 2, ... which contradicts i E J~ C Joo. The assumption that there

exists a vector a such that Fxk C a is false and the conclusion is now that F is order-

coercive and hence a surjective M-function.

6 Comparative Statics

For any ofF-diagonally antitone function that is weakly irreducibly diagonally dominant we

can prove the following theorem.

Theorem 6.1 1et F: lt} --~ It" be an off-diayoiialdy a~tlàlone fuiictáon. Assurne lhal

- for any x E R}, the function P: R~ -~ Rn, P;(t) - F;(x f te), á E N,

is isotone

- J~ -{ j E N ~, for any x E R~, P~ is strictly isotone } is not empty

- for any j~ J~ there exists a chain of ( o,~-diagonally sub-) functions {~;;, ,...,~;m~}

which, for any x E R~, are strictly antátone and such that 1 E Jf.

For each x E R~ and F(x) G F(y) jor some y E R~ (hence x G y) there holds

a for any á E Jt F;x - F;y implies y; - x; G~~ y- x ~~~

b for any i E N F;x - F;y implies y; - x; G ~~ y- x ~~~

or y; - x; -II Y- x ~~oo- yi - x~ áf j E N and ~;~ is stráctly antitone.

c there ezists i E N for which y; - x; -~~ y- x ~~oo and F;x C

(y; - x;)(F;Y - F;x) 1 0.

F':Y (and hcnr,e

Proof:

a Suppose y; - x; - ~~ y- x ~~~. Because i E J~ we have

F;(x) C F;(xf ~~ Y- x ~~~ e) C F;(Y)

which is a contradiction.
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b If y;-x; G~~ y-x ~~~ there is nothing to prove. Assume y; -x; -II Y-x ~~~ and suppose

y; - x; 1 y~ - x~ for j E N where ~;~ is strictly antitone. Because y; - a; ~ yk - xk

for k~ j and ~;~ is strictly antitone we have

F;(x) C Fi(xf II Y- x ~~~ e) C F;ÍY)

which is a contradiction.

c Assume there exists an index i E N for which y; - x; -II Y - x ~~~ and F;x - F;y.

Then i~ J~ and there exists an index j E N for which ~;~ is strictly antitone

and y; - z; -~~ Y- x ~~~- yi - xi. If F~(x) C F~(y) we are ready, else j~ Jt.

According to the connectivity assumptions of the theorem eventually there should

exist an index l E N for which y~ - z~ -~~ Y- x ~~~ and P! is strictly isotone. In that

casc Fj(x) C Fj(y).

If F describes an input-output model and y is the level of production after the demand

F(x) has been increased (until F(y) ) then the conclusions of theorem 6.l have the following

economic interpretation:

- There is no sector with a decreasing level of production.

- The increase in the level of production of a productive sector without a change in the

demand will be less than the maximum of all increments (part a). In the case J- N

the sector with the greatest change (in the absolute sense) in the level of production

has a nonzero increase in the demand.

- If the increase in the level of production of a non-productive sector without a change in

the demand is the maximum of all increments then there should be another sector to

which production that sector is actively contributing. Moreover, the increment of the

other sector also equals the maximum of all increments.

- There is a sector with an increasing demand whose increment in the level of production

is Lh~, niaxirnnm of all incrcmc~nts.
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The following corollary is a direct consequence of property c) of theorem 6.1.

Corollary 8.2 Let F: R~ --~ R" 6e an off-diagonally antitone function, that is J-

irreducibly diagonally isotone where J is the (non-emptyJ set of indices oj strictly isotone

diagonal subfunctions.

If

F(y) - F(x) f ryek where ry~ 0 then yk - xk -II Y- x ~~~

Proof:

Index k is the uniquc index that suits the index i in property c) of thcorem 6.1.

The comparative statics results of this section have been derived for the special case that

u- e. Similar results could easily be obtained in the general case of a positive vector u if

we apply the transformation U-1(y- x, where U- diag(ul,...,u„).

8 Diagonal Dominancy

In section 9 we imposed conditions on an off-diagonally antitone function in order to be an

M-function. 1n the main theorem of that section no differentiability condition was required.

In this section we examine the inverse isotony of an off-diagonally antitone function from

the matrix of derivatives.

In the first part of this section we replace the conditions of lemma 4.2 on the rowsums of the

technology-matrix T by an equivalent statement that enables us to generalize the concept

of diagonal dominancy to non-linear functions.

Theorem 8.1 Consider the matriz A- I-T E L(Rn), where T is a non-negative matrix.

Then the jollowing statements are equivalent:

a dk E N ~~-~ tk~ C 1 (hence A is a strictly diagonally dominant matrix)

b dF E N and `dx E R~,x ~ 0, zk -~~-~ tk~x~ - 0 implies xk GII x ~~„o .



-zo-

Prooj:

If a) holds and for some k E N xk -~j-1 tkjxj - 0, x E R~, x~ 0, then

~ tkjxk G( 1 - tkk)xk - ~ tkjxj C~~ x ~~~ ~ tkj.

j~k j~k j~k
Hence xk GII x ~~~ .
Conversely, if b) holds, assume that for some k E N 1- tkk G~j~k tkj. Then

1- tkk - ~~j~k tkj with 0 C~ C 1. Define x E R~ with xk - 1 and xj -.~, j~ k. Then

~~ x ~~~- xk - 1 and xk -~j-1 tkjxj - 0. This contradicts b) since x~ 0. Hence, a) holds.

Note that the statement in part b) of theorem 8.1 is equivalent to property a) of theo-

rem 6.1 (in the case of a strictly diagonally dominant matrix the set J of strictly isotone

diagonal functions is just the wholc set N).

Because of the equivalence of the two statements in the linear case the statement in part

b) of theorem 8.1 will therefore be used to define a strictly diagonally dominant function.

Definition (Strictly Diagonally Dominant Function) A function F: R~ -~ Rn

is strictly diagonally dominant if jor each k E Nthe k-th component junction of F, Fk, is

strictly dominant with respect to the k-th variable, that ás, jor every x and y E R~, x~ y

Fk(x) - Fk(y) implies that ~ yk - xk ICII Y- x ~~~ ~

Next we state three lemma's preparing a theorem on a differentiable function that is off-

diagonally antitone , whose derivative is a strictly diagonally dominant matrix (see [5] for

a detailed treatment on diagonally dominant functions).

Lemma 8.2 Let F: Rt ---~ R", be an ofj-diagonally antitone and diJJérentiable junction

whose derivative DF(x) is a strictly diagonally dominant matrix on It~. 7'hen F is a

strictly diagonally dominant junction on R}.

Praaf:

Let k E N and Fk(x) - Fk(y) with x~ y E R~. The function ~: [0, 1] -~ lt,

~G(t) - Fk(x -E t(Y - x))

is a differentiable function on [0, 1] with the property that ZG(0) -~(1). According to ltolle's

theorem there exists a to E(0,1) such that
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n

~~(to) -~ Fkj(x f to(Y - x))(yj - zj) - 0
j-1

or, equivalently,

Fkk(x f to(Y - x))(yk - 2k) --~ Fkj(x f t0(Y - x))(yi - Zj)~
j~k

Because DF(x ~- to(y - x)) is a strictly diagonally dominant matrix there holds

Fkk(~o) I yk - xk I C -~ Fkj(~0) I yi - xj I
j~k

~-~ Fkj(~o) I~ Y- x I~oo
j~k

~ Fkk(~0) II Y- x II~,
where ~o - x-~ to(y - x). From wich it follows that

Iyk-xkI~IIY-x~I~.

The next lemma is a generalization of the property that a principal submatrix of a strictly

diagonally domiuaut matrix is a strictly diagonally doruinant matrix.

Lemma 8.3 A principle suófunction of a strictly diagonally dominant function that is o,Q-

diagonally antitone on R~ is a strictly diagonally dominant function.

The proof of lemma 8.3 is an immediate consequence of lemma 8.2 and the remark that a

principle submatrix of a strictly diagonally dominant matrix is a strictly diagonally domi-

nant matrix.

Lemma 8.4 Get F: R} --~ R" 6e a continuous junction.

IJ F is a strietly diagonally dominant and strictly diagonally isotone function on R~ then

`dx,Y E Rt~ x~ Y, 3k - k{x,Y} :(yk - xk)(Fk(Y) - Fk(x)) ~ 0-

ProoJ:

Let k E N and I 2k - yk ~-~I x - Y ~I~ . Because F is strictly diagonally dominant

Fk(x) ~ Fk(Y)-

Assume that yk - 2k ~ 0. Consider the (convex) set

ti~- {ZE Rt IZ~X, Zk-zk-IIZ-XII~}
and ttie function Ilk : K x[0, 1] ---~ R,
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IIk(Z, I) - Hk(X -~ l(Z - X)).

Then

-`dt E[0, 1] the function Hk(., t) is a continuous function on K,

.`dz E K the function Hk(z,.) is a continuous and injective function on [0, 1]:

let s C t, p- x ~ t(z - x) and q- x f s(z - x); then

Pk - 9k - xk -~ t(Zk - 2k) - xk - 9(zk - xk) - (t - ~)lZk - 2k)

-(t - s) II z- x 11~-11 (t - S)(Z - x) Ila
- Ilxft(z-x)-x-(t-s)(Z-x)11~-11p-qll~.

in which case Fk(p) ~ Fk(q) and hence Hk(y, t) ~ Hk(y, s).

For z- x f(yk - ak)ek E K the function Hk(z, .) is strictly isotone, hence b'z E If fik(z, .)

is strictly isotone, especially for z- y:

Fk(x) - Hk(Y, ~) C Hk(Y,1) - FkIY).

Hence (yk - 2k)(Fk(Y) - Fk(x)) ~ ~.

Theorem 8.5 Let F: R~ -~ R" 6e a di,Q'erentàaóle junction that is off-diagonally anti-

tone.

If dx E R~ DF(x) is a strictly diagonally dominanl matrix then F is inverse isotone and

hence an M-function.

Proof:

Let x, y E R~, x~ y and F(x) C F(y).

Define the indexset J~ -{i E N I xt ~ y;} and suppose that J~ ~ 0. Moreover assume

thatJ~-1,...,k, lCkCn.

Consider the principle subfunction FW of F at y with w -(1,...,k),

Fiai(tl,...,tk) - Fi(tle...etk~ykfl,...,yn), ti - 1,...,k.

Since F is an off-diagonally antitone function we have

FW;(YW) - Ft(Y) ? F~(x)

i Fi(x1,...,2k,yk}l,xkt2,...,2,t) i ... i Fi(xl,..-vxk,T.~k}1,...,yn)

- F~, t(xw)-

Hence
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(y; - x;)(Fw;(Yw) - FW;(xw)) C 0, i- 1,..., k.

According to Iernma 8.2 I' is a strictly diagonally dominant function on 1~.} and hence,

according to lemma 8.3 the principle subfunction FW is also a strictly diagonally dominant

tunction.

Since F is a strictly diagonally isotone function the principle subfunction F~, is also

strictly diagonally isotone. Ibllowing lernrna 8.~1 Lhere exists an index 1: - k(xw,yW) E

{ 1, . . . , k}such that

(yk - 2k)(Fw k(Yw) - Fm k(x~)) JO.

This contradicts the forgoing inequality. Ilence J~ - 0 and x C y.

x

A Appendix

Lemma A.1 Let A E L(Rn) 6e an M-matrix.

Then lhe diagonal elemenls oj A and A-r are posilive.

Prooj:

llefine A-r - I b;~ J. Then `di E N a;;b;; - 1-~i~; a;~6~;. Since a;~ C 0, j E N, j~ i

and b;~ G 0, j El N we have a;;b;; ~ 1 from which follows a;; and b;; are positive.

Lemma A.2 Let A E l,(R") and x E R".

Ax ~ 0 impties x 1 0 if and only if A is nonsingular and A-1 ~ 0.

Proof:

Let Ax - 0 for some vector x E Rn. Then Ax ~ 0 and hence x~ 0. Also A(-x) ~ 0

and -x ~ 0 which means that x- 0 and hence A-1 is non-singular. Moreover, since

e; - A(A-le;) ~ 0 we have A-le; 1 0, i E N. Hence A-1 ~ 0.

1.et Ax ~ 0 for some x E R". Since A-1 ~ 0 we have x- A-1(Ax) 1 A-10 - 0.

Lemma A.3 Let F: D C R" --y Rn be an M-function.

Then F and F'r : F(D) C Rn --a R" are strictly diagonally isotone.

Proof:
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1'akc x E ll, i E N and s G t with x f se;,x f le; E U. Supposc F;(x -~ se;) ? h;(x f te;).

The off-diagona] antitonicity then implies F'(x ~ se;) ~ F(x -1- te;. By the inverse isotonic-

ity this leads to the contradiction s 1 t, which shows that F must be strictly diagonally

isotone.

Take y E F(D), i E N and s G t with y~- se;,y f- te; E F(D). The inverse isotonicity of

F implies F-1(y f se;) G F-~(y f te;). Suppose F;~(y f se;) - F;~(y ~ te;). By the

off-diagonal antitonicity this lead to the inequality F;(F-1(y ~- se;)) 1 F;(F-1(y f te;)) or,

equivalently, to the contradiction s~ t. }[ence F~~(y -F se;) G Fi ~(y ~- te;) which shows

that F-~ must be strictly diagonally isotone.

Lemma A.4 Let a E Rn with ai G 0, j ~ i(, i E N is some fixed index,) and aTe ~ 0.

Consider a vector v E R" with aTV - 0.

If aTe ~ 0 then ~ v; ~G~~ v ~~~,

if aTe - 0 then ~ v; ~G~~ v ~~~ or ~ v; ~-~~ ~ ~~oo-~ vi ~ d7 E N with ai G 0.

1'roof:

Let v E R" be such that ~j-1 aivi - 0. Assume that ~~-1 ai ~ O.Tlien

a; ~ v: ~C ~(-ai) ~ vi ~C ~(-ai) ~~ ~ ~~ooG a; ~~ ~ ~~oo
- i~i i~~

from wich follows ~ v; ~G~~ v ~~~.

Lct us assurnc ncxt that ~~-~ ai - 0 and that ~ v; ~-~~ v ~~a,. Supposc that ~ vi ~G~~ v ~~~

for any j E N with ai G 0. Then

a;~~~~~oo-at ~vt ~G~(-ai)~vi ~G~(-ai)~~~~~~
- i~i i~~

from which follows the inequality a; G ~i~;(-ai). This contradicts the assumed equality

on a.
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