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In prtcctice, simulatiom m~dels u.rurrlly na~e responses with vanances that vary with the inputs.

Tlten tlte rtutttber nf observatiotu ( aLso called simulation runs or replications) per combination of

sintulation inputs can he selected such that the variances of the average simulatéon responses

hecome (approxintately) equal; in other words, combinatiotu with high variability rue replicated

ntore often. Tlrese averuge responses can be analyzed through a regression metamodel. To

estintate the regression parameters (or simulation input effects), Weighted Least Sqetares (WLS)

can he appléed WLS becomes identical to Ordinary Least Squares (OLS) applied to the average

cimulution resporues. 8ecrtu.ce the respoiue variances are unknown, they are estimated by

rclxvttinl; the simulrction nuts with different rcuuLotn numbers. 7he e.ctimated response vuriunces

vield the numher nj runs required to nhtain ~pproximately eyual variances per averctge simulation

response. Two rules for selecting the required number of simulation runs are presented namely a

n,~u-.stage arul a sequential rule. The rules are first forma[ized and artalyzed, and then evaluated

through a Motue Carlo experintent. Both proceáures tum out to yield confrdence intervaLr for the

estimated regression parameters that have acceptable coverage probahilities. The seqtiential tule

demrutds more complicated computations to select the number of simulation nucs, but this rule

snves rutt.c.

(Key Words: EXPERIMENTAL DESIGN; METAMODEL; PILOT SAMPLE; STEIN

ESTIMATOR; ITERATIVE PROCEDURE; STOPPING RULE)

I. Introduction

Regression analysis of simulation data gives metamodels, which are gaining increasing

popularity. Nevertheless a number of research issues rémain to be investigated, as Sargent

( 19r) I) witnessez. One iif tho~e issues ,is that it is not known how to satisfy the assumption of

cuna:uit restionse v:~rinnce tiu Ihe variuus comhinations of simutatiun inputs (or factors) thnt

,irr srecificd hy the experiment:~l design (foi example, a 2t" design). In prac[ice the resronse

variances m:ry indeed differ suhstsuitially; for exnmple, Kleijnen, Van den Burg and Van der

F1am (197~1, p. 60) report a simulation case-study in which 16 input combinations give

rstimated variances that rtnge between the values 64 and 93,228. To obtain appropriate run

lengths Sargent uses the guidelines in Whitt (1989). These guidelines, however, are heuristic
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liirmulas to hc used to estim:cte reyuir~d simulation run lengths in the early planning stages

hciiic~~ anv cLct:c h:rvr hern rnllrrtc~~l Morecivcr thr.u fc~rmul:cs :cre entirely for yueuing

modcls. In this p:cper, howevcr, we consid~r seyucntialized (itera[ive ur dynamic) sample size

eleterminsction fur any type of random simulation model. Examples of such models are

provided hy yueuing networks but also by Monte Carlo studies on the robustness of certain

statistics (Kleijnen, 1974~1975, pp. G77-745, presents a Monte Carlo experiment with a

multiple ranking procedure and applies a 2'' design analyzed through OLS). A popular idea

in the simulation field is to ohtain more observations for those input combinations (or

sv,tem variants) that have higher variability. Note that "observations" are also called

"replications" cir "runs" in terminating simulations, and "subruns" in steady-state simulations

(more research is needed fur sample-size selection rules applied to steady-state simulations

analyzed hy renewal analysis and other time-series analyses). Unfortunately, until now the

idea of taking more observations for systems with more noise was never formalized and

analyzed, although Welch (1990) sketches two approaches that resemble our two procedures.

He also roncludes that there is a deep need to investigate sample size selection for regressi-

on metamodels.

We study two sample-size rules (also called stopping rules) that are well-known in the

st:uistics literature: two-stage anct seyuential rules. Based on that literawre we conjecture

that two-stage sampling will he simpler but also less efficient; in other words, sequentializati-

on Ieads to more complicated sample-size selection rules for the users but saves them

simul~ction runs. The statistical analysis of such sample rules is notoriously difficult. We shall

show that an exact formalization of sample-size selection in regression metamodeling is

indeed cumhersome. The statistics literature virtually ignores dynamic sample-size selection

in experimental designs, hecause in real-life experiments it is impossible or difficult to

implement seyuentialization. In computer simulation, however, observa[ions become

:cvailahle in a sequential way, so these selection rules certainly deserve to be investigated. We

hope that our paper will stimulate further analytic:al research on the statistical performance

ul tiample-size selection rules in sirrtulation, and on their implementation in simulation

suftware. In the mean time, our Mnnte Carlo experimental results give simulation users

wme advise un how tu apply the popular idea of taking more observations for noisy input

comhinations.

There :cre sever:cl other approaches to the problem of variance heterogeneity in experi-

ntcnt:cl design, which wr do ncit investigate in detail.
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(;~) Variance heterogr.neity m:~y h~ accepte~ and the :~nalysis may he adjusted, [hat is,

prefixed numbers of ubservutions per input combination are taken and W[.S is used. Our

paper, however, concentrates on an alternative design of the experiment. Of course, each

de.ign requires u concomitant analysis. We shall see that in our design the WLS estimator

can he computed simply hy applying the OLS algorithm to the average response of each

input comhination.

(b) Another alternative is to transform the simulation responses, for example, to take the

logarithm of the response. Such transformations, however, do not always give the desired

ccrostant variances. More~ver, they may fail to give the desired insight into the underlying

simulation moclel. Variance xtahilizing transformations are discussed in many places in

Klcijnen ( I')~i7) (sre its whjecl inclrx un page 427).

(c) The statistics literature also diuusses a prefixed sample-size seleetion rule that has little

appeal to simulation practitioners. This rule assumes that the responses are Normally and

Independently Distrihuted (NID) with constant variances. The user is supposed to test the

null-hypothesis that the inputs have no effects, with prespecified type I and II errors. Then a

fixed s:~mple size can be determined, provided the user also specifies a value for the parame-

ter of the non-central F statistic; see Neter, Wasserman and Kutner (1985, p. 547) and also

Kleijnen (1987, pp. 207-208).

How much help does the literature provide for the issue under investigation? The

statistical literature investigates stopping rules primarily in situations with only one or two

populations (system variants); see the textbooks by Govindarajulu (1981) and Wetherill

(198G) and the handhook edited hy Ghosh and Sen (1991). The simulation literature

concentrates on sample-size selection for a single population; for a sutvey see Kleijnen

(1987).

In the remainder uf this papcr we use the following notation. We assume that n? 2

mpu~ comhinatiems ;ire simulated, ancl that m, the number of replic;ations of combination i

with i- I.....n. is determined seyuentially. Seyuentialization means that during the simulati-

un experiment the responses Y(j ,),,.,, m) are obtained successively, and are used to

estimate the n variances; these estimators are employed in a stopping rule. Once the

simulation experiment has stopped, its data~are analyzed through a Least Syuares metamo-

del. We underline random variahles, hecause the random character of the number of

replications is essential and hecomes explicit in this notation. The simulatian data are

;malvzed through the classic linear reeression model



X - X~ , ~ (l.t)

with the vector uf normally distrihuted simulation responses Y-(Y~,..,,Y )', the matrix of

independent vari:cbles X-(xw) with i- I....,n and q- 1,...,Q, the vector of input effects or

regression parameters p-( p,,..,p )~ , and the vector of fitting error e-(e~,...,en)' ~ we use

hold upper case letters [o denute matrices and bold lower case letters for vec;tors.

The remaínder of this paper is organized as follows. In ~2 we analyze a sample-size

selection rule in case the heterogenous variances were known. This rule gives average

responses with constant variances. The WLS estimator can then be computed through the

familiar OLS algorithm applied to these averages. This estimator is the Best Linear

Unhiased Estimator (BLUE). In ~3 we examine a two-stage sampling plan for regression

metamodels. In stage ~ I we t:cke a pilot sample to estimate the unknown variances. Based

un these estim:ctes we decide how many more responses to simulate for each system variant.

Wc alxo present an cxample (in ~}3.2). In ~4 we present a sequential procedure, that is, after

the pilot sample we take only one ohservation from each combination that has a relatively

large estimated variance for its sample average. We also introduce a novelty: to estimate

variances we use all simulation responses available; we drop certain responses when

estimating means. To illustrate this lirucedure we apply it to the same example as we used in

two-stage sampling (see ~4.2). fn ~? we firs[ specify a Monte Carlo experiment, that is, we

.~lect 27 comhin:ttiuns of three factors, namely (a) the matrix of regression variables X, (b)

the variances uf the individual simulation responses, and (c) the size of the pilot sample

(used to ohtain an initial estimate of these variances). Next we analyze the results of this

Monte Carlo experiment. In Q6 we summarize our results and indicate future research.

2.2.Known Response Variances

In this section (and cmly in this,section) we assume that the response variances ~ are

known. Intuitively it seems wise to cihtain more observations for those input combinations

ihal h:rvr hi~;li vaiialriliry Mcur ~liccilirally, tiuppcisc wc t:ckc

m- c a~ with i- I.....n, (2.1)
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ti~here c is a(common) positive cunstant such that the m, becume integers. This implies that

we assume that the variances QZ are rational numbers; we shall return to the seleetion of c.

'phen the average response of c:ombination i is Y-~m~ Y ~m and has variance

var(Y ) - I ~c (2.2)

The sample-size rule of eq. (2.l) is not necessarily 'optimal' (we shall return to this

issue in the final section, which discusses future research), but it simplifies the regression

analysis of the simulation data, as follows.

It is well-knuwn that in c:tse uf known uneyual variances the unbiased linear estimator

with minimum variance (BLUE) is pruvided by WLS applied to the individual responses Y.
q

It ix simple to prove that this WLS estimator (say) ~ follows from

min ~. (m,lY~ - Y,)'~o1) (2.3)

with the predicted responses y- x~~ where x.~ denotes the i'" row of X so x~' -(x;n-~.~x~ól.

Ey. (2.3) is easily interpreted: cumhination i gets more weight if it is replicated more often

(see m,) ur if it has smaller variance (see ~). The OLS estimator ~ is still unbiased (but not

BLUE) and follows frum

min ~ m,(Y, - Y.)'.
(2.4)

Under condition ( 2.1) we can substitute m;~~ - c into (2.3), so the WLS estimate follows

from

min ~.~ (Y, ' Y,)'.
(2-5)

In other wonls, s:~mplc;-size rule (2.1 ) implies that ~, the WLS estimator computed from the

individual respunses (sre ey. 2.3), is identical to the OLS estimator computed from the

average responses ignoring the number ut' replications (see eqs. 2.4 and 2.5). The latter

algorithm is simpler, su we shall use (2.5).

In summary, the sample size rule (2.1) gives average responses with constant variances.

The WLS estimator can be computed through the familiar OLS algorithm applied to these
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averages. This estimator is BLUE.

3. 7~virstage Sampling

In practice the response variances are unknown, so we must estimate ~ and hence m;

in ey. (2.1). Many sampling schemes are conceivable: two-stage ( leading to so-called Stein

estimators), multistage, and seyuential schemes. In this section we concentrate on a two-

stage proredure. In ~ 3.1 we give some elementary theory; in ~ 3.2 we give a simple example.

.;.1 Tlteory

In stage ~ 1 we take a pilot sample of mo ~ 2 responses from each input combination.

Then we compute the n classic variance estimators

S?(ma) - [.,,; (Y~~' Y,(mo))`~(mo-l)

with the sample average of combination i(computed from mo simulation runs)

Y,(mo) - ~~; Y, ~mo . (3.2)

Because sample size is a crucial variahle in our study, we explicitly show the dependence of

the various estimators on the sample size. Different values for the size of the pilot sample

will he investigated in our Munte Carlii experiment (see ~5).

Now we use (2. I), the s:imple-size formula for known variances. In that equation we

replace the variances hy the estimators defined in (3.1). Moreover, if we would require (2.1)

tei huld exactly, then the m, might he very large integers. 'Nearly' constant variances require

smaller integers. So we decide to take, no additional observations from the combination with

the smallest estimated variance; (Welch, 1990, p. 393 proposes a similar approach). For the

other combinations we estimate the reyuired~number of observations through

m - [m~ s'(mo)~ min sj,(mo)), (3.3)
ISi~Sn
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where [xJ denotes the integer clo,est to x. In stage ~2 we take ~- mo additional observati-

ons from combination i(so at the end of stage ~2 we have ~ responses from system

variant i; at least one system variant has exactly mo responses). We use all observations from

a particular system variant to estimate the mean and the variance of the response of that

system:

Y(m,) - ~.~Y,~tfi.

and

s?(m,) - ~~; (Y„ - Y (fi,))' ~ (m - I). (3.5)

We shaU need the foUowing properties of these estimators for the n means and n variances

respectively. The estimator of the expected simulation response is the average of a random

number of responses, that is, it is a ratio estimator. In general, ratio estimators are hiased

(rememher renewal analysis of simulation output). However, our estimator (3.4) remains

imhiased, undrr ciur assumpticin cif nr,rmally distrihuted simulation responses, as we pmve as

follows. For a fixed sample size the estimators of the mean and the variance are independent

il and only iF the reslxinses are normally distributed; see Mathai and Pedetzoli (1977). 77te

denominator m of (3.4) depends on the estimated variances s2(mo) through (3.3), but these

s'(ma) are independent of Y(m). This yields:

E(y(m )) - E 4 E(y(m ) ~ m- m,)) - E(x' ~) - x' ~.

However, the estimator of the vari.~nce of the sample average

var(Y,(m,)) - L,,; (Y,~ - Y ~m,))~~ (( m, - 1)fi }

(3.6)

(3.7)

is hiased, as we prove as follows. If we condition on all variance estimates s?(mo) -and hence

cm m- then we can prewe (see appendix I) that

E{s'(m,) ~ s~(m~) - s,?(m„)I - .,1(mo) y{a? - s,:(mo)}(~~ - ma)Ifi, . (3.8)



n

~I~his cquation means that s?(m ) un~erestimates the true variance ~: if s~(mo) happens to

he small, then no more ohservations are taken in the second stage (fi - mo) so this

underestimate is not recomputed. If s z(mp) happens to be large, then more observations are

taken, so the overestimate is recomputed. Averaging over both possibilities shows that the

variance estimator s!(m ) underestimates ~. Note that the combination with the smallest

(true) variance is prohahly the comhination with the smallest number of observations; it is

also the romhinatiun that can he estimated hest (hecause var(sj) - 2a'~(m-l)). Finally,

vàr(y (m )) is hi;tsed because it equals sj(m ) ~~, which has a numerator that underestima-

tes, and a denominator that is random (see eq. 3.7). Whether this bias is important, will be

rxaminrii in ~wr Miimr ('arln cxtirrimcnt. A~ thcsc derivations illustrate, many statistical

lirutirrtie. that are known fcir fixecl samhle sizes, must he re-evaluated for random sample

sizcx.

Ohviously thr estimatecl vari:~nces computed at the end of stage ~2 may differ

suhstantially. The two-stage prcxedure, however, accepts this variance heterogeneity (whereas

the sequential procedure realizes a common estímated variance of the sample averages, at

the time the simulation stops, as we shall see in ~4).

Finally we ohtain the WLS estimators for the regression parameters. Equation (2.5)

showed how to rompute the WLS estimator ~ for fixed sample sizes and known response

variances. 't'his equation incpires u~ tci estimate the regression parameters in two-stage

s:~mpling thruugh

É(m)-(X~ X)-~X~ Y(m) (3.9)

with m-(mo, m,..., m)' the vector uf nt I sample sizes and r(~) the vector of n sample

means defined in (3.4). This regression estimator is unbiased because (as we saw in eq. 3.6)

the response averages Y(m) are unhi;tsed. Its covariance matrix is

cuv(~(rh)) - (X~ X) ~X' cov(Y(m))X(X' X) ~ . (3.10)

where cttv(Y(m)) denutes the covari;~nre matrix of the average responses at the end of stage

~2. To estimate c~w(~(m)) we need [o estimate cov(Y(m)). The simulation user can not

Cstimnte the covariances among the sample averages, from a single simulation experiment.

Therefore we assume these covariances to he zero. We will investigate this assumption in the



Montc C:;~rlu experiment. "I'he user can estimate the variances of the sample means through

(3.7). Sii wc assume c~w(Y(m)) to he a diagonal matrix with elements defined by (3.7). Since

users know X, they can compute ~v(~(m)) through the sample analogue of (3.10).

The square roots of the diagonal elements of ~v(~(m)) give the ' standard errors'

(estimated standard deviations) of ~(with q-1,..., Q), the individual estimated regression
,,

parameters. To obtain confidence intervals for ~ we propose the classic Student statistic t~.
9

Whut is the currect numher oj degrees oj freedom u? Scheffé (1970, p. 1502) proposes

u- min (m, - t) in his study of a case with only two populations (n - 2: Behrens-Fisher

prublem); see Dudewicz and Mishra (1988, pp. 503-514) and Kleijnen (1974~1975, p. 472).

Further, Kleijnen, Cremers and Van Belle (1985) study regression metamodels with fixed

and equal samrle sizes ni - m, and investigate several degrees af freedam, namely

min (m, - I). ~(m, - I) ~~nd infinity ( tm is a standard normal variate, say, z). In two-

stage (and sequential) experiments ~~, (m - t) is high. Therefore we restrict ourselves to

min (m, - I) - m~ - I and infinity. Note that MacNair and Welch (1991, p.824) also reduce

the degrees of freedom of' the t statistic in order to realize good coverage probabilities of

thcir tiequential prcxedurr. alheit for a situation with a single population (n - 1). Fortuna-

tely, our choice implies non-stochastic u. This results in the 1 - a confidence intervals

p(tn) t t~'` vfir(ji4(rn)) with q -1,...,Q. (3.11)

In the Monte Carlo experiment we shall investigate whether these intervals cover the true

values with prescrihed prohahility of I- a. Note that joint confidence intervals can be

derived from the individual confidence intervals by applying Bonferroni's inequality.

.3.1 Example

To illustrate two-stage sampling we could use the M~M~I yueue as Sargent ( l991) did.

However, we would then h:tve to ,rely on the asymptotic normality of the simutation

responses. Moreover, the metamodel would then have specification error; in other words, the

fitting errors would not have zero expectation so the estimator of the regression effects~

wi,uld he hiased. Therefore we conduct a Monte Carlo experiment with perfectly normal

'simulation' response~ and with fitting errors that have zero expectation ( in future research

we can explore the robustness of two-stage regression analysis with respect to nonnormality
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and the validation of such metamodels). We consider an example with two simulation inputs.

Suppase that all inputs have effects of t l; the overall mean (or intercept, often denoted by

p~, hut in this paper denoted by p) is also t 1(so a- pz - a~ - 1). We use a 2' design to

specify the four input combinations of the 'simulation'. So X in (1.1) has column 1 with all

elements eyual to I; column 2 with elements -l, l, -1 , 1; column 3 with -l, -1, 1, and 1.

(Conseyuently the expected value uf the first combination isE(y~) - x' ~~ - p~ -p2- p, --1.)

For the response variances we select the values 1, 4, 8, 11.38 respectively(d - 1, ... , o; - 11.38).

The pilot sample-size is 25 (ma - 25). To save space we do not display the m, individual

responses for the four combina[ions, but we mention only that the responses in combination

1 range hetween -2.25 :ind t 1.32. Their average is -0.54G and their estimated sample

variance is 11.2i113 (so this part uf the Monte Carlo simulation program seems correct). For

the other three comhinations we get the following sample estimators: sI(mo) - 4.915,s~(mo)

- 8.81G, and sl(R~~) - 18.G15 (comparing these estimates with the true variances, we

conclude th:tt this part of the computer program seems indeed without hugs). These variance

estimates imply that the number of additional responses to be taken in stage ~2, are 0, 128,

249, and 554 respectively (for example, fi~ - mo -[25(18.615~0.803)] - 25 - 554). After

taking these extra iihservations we get y(m~-25) --(1-546, y:(m~-1S3) - 0.~)00, y,(m,-274)

-(le~e~7 and y~(m~-g7g) - 2,873. The estimated variances of these averages are 0.03213,

(1.112492, (1.028ti11, and (L02283. "The cstimates of the regression parameten are 1.056, O.R31,

and (l.ti7i) (remember that their true values are 1). Their estimated variances are 0.007 for all

three parameters. Hence their standard errors are 0.08. How about the confidence intervals?

Let us concentrate un the tightest interval, namely the interval based on the normal

approximation (u -~) and a high value for the type I error, say a- 0.10. Then the 1-a~2

yuantile of' z is Z~ ~- I.f,45. The upper hound of the 90o1n confidence interval for p, (which

is the parameter with the large,t deviation from its expected value) is then 0.831 t

( L645)(0.08) - 0.')(i, which dues not cover the true value. Is this bad luck'? Does this also

h:qilien wht:n user~ select a luwer type I error rate and other degrees of freedom for the t

statistic? We also wonder whether the,two-stage procedure achieves its goal of (approximate-

ly) constant variances for the average responses. These and other questions will be answered

in the section on the Monte Carlo experimerít.
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J. 5equential Sampling

The first stage of seyuential sampling is identical to stage ~1 of two-stage sampling. So

we take a pilot sample of size mo from each of the n combinations and estimate the n

respnnse variances [hrough (3. I). We use these variance estimators ~~(mo) to obtain our first

rstimators of the required number of replications m; see (3.3). Whereas under two-stage

sampling we jump ahead and ohtain fi- tno observations, we now proceed more cautiously:

for each population with m~ ma we obtain a single new response.

After we h:rve acyuired one new simulation output for each system variant -except for

the system with the smallest estimated response variance after the pilot stage- we recompute

all estimated response variances. To estimate the variance ~ at a particular stage we use all

responses from comhination i that are available at that stage. L.et m denote the number of
-Y

responses from comhination i available after stage t. The total number of stages at the end

uf thC seyuential prcxedure is not known beforehand; it is a random variable, which we

denote hy T(su t runs from l through T; for t- 1 we have m~ - mo). Hence we replace

(3.s) hy

ti'(m~) - ~,;~' (Y,~ -Y,(m,~))1 I (m,~-1) . (a. l )

where (analogous to ey. 3.4) Y(mH) denotes the average computed from the availablem
-.

responses. Note that Kleijnen and Van Groenendaal (1992, pp. 12-13) discuss the numerical

accuracy of different algorithms for the computation and updating of estimated means and

varianres.

In each stage we re-estimate the required number of replications, using the most

recent update of the variance estimate, which was defined in (4.1). We continue until (for

the first time) the desired numher of replications does not exceed the available numher, for

all n system variants simulated:

`d:m 5 m--~. -n
(4.2)

So T clenotes the minimum numher of stages for which condition ( 4.2) holds. Once we have

stopped generating simulation responses, we use a regression metamodel to analyze the

simulation data.
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A novelty of our sequential procedure is the distinction we introduce between m, the
-.

numher of available responses for combination i in stage t, and ~, the estimator of the
-.

numlxr ~if responscs fur ciimhinatiim í in stage t that is necCSS:~ry to realize nearly constant

respunse variances. ~fu use the sim~ile fiirmula (2.5) (which leads to eys. 3.') and 4.3) for our

estimators of ~ we assumecl that the s:~mple averages have constant variances; in other

words, we estimate the expected simulation responses g(Y ) from ~ responses. However, to
~

estímate the nuisance parameters d we use as much information as possible, that is, we use

m observations (also see ey. 4.6). [n practice, the difference between m and m is
-M ~ÍI ~ÍI

negligible at the e~td of the sequential procedure (t - T), because s~(m~) changes only slowly

(also see the experimental data in Table 1).

Note that our 'novelty' iti reminiscent of a technique devised by Scheffé in 1943 for the

drrivation ~~f :~n cxact cunfidence interval for the differenc:c; between the means of two

normal pupulatiuns with unequal variances (Behrens-Fisher problem). He used aU observa-

tions when estimating the mean of the population with the largest sample. His variance

estimator, however, used fewer ohservations (such that hoth populations have equal sample

sizex). We Cstimate the mean, not the variance, from fewer observations; moreover we

rxtend his idea to regressiun analysis. For a further disc:ussion of Scheffé's procedure we

relcr tu Kleijncn ( I'17d~ 1~J7i, ~i. 473).

Our WLS estimator based un a sequentially determined number of simulation

responses is

~(~) - (X' x)-'x~ Y(mr) (4.3)

with m~ -(m~, m T..., m~~)' the vector of (nt I) sample sizes and Y(~ the vector of n

sample meam

Y,(m,r) " ~~~ Y„ ~ m;~ '

This regression estimator is unhiased under normality; see (3.6). Its covariance matrix is

cn~(~(m~)) - (x' x)-'x' cnv(Y(m~))X(X' x)-' .

(4.4)

(4.5)

where cttv(Y(~)) denotes thc covariance matrix of the average responses at the end of stage
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response, at thr rnd uf thr sequential prcxedure. We estimate the variances of the sample

means through

vár(y,(m;~)) - ?',(m;~) I m,,
(a.~)

where the variance of an individual simulation response is estimated from all m available
-T

ohservations (see eq. 4. I), whereas the estimated variance of the average response accounts

for the fact th:tt this average uses only fi responses ( see the denominator of eq. 4.6). This
-T

estimator is hiased (see the discussion of eq. 3.7), but this bias may be negligible in large

,:tmples ( see the Monte Carlo experiment). We further assume that our sequential procedu-

rr indeed yields an (approximatefy) common variance for the averages Y(~T). Our sequenti-

al prcxedure implies that the n variance estimates of (4.fi) are indeed virtually the same at t

- T(we continue until these estimates are essentially equal). Therefore we estimate this

common variance by pnolin~~ ihese n variance estimators:

ti - ~, var(Y ím,-r))~n .

Hence (4.5) reduces to a simple and familiar formula:

cirv(~(m,~)) - ti~(R~ R)-~ .

(4.7)

(4.8)

Note tha[ X is often orthogonal in well-designed simulation experiments, as the

ex:imple in ~ 3.2 demonstrated. Then the individual regression estimators become uncorrela-

ted with cunstant estimated variances t~n, These properties, however, are not essential for

ciur :~ppruach.

To ohtain confidence intervals ti~r pq we use the Student statistic t~, as in two-stage

sampling. Wr again restrict ourselves to degrees of freedom equa) tomin (tA,- 1) - m, - t

:ind infinity respectively. T~his results in the 1- a confidence intervals of (3.11) where we

replace m by m. In the Monte Carlo éxperiment we shall investigate whether these

interv:tls cover the true values with prescribed probability of 1- a, but first we illustrate

seyuential s:impling through an example.
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4.2 An F.xanrp(e

We consieler the same example as in ~3.2 on two-stage sampling. The pilot sample-size

is again 25 (ma - 25); that is, we obtain the same number of responses as in stage ~ 1 of the

two-stage procedure. However, we use different pseudorandom number streams for the two

sampling procedures ( the pseudorandom numbers would get out of step: synchronization

prohlem; see Kleijnen, 1974~ 1975, p. 202). We get the following variance estimates: s~(mo) -

L 165, s~~(ma) - 2.tiR I, s~(mo) -7.495, and s~ ( mo) - 5.849 ( remember that ~ - 1,~- 4.

o; - 8. o; - I1.38 so the pilot sample wrongly suggests that the variance of system 3 is

largest). These variance estimates imply that we take one new observation from combinati-

ons 2, 3, and 4 respectively. After taking these extra observations we gety(fi~ - 25) --0.782,

y(fi, - 26) - 0.945, y(fi, - 2G) - L661, y(r4t~ - 26) - 3.147. The re-estimated variances

of the individual responses are L 165, 2.967, 7.228, and 6.201 ( these updates lag behind).

These variance estimates imply estimated required sample sizes of 25, 64, 155, and 133. So

we take one more ohservation from combinations 2, 3, and 4. And so on. Tabte 1 gives some

more data.

INSERT TABLEI

As this table shows, after 221 stages the available numbers of observations are at least as big

as the reyuired numbers. For example, for combination 4 there are 25 responses from the

pilot s:rmp(c (sr.rge Ar I) liluz 220 resrunses from stage Ar2 through stabc ~221, which adcls up

to 24~ responses (at the end of stage ~220 we estimate that [(1 L4461~ 1.1G5)25J - 24G

responses are reyuired for comhinatiun 4, and this number 246 is entered under stage 221; at

the end of st~rge ~221 we compute m~ -[(11.405~1.165)25] - 245 and stop). So condition

(4.2) is met and we stop sampling. For combination 2 the mean simulation response is

estimated from 89 (not 90) responses. In stage ~65 this number of responses was reached;

then the estimated mean was I.Oi4 (not 1.012, which is the estimated mean in stage ~6G).

The variance is estimated frurn all 90 observations, and equals 4.156. At the end of the

sequential prcx:edure the estimated variances of the four average responses are 0.04GG2,

Il.(WGG9, 0.04G64, and 0.(14G~5 (for example 11.405~245 - 0.04655), so these values are

indeed 'approximately' eyual. Their average is 0.04663. The estimates of the regression

parameters are 0.9G4. 0.883, and 0.848 (their true values are 1). Their estimated variances
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are 0.012 for all three parameters. Hence their standard errors are 0.11. The tightest

confidence interval is hased an the normal approximation and a- 0.10 (so Z~tj - 1.G45 ).

The upper hound of the 9001o confidence interval for ~, (which is the parameter with the

largest deviation from its expected value) is then 0.848 t(1.645)(0.11) - 1.03, so the

interval covers the true value (~~ - t).

Let us compare these results with those of the two-stage procedure (which are

independent, as we saw above). The total number of simulation responses is 1031 in two-

stage sampling :~nd 503 in seyuential sampling. Consequently the estimated variances of the

estim:tted regression parameters is larger in sequential sampling: 0.012 versus 0.007. A

criterion for comparing the two procedures may be vdr(ba) x~.~ mT. which equals 55

(- 0.1Ix~03) for seyuential and 82 (- 0.08x1031) for two-stage sampling. So sequential

sampling seems better. Are the results of this example accidental? This question will be

answered in the next section.

5. Munte Carlo Experiment

In ~5.1 we specify the design of our Monte Carlo experiment; in ~5.2 we present the

resulting output.

S.l Mrnue Carlo input.r

In uur Munte Carlo experiment we use nearly the same inputs as in Kleijnen, Cremers

:ind Van Belle (1985), who studied fixed sample sizes. So we have the fotlowing four X

matrices.

(a) X is :t 2~'design including all six maín effects, only six two-factor interactions, and

the intercept ( IG combinations to estimate 13 effects).

(h) X is an R x 4 matrix following from a 2' design (with three main effects and po).

Note that X is a suhm:~trix of X in (a).

(c) X folluws from a 2'design, and'is used in the examples of the preceding two

tiections.

We comhine these three matrices with different degrees of variance heterogeneity

yuantified hy
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II - 1m:rx(o') - min(o;)f~min(a;) .

Wr lix II :rt thc v:rlurs 11, 4, :rntJ (ruughly) I I. ~I~hc individual respunsc variances ~:rre

shown in appendix 2:rnd are also taken from Kleijnen et al. (1985, p. 95). We assume that

the simulation practitioner does not use common random numbers; hence rov(Y), the

covariance matrix of the individual simulation responses, is diagonal.

We further use the a values of Kleijnen et al. (1985, p. 95). The precise values ofp

do not affect the interpretation of the Monte Carlo experiment; so we move p to appendix

~

We study different sizes of mo, the pilot sample, namely 4, 9 and 25.

We repeat each of the 27 (- 3') Monte Carlo cases (specified by X, rov(Y), and m,)

1~0 times, since in Kleijnen et al. (1985) 150 'macroreplications' reduce noise so much that

clear patterns emerge from the Monte Carlo experiment.

We use the NAG (Numerical Algorithms Group) multiplicative pseudorandom number

grnera[or, which has multiplier 13" and modulo 2w. All 27 cases use different pseudorandom

numher streams (we continue a next case where we stopped the preceding case). The initial

seed is selected randomly (using the computer's internal clock).

~.2 Monte Car[o Output

In the discussion of the examples in ~3.2 and ~4.2 we have already mentioned some

outputs that seem to confirm the correctness of parts of our computer program.

Before we present the estimated coverage probabilities of the two sampling proce-

dures, we mention some intemtediate results that we obtained by repeating the examples in

~1.2 and ~4.2 I50 times using independent pseudorandom numbers. (Those examp{es refer to

only one of the 27 cases, whereas the coverage probabilities are investigated for all 27 cases.)

First we test whether y(m ), the average response of combination i at the end of the

two-stage procedure, is nornialty distributed. We use the 150 observations on Y(fi ) to form

:r histogram with 14 classes. We know the mean, but we must estimate the variance of' these

eihservatiuns. Sci wr usr a chi-syuarr sartistic fur goodness of fit with 12 degrees of freedom.

Wr irzt, at :r type 1 rrrur rate of (1.05 and 0.025, whether the histogram fits a normal

distrihution. I~or none cif the fuur comhinations we rejec[ the null-hypothesis. The same

conclusion ( normal averages) holds for sequential sampling.
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Our Muntc Carlo ex~i~riment givcs unbiased estimators of v,tr(y ( rft )), the variunc.e of

rhe sumple uvrrol;r of combination i at the end of the two-stage procedure, and of their

covariancex:

cSv(Y (m ) . Y~(m~)) - ~,.~ r„(m,) - Y ~m,)} {-Yr(m ) - Y (m~)l~149 (5.2)

with

Y~fi)- ~.~Y„(fi,)~150.
(5.3)

We emphasize that simulation practitioners can not compute these estimators, since they

execute their simulation experiments only once ( not 150 times as in our Monte Carlo

experiment). They do compute v~r(y( rrt )), the estimated variance of Y(~ ), which is biased

(see the discussion below ey. 3.7). The example in ~3.2 gave one observation on the latter

estimator, for each of the four combinations of simulation inputs: 0.032, 0.025, 0.029, and

0.023. The unbiased estimator (~.2) yields 0.038, 0.052, 0.051, and 0.044 for these four

cnmhinations. We wish tci test whether these differences are significant. Therefore we

compare v3r(Y (m )), the average value of the I50 realizations of the simulationist's

~stimator, with cw(y (m ), y(m )). the one value obtained after our 150 Monte Carlo

experiments, which follows from ( ~.2) upon replacing j by i. Note that we use the symbol

ct3v(Y (m ) Y(m )) to avoid confusion with v~r(Y( fi )) defined in (3.7). It is well known that

the variance of the variance estimated from n observations on a normally distributed variable

with variance (say) ~ is 2o'~(n-I). Therefore we compute the statistic

z-

with

{var(Y (fi )) - cev(Y~'~;),Y ~~;))} (5.4)
~.~ {v~r(Y (m )), - v~r(Y (m )}~~(149x150) t 2 c8v(Y ~t4t;),Y(tfi ))Z~150

.~ , ,

vnr(y.(m.)) ' ~,wvar(Y,(d~,)).~IiO
(5.5)

Note that the last factor of (3.4) is I50: although E(s') -~, we know that E(s') . o' ~ the

exact value of this factor is rather arbitrary. For the four combinations we obtain the

following values for this z: 0.502, -1.631, -1.267, and -0.188. We assume that (5.4) indeed gives
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:c standard normal variable. Then none of these values is signiCicant at type I error rates of

(1.1O. (1.05, cx 0.01. So these results su~est that there is no significant bias. For the sequential

prcxedure we get -(LG75, -2.313, -1.067, and -0.545, so only one z value is significant at type I

error rates of 0.10 and 0.05. This one case does not suggest that the variance estimator for

the average .imulation response at the end of the procedure (two-stage or sequential) is

hia,eel, c:ven thuugh it ignores the random character of the sample sizes.

The simulationist ran nc,t estimate the correlations among the sample averages, from a

single simulatiun experiment. "1'hc:reforc we assumed them to be zeru. This assumptiun can

he investigated in the Monte Carlo experiment. The estimated correlations range between

-0.125 and t 0.099 in two-stage sampling, and between -0.133 and f 0.107 in sequential

sampling, so they may indeed he assumed zero.

Our estimator of ~(the regression parameters) is a linear transformation of the vector

of average simulation responses at the end of the procedure. So we expect this estimator to

he nonna!!y distrihuted. The chi-syuare goodness of fit test is indeed not signitïcant, neither

in two-stage nor in seyuential sampling.

Next we ask whether the Studentized ~ has indeed a t distribution; see (3.11). (n the
4

discussion of this distrihution we proposed degrees of freedom equal to m, - 1- 24. So we

determine the histogram of t,,, ngain with 14 classes, which leads to a chi-square statistic with

13 elegrees cif freeclum. For nune cif the three regression parameters X~~ is significant. The

s.cme conclusion (~ is distrihuted like t ) holds for the sequential procedure.
v -~ro-~

Simulation practitíoners, however, use only the taiLs of the t distribution. So the

distrihution of the Studentized (f estimator may resemble a t distribution, but their critical

values (such as the .c)0 cluantile) may differ significantly. This takes us to the final output of

our Monte Carlo experiment, the estimated coverage probabiliry. So we consider two-sided 1-

cr confidence intervals for p based on the tabulated 1- a~2 quantile (say) t~~~~ of the

Stuclent st:~tistir t with t, - ni - I and u- oo respectively. We suppose that simulationists

use one of thC following classic values: n- O.OI, 0.05 or 0.10. F.ach of the l50 Monte Carlo

repetitions yielels one cunfidence intc~rval per regression parameter p, given a value fora
a

and u. So we can check if that interval covers the true value ~. If the interval does not
4

cover the true parameter value, then we score (say) a one; otherwise a zero. So we obtain a

hinomial variable ~ based on I50 ohservations. In this way we estimate the expected

coverage of the confidence interval: is this value 1- a'!

We formulate a one-sieled null-hypothesis:
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Hó: E(~) 5 a versus H~: E(~) - a- (S.G)

The alternative hypothesis means that the coverage probability is smaller than the nominal

one, that is, the confidence intervals are too tight.

Note that we also test the related two-sided hypothesis

Ha: E(~) - a versus H,: E(~) ~ a- (5.7)

This test gives similar conclusions. So in this paper we concentrate on the one-sided null-

hypothesis.

It is convenient to approximate the binomial distribution of ~ through the normal

distribution N(a, a( I-a)~ 150) with a defined by (S.tí).

A cumplic:~tion is that there are Q parameters p: the more parameters, the more
9

likely it is that we find some estimated coverage probability deviating from its expected value

hy pure chance. Therefore we apply Bunferroni's inequality, that is, we test H, with a type-[

error rate of O.t)S~Q so that the experimentwise error rate is 0.05 at most (see Kleijnen,

1987, p. 42).

In the Monte Carlo experiment we consider confidence intervals for ~ with a is 0,01,
9

0.0~ and 0.10, while the degrees of freedom are mo - 1 and infinity respectively. For the

two-stage procedure with mo - ) degrees of freedom we reject Ha in none of the 27 cases,

with the exception of one case. In the latter case we have mo - 25 and a - 0.10 (in this

case the one-sided hypothesis is rejected, whereas the two-sided hypothesis is not). So we

cunclude that, in general, coverage intervals based on the t distribution with mo - l degrees

of freedom give estimated coverage probabilities that are not significantly lower than their

nominal value l - a.

When the confidence interval for p uses the normal distribution (which gives tighter
y

interv:~ls), then the estimated cuverage probabilities are significantly smaller than their

nominal values. whatever a value the simulationist uses ( l, 5, or l0 oIo); that is, in most cases

we reject ll,,. For a'Iarge' )iilot samhle (mo - 25) the t statistic with ma - 1 degrees of

freedom approaches the standard normal distribution. Indeed for those cases the estimated

coverage probahilities are often not significantly smaller than the nominal values.

For the sequential procedure we get similar results. In other words, cont"idence

intervals hased on the standard normal distribution give too tight confidence intervals, in
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grnrr:~l. Ezceptions are c:~ses with laree pilot-samples (then there is not much difference

Itltwe~n the stanJarJ nurmal anJ the: t distribution with mo - 1 degrees of freedom). '1'he t

distribution with m, - I Jegrees of freedom gives confidence intervals with acxeptable

estimated cuverage prohahilities, except in two of the ~)I situations (27 Monte Carlo cases,

each evaluated for three a values). Actually these two situations count as one situation, since

they concern the same case with Ha tested for a is 0.05 and 0.10.

Because both the two-stage and the sequential procedure give acceptable coverage

prohahilities (for the confidence intervals for the regression parameters pq), we next

compare their statisticnl efficiency measured through the expected number of simulation

rrsponses Y. Su we uhserve m for the two-stage procedure and fiT for the sequential

pnxedure. We do this for all 27 cases, and repeat this 300 times. So for each case we obtain

the averige number of simulatiun responses. [n 20 of the 27 cases, two-stage sampling

reyuires more simulation responses, which according to the sign test is statistically significant

at a type I error rate of O.OS or higher.

6. Cunclusiuns and Further Research

We examined two procedurrs for determining the number of simulation responses

(replications) per cumbination of simulation inputs, such that the variances of the average

responses become 'approximately' constant. The first procedure is a two-stage rule; the

second one is seyuential. We use Weighted Least Squares estimators to estimate the Q

rcgrestiiun parameters (input effects) R(with y- 1,...,Q) from the average simulation

re,liunses at th~~ rncl ul the samlile size selection rule. "1'hese regression estimators are

unhiased. Confidence intervals for (iy are too tight, when we use the standard normal

variahle. These intervals have acceptable coverage probabilities when we use the Student

statistic with elrgrees of freedom cyual to m~ 1 where mo denotes the pilot sample size. These

ronclusionx hold for both the two-stage and the sequential procedure. The two-stage

pnx~rilure is r:nirr lu unilrrstand anil easirr tu prugram and implement. Flowever, Ihe

~eyuential rutc r~yuires lewrr simulatiun responses.

For the seyuential appruach we introduced a novelty: we use all available simulation

respunses tu estimate thr response variances, but (to realize sample-size ratios required for

constant response variances) we use fewer responses to estimate the mean simulation
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response per input combina[ion.

A refinement of this idea, which needs more research, is as follows. If the estimated

response variances differ greatly, then the simulated system with the maximum estimated

variance may require too many replications, in practice. But suppose that the maximum

divided by the minimum estimated variance is r. Then for the system with the smallest

variance estimate we compute the response average from a single response (fi - 1); to

estim~ite its variance, however, we use all responses for that system. The system with the

largest estimated variance is simulated r times.

The sample-size rule of (2.1) is not necessarily 'optimal'. Several optimaliry criteria are

popular in the theory of optimal design; see Kleijnen (1987, p. 335). These criteria are

usually not applied to sequential designs. For example, a closely related rule replaces the

variances ~ in (2. I) hy the standard errors o.[f the sample size were fixed and there would

be only two populations (n-2), then this alternative rule minimizes the variance of Y~ -~;

see Kleijnen ( 1987,p. 51). However, the advantage of the rule in (2.1) is that it simplifies the

regression analysis of the simulation data, as we saw. Nevertheless we might use the standard

deviations (not the variances) of the simulation responses to select the sample sizes. Then

the variances will not be constant. There are two alternatives: either apply WLS (which does

not reduce to OLS applied to the averages) or rely on the robustness of OLS since the

variance heterogeneity will be reduced through the sample sizes selected.

Welch (1990, p. 394) proposes to select the sample sizes such that the confidence

intervnls for a will he of fixecl widths.v
In future research we can further explore the robustness of the two rules with respect

to nonnormality. Further, MacNair and Welch (1991,p. 827) investigate sequential procedu-

res that include testing the fit of the metamodel.

We hope that our paper will stimulate others to further explore the various heuristic

prcxedures to select the numher of simulation responses per combination of simulation

inputs.

Appendix lí PnNif of (3.8)

For the proof of (3.8) we rearrange the sum of squares and introduce the symbols

Y,(.) -(m, - mo) ~~~. Y,I and s~ - s?(mo) '
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~;; (Y,~- Y~m,))' - ~~,; (Y,~- Y ~mo) ' Y,(mo) - Y,(fi,))' ' ~-,..-, (Yn- Y~') ' Y~') - Y ~~,))'

m tfi - mo
- ~;; (Y,~- Y ~mo))' ' mo(Y ~mo) - ~ Y~~) - -' ~ Y~'))'

m t4t - mo -

~ ~-~-~ (Y,~- Y,('))1 t (m - m,)(Y,(') -fi Y;(~ ) - -' m Y~'))'

- (mo- I ) s' ' ~,;,,,., ( Y~- Y ~'))' f
mo(tfi~- m,)

( Y ~mo) - Y~'))' .

A.~wme all s' , i' - I..... n are faed so the fi .u~e fnced.'Ihe expetxation of ~~ (Y,~- Y~~,))'

conditioned on s'(mo) - s,?(m,) is

F{~~ (Y - Y(~ ))' ~ s?(mo) - s,?(m~~) . i' - 1....,n }- ( me- I) s' ~ ( rft, - m, - I) a?

mo(fi, - mo) I , l ~
4 r4t, ( mo s' . rft - mp )

mo(m, - 1) .:- , .
m

Sci we get

E(ti1(m )) -
mo ~1 ~ (m, - ma ) a'
m, ' m, '

(m, - m, )(m, - 1)
o? .

r'rt ,

Appendix 2: Monte Carlo Input

In this appendix we add some details that have not already been mentioned in the

main text. Most values are taken from Kleijnen et al. (1985) who took the vector

C~~se I from the c:tse stucly in Kleijnen, Van den Burg and Van der Ham (1979).

(a? - s?) QED.
' m,

a in

ase I: p ~ -(- I.42. -0.7G9, I 3.4, - 11.508, 3.5, -1.375, 140.9 l8,

15.391, 0.046. 281A98, 21.25, 11.875, -49.483).
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H- U: ~- - I(iir all i.

H- d: o: -(d, ~3.~, ~, 6, 8,'1, 10, l l, 12, 13.5, 14, 14.5, IG, 18, 19.5, 20).

H- I I.rt4: d -( I, 2, i, 4, 4.5, 5, G, 7, 7.5, 8, 9, 9.5, 10, 1 1, 12, 12.84).

Case 2: p ~ - (-1.42, -0.76r), 13.44, -11.508).

H- 0: ~- I for all i.

H- 4: ~ -(4, G, 8, 10, 12, I 4, 1 G, 20).

H- 10.83: d-( I, 2, 4, 5, G, 7, 9, 11.83).

Case 3: p~ -( I, I. I).

H- 0: a7 - I for all i.

H- 4: ol -(4. 10, IG, 20).

H- 10.38: ~ -( I. 4. 8. I 1.38).
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TABLE I

F.rairy~[e Drua Íor Sequential SaniPGnB

Stage Comb. Available Reyuired Mean Variance
t i m ~ - s'

2 I 25 25 -0.782 1.165
2 ?(~ 64 0.945 2.967
3 2(~ I55 1.661 7.228

4 26 133 3.147 6.201

3 I 25 25 -0.782 1.165
2 27 66 0.857 3.066
3 27 153 1.579 7.132
4 27 l44 2.980 6.710

fi5 1 25 25 -0.782 1.165
? tS') 9O L014 4.203
3 ~S') 126 I.005 5.892
a 89 180 2.927 8.380

6G 1 ~5 25 -0.782 1.165
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