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In practice, simulation models usually have responses with variances that vary with the inputs.
Then the number of observations (also called simulation runs or replications) per combination of
simulation inputs can be selected such that the variances of the average simulation responses
become (approximately) equal; in other words, combinations with high variability are replicated
more often. These average responses can be analyzed through a regression metamodel. To
estimate the regression parameters (or simulation input effects), Weighted Least Squares (WLS)
can be applied. WLS becomes identical to Ordinary Least Squares (OLS) applied to the average
simulation responses. Because the response variances are unknown, they are estimated by
repeating the simulation runs with different random numbers. The estimated response variances
vield the number of runs required to obtain approximately equal variances per average simulation
response. Two rules for selecting the required number of simulation runs are presented, namely a
mwo-stage and a sequential rule. The rules are first formalized and analyzed, and then evaluated
through a Monte Carlo experiment. Both procedures turn out to yield confidence intervals for the
estimated regression parameters that have acceptable coverage probabilities. The sequential rule
demands more complicated computations to select the number of simulation runs, but this rule
saves runs.

(Key Words: EXPERIMENTAL DESIGN; METAMODEL; PILOT SAMPLE; STEIN
ESTIMATOR; ITERATIVE PROCEDURE; STOPPING RULE)

1. Introduction

Regression analysis of simulation data gives metamodels, which are gaining increasing
popularity. Nevertheless a number of research issues rémain to be investigated, as Sargent
(1991) witnesses. One of those issues js that it is not known how to satisfy the assumption of
constant response variance tor the various combinations of simulation inputs (or factors) that
are specified by the experimental design (for example, a 27 design). In practice the response
variances may indeed differ substantially; for example, Kleijnen, Van den Burg and Van der
Ham (1979, p. 60) report a simulation case-study in which 16 input combinations give
estimated variances that range between the values 64 and 93,228. To obtain appropriate run

lengths Sargent uses the guidelines in Whitt (1989). These guidelines, however, are heuristic
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formulas to be used to estimate required simulation run lengths in the early planning stages
before any data have been colleeted  Moreover these formulas are entirely for queuing
models. In this paper, however, we consider sequentialized (iterative or dynamic) sample size
determination for any type of random simulation model. Examples of such models are
provided by queuing networks but also by Monte Carlo studies on the robustness of certain
statistics (Kleijnen, 1974/1975, pp. 677-745, presents a Monte Carlo experiment with a
multiple ranking procedure and applies a 2™ design analyzed through OLS). A popular idea
in the simulation field is to obtain more observations for those input combinations (or
svstem variants) that have higher variability. Note that "observations" are also called
“replications” or "runs” in terminating simulations, and "subruns” in steady-state simulations
(more research is needed tor sample-size selection rules applied to steady-state simulations
analyzed by renewal analysis and other time-series analyses). Unfortunately, until now the
idea of taking more observations for systems with more noise was never formalized and
analyzed, although Welch (1990) sketches two approaches that resemble our two procedures.
He also concludes that there is a deep need to investigate sample size selection for regressi-
on metamodels.

We study two sample-size rules (also called stopping rules) that are well-known in the
statistics literature: two-stage and sequential rules. Based on that literature we conjecture
that two-stage sampling will be simpler but also less efficient; in other words, sequentializati-
on leads to more complicated sample-size selection rules for the users but saves them
simulation runs. The statistical analysis of such sample rules is notoriously difficult. We shall
show that an exact formalization of sample-size selection in regression metamodeling is
indeed cumbersome. The statistics literature virtually ignores dynamic sample-size selection
in experimental designs, because in real-life experiments it is impossible or difficult to
implement sequentialization. In computer simulation, however, observations become
available in a sequential way, so these selection rules certainly deserve to be investigated. We
hope that our paper will stimulate further analytical research on the statistical performance
of sample-size selection rules in sinulation, and on their implementation in simulation
software. In the mean time, our Monte Carlo experimental results give simulation users
some advise on how to apply the popular idea of taking more observations for noisy input
combinations.

There are several other approaches to the problem of variance heterogeneity in experi-

mental design, which we do not investigate in detail.



(4) Variance heterogeneity may be accepted and the analysis may be adjusted, that is,
prefixed numbers of observations per input combination are taken and WLS is used. Our
paper, however, concentrates on an alternative design of the experiment. Of course, each
design requires a concomitant analysis. We shall see that in our design the WLS estimator
can be computed simply by applying the OLS algorithm to the average response of each
input combination.

(b) Another alternative is to transform the simulation responses, for example, to take the
logarithm of the response. Such transformations, however, do not always give the desired
constant variances. Moreover, they may fail to give the desired insight into the underlying
simulation model. Variance stabilizing transformations are discussed in many places in
Kleijnen (1987) (see its subject index on page 427).

(¢) The statistics literature also discusses a prefixed sample-size selection rule that has little
appeal to simulation practitioners. This rule assumes that the responses are Normally and
Independently Distributed (NID) with constant variances. The user is supposed to test the
null-hypothesis that the inputs have no effects, with prespecified type 1 and II errors. Then a
fixed sample size can be determined, provided the user also specifies a value for the parame-
ter of the non-central F statistic; see Neter, Wasserman and Kutner (1985, p. 547) and also
Kleijnen (1987, pp. 207-208).

How much help does the literature provide for the issue under investigation? The
statistical literature investigates stopping rules primarily in situations with only one or two
populations (system variants); see the textbooks by Govindarajulu (1981) and Wetherill
(1986) and the handbook edited by Ghosh and Sen (1991). The simulation literature
concentrates on sample-size selection for a single population; for a survey see Kleijnen
(1987).

In the remainder of this paper we use the following notation. We assume that n = 2
input combinations are simulated, and that m. the number of replications of combination i
with i = I...n, is determined sequentially. Sequen.tialization means that during the simulati-
on experiment the responses y (j = 1,.., m) Are obtained successively, and are used to
estimate the n variances; thcsé estimators are employed in a stopping rule. Once the
simulation experiment has stopped, its data’are analyzed through a Least Squares metamo-
del. We underline random variables, because the random character of the number of
replications is essential and becomes explicit in this notation. The simulation data are

analvzed through the classic linear regression model



y =Xp +¢ (1.1)

with the vector of normally distributed simulation responses y = (¥,¥ )'» the matrix of
independent variables X = (x,) with i = l...n and q = 1,..,Q, the vector of input effects or
regression parameters § = (BB, - and the vector of fitting error ¢ = (9.""‘5,,)1; we use
bold upper case letters to denote matrices and bold lower case letters for vectors.

The remainder of this paper is organized as follows. In §2 we analyze a sample-size
selection rule in case the heterogenous variances were known. This rule gives average
responses with constant variances. The WLS estimator can then be computed through the
familiar OLS algorithm applied to these averages. This estimator is the Best Linear
Unbiased Estimator (BLUE). In §3 we examine a two-stage sampling plan for regression
metamodels. In stage #1 we take a pilot sample to estimate the unknown variances. Based
on these estimates we decide how many more responses to simulate for each system variant.
We also present an example (in §3.2). In §4 we present a sequential procedure, that is, after
the pilot sample we take only one observation from each combination that has a relatively
large estimated variance for its sample average. We also introduce a novelty: to estimate
variances we use all simulation responses available; we drop certain responses when
estimating means. To illustrate this procedure we apply it to the same example as we used in
two-stage sampling (see §4.2). In §5 we first specify a Monte Carlo experiment, that is, we
select 27 combinations of three factors, namely (a) the matrix of regression variables X, (b)
the variances of the individual simulation responses, and (c¢) the size of the pilot sample
(used to obtain an initial estimate of these variances). Next we analyze the results of this

Monte Carlo experiment. In §6 we summarize our results and indicate future research.
2.2.Known Response Variances
In this section (and only in this section) we assume that the response variances o? are
known. Intuitively it seems wise to obtain more observations for those input combinations

that have high variability More specifically, suppose we take

m =c o’ with i = l,..n, (2.1)



where ¢ is a (common) positive constant such that the m, become integers. This implies that
we assume that the variances ciz are rational numbers; we shall return to the selection of c.

Then the average response of combination iis y = h) ™ y/m and has variance
0 =1 ] ’

var(y) = 1/ec. (2.2)

The sample-size rule of eq. (2.1) is not necessarily "optimal’ (we shall return to this
issue in the final section, which discusses future research), but it simplifies the regression
analysis of the simulation data, as follows.

It is well-known that in case of known unequal variances the unbiased linear estimator
with minimum variance (BLUE) is provided by WLS applied to the individual responses y .

L]

It is simple to prove that this WLS estimator (say) fi follows from

min )" im(y, - y)/o? (2.3)

with the predicted responses 9y, =x/ p where N denotes the i row of X so 5 = (Xirse-s%i0)-
Eq. (2.3) is easily interpreted: combination i gets more weight if it is replicated more often
(see m,) or if it has smaller variance (see o?). The OLS estimator § is still unbiased (but not
BLUE) and follows from

min 377 m(@y, - 9" (2.4)

Under condition (2.1) we can substitute m /o’ = ¢ into (2.3), so the WLS estimate follows

from

min ¥ (3, - 9 (2.5)

In other words, sample-size rule (2.1) implies that §, the WLS estimator computed from the
individual responses (see eq. 2.3). is identical to the OLS estimator computed from the
average responses ignoring the number of replications (see egs. 2.4 and 2.5). The latter
algorithm is simpler, so we shall use (2.5).

In summary, the sample size rule (2.1) gives average responses with constant variances.

The WLS estimator can be computed through the familiar OLS algorithm applied to these
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averages. This estimator is BLUE.

3. Two-stage Sampling

In practice the response variances are unknown, so we must estimate o2 and hence m;,
in eq. (2.1). Many sampling schemes are conceivable: two-stage (leading to so-called Stein
estimators), multistage, and sequential schemes. In this section we concentrate on a two-

stage procedure. In § 3.1 we give some elementary theory; in § 3.2 we give a simple example.

2.1 Theory

In stage #1 we take a pilot sample of m > 2 responses from each input combination.

Then we compute the n classic variance estimators

si(m,) = 37 (v, - ¥(my))*/(m,-1) e )
with the sample average of combination i (computed from m, simulation runs)
y(mg) = 3" y /m, . (3.2)

je!

Because sample size is a crucial variable in our study, we explicitly show the dependence of
the various estimators on the sample size. Different values for the size of the pilot sample
will be investigated in our Monte Carlo experiment (see §5).

Now we use (2.1), the sample-size formula for known variances. In that equation we
replace the variances by the estimators defined in (3.1). Moreover, if we would require (2.1)
to hold exactly, then the m, might be very large integers. "Nearly’ constant variances require
smaller integers. So we decide to take,no additional observations from the combination with
the smallest estimated variance; (Welch, 1990, p. 393 proposes a similar approach). For the

other combinations we estimate the required number of observations through

= [m, s'(m;)/ min s, (m,)], (33)

1si/sn



where [x] denotes the integer closest to x. In stage #2 we take ;h - m, additional observati-

ons from combination i (so at the end of stage #2 we have i responses from system
C="o

variant i; at least one system variant has exactly m, responses). We use all observations from

a particular system variant to estimate the mean and the variance of the response of that

system:

() =Yy /m (34)
and

() = ¥R (y, - Y)Y / (@ - 1. 35)

We shall need the following properties of these estimators for the n means and n variances
respectively. The estimator of the expected simulation response is the average of a random
number of responses, that is, it is a ratio estimator. In general, ratio estimators are biased
(remember renewal analysis of simulation output). However, our estimator (3.4) remains
unbiased, under our assumption of normally distributed simulation responses, as we prove as
follows. For a fixed sample size the estimators of the mean and the variance are independent
it and only if the responses are normally distributed; see Mathai and Pederzoli (1977). The
denominator h of (3.4) depends on the estimated variances §:(mo) through (3.3), but these

s'(m,) are independent of y (). This yields:
E((h)) = E(EG(h)|h=m) = E(x'B) =x'B . (3.6)
' . ﬁl ; ! ! ﬂ‘
However, the estimator of the variance of the sample average

var(y () = 30 (v, - ¥(@0))/ (d - D} (X))

is biased, as we prove as follows. If we condition on all variance estimates s*m,) -and hence

on fm - then we can prove (see appendix 1) that

E{si(m) | s3(m,) =s}(m,)} = sX(m,) + {o} - s my)}(rh, - my)/rh, . (3.8)



This equation means that §~"(;_ﬁ_‘) underestimates the true variance ¢?: if s*(m,) happens to
be small, then no more observations are taken in the second stage (h, =m,) SO this
underestimate is not recomputed. If s3(m ) happens to be large, then more observations are
taken, so the overestimate is recomputed. Averaging over both possibilities shows that the
variance estimator §='(@) underestimates 2. Note that the combination with the smallest
(true) variance is probably the combination with the smallest number of observations; it is
also the combination that can be estimated best (because var(s®) = 20*/(m-1))- Finally,
vér(i,(m,)) is biased because it equals _c_,f(mi) / mi, which has a numerator that underestima-
tes, and a denominator that is random (see eq. 3.7). Whether this bias is important, will be
cxamined in our Monte Carlo experiment. As these derivations illustrate, many statistical
properties that are known for fixed sample sizes, must be re-evaluated for random sample
Sizes.

Obviously the estimated variances computed at the end of stage #2 may differ
substantially. The two-stage procedure, however, accepts this variance heterogeneity (whereas
the sequential procedure realizes a common estimated variance of the sample averages, at
the time the simulation stops, as we shall see in §4).

Finally we obtain the WLS estimators for the regression parameters. Equation (2.5)
showed how to compute the WLS estimator § for fixed sample sizes and known response
variances. This equation inspires us to estimate the regression parameters in two-stage

sampling through
B(ai) =(X" X)X’ y(ih) (3.9)

with @ = (m, .., m )’ the vector of n+1 sample sizes and y(rn) the vector of n sample
m m,..m. m
means defined in (3.4). This regression estimator is unbiased because (as we saw in eq. 3.6)

the response averages y(m) are unbiased. Its covariance matrix is
cov(B()) = (X’ X)X’ cov(F(@m)X(X' X)" , (3.10)

where coy(y(im)) denotes the covariance matrix of the average responses at the end of stage
#2. To estimate cov(f(im)) we need to estimate cov(y(rn))- The simulation user can not
estimate the covariances among the sample averages, from a single simulation experiment.

Therefore we assume these covariances to be zero. We will investigate this assumption in the



Monte Carlo experiment. The user can estimate the variances of the sample means through
(3.7). So we assume cov(y(r)) to be a diagonal matrix with elements defined by (3.7). Since
users know X, they can compute cév(ﬁ(@)) through the sample analogue of (3.10).

The square roots of the diagonal elements of cv(B(rm)) give the ’standard errors’
(estimated standard deviations) of ﬁ., (with @ =1...., Q), the individual estimated regression
parameters. To obtain confidence intervals for B, We propose the classic Student statistic ¢ .
What is the correct number of degrees of freedom ? Scheffé (1970, p. 1502) proposes
v = min (m, - 1) in his study of a case with only two populations (n = 2: Behrens-Fisher
prohlerln); see Dudewicz and Mishra (1988, pp. 503-514) and Kleijnen (1974/1975, p. 472).
Further, Kleijnen, Cremers and Van Belle (1985) study regression metamodels with fixed
and equal sample sizes m = m. and investigate several degrees of freedom, namely
min (m_- 1) z:‘_‘ (m -1) and infinity (t, is a standard normal variate, say, z). In two-
stage (and sequential) experiments E.. (m, - 1) is high. Therefore we restrict ourselves to
min (m, - 1) =m, - | and infinity. Note that MacNair and Welch (1991, p.824) also reduce
the degrees of freedom of the t statistic in order to realize good coverage probabilities of
their sequential procedure. albeit for a situation with a single population (n = 1). Fortuna-

tely, our choice implies non-stochastic y. This results in the 1 - « confidence intervals

ﬁq(_ﬁl_) e "vﬁr(ﬁq(_li_l)) with q =1,...Q. (3.11)

In the Monte Carlo experiment we shall investigate whether these intervals cover the true
values with prescribed probability of | - o. Note that joint confidence intervals can be

derived from the individual confidence intervals by applying Bonferroni’s inequality.
3.2 Example

To illustrate two-stage sampling we could use the M/M/1 queue as Sargent (1991) did.
However, we would then have to sely on the asymptotic normality of the simulation
responses. Moreover, the metamodel would then have specification error; in other words, the
fitting errors would not have zero expectation so the estimator of the regression effectsg
would be biased. Therefore we conduct a Monte Carlo experiment with perfectly normal
‘simulation’ responses and with fitting errors that have zero expectation (in future research

we can explore the robustness of two-stage regression analysis with respect to nonnormality
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and the validation of such metamodels). We consider an example with two simulation inputs.
Suppose that all inputs have effects of +1; the overall mean (or intercept, often denoted by
B,. but in this paper denoted by g ) is also +1 (sop, =p,=B,=1)Weusea 2? design to
specify the four input combinations of the ’simulation’. So X in (1.1) has column 1 with all
elements equal to 1; column 2 with elements -1, 1, -1, 1; column 3 with -1, -1, 1, and 1.
(Consequently the expected value of the first combination isE(X,) =x'p =8, -B,- B, = -1)
For the response variances we select the values 1, 4,8, 11.38 respectively(af =1,..,00 = 11.38).
The pilot sample-size is 25 (m, = 25). To save space we do not display the m, individual
responses for the four combinations, but we mention only that the responses in combination
| range between -2.25 and +1.32. Their average is -0.546 and their estimated sample
variance is (.803 (so this part of the Monte Carlo simulation program seems correct). For
the other three combinations we get the following sample estimators: s*(m;) = 4.915,5(m,)
= 8816, and s(m) = 18615 (comparing these estimates with the true variances, we
conclude that this part of the computer program seems indeed without bugs). These variance
estimates imply that the number of additional responses to be taken in stage #2, are 0, 128,
249, and 554 respectively (for example, m - m, = [25(18.615/0.803)] - 25 = 554). After
taking these extra observations we get  y (h =25) = -0.546, y,(m,=153) = 0.900, y,(rh,=274)
= 0997, and y (f, =579) = 2.873. The estimated variances of these averages are 0.03213,
0.02492. 0.02880. and 0.02283. The estimates of the regression parameters are 1.056, 0.831,
and 0.879 (remember that their true values are 1). Their estimated variances are 0.007 for all
three parameters. Hence their standard errors are 0.08. How about the confidence intervals?
Let us concentrate on the tightest interval, namely the interval based on the normal
approximation (v = ©) and a high value for the type I error, say « = 0.10. Then the | -a/2
quantile of z is z,, = 1.645. The upper bound of the 90% confidence interval for B, (which
is the parameter with the largest deviation from its expected value) is then 0.831 +
(1.645)(0.08) = 0.96, which does not cover th;: true value. Is this bad luck? Does this also
happen when users select a lower type | error ralé and other degrees of freedom for the t
statistic? We also wonder whether the, two-stage procedure achieves its goal of (approximate-
ly) constant variances for the average responses. These and other questions will be answered

in the section on the Monte Carlo experiment.



4. Sequential Sampling

The first stage of sequential sampling is identical to stage #1 of two-stage sampling. So
we take a pilot sample of size m, from each of the n combinations and estimate the n
response variances through (3.1). We use these variance estimators g(mo) to obtain our first
estimators of the required number of replications ; see (3.3). Whereas under two-stage
sampling we jump ahead and obtain h - m, observations, we now proceed more cautiously:
for each population with i > m  we obtain a single new response.

After we have acquired one new simulation output for each system variant -except for
the system with the smallest estimated response variance after the pilot stage- we recompute
all estimated response variances. To estimate the variance ¢ at a particular stage we use all
responses from combination i that are available at that stage. Let m, denote the number of
responses from combination i available after stage t. The total number of stages at the end
of the sequential procedure is not known beforehand; it is a random variable, which we
denote by T (so t runs from | through T; for t = 1 we have m, = mo). Hence we replace
(3.5) by

s(m) = ¥ (v, ¥ (@) / (m-D). @.1)

where (analogous to eq. 3.4) y(m ) denotes the average computed from the availablemi
responses. Note that Kleijnen '(ul\d :/an Groenendaal (1992, pp. 12-13) discuss the numerical
accuracy of different algorithms for the computation and updating of estimated means and
viriances.

In each stage we re-estimate the required number of replications, using the most
recent update of the variance estimate, which was defined in (4.1). We continue until (for
the first time) the desired number of replications does not exceed the available number, for

all n system variants simulated:

¥ 1 % s (4.2)
So T denotes the minimum number of stages for which condition (4.2) holds. Once we have
stopped generating simulation responses, we use a regression metamodel to analyze the

simulation data.
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A novelty of our sequential procedure is the distinction we introduce between m. the
number of available responses for combination i in stage t, and g , the estimator of the
number of responses for combination i in stage t that is necessary lo‘ realize nearly constant
response variances. To use the simple formula (2.5) (which leads to egs. 3.9 and 4.3) for our
estimators of B we assumed that the sample averages have constant variances; in other
words, we estimate the expected simulation responses E(y) from th responses. However, to
estimate the nuisance parameters g? we use as much information as possible, that is, we use
m, observations (also see eq. 4.6). In practice, the difference between th and m, is
negligible at the end of the sequential procedure (t = T), because s*(m_) changes only slowly
(also see the experimental data in Table 1).

Note that our 'novelty’ is reminiscent of a technique devised by Scheffé in 1943 for the
derivation ol an exact confidence interval for the difference between the means of two
normal populations with unequal variances (Behrens-Fisher problem). He used all observa-
tions when estimating the mean of the population with the largest sample. His variance
estimator, however, used fewer observations (such that both populations have equal sample
sizes). We estimate the mean, not the variance, from fewer observations; moreover we
extend his idea to regression analysis. For a further discussion of Scheffé’s procedure we
refer to Kleijnen (1974 /1975, p. 473).

Our WLS estimator based on a sequentially determined number of simulation

responses is
B(m) = (X’ X)X’ y(rh) (4.3)

with o= (m, d m ) the vector of (n+1) sample sizes and i(mr) the vector of n

v
=7 —=nT

sample means

Y(h) =Yy /m (4.4)

This regression estimator is unbiased under normality; see (3.6). Its covariance matrix is

cov(B(rm ) = (X’ X)X’ cov(y(sh )X(X' X)™ (4.5)

where cov(¥(,)) denotes the covariance matrix of the average responses at the end of stage
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#T. As in two-stage sampling we assume zero correlations among the average simulation
responses at the end of the sequential procedure. We estimate the variances of the sample

means through

Var(g (i) = $(m )/ h_ (4.6)

where the variance of an individual simulation response is estimated from all m_ available
observations (see eq. 4.1), whereas the estimated variance of the average respons;a accounts
for the fact that this average uses only fh_ responses (see the denominator of eq. 4.6). This
estimator is biased (see the discussion o%-eq. 3.7), but this bias may be negligible in large
samples (see the Monte Carlo experiment). We further assume that our sequential procedu-
re indeed yields an (approximately) common variance for the averages ia(—ﬁl.r)' Our sequenti-
al procedure implies that the n variance estimates of (4.6) are indeed virtually the same at t
= T (we continue until these estimates are essentially equal). Therefore we estimate this

common variance by pooling these n variance estimators:

§ = Y, var@(m))/n . (4.7)

Hence (4.5) reduces to a simple and familiar formula:
cov(B(m )) = S(X'X)" . (4.8)

Note that X is often orthogonal in well-designed simulation experiments, as the
example in § 3.2 demonstrated. Then the individual regression estimators become uncorrela-
ted with constant estimated variances §/n. These properties, however, are not essential for
our approach.

To obtain confidence intervals for pq we use the Student statistic t,» as in two-stage
sampling. We again restrict ourselves to degrees of freedom equal tomin (h-1) =m, - 1
and infinity respectively. This results in the | - a confidence intervals of (3.11) where we
replace s by . In the Monte Carlo éxperiment we shall investigate whether these
intervals cover the true values with prescribed probability of 1 - a, but first we illustrate

sequential sampling through an example.
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4.2 An Example

We consider the same example as in §3.2 on two-stage sampling. The pilot sample-size
is again 25 (m, = 25); that is, we obtain the same number of responses as in stage #1 of the
wo-stage procedure. However, we use different pseudorandom number streams for the two
sampling procedures (the pseudorandom numbers would get out of step: synchronization
problem; see Kleijnen, 1974/1975, p. 202). We get the following variance estimates: s*(m) =
1.165, s}(m) = 2.881, s¥(m,) =7.495, and ) = 5.849 (remember that @ =1 g = 4.
@ =8 o = 1138 S0 the pilot sample wrongly suggests that the variance of system 3 is
largest). These variance estimates imply that we take one new observation from combinati-
ons 2, 3, and 4 respectively. After taking these extra observations we gety(rh, = 25) = -0.782,
y(, = 26) = 0.945, y(rh, = 26) = 1.661, y(rh, = 26) = 3.147. The re-estimated variances
of the individual responses are 1.165, 2.967, 7.228, and 6.201 (these updates lag behind).
These variance estimates imply estimated required sample sizes of 25, 64, 155, and 133. So
we take one more observation from combinations 2, 3, and 4. And so on. Table 1 gives some

more data.
INSERT TABLE |

As this table shows, after 221 stages the available numbers of observations are at least as big
as the required numbers. For example, for combination 4 there are 25 responses from the
pilot sample (stage #1) plus 220 responses from stage #2 through stage #221, which adds up
to 245 responses (at the end of stage #220 we estimate that [(11.4461/1.165)25] = 246
responses are required for combination 4, and this number 246 is entered under stage 221; at
the end of stage #221 we compute , = [(11.405/1.165)25] = 245 and stop). So condition
(4.2) is met and we stop sampling. For combination 2 the mean simulation response is
estimated from 89 (not 90) responses. In stage #65 this number of responses was reached;
then the estimated mean was 1.014 (not 1.012, which is the estimated mean in stage #60).
The variance is estimated from all 90 observations, and equals 4.156. At the end of the
sequential procedure the estimated variances of the four average responses are 0.04662,
0.04669, 0.04664, and 0.04655 (for example 11.405/245 = 0.04655), so these values are
indeed “approximately’ equal. Their average is 0.04663. The estimates of the regression

parameters are 0.964, 0.883, and 0.848 (their true values are 1). Their estimated variances
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are 0.012 for all three parameters. Hence their standard errors are 0.11. The tightest
confidence interval is based on the normal approximation and @ = 0.10 (so z,, = 1.645 )
The upper bound of the 90% confidence interval for B, (which is the parameter with the
largest deviation from its expected value) is then 0.848 + (1.645)(0.11) = 1.03, so the
interval covers the true value (B, = 1)

Let us compare these results with those of the two-stage procedure (which are
independent, as we saw above). The total number of simulation responses is 1031 in two-
stage sampling and 503 in sequential sampling. Consequently the estimated variances of the
estimated regression parameters is larger in sequential sampling: 0.012 versus 0.007. A
criterion for comparing the two procedures may be J;,?(f,:)— xZ:.. m which equals 55
(= 0.11x503) for sequential and 82 (= 0.08x1031) for two-stage sampling. So sequential
sampling seems better. Are the results of this example accidental? This question will be

answered in the next section.

5. Monte Carlo Experiment

In §5.1 we specify the design of our Monte Carlo experiment; in §5.2 we present the

resulting output.
5.1 Monte Carlo inputs

In our Monte Carlo experiment we use nearly the same inputs as in Kleijnen, Cremers
and Van Belle (1985), who studied fixed sample sizes. So we have the following four X
matrices.

(a) X is a 2*2design including all six main effects, only six two-factor interactions, and
the intercept (16 combinations to estimate 13 effects).

(b) X is an 8 x 4 matrix following from a 2’ design (with three main effects and po).
Note that X is a submatrix of X in (a).

(¢) X follows from a 2°design, and ‘is used in the examples of the preceding two
sections.

We combine these three matrices with different degrees of variance heterogeneity

quantified by
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H = {max(e?) - min(o))}/min(o)) . (5.1

We fix 11 at the values 0, 4, and (roughly) 11 The individual response variances o are
shown in appendix 2 and are also taken from Kleijnen et al. (1985, p. 95). We assume that
the simulation practitioner does not use common random numbers; hence cov(y): the
covariance matrix of the individual simulation responses, is diagonal.

We further use the g values of Kleijnen et al. (1985, p. 95). The precise values of g
do not affect the interpretation of the Monte Carlo experiment; so we move g to appendix

5

We study different sizes of m,, the pilot sample, namely 4, 9 and 25.

We repeat each of the 27 (= 3°) Monte Carlo cases (specified by X, cov(y), and m,)
150 times, since in Kleijnen et al. (1985) 150 'macroreplications’ reduce noise so much that
clear patterns emerge from the Monte Carlo experiment.

We use the NAG (Numerical Algorithms Group) multiplicative pseudorandom number
generator, which has multiplier 13" and modulo 2% All 27 cases use different pseudorandom
number streams (we continue a next case where we stopped the preceding case). The initial

seed is selected randomly (using the computer’s internal clock).
5.2 Monte Carlo Output

In the discussion of the examples in §3.2 and §4.2 we have already mentioned some
outputs that seem to confirm the correctness of parts of our computer program.

Before we present the estimated coverage probabilities of the two sampling proce-
dures, we mention some intermediate results that we obtained by repeating the examples in
§3.2 and §4.2 150 times using independent pseudorandom numbers. (Those examples refer to
only one of the 27 cases, whereas the coverage probabilities are investigated for all 27 cases.)

First we test whether y (rh ) the average response of combination i at the end of the
two-stage procedure, is normally distributed. We use the 150 observations on Y,(m,) to form
a histogram with 14 classes. We know the mean, but we must estimate the variance of these
observations. So we use a chi-square statistic for goodness of fit with 12 degrees of freedom.
We test, at a type | error rate of 0.05 and 0.025, whether the histogram fits a normal
distribution. For none of the four combinations we reject the null-hypothesis. The same

conclusion (normal averages) holds for sequential sampling.
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Our Monte Carlo experiment gives unbiased estimators of var(y (rh )). the variance of
the sample average of combination i at the end of the two-stage procedure, and of their

covariances:

oV (). ¥ () = XI G () - ¥ () - ¥ (h)}/149 (52)

with

y ()= Y7 (@ )/150. (53)

We emphasize that simulation practitioners can not compute these estimators, since they
execute their simulation experiments only once (not 150 times as in our Monte Carlo
experiment). They do compute var(y(m ) the estimated variance of Yi(—ﬁ-‘.)‘ which is biased
(see the discussion below eq. 3.7). The example in §3.2 gave one observation on the latter
estimator, for each of the four combinations of simulation inputs: 0.032, 0.025, 0.029, and
0.023. The unbiased estimator (3.2) yields 0.038, 0.052, 0.051, and 0.044 for these four
combinations. We wish to test whether these differences are significant. Therefore we
compare var(y (m)). the average value of the 150 realizations of the simulationist’s
estimator, with. c()lv(i (h),y(m)). the one value obtained after our 150 Monte Carlo
experiments, which foI'low's fr;)ml(S.Z) upon replacing j by i. Note that we use the symbol
cov(y (h ),y (m)) to avoid confusion with var(y(th )) defined in (3.7). It is well known that
the va'ria;lce (I)f t.hc variance estimated from n obser\lrations on a normally distributed variable

with variance (say) ¢* is 20*/(n-1)- Therefore we compute the statistic

(Ar(E (@) - cOv(F (th )3 ()}

g = (5.4)
[T War(E (1h )), - VAT(E (M )P/(149x150) + 2 cOV(F (th ) (th )’/ 150

with

[

VAr(y () = 3 var(y (), /150, &3

Note that the last factor of (5.4) is 150: although E(s?) = o*, W€ know that E(s*) » o* SO the
exact value of this factor is rather arbitrary. For the four combinations we obtain the

following values for this z: 0.502, -1.631, -1.267, and -0.188. We assume that (5.4) indeed gives
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a standard normal variable. Then none of these values is significant at type I error rates of
0.10, 0.05, or 0.01. So these results suggest that there is no significant bias. For the sequential
procedure we get -0.675, -2.313, -1.067, and -0.545, so only one z value is significant at type |
error rates of 0.10 and 0.05. This one case does not suggest that the variance estimator for
the average simulation response at the end of the procedure (two-stage or sequential) is
biased, even though it ignores the random character of the sample sizes.

The simulationist can not estimate the correlations among the sample averages, from a
single simulation experiment. Therefore we assumed them to be zero. This assumption can
be investigated in the Monte Carlo experiment. The estimated correlations range between
<0.125 and +0.099 in two-stage sampling, and between -0.133 and +0.107 in sequential
sampling, so they may indeed be assumed zero.

Our estimator of B (the regression parameters) is a linear transformation of the vector
of average simulation responses at the end of the procedure. So we expect this estimator to
be normally distributed. The chi-square goodness of fit test is indeed not significant, neither
in two-stage nor in sequential sampling.

Next we ask whether the Studentized ﬁq has indeed a t distribution; see (3.11). In the
discussion of this distribution we proposed degrees of freedom equal to m, - 1= 24. So we
determine the histogram of t,,, again with 14 classes, which leads to a chi-square statistic with
13 degrees of freedom. For none of the three regression parameters y2 is significant. The
same conclusion ( f)_q is distributed like ..) holds for the sequential procedure.

Simulation practitioners, however, use only the tails of the t distribution. So the
distribution of the Studentized B estimator may resemble a t distribution, but their critical
values (such as the .90 quantile) may differ significantly. This takes us to the final output of
our Monte Carlo experiment, the estimated coverage probability. So we consider two-sided 1 -
a confidence intervals for B, based on the tabulated | - /2 quantile (say) - of the
Student statistic i with y - m, -1 and y = respectively. We suppose that simulationists
use one of the following classic values: o = 0.01, 0.05 or 0.10. Each of the 150 Monte Carlo
repetitions yields one confidence interval per regression parameter B, given a value forqy
and . So we can check if that interval covers the true value B, If the interval does not
cover the true parameter value, then we score (say) a one; otherwise a zero. So we obtain a
binomial variable p based on 150 observations. In this way we estimate the expected
coverage of the confidence interval: is this value | - o

We formulate a one-sided null-hypothesis:
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H,: E(p) = a versus H': E(p) > a- (5.6)

The alternative hypothesis means that the coverage probability is smaller than the nominal
one, that is, the confidence intervals are too tight.

Note that we also test the related two-sided hypothesis
H,: E(p) = a versus H: E(p) * a- (5:7)

This test gives similar conclusions. So in this paper we concentrate on the one-sided null-
hypothesis.

It is convenient to approximate the binomial distribution of p through the normal
distribution N(a, a(1-a)/150) With o defined by (5.6).

A complication is that there are Q parameters B, the more parameters, the more
likely it is that we find some estimated coverage probability deviating from its expected value
by pure chance. Therefore we apply Bonferroni’s inequality, that is, we test H, with a type-I
error rate of 0.05/Q so that the experimentwise error rate is 0.05 at most (see Kleijnen,
1987, p. 42).

In the Monte Carlo experiment we consider confidence intervals for B, with o is 0.01,
0.05 and 0.10, while the degrees of freedom are m - 1 and infinity respectively. For the
two-stage procedure with m - | degrees of freedom we reject H, in none of the 27 cases,
with the exception of one case. In the latter case we have m = 25 and o = 0.10 (in this
case the one-sided hypothesis is rejected, whereas the two-sided hypothesis is not). So we
conclude that, in general, coverage intervals based on the t distribution with m, - 1 degrees
of freedom give estimated coverage probabilities that are not significantly lower than their
nominal value | - 4.

When the confidence interval for B, uses the normal distribution (which gives tighter
intervals), then the estimated coverage probabilities are significantly smaller than their
nominal values, whatever o value the simulationist uses (1, 5, or 10 %); that is, in most cases
we reject H, For a ‘large’ pilot sample (m, = 25) the t statistic with m - | degrees of
freedom approaches the standard normal distribution. Indeed for those cases the estimated
coverage probabilities are often not significantly smaller than the nominal values.

For the sequential procedure we get similar results. In other words, confidence

intervals based on the standard normal distribution give too tight confidence intervals, in
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general. Exceptions are cases with large pilot-samples (then there is not much difference
between the standard normal and the t distribution with m, - 1 degrees of freedom). The t
distribution with m, - 1 degrees of freedom gives confidence intervals with acceptable
estimated coverage probabilities, except in two of the 91 situations (27 Monte Carlo cases,
each evaluated for three « values). Actually these two situations count as one situation, since
they concern the same case with H, tested for « is 0.05 and 0.10.

Because both the two-stage and the sequential procedure give acceptable coverage
probabilities (for the confidence intervals for the regression parameters pq), we next
compare their statistical efficiency measured through the expected number of simulation
responses y . So we observe i for the two-stage procedure and m_ for the sequential
procedure. We do this for all 27 cases, and repeat this 300 times. So for each case we obtain
the average number of simulation responses. In 20 of the 27 cases, two-stage sampling
requires more simulation responses, which according to the sign test is statistically significant

at a type | error rate of 0.05 or higher.

6. Conclusions and Further Research

We examined two procedures for determining the number of simulation responses
(replications) per combination of simulation inputs, such that the variances of the average
responses become ‘approximately’ constant. The first procedure is a two-stage rule; the
second one is sequential. We use Weighted Least Squares estimators to estimate the Q
regression parameters (input effects) B, (with ¢ = 1,..,Q) from the average simulation
responses at the end ol the sample size selection rule. These regression estimators are
unbiased. Confidence intervals for B, are too tight, when we use the standard normal
variable. These intervals have acceptable coverage probabilities when we use the Student
statistic with degrees of freedom equal to my-1 where m, denotes the pilot sample size. These
conclusions hold for both the two-stage and the sequential procedure. The two-stage
procedure is casier o understand and easier to program and implement. However, the
sequential rule requires fewer simulation rcs['xmscs.

For the sequential approach we introduced a novelty: we use all available simulation
responses to estimate the response variances, but (to realize sample-size ratios required for

constant response variances) we use fewer responses to estimate the mean simulation
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response per input combination.

A refinement of this idea, which needs more research, is as follows. If the estimated
response variances differ greatly, then the simulated system with the maximum estimated
variance may require too many replications, in practice. But suppose that the maximum
divided by the minimum estimated variance is r. Then for the system with the smallest
variance estimate we compute the response average from a single response (i = 1); to
estimate its variance, however, we use all responses for that system. The system with the
largest estimated variance is simulated r times.

The sample-size rule of (2.1) is not necessarily 'optimal’. Several optimality criteria are
popular in the theory of optimal design; see Kleijnen (1987, p. 335). These criteria are
usually not applied to sequential designs. For example, a closely related rule replaces the
variances g? in (2.1) by the standard errors g . If the sample size were fixed and there would
be only two populations (n=2), then this alternative rule minimizes the variance of i. = 'y:z;
see Kleijnen (1987.p. 51). However, the advantage of the rule in (2.1) is that it simplifies the
regression analysis of the simulation data, as we saw. Nevertheless we might use the standard
deviations (not the variances) of the simulation responses to select the sample sizes. Then
the variances will not be constant. There are two alternatives: either apply WLS (which does
not reduce to OLS applied to the averages) or rely on the robustness of OLS since the
variance heterogeneity will be reduced through the sample sizes selected.

Welch (1990, p. 394) proposes to select the sample sizes such that the confidence
intervals for B, will be of fixed widths.

In future research we can further explore the robustness of the two rules with respect
to nonnormality. Further, MacNair and Welch (1991,p. 827) investigate sequential procedu-
res that include testing the fit of the metamodel.

We hope that our paper will stimulate others to further explore the various heuristic
procedures to select the number of simulation responses per combination of simulation

inputs.

Appendix 1: Proof of (3.8)

For the proof of (3.8) we rearrange the sum of squares and introduce the symbols

¥(9) = (@ -m)" Yy y and ¢ = si(m,)
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Appendix 2: Monte Carlo Input

In this appendix we add some details that have not already been mentioned in the
main text. Most values are taken from Kleijnen et al. (1985) who took the vector g in

Case | from the case study in Kleijnen, Van den Burg and Van der Ham (1979).

Case I: g = (-142.-0.769, 13.4, -11.508, 3.5, -1.375, 140.918,
15.391, 0.046, 281.098, 21.25, 11.875, -49.483).



H= a 1 tor all ..
H=4: & =(4,4550,8,9, 10, 11, 12, 13.5, 14, 14.5, 16, 18, 19.5, 20).

H 11.84: o2 = (1:2.3.4,45,5,6,7,75,8,9,95, 10, 11, 12, 12.84).

Case2: p* = (-1.42, -0.769, 13.44, -11.508).
H=0:. o =1foralli.

[

H=4: g = (4. 6, 8. 10, 12, 14, 16, 20).
H=1083 o =(1,2.4.56,79, 11.83).

"

Case3: g = (L L 1)
H = (: o
H = 4: gt = (4, 10, 16, 20).

H = 1038 o = (l.4.8 1138)

'

= | for all i
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TABLE 1
Example Data for Sequential Sampling
Stage | Comb. | Available | Required Mean Variance
t i m m ; s?
2 1 25 25 -0.782 1.165
2 20 64 0.945 2.967
3 26 155 1.661 7.228
4 20 133 3.147 6.201
3 | 25 25 -0.782 1.165
2 27 66 0.857 3.066
3 27 153 1.579 7.132
4 27 144 2.980 6.710
65 1 25 25 -0.782 1.165
2 89 90 1.014 4.203
3 89 126 1.005 5.892
4 89 180 2.927 8.380
66 1 23 25 -0.782 1.165
2 90 89 1.012 4.156
3 90 125 1.007 5.826
4 90 178 2912 8.304
220 1 25 25 -0.782 1.165
2 90 89 1.012 4.156
3 143 142 0.945 6.623
4 244 246 2.684 11.446
221 | 25 25 -0.782 1.165
2 90 89 . 1012 4.156
3 143 142 0.945 60.623
Bl 2453 245 2.679 11.405
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