76 R

7626 1992

क

R 40
Equqlelbrening Awalyon Goune Theay

A SILENT DUEL OVER A CAKE
 Herbert Hamers

FEW 576

Communicated by Prof.dr. S.H. Tijs

A SILENT DUEL OVER A CAKE

Herbert Hamers*
Tilburg University

Abstract

The division of a cake by two players is modelled by means of a silent game of timing. It is shown that this game has a unique Nash equilibrium. The strategies of the Nash equilibrium are explicitly given.

Keywords: Nash equilibrium, Game of timing.

[^0]
1 Introduction

We consider the situation that two players divide a cake of size 1. At time 0 player 1 has the initial right to receive the amount $\alpha_{1}>0$ and player 2 has the initial right to receive the amount $\alpha_{2}>0$. Here, it is assumed that $\alpha_{1}+\alpha_{2}<1$. Player i must choose a point in time $t_{i} \in[0, \infty)$ to claim his piece of the cake. If $t_{1}<t_{2}$, then player 1 gets the discounted part $\alpha_{1} \delta^{t_{1}}$ of the cake, while player 2 receives the discounted remaining part $\left(1-\alpha_{1}\right) \delta^{t_{2}}$, with $0<\delta<1$. So, in particular, we assume that both players have identical discount factors. For $t_{1}>t_{2}$ the cake is divided in an analogous way and if $t_{1}=t_{2}$, then each player receives his discounted initial right and they share the remaining part equally.

Note that the above described procedure results in a non-zero sum silent duel, which is a special case of a game of timing first analysed by Karlin (1959) in the zero sum context. In a silent duel both participants can not observe the execution of the action of their opponent. Noisy duels, in which a player observes the action of his opponent at the moment of their execution, were investigated e.g. in Hendricks, Weiss and Wilson (1988).

Further it can be noted that the above model does not fit within the extensive literature on bargaining models like in Rubinstein (1982). In these models the strategies of the players are a combination of proposals and reactions on proposals. This is not the case here, the players simultaneously choose a time point at which they want to get their part of the cake.

The main result of this paper is that the non-cooperative silent game of timing as described above has a unique Nash equilibrium in mixed strategies. The strategies of this equilibrium are explicitly given and it is found that the corresponding equilibrium payoffs do not depend on the discount factor δ.

2 The model

Consider a cake of size 1. Let $\alpha_{1}>0$ and $\alpha_{2}>0, \alpha_{1}+\alpha_{2}<1$, be the initial right of player 1 and player 2 and let $\delta \in(0,1)$ be the common discount factor. With player i choosing a point in time $t_{i} \in[0, \infty)$ to claim his piece of cake, the payoff of player 1 is defined by

$$
\pi_{1}\left(t_{1}, t_{2}\right)= \begin{cases}\alpha_{1} \delta^{t_{1}} & t_{1}<t_{2} \\ \left\{\alpha_{1}+\frac{1}{2}\left(1-\alpha_{1}-\alpha_{2}\right)\right\} \delta^{t_{1}} & t_{1}=t_{2} \\ \left(1-\alpha_{2}\right) \delta^{t_{1}} & t_{1}>t_{2}\end{cases}
$$

and of player 2 by

$$
\pi_{2}\left(t_{1}, t_{2}\right)= \begin{cases}\left(1-\alpha_{1}\right) \delta^{t_{2}} & t_{1}<t_{2} \\ \left\{\alpha_{2}+\frac{1}{2}\left(1-\alpha_{1}-\alpha_{2}\right)\right\} \delta^{t_{2}} & t_{1}=t_{2} \\ \alpha_{2} \delta^{t_{2}} & t_{1}>t_{2}\end{cases}
$$

Figure 1 Payoffs if $t_{1}<t_{2}$

Figure 2 Payoffs if $t_{1}=t_{2}$

A mixed strategy of player i is a probability measure P_{i} on $[0, \infty)$. Let F_{i} be the corresponding distribution function defined by $F_{i}(x)=P_{i}\{(-\infty, x]\}$. Note that F_{i} is right continuous and $\lim _{x \rightarrow \infty} F_{i}(x)=1$. We will use both P_{i} and F_{i} to denote a mixed strategy of player i. The probability in a point we denote for convienence by $q_{i}(x)=F_{i}(x)-F_{i}\left(x^{-}\right)$, where $F_{i}\left(x^{-}\right)=$ $P_{i}\{(-\infty, x)\}$. The Lebesgue-Stieltjes integral is used to calculate the payoff of the players if both players play a mixed strategy.

The above described silent game of timing will be shortly denoted by Γ.

3 The Nash equilibrium

In this section we show that the game Γ introduced in section 2 has a unique Nash equilibrium in mixed strategies.

It is not difficult to see that there is no Nash equilibrium in pure strategies. Suppose $\left(t_{1}, t_{2}\right)$ is a Nash equilibrium. If $t_{1}<t_{2}\left(t_{2}<t_{1}\right)$ then player 2 (1) has an incentive to claim his part of the cake earlier then he did but still later then player 1 (2). If $t_{1}=t_{2}$ then each player has the incentive to make his claim a fraction later. Hence a Nash equilibrium in the game of timing, if it exists, will be one in mixed strategies.

In the following we assume that $\left(F_{1}, F_{2}\right)$ is a Nash equilibrium with payoff $\left(\eta_{1}, \eta_{2}\right)$. Note that each player i can guarantee himself at least α_{i} by playing the pure strategy $t_{i}=0$. This implies that $\eta_{i} \geq \alpha_{i}$.
We first introduce two functions that will play an important role. The functions $g_{1}^{\eta_{2}}:[0, \infty) \rightarrow[0, \infty)$ and $g_{2}^{\eta_{1}}:[0, \infty) \rightarrow[0, \infty)$ are defined by

$$
\begin{equation*}
g_{1}^{\eta_{2}}(t)=\frac{\eta_{2}-\alpha_{2} \delta^{t}}{\left(1-\alpha_{1}-\alpha_{2}\right) \delta^{t}} \quad \text { for all } t \in[0, \infty) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}^{\eta_{1}}(t)=\frac{\eta_{1}-\alpha_{1} \delta^{t}}{\left(1-\alpha_{1}-\alpha_{2}\right) \delta^{t}} \quad \text { for all } t \in[0, \infty) \tag{2}
\end{equation*}
$$

A relation between these functions and the equilibrium strategies (F_{1}, F_{2}) is given in the following argument. The definition of a Nash equilibrium implies that for all $t \in[0, \infty), \quad \eta_{1} \geq \pi_{1}\left(t, F_{2}\right)$ and $\eta_{2} \geq \pi_{2}\left(F_{1}, t\right)$.

The payoff of player 1 playing t when player 2 plays F_{2} is given by

$$
\begin{align*}
& \pi_{1}\left(t, F_{2}\right)=\alpha_{1} \delta^{t}\left(1-F_{2}(t)\right)+\left(1-\alpha_{2}\right) \delta^{t} F_{2}\left(t^{-}\right) \\
& +\delta^{t}\left\{\alpha_{1}+\frac{1}{2}\left(1-\alpha_{1}-\alpha_{2}\right)\right\}\left(F_{2}(t)-F_{2}\left(t^{-}\right)\right) \\
& =\delta^{t}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}(t)\right\}-\delta^{t} \frac{1}{2}\left(1-\alpha_{1}-\alpha_{2}\right) q_{2}(t) \tag{3}
\end{align*}
$$

Analogously we find for player 2 playing t when player 1 plays F_{1} that

$$
\begin{equation*}
\pi_{2}\left(F_{1}, t\right)=\delta^{t}\left\{\alpha_{2}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{1}(t)\right\}-\delta^{t} \frac{1}{2}\left(1-\alpha_{1}-\alpha_{2}\right) q_{1}(t) \tag{4}
\end{equation*}
$$

By the equilibrium condition and the-right-continuity of F_{i} we obtain the following inequalities

$$
\begin{equation*}
F_{1} \leq g_{1}^{\eta_{2}} \quad \text { and } \quad F_{2} \leq g_{2}^{\eta_{1}} \tag{5}
\end{equation*}
$$

In the following lemma we show that F_{1} and F_{2} do not have a masspoint at the same time moment. The argument is similar to the non-existence of a Nash equilibrium in pure strategies.

Lemma 1 If $\left(F_{1}, F_{2}\right)$ is a Nash equilibrium of Γ then $q_{1}(t) \cdot q_{2}(t)=0$ for all $t \in[0, \infty)$.

Proof: Suppose that both $q_{1}(t)>0$ and $q_{2}(t)>0$.
Since $q_{1}(t)>0$ we have that $\pi_{1}\left(t, F_{2}\right)=\pi_{1}\left(F_{1}, F_{2}\right)$.
Since $q_{2}(t)>0$ and F_{2} is a right continuous and monotone there exists an $\epsilon>0$ (small enough) such that both $q_{2}(t+\epsilon)=0$ and $\pi_{1}\left(t, F_{2}\right)<\pi_{1}\left(t+\epsilon, F_{2}\right)$ (cf (3)). This contradicts the fact that $\left(F_{1}, F_{2}\right)$ is a Nash equilibrium of Γ.

The payoffvector $\left(\eta_{1}, \eta_{2}\right)$ of the Nash equilibrium $\left(F_{1}, F_{2}\right)$ satisfies the following conditions:

$$
\eta_{1} \leq 1-\eta_{2} \leq 1-\alpha_{2} \text { and } \eta_{2} \leq 1-\eta_{1} \leq 1-\alpha_{1}
$$

Hence, there exists a time moment c in which the piece of cake that player 2 will leave is equal to the equilibrium payoff that player 1 receives, i.e. $c \in[0, \infty)$ such that $\delta^{c}\left(1-\alpha_{2}\right)=\eta_{1}$. Analogously we can define $d \in[0, \infty)$ such that $\delta^{d}\left(1-\alpha_{1}\right)=\eta_{2}$. Lemma 2 shows that c and d coincide and that both equilibrium strategies put no probability on the interval (c, ∞).

Lemma 2 Let $\left(F_{1}, F_{2}\right)$ be a Nash equilibrium of Γ with payoff vector $\left(\eta_{1}, \eta_{2}\right)$ and let $c, d \in[0, \infty)$ such that $\delta^{c}\left(1-\alpha_{2}\right)=\eta_{1}$ and $\delta^{d}\left(1-\alpha_{1}\right)=\eta_{2}$. Then $c=\inf \left\{x \mid F_{1}(x)=1\right\}=\inf \left\{x \mid F_{2}(x)=1\right\}=d$.

Proof: First we show that $F_{1}(c)=1$.
Suppose $1-F_{1}(c)>0$. In the following calculation the first equality is obtained by integrating (3) and lemma 1 , the first inequality by using the fact $F_{2} \leq g_{2}^{\eta_{1}}(\mathrm{cf}(5))$, the second inequality holds since $F_{2}(x) \leq 1$ for all $x \in[0, \infty)$ and the strict inequality since $\delta^{x}\left(1-\alpha_{2}\right)$ is a strictly decreasing function in x and $1-F_{1}(c)>0$.

$$
\begin{aligned}
& \pi_{1}\left(F_{1}, F_{2}\right) \\
& =\int_{[0, \infty)} \delta^{x}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}(x)\right\} d P_{1}(x) \\
& =\int_{[0, c]} \delta^{x}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}(x)\right\} d P_{1}(x) \\
& +\int_{(c, \infty)} \delta^{x}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}(x)\right\} d P_{1}(x) \\
& \leq \eta_{1} F_{1}(c)+\int_{(c, \infty)} \delta^{x}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}(x)\right\} d P_{1}(x) \\
& \leq \eta_{1} F_{1}(c)+\int_{(c, \infty)} \delta^{x}\left(1-\alpha_{2}\right) d P_{1}(x) \\
& <\eta_{1} F_{1}(c)+\int_{(c, \infty)} \eta_{1} d P_{1}(x)=\eta_{1}
\end{aligned}
$$

Contradiction. Analogously one can show that $F_{2}(d)=1$.
Let $c^{*}=\inf \left\{x \mid F_{1}(x)=1\right\}$ and $d^{*}=\inf \left\{x \mid F_{2}(x)=1\right\}$. Then $c^{*} \leq c$ and $d^{*} \leq d$.
Suppose $c^{*}<d^{*}$. Then for all $x \in\left(c^{*}, d^{*}\right), \quad(3)$ and the definition of d imply that

$$
\begin{equation*}
\pi_{2}\left(F_{1}, x\right)=\delta^{x}\left(1-\alpha_{1}\right)>\delta^{d}\left(1-\alpha_{1}\right)=\eta_{2} \tag{6}
\end{equation*}
$$

Contradition since $\left(F_{1}, F_{2}\right)$ is a Nash equilibrium.
Hence, we may conclude that $c^{*}=d^{*}$.
Finally, using the same line of argument one can prove that $c=c^{*}$ and $d=d^{*}$.

Lemma 2 immediately implies
Corollary 1 If $\left(F_{1}, F_{2}\right)$ is a Nash equilibrium of Γ with payoff vector $\left(\eta_{1}, \eta_{2}\right)$, then

$$
\frac{\eta_{1}}{\eta_{2}}=\frac{1-\alpha_{2}}{1-\alpha_{1}}
$$

The following lemma shows that on the interval $[0, c]$ the equilibrium strategy F_{1} coincides with the function $g_{1}^{\eta_{2}}$ as defined in (1). Here one should note that, since $g_{1}^{\eta_{2}}$ is strictly increasing, $g_{1}^{\eta_{2}}(0) \geq 0$ and $g_{2}^{\eta_{1}}(c)=1, g_{1}^{\eta_{2}}$ is a distribution function on $[0, c]$. Similary, we can find that $F_{2}(x)=g_{2}^{\eta_{1}}(x)$ for all $x \in[0, c]$.

Lemma 3 Let $\left(F_{1}, F_{2}\right)$ be a Nash equilibrium of Γ with corresponding payoffvector $\left(\eta_{1}, \eta_{2}\right)$. Then for all $x \in[0, c]$ it holds that

$$
F_{1}(x)=g_{1}^{\eta_{2}}(x) \quad \text { and } \quad F_{2}(x)=g_{2}^{\eta_{1}}(x)
$$

Proof:

It suffices to prove the first equality.
(i) First we show that $P_{2}\left(\left\{x \mid F_{1}(x)<g_{1}^{\eta_{2}}(x)\right\}\right)=0$.

Integration of (4) with respect to P_{2} and using lemma 1 and lemma 2 gives

$$
\begin{equation*}
\eta_{2}=\pi_{2}\left(F_{1}, F_{2}\right)=\int_{[0, c]} \delta^{x}\left\{\alpha_{2}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{1}(x)\right\} d P_{2}(x) \tag{7}
\end{equation*}
$$

and by straightforward calculation

$$
\begin{equation*}
\int_{[0, c]} \delta^{x}\left\{\alpha_{2}+\left(1-\alpha_{1}-\alpha_{2}\right) g_{1}^{\eta_{2}}(x)\right\} d P_{2}(x)=\eta_{2} \tag{8}
\end{equation*}
$$

From (7) and (8) it follows that

$$
\int_{[0, c]} \delta^{x} F_{1}(x) d P_{2}(x)=\int_{[0, c]} \delta^{x} g_{1}^{\eta_{2}}(x) d P_{2}(x)
$$

Since (5) gives that $F_{1}(x) \leq g_{1}^{\eta_{2}}(x)$ for all $x \in[0, c]$ the proof is completed.
Analogously one can show that $P_{1}\left(\left\{x \mid F_{2}(x)<g_{2}^{\eta_{1}}(x)\right\}\right)=0$.
(ii) Secondly we prove that F_{1} is continuous on $(0, c]$.

Suppose F_{1} is not continuous on $(0, c]$. Then there exists a $z \in(0, c]$ such that $q_{1}(z)=\epsilon>0$. Since $g_{1}^{\eta_{2}}$ is continuous on $[0, c]$, there exists a $\delta>0$ such that $\forall x \in(z-\delta, z]$ it holds that

$$
g_{1}^{\eta_{2}}(z)-g_{1}^{\eta_{2}}(x)<\epsilon
$$

Then for all $x \in(z-\delta, z)$ we have

$$
\begin{aligned}
& F_{1}(x) \leq F_{1}\left(z^{-}\right)=F_{1}(z)-q_{1}(z)=F_{1}(z)-\epsilon \\
& \leq g_{1}^{\eta_{2}}(z)-\epsilon<g_{1}^{\eta_{2}}(x)
\end{aligned}
$$

Hence, part (i) implies that $P_{2}(\{(z-\delta, z)\})=0$. So F_{2} is constant on $(z-\delta, z)$. Since $q_{1}(z)>0$ Lemma 1 implies that $q_{2}(z)=0$. Hence, F_{2} is constant on $(z-\delta, z]$ and, since $g_{2}^{\eta_{1}}$ is strictly increasing, we find that $F_{2}(z)<g_{2}^{\eta_{1}}(z)$. However, using (i) this should imply that $q_{1}(z)=P_{1}(\{z\})=0$.
From (i) and (ii) it follows that $F_{1}(x)=g_{1}^{\eta_{1}}(x)$ for all $x \in[0, c]$.
Until now we only have shown some properties a possible Nash equilibrium of the game Γ does satisfy. The following theorem gives the strategies of the unique Nash equilibrium and its payoff.

Theorem 1 The game Γ has a unique Nash equilibrium $\left(F_{1}^{*}, F_{2}^{*}\right)$ in mixed strategies, given by

$$
F_{1}^{*}(x)=\left\{\begin{array}{lll}
g_{1}^{\eta_{2}^{*}}(x) & \text { if } \quad 0 \leq x \leq c \\
1 & \text { if } x>c
\end{array}\right.
$$

and

$$
F_{2}^{*}(x)= \begin{cases}g_{2}^{\eta_{1}^{*}}(x) & \text { if } 0 \leq x \leq c \\ 1 & \text { if } x>c\end{cases}
$$

with c such that $g_{1}^{\eta_{1}^{*}}(c)=g_{2}^{\eta_{i}^{i}}(c)=1$. The equilibrium payoff is $\left(\eta_{1}^{*}, \eta_{2}^{*}\right)$ where $\eta_{1}^{*}=\frac{\alpha_{2}\left(1-\alpha_{2}\right)}{1-\alpha_{1}}$ and $\eta_{2}^{*}=\alpha_{2}$ in case $\alpha_{1} \leq \alpha_{2}$
and
$\eta_{1}^{*}=\alpha_{1}$ and $\eta_{2}^{*}=\frac{\alpha_{1}\left(1-\alpha_{1}\right)}{1-\alpha_{2}}$ in case $\alpha_{1} \geq \alpha_{2}$
Proof: We only consider the case $\alpha_{1} \leq \alpha_{2}$.
Clearly $\pi_{1}\left(F_{1}^{*}, F_{2}^{*}\right)=\eta_{1}^{*}$ and $\pi_{2}\left(F_{1}^{*}, F_{2}^{*}\right)=\eta_{2}^{*}$.
First we show that $\left(F_{1}^{*}, F_{2}^{*}\right)$ is a Nash equilibrium.
Let G_{1} be a mixed strategy of player 1. Then

$$
\begin{aligned}
& \pi_{1}\left(G_{1}, F_{2}^{*}\right) \leq \int_{[0, \infty)} \delta^{x}\left\{\alpha_{1}+\left(1-\alpha_{1}-\alpha_{2}\right) F_{2}^{*}(x)\right\} d G_{1}(x) \\
& =\int_{[0, c]} \eta_{1}^{*} d G_{1}(x)+\int_{(c, \infty)} \delta^{x}\left(1-\alpha_{2}\right) d G_{1}(x)
\end{aligned}
$$

$$
\leq \eta_{1}^{*}=\pi_{1}\left(F_{1}^{*}, F_{2}^{*}\right)
$$

The first inequality follows by (3), the equality by substitution of F_{2}^{*}. The last inequality follows since for $x \in(c, \infty)$ it holds that $\delta^{x}\left(1-\alpha_{2}\right) \leq \eta_{1}^{*}$.
Analogously it can be shown that $\pi_{2}\left(F_{1}^{*}, F_{2}^{*}\right) \geq \pi_{2}\left(F_{1}^{*}, G_{2}\right)$ for all mixed strategies G_{2} of player 2 .
Secondly we show uniqueness.
From lemma 3 it follows that if Γ has a Nash equilibrium $\left(F_{1}, F_{2}\right)$ with payoff $\left(\eta_{1}, \eta_{2}\right)$ then $\left(F_{1}, F_{2}\right)$ is the unique Nash equilibrium with payoff $\left(\eta_{1}, \eta_{2}\right)$. Suppose there exists a Nash equilibrium $\left(F_{1}, F_{2}\right)$ with a payoff $\left(\eta_{1}, \eta_{2}\right) \neq\left(\eta_{1}^{*}, \eta_{2}^{*}\right)$. Since $\eta_{2} \geq \alpha_{2}$, corollary 1 implies that $\eta_{1}=\frac{1-\alpha_{2}}{1-\alpha_{1}} \eta_{2} \geq \frac{1-\alpha_{2}}{1-\alpha_{1}} \alpha_{2}=\eta_{1}^{*}$. Similarly one can show that $\eta_{2} \geq \eta_{2}^{*}$. Using corollary 1 again gives $\frac{\eta_{1}}{\eta_{2}}=\frac{\eta_{1}^{*}}{\eta_{2}}$ and hence $\eta_{1}>\eta_{1}^{*}$ and $\eta_{2}>\eta_{2}^{*}$. This yields that $\eta_{i}>\alpha_{i}$. This implies that $g_{1}^{\eta_{2}}(0)>0$ and $g_{2}^{\eta_{1}}(0)>0(\mathrm{cf}(1)$ and (2)). However, from lemma 3 follows that $F_{1}(0)=g_{1}^{\eta_{2}}(0)$ and $F_{2}(0)=g_{2}^{\eta_{1}}(0)$. This contradicts with lemma 1 .

Note that the the payoff of the unique Nash equilibrium is independent of the discount factor δ. In fact, one could say that δ only influences the duration of the game. If δ becomes larger the players will become more patient, i.e. the interval $[0, c]$ will become larger.

We conclude this paper with three additional remarks with respect to some slight changes of the model.

In this paper we studied the case that when the pure strategies of both players coincide each player obtains his discounted initial right while the remaining part is split equally. In stead of a half-half division of the remainder in case of a tie one could divide the remaining part in any other fixed proportion to the players, i.e. if both players claim on time t the payoff of player 1 is $\delta^{t}\left(\alpha_{1}+p\left(1-\alpha_{1}-\alpha_{2}\right)\right)$ and the payoff of player 2 is $\delta^{t}\left(\alpha_{2}+(1-p)\left(1-\alpha_{1}-\alpha_{2}\right)\right)$ with $p \in[0,1]$. This modification does not affect the results of this paper. Moreover, the expressions stated in theorem 1 will be independent of the parameter p.

Secondly we can consider the case when the initial rights of the players constitute a division of the whole cake, i.e. $\alpha_{1}+\alpha_{2}=1$. Then obviously each player will claim his initial right at time $t=0$. Hence, in this case the strategy $(0,0)$ is the unique Nash equilibrium with payoff (α_{1}, α_{2}).

Finally, in case there is no discounting, i.e. $\delta=1$, it will be obvious that there is no Nash equilibrium in mixed strategies.

References:

Hendricks K., Weiss A. and Wilson C. (1988) The War of Attrition in continuous time with complete information, International Economic Review 29, 663-680.

Karlin S. (1959), Mathematical Methods and Theory in Games, Programming and Economics, Volume 2.

Rubinstein A. (1982), Perfect Equilibrium in a Bargaining Model, Econometrica $50,97-109$.

IN 1991 REEDS VERSCHENEN

466 Prof.Dr. Th.C.M.J. van de Klundert - Prof.Dr. A.B.T.M. van Schaik Economische groei in Nederland in een internationaal perspectief

467 Dr. Sylvester C.W. Eijffinger
The convergence of monetary policy - Germany and France as an example
468 E. Nijssen
Strategisch gedrag, planning en prestatie. Een inductieve studie binnen de computerbranche

469 Anne van den Nouweland, Peter Borm, Guillermo Owen and Stef Tijs Cost allocation and communication

470 Drs. J. Grazell en Drs. C.H. Veld Motieven voor de uitgifte van converteerbare obligatieleningen en warrant-obligatieleningen: een agency-theoretische benadering

471 P.C. van Batenburg, J. Kriens, W.M. Lammerts van Bueren and R.H. Veenstra Audit Assurance Model and Bayesian Discovery Sampling

472 Marcel Kerkhofs
Identification and Estimation of Household Production Models
473 Robert P. Gilles, Guillermo Owen, René van den Brink Games with Permission Structures: The Conjunctive Approach
474 Jack P.C. Kleijnen
Sensitivity Analysis of Simulation Experiments: Tutorial on Regression Analysis and Statistical Design

475 C.P.M. van Hoesel
An O (n logn) algorithm for the two-machine flow shop problem with controllable machine speeds

476 Stephan G. Vanneste A Markov Model for Opportunity Maintenance

477 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts Coordinated replenishment systems with discount opportunities

478 A. van den Nouweland, J. Potters, S. Tijs and J. Zarzuelo Cores and related solution concepts for multi-choice games

479 Drs. C.H. Veld
Warrant pricing: a review of theoretical and empirical research
480 E. Nijssen
De Miles and Snow-typologie: Een exploratieve studie in de meubelbranche

481 Harry G. Barkema Are managers indeed motivated by their bonuses?

482 Jacob C. Engwerda, André C.M. Ran, Arie L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{\top} X^{-1}=I$

483 Peter M. Kort
A dynamic model of the firm with uncertain earnings and adjustment costs

484 Raymond H.J.M. Gradus, Peter M. Kort
Optimal taxation on profit and pollution within a macroeconomic framework

485 René van den Brink, Robert P. Gilles
Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures

486 A.E. Brouwer \& W.H. Haemers
The Gewirtz graph - an exercise in the theory of graph spectra
487 Pim Adang, Bertrand Melenberg
Intratemporal uncertainty in the multi-good life cycle consumption model: motivation and application

488 J.H.J. Roemen
The long term elasticity of the milk supply with respect to the milk price in the Netherlands in the period 1969-1984

489 Herbert Hamers
The Shapley-Entrance Game
490 Rezaul Kabir and Theo Vermaelen Insider trading restrictions and the stock market

491 Piet A. Verheyen
The economic explanation of the jump of the co-state variable
492 Drs. F.L.J.W. Manders en Dr. J.A.C. de Haan
De organisatorische aspecten bij systeemontwikkeling
een beschouwing op besturing en verandering
493 Paul C. van Batenburg and J. Kriens Applications of statistical methods and techniques to auditing and accounting

494 Ruud T. Frambach
The diffusion of innovations: the influence of supply-side factors
495 J.H.J. Roemen
A decision rule for the (des)investments in the dairy cow stock
496 Hans Kremers and Dolf Talman An SLSPP-algorithm to compute an equilibrium in an economy with linear production technologies

497 L.W.G. Strijbosch and R.M.J. Heuts
Investigating several alternatives for estimating the compound lead time demand in an (s, Q) inventory model

498 Bert Bettonvil and Jack P.C. Kleijnen Identifying the important factors in simulation models with many factors

499 Drs. H.C.A. Roest, Drs. F.L. Tijssen Beheersing van het kwaliteitsperceptieproces bij diensten door middel van keurmerken

500 B.B. van der Genugten Density of the F-statistic in the linear model with arbitrarily normal distributed errors

501 Harry Barkema and Sytse Douma The direction, mode and location of corporate expansions

502 Gert Nieuwenhuis
Bridging the gap between a stationary point process and its Palm distribution

503 Chris Veld
Motives for the use of equity-warrants by Dutch companies
504 Pieter K. Jagersma
Een etiologie van horizontale internationale ondernemingsexpansie
505 B. Kaper
On M -functions and their application to input-output models
506 A.B.T.M. van Schaik Produktiviteit en Arbeidsparticipatie

507 Peter Borm, Anne van den Nouweland and Stef Tijs Cooperation and communication restrictions: a survey

508 Willy Spanjers, Robert P. Gilles, Pieter H.M. Ruys Hierarchical trade and downstream information

509 Martijn P. Tummers The Effect of Systematic Misperception of Income on the Subjective Poverty Line

510 A.G. de Kok
Basics of Inventory Management: Part 1 Renewal theoretic background

511 J.P.C. Blanc, F.A. van der Duyn Schouten, B. Pourbabai Optimizing flow rates in a queueing network with side constraints

512 R. Peeters On Coloring j-Unit Sphere Graphs

513 Drs. J. Dagevos, Drs. L. Oerlemans, Dr. F. Boekema Regional economic policy, economic technological innovation and networks

514 Erwin van der Krabben
Het functioneren van stedelijke onroerend-goed-markten in Nederland een theoretisch kader

515 Drs. E. Schaling
European central bank independence and inflation persistence
516 Peter M. Kort Optimal abatement policies within a stochastic dynamic model of the firm

517 Pim Adang
Expenditure versus consumption in the multi-good life cycle consumption model

518 Pim Adang Large, infrequent consumption in the multi-good life cycle consumption model

519 Raymond Gradus, Sjak Smulders Pollution and Endogenous Growth

520 Raymond Gradus en Hugo Keuzenkamp
Arbeidsongeschiktheid, subjectief ziektegevol en collectief belang
521 A.G. de Kok
Basics of inventory management: Part 2 The (R, S)-model

522 A.G. de Kok Basics of inventory management: Part 3 The (b, Q)-model

523 A.G. de Kok Basics of inventory management: Part 4 The (s, S)-model

524 A.G. de Kok Basics of inventory management: Part 5 The (R, b, Q)-model

525 A.G. de Kok Basics of inventory management: Part 6 The ($\mathrm{R}, \mathrm{s}, \mathrm{S}$)-model

526 Rob de Groof and Martin van Tuijl Financial integration and fiscal policy in interdependent two-sector economies with real and nominal wage rigidity

[^1]
IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg
LQ-control of sampled continuous-time systems
Refereed by Prof.dr. J.M. Schumacher
534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{*} X^{-1} A=Q$. Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs Effectivity functions and associated claim game correspondences Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks
Refereed by Prof.dr. S.H. Tijs
539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma Internationale Joint Ventures Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes Refereed by Prof.dr. B.B. van der Genugten

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys
553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in $\mathrm{DM} / \$$-Returns Refereed by Prof.dr. A.B.T.M. van Schaik

555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher

557 Ton Geerts

Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma
560 Ton Geerts
Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence Communicated by Dr. Th.E. Nijman

567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma

Bibliotheek K. U. Brabant

17000011099778

[^0]: *The author is financally supported by the Netherland Organisation for Scientific Research (NWO). I thank Peter Borm, Eric van Damme, Feico Drost, Harold Houba, Jos Potters, Stef Tijs for their comments.

[^1]: 527 A.G.M. van Eijs, M.J.G. van Eijs, R.M.J. Heuts Gecoorrdineerde bestelsystemen een management-georiënteerde benadering

 528 M.J.G. van Eijs
 Multi-item inventory systems with joint ordering and transportation decisions

 529 Stephan G. Vanneste Maintenance optimization of a production system with buffercapacity

 530 Michel R.R. van Bremen, Jeroen C.G. Zijlstra Het stochastische variantie optiewaarderingsmodel

 531 Willy Spanjers Arbitrage and Walrasian Equilibrium in Economies with Limited Information

