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Abstract

Iterated weig~hted least squares (IWLS} is investigated for estimating the
regression coefficients in a línear model with symmetrically distributed
errors. The variances of the errors are not specified; it is not assumed
that they are unknown functions of the explanatory variables nor that they
are given in some parametric way.

IWLS is carried out in a random number of steps, of which the first one is
OLS. In each step the error variance at time t is estimated with a weight-
ed sum of m squared residuals in the neighbourhood of t and the coeffi-
cients are estimated using WLS. Furthermore an estimate of the covariance
matrix is obtained. Zf this estimate is minimal in some way the iteration
process if stopped.

Large sample properties of IWLS are derived. Some particular cases show
that the asymptotic efficiency can be increased by allowing more than two
steps. Even asymptotic efficiency with respect to WLS with the true error
variances can be obtained.

AMS (1980) subject classification: 62M10, 90A20.
Key words and phrases: Iterated weighted least squares, Linear models,

Unknown heteroskedasticity, Asymptotic efficiency.



1. Introduction

Cc~nsider for n- 1,2,... the heteroskedastic linear regression
model of the form

ynt - S'xnt ;~nt, E{Ent} - 0, V{ent} - ont' t- 1,...,n

with observable ynt E R, xnt E Rk, regression coefficient vector ~e E Rk
(k - 1,2,...) and errors ent E R(vectors are interpreted as columns, the
symbol ' denotes transposition).

The notation with double indices permits different viewpoints on
an increasing sample size n. One possibility is to consider the time in-
tervals between consecutive observation times t as fixed, thereby increas-
ing the length n of the observation period. In this interpretation the
first index n can simply be dropped. Another possibility is, at each stage
n, to consider the length of the observation period as fixed, thereby
decreasing the time intervals between consecutive times t of observation.
In this interpretation it is desirable to add the first index n in order
to maintain the inLerpretation of time for the second index t. In applica-
tions the distinction is not important. Particular forms of heteroskedas-
ticity are easier formulated and analyzed from the second point of view.

Throughout this paper we assume that the errors Enl ""'Enn are
independent for each fixed n and symmetrically distributed.

We want to estimate S for the case of completely, unknown error
variances ónt. Of course we can use the OLS-estimator bn0 for g, defined
by

n -1 n

bn0 - (i xntxnt) i xntynt~

Under appropriate conditions

L
~(bn0-f~) ~ Nk(0,~0) . (1.2)
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It has already be shown by White (1980, 1982) following Eicker (1965),
that consistent estimators ~n0 for ~0 can be constructed. This fact can be
considered as a necessary condition for using this method in practice.

However, a draw back of OLS is that its asymptotic efficiency can
be low. We measure this efficiency with respect to the usual WLS-estimator
bn for g with the reciprocals of the error variances as weighting coeffi-
cients:

n 2 -1 n 2
bn - (~ xntxnt,Qnt) i Xntynt~ónt~

Under appropriate conditions

L
f (bn-l~) ~ Nk(0.~) ,

(1.3)

(1.4)

So the asymptotic efficiency RO of bn0 with respect to bn can be defined
by RO -{det(~)~det(~0)}l~k or RO - tr(~)~tr(~0).

In this paper we investigate the behaviour of a class of estima-
tors bnq (q - 0,1,...) for (, also of the type WLS and obtained by an
iteration procedure stopped after q steps.

The class presupposes a sequence of weight functions fn :[O,m) ~
[O,m) and a vector sequence of mn z 1 positive weights wn -(wn ' ~ E In)'

j
where In -{-[(mn-1)~2],...,[mn~2]-1,[mn~2]) is a set of integers as far
as possible symmetrically around 0. Note that 0 E In for all n.

We define the OLS-estimator bn0 of ~3 to be the Oth iteration step.
Let bnq denote the estimator of ~3 at step q Z 0. Then estimators 6ntq of

ont based on the residuals entq - ynt - bnqXnt are calculated from

2 2
óntq - jEI wn~en.ttj.9~

n
(1.5)

(We take entq - enlq for t( 1 and entq - ennq for t) n; this definition
for the boundaries is rather arbitrary and other more sophisticated defi-
nitions can be considered as well.) The estimator bn q~l of g in step q;l
is calculated according to
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b -{F x x' f(d2 )}-1 F x y f(62 ).n,qtl 1 nt nt n ntq 1 nt nt n ntq (1.6)

The assumption of symmetrically distributed errors prevents an asymptotic
bias in (1.6).

Under appropriate conditions (1.2) generalizes to

L
~(bnq-~) ~ Nk(U,~q) (1.7)

with corresponding asymptotic efficiency of bq given by Rq -{det(~)~
det(~q)}l~k or Rq - tr(~)~tr(~q). Consistent estimators ~nq for ~q will be
constructed for all q z 0.

For the case mn - 1 there is no need for a special interpretation
of the index t. For mn ) 1 the estimator óntq of 6nt in (1.5) makes sense
if this index follows some natural ordering (e.g. time).

n2
The choice of fn(x) - l~x means replacement in (1.3) of 6nt by

ontq' The unboundedness of this obvious choice for x-~ 0 causes difficul-
ties due to the fact that the estimation of ont is often not appropriate
for small mn. Therefore in this paper we take functions for which fn(0) is
well-defined. A typical example which should be kept in mind is f(x) -n
1~(hntx) with hn ) 0. This sequence approximates l~x for hn -~ 0 and makes
also clear why further conditions still allow the possibility that

IlfnNm ~ m,

Section 2 contains the basic results and an application. Expres-
sions for ~q and corresponding estimators ~nq are given. The proofs have
been put together in section 3. Section 4 discusses some cases for which
asymptotic efficiency with respect to WLS is obtained. The behaviour of
R, R and ~ is analyzed further in section 5.
q 9 9

In practice we will bound the number of iteration steps q by some
large fixed number Qmax ~ 1. Assume that the optimal value Q for which R

9
or Rq is maximal (det (~q) or tr(~q) is minimal) in q E{0,...~Qmax} is
uniquely determined. Then Q is consistently estimated by an optimal value
qn f~or whic~h det(~ny) or tr(dnq) is minimnl 1n q E{0,....~max}. 7'he final
estimator of (3 becomes J3n - bnQ . We call j3n the IWLS (Iterated WLS)-esti-

n
mator of g. From the consistency of Qn and the bounded range of q-values
it follows with (1.7) that
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L
`~(gn-~) -~ N(O.~Q). (i.8)

and also that ~Q is consistently estimated by ~nQ . It will be clear that
n

the asymptotic efficiency of (3n is better than that of the OLS-estimator
bn0 unless Q- 0. The analysis in section 5 shows that often Q 2 1 and
even Q ~ 2.

The idea of using residuals in this way to improve the efficiency
in the case of unknown heteroskedasticy seems to go back to Rao (1970).
The elaboration of this idea together with a detailed analysis seems to be
new.
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2. Basic results

In the conditions below we write shortly sup for limsupnmaxt and
inf For liminf~~mint.

Let o) 2 be some fixed constant. For the (symmetric) distribu-
tions of the errors ent we assume

inf ont ~ 0

sup E~Ent~2}o C m.

The condition (2.2) implies

sup ont ~ m.

For the mn weights wnj, j E In we assume

m - ~(n(o-2)~(4ot8))
n

sup wnj ( m.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

The condition ( 2.4) admits m-~ m. The order at which m can increase is
determined by o in (2.2) and tends to n1j4 for o-~ m. The condition (2.5)
norms the weights and allows that F.w ~ m for n~ m.,7 n j
We write

b - m n-o~(2ot4).
n n (2.6)

-1~(Ot2)Then bn - o(n ) according to (2.4) and so bn ~ 0.
We say that the sequence of functions gn :[O,m) ~[O,m) is adapt-

ed to the sequence bn if there exist constants N Z 1 and C1,C2 2 0 such
that for all n z N:
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F'or the weight functions fn and their first and second derivatives f', f"n n
wi~ ic;r;um~~

fn,fn,fn are adapted to bn. (2.7)

For bounded functions this condition is trivially fulfilled. We need this
condition to deal with the unbounded behaviour in the neighbourhood of 0.
It is easily verified ttiat (2.~) is fulfilled for the typical example
fn(x) - 1~(xth ) provided that limsup bn~hn C 1.

Let 6~t be defined as an approximation of ónt in the same way as
óntq in (1.5):

2 2
ant - ~EI wnJEn.ttJ~

n
(2.8)

(As in (1.5) we take Ent - Enl for t C 1 and Ent - Enn for t) n.) We need
some moment conditions with respect to functions of ónt. We introduce for
f :n

inf E~fn(ónt)I ) 0

sup E~fn(ont)~2 C m

sup E~Entfn(Qnt)I1}c C m for some e) 0

sup E~Entfn(ont)I1}e C m for some a) 0,

for f':n

sup E~fn(ont)I C m

sup E~Entontfn(dnt)I2 C m '

and for f":n

sup Elfn(ont)I C ~

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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sup E~e f"(62 )~ ~ mnt n nt

sup ElentfR(~nt)I ~ m.

The explanatory variables xnt are assumed to be deterministic with

suP~xntl ~ m.

(2.16)

(2.17)

(2.18)

Finally we assume the existence of some Caesaro-limits of the usual form
in this kind of analysis. For ~--1,0,1 we assume that

n
C~ - lim n ~ xntxntontn-~m 1

CO ) 0,

for (a,(1) - (0,1),(1,1),(1,2) that

n
Vap - n~ n i xntxntE{Entfn(ánt)}

and finally that

W11 - -n~ wn0 i xntxntE{entfn(ónt)}.

(2.19)

(2.20)

(2.21)

(2.22)

The condition (2.20) gives asymptotic non-collinearity. With (2.9) it
implies V01 ) 0.

The following theorems hold under the conditions in (2.1)-(2.22).

Theorem 2.1.
The relations (1.2), (1.4), (1.7) hold with

(2.23)

~q - AqV Aq t AqV Sq t BqV11A' ~ B C1B' (2.24)12 11 q q q'
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where (AO - 0):

(2.19) we use e2 p in stead of á2 . In ( 2.21), ( 2.22) we drop the expecta-
tions and takenent0' ónt0 in stead of ent' ~nt' This leads to the estima-
to rs

q-1
Aq - L (2VO1W11)JVO1 . Bq - (2VO1W11)qC01.~-0

(2.25)

For the estimation of Cy, Vag and W11 we use OLS-residuals. In

1 n 2Y
Cny - n i xntxntent0

1 n , 2a
Vnap - n i xntxntentOfn(ónt0)

wn0 n 2 2
Wnll - - n i xntxntentOfn(ont0)'

(2.26)

(2.27)

(2.28)

The estimator ~nq of ~q is defined in accordance with (2.24), (2,25). We
replace C~, Va~ and W11 by Cn~, Vn~~ and Wnll'

Theorem 2.2.

Corollory

Cn~ -~ Cy for ~ - 0,1,
P

P
Vna~ -~ Va~ for (a.l1) - (0.1).(1.1).(1.2).

P

Wnll ~ W11'

~ ~ ~ .nq q



Inspection of the proofs of the theorems shows that the choice of
OLS-residuals in (2.26)-(2.28) is the most simple one. Results continue to
hold for residuals obtained after step q' Z 0 for any q' E{0,...,Qm~}.

The IWLS-estimation procedure is easily implemented in practice.
Even the optimal choice Qn for Q in (1.8) gives no particular problems.
The following example is included for illustration.

Example.

The Dutch national income (in billions guilders) during 1960-1975 is given
in the table below (source: Nationale Rekeningen (CBS), table 61).

Year Income Year Income Year Income Year Income

1960 38.396 1964 56.016 1968 82.655 1972 134.520
1961 40.616 1965 62.547 1969 93.913 1973 154.850
1962 43.458 1966 67.835 1970 105.377 1974 174.660
1963 47.317 1967 74.680 1971 118.700 1975 189.270

Let yt be the logarithm of the income in year t t 1959 for t- 1,...,n
with n-16. We use the linear trend model yt - S1 } g2t t Et. Under the
assumption of homoskedasticity we find for the OLS-estimate bn0 of J3 -
(gl,(32)' and the estimate Cn0 of the covariance matrix of f(bn0-g) res-
pectively

b - (3.46 ) .n0 0.111 Cno - 10-3 " ~-0.472 -0.0556~'

The OLS-residuals do not contradict symmetric error distributions. They
indicate a decreasing heteroskedasticity in time. This is confirmed by the
test of Goldfeld-Quant (5;G-level and an equal partition of the time
period). So the diagonal elements of ~0 are estimated incorrectly too
small.

For mn - 7 the corresponding estimate with correction for hetero-
skedasticity becomes
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-3 9.z2 -0.795~n0 - 10 X ~-0.795 0.0751~'

For IWLS we took mn - 7, wnj - l~mn for all j and fn(x) -
1~(xthn). For the iteration criterion we prefered the choice of the trace
in stead of the determinant. A small choice hn - 0.001 leads to the opti-
mal value of Qn - 2 iterations, resulting in

- 3.44
Sn - (0.113) '

-3 6.97 -0.637
~n2 - 10 X ~-0,637 0.0688~'

The effect of IWLS is clear in this example.
The drawback of the whole analysis is that the OLS-residuals indi-

cate also autocorrelation. This is confirmed by the test oF Durbin-Watson
(5~-level). Therefore it would be interesting to know how IWLS behaves in
the case of autocorrelation. Furthermore it is not clear if the number of
observations is large enough to justify the asymptotic approximations. We
reserve these difficult points for future research.
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3. Proofs of the theorems

In the proofs c, ci denote generic non-negative constants not
depending on n and Cn, Cni denote non-negative sequences of random vari-
ables (or constants) which are bounded in probability (i.e.
supnP{ICn~ Z M} -~ 0 if M-~ m). In view of the use of inf and sup in sec-
tion 2 relations hold often only for all n sufficiently large. For posi-

tive constants a and random variables u we write u- o(a ) if a-lu -~ 0n 1 n n n n n
and un - 0(an) if an un is bounded in probability.

The proofs of the theorems are preceeded by preparatory lemma's.
They take as starting point the iteration step q z 0 and give results for
expressions in the next step qtl. These lemma's use the induction assump-
tion

bnq - l3 - 0(l~f).

P

(3.1)

It will then turn out that also bn' tl - p- 0(l~f) ( see lemma 3.12,9
corollory). The valadity of (3.1) for the OLS-estimator bn0 follows from
(2.19) for ~ - 0,1 since E{bn0} -~ J~ and nV{bn0} ~~0 - Có1C1CÓ1

Lemma 3.1.

max ~entq - ent t 2(bnq-1~)~xntEntl - 0(l~n)'lstsn
(3.2)

Proof. Write fntq - Ent - entq - xnt(bnq-~3). Then entq -~nt --2fntqEnt }
fntq. From (2.18) and the induction assumption (3.1) we get max~fnt I-q0(n-~) and so (3.2) follows. o

Lemma 3.2.

max ~csntq - ant t 2(bnq-A)'ï wnjxn ttjEn,ttjl - 0(mn~n). (3.3)
lst5n j
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Proof. From (1.5) and (2.8) we get

6ntq - cfnt - L wn~(en.ttJ.9-En.tfj).

So with (3.2) and (2.5) we get

2 2max~óntq - ónt t 2(bnq-I~)'ïwnJxn,tt~en ttjl s(Cn~n)i~wn~ s cCmm~~n

Note the conventions in (1.5) and (2.8) with respect to values t( 1 and
t ) n. o

Lemma 3.3.

max ~ent~ - 0(nl~(2.0)).
lstsn

Proof. With (2.2) we get

P{n-1~(2`o)max~ent~ z M} s ï P{~ent~ ~ Mnl~(2to)}
1

n
s i(Mnl~(2t~))-2-oElE I2to s M-2-osup E~e I2fo

1 nt nt

5 cM-2-~ -~ 0, M-~ ~. o

(3.4)

Corollory 1. Combining (2,18), (3.1), (3.2) and (3.4) we get with (2.6):

max ~entq - e~t~ - p(n-o~(2ot4)) - 0(án~mn).
lstsn

This implies

P n P
max~entq - ent~ -~ 0. n ï~entq - Ent~ ~ 0.

1

(3.5)

(3.6)

Corollory 2. Combining (2,5), (2.18), (3.1). (3.3) and (3.4) we get in the
same way
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max Ióntq - óntl - ~(bn).
lstsn

Since bn ~ 0 this implies

P
max Iontq - ontl ~ 0.

15tSn

(3.7)

(3.8)

Lemma 3.4.
Let gn be adapted to bn and ~nt be a double sequence of random variables
such that

n n
n~I~ntl - 0(1) , n EI~ntllgn(ont)I - 0(1).

1 1

Then

n
n FI~ntllgn(~ntq)I - C(1)

1

for any double sequence ont such thatq

maxtlóntq - ontl S maxtlóntq - ontl'

Proof. Since gn is adapted to bn it follows that there exist N Z 1, C1 ~ 0
and CZ ~ 0 such that for all n z N we have

Ixl - x2I ~ bn ~ Ign(xl)I 5 C1 t C2Ign(x2)I.

Let e~ 0. Using (3.7) we may take N so large that

P{max~ánt - 6~tI z bn} C e~3.9

From the conditions of this lemma it follows that there exists an M) 0
such that

P{n-lïl~ntl Z M~(2C1)} ~ eI3
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P{n-lï(~ntlgn(ont)I 2 MI(2C2)} ( E13.

Then

P{n-lïl~ntllBn(ontq)I Z M} s P{maxlontq - óntl 2 bn} t

t P{n-lïl~ntllgn(óntq) 2 M, maxl~ntq-ántl ~ bn}

~ s~3 t P{Cin-lïl~ntl . C2n-lïl~ntllgn(ont)I Z M}

s El3 t P{n-lFl~ntl 2 MI(2C1)} t P{n-lïl~ntllgn(ónt)I Z MI(2C2)}

~el3;El3tEl3-E.

So by definition n-lïl~ntllgn(ont ) I is 0(1). o
q

Lemma 3.5.

n g 2 2a j3 2 P
1 FIe2~ f(es )- e f(~ ) I -~ 0n 1 ntq n ntq nt nt

for (a,J3) - (0,1),(1,1),(1,2)

n P
n ~Ientqf1(~ntq) - entf'(ónt)I ~ 0.

1

(3.9)

(3.10)

Proof. At first we prove (3.9) for (a,~3) -(0,1). T'he mean value theorem
gives

n-lElf (~2 ) - f (02 )I s maxló2 - ~2 In-1~If~(62
)In ntq n nt ntq nt n ntq

for o2 such that IQ2 - Q2 I s I62 - á2 I. So with (3.8) we see thatntq ntq nt ntq nt
it suffices to prove that n-lElf'(62 )I - 0(1). From (2.13) it followsn ntq
that n-1FIfn(~ntq)I - 0(1) and from (2.~) that fn is adapted to bn. By
taiing ~~t - 1 and gn - fn we see with lemma 3.4 that indeed
n ïlfn(ontq)I - 0(1).
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Secondly we prove (3.9) for ( a,j3) -(1,1). Since

n-li~e2 f(62 )- E2 f l62 )~ Sntq n ntq nt n nt

s max~e2 - E2 In-1Ff (62 ) t max~is2 - 62 In-lEe2
~f~(o2 )~ntq nt n nt ntq nt ntq n ntq

the result follows from (3.6), (3.8) provided that n-1Lfn(ónt) - 0(1),

n-l~entqlfn(ontq) - 0(1). The first relation follows from (2.10). From
(2.3) it follows that n-lfent - 0(1) and so, using (3.6),

n-lEentq 5 n-lEsnt } n-l~lentq - Ent~ - 0(1).

With lemma 3.4 for ~ - e2 and g- f' it follows that
-1 2 -2 nt ntq n n

n Eentqlfn(ontq)I - 0(1) provided that n-1Eentqlfn(~ntq)I - 0(1). Since

n-1Fe2 ~f~(o2 )~ 5 n-1Fe2 ~f'(62 ) t max~e2 - e2 In-1~If~(o2 )~ntq n nt nt n nt ntq nt n nt

we see with (3.6) that it suffices to verify n-lie2tlfn(ont)I - 0(1),
n-iF~fn(ónt)~ or even sup E~entfn(ont)I ~ m~ sup E~fn(6~t)~. Since

sup ElEntontfn(ónt)I2 ~ m~ sup ElEntfn(ánt)~Z ~ m

~ sup E~entfn(ánt)I ( ~

this follows from (2.14), (2.13).
Thirdly we prove (3.9) for (a,J3) -(1,2). Since

-1 2 2 2 2 2 2 2 2 -1 2 2n ï~entqfn(óntq) - entfn(~nt)I 5 max~entq - entln Efn(ónt) t

; 2 max~~2 - d2 In-1~e2
~f~(o2 )~f (02 )ntq nt ntq n ntq n ntq

this follows in the same way provided that n-lïfn(ont) - 0(1),

n-l~entqlfn(ontq)I - 0(1)' n-1Ffn(ontq) " 0(1). The first relation follows
from (2.10), the second one is contained in the proof for (a,p) -(1,1).
The third one follows from n-lïfn(ónt) - 0(1), (2.7) for fn and lemma 3.4
applied to gn - fn and ~nt - 1.
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Finally, the proof of (3.10) is exactly the same as (3.9) for
(a,g) -(1,1), replacing f by f'. Using (2.7) for f" it remains to proven n n
that n-1LIfn(dnt)I " 0(1),

n-lEentlfn(ont)I - 0(1),
n-1FIfn(ont)I - 0(1).

Thi-s follows from (2.13), (2.1~), (2.15). o

In agreement with (2.19), (2.21), (2.22) we introduce C(q), V(q)
Wn41 and intermediate approximations Cn~' ~nag' Wnll in the following way:

n(9) - 1 n , 2?l 1 n , 2ó
Cny - n i xntxntentq ' Cn~ - n i xntxntEnt

n~ na~3

(3.11)

(q) - 1 n , 2a 2 1 n , 2 2
~nag - n i xntxntentqfn(ontq) ' ~naj3 - n i xntxntEntfn(ónt) (3.12)

n(q) wn0 n , 2 , ~2 wn0 n 2 2
Wnll -- n i xntxntentqfn(ontq)'Wnll -- n i xntxntEntfn(ónt)'

(3.13)

Lemma 3.6.

P
(q)Cnl - Cnl ~ 0

P
V(q) - V ~ 0 for (a,g) - (0,1),(1,1),(1.2)nag na~

P
..(q)
Wnll - Wnll ~ 0'

Proof. Follows from (2.5). (2.18). (3.6). (3.9). (3.10). o

The connection between the intermediate approximations in (3.11)-
(3.13) and the limits (2.19), (2.21), ( 2.22) is based on a weak law of
large numbers for pn-dependent variables.

Lemma 3.~ (WLN).
Let (Unt; t- 1,...,n; n- 1,2,...) be pn-dependent. If pn - o(n) and
sup E~Unt~l}E ( m for some e~ 0 then
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1 n P
n E (Unt-E{Unt)} ~ 0.

1

Proof. For pn - 0 and E{Unt} - 0 the proof is suggested in Rao (1973).
excercise 4.5, p. 146. The general case follows easily from this particu-
lar case by splitting up the sum into independent parts. See Genugten
(1989) for details and generalizations.

Lemma .8.

P
Cn~ ~ C~ for ,y - 0, 1

P
Vna~ -a Va~ for (a.H) - (0.1).(1,1).(1.2)

P
Wnll ~ W11'

Proof.
Ad-CY. The assertion for ,y-0 is trivial. From (2.19) and (3.11) we get

n
Cnl - C1 - n i xntxnt(Ent-ont) } 0(1)'

So the assertion for y-1 follows from (2.18) and lemma 3.7 for pn - 0
provided that sup E~Ent~l}E ~ m for some E) 0. However, this is implied
by (2.2).
Ad-Vag. Note that {Entfn(ont)} is pn-dependent for pn ~ mn-1. From (2.21)
and (3.12) we get

n
Vna~ - Va~ - n i xntxnt(Entf~(ónt)-E{e~tfn(ónt)}) t o(1),

So the assertion for the indicated values of (a,p) follows from lemma 3.7
for mn, provided that mn - o(n) and sup E~Entf~(ant)I1}e ~ m for some
E) 0. This is implied by (2.4) and (2.10)-(2.12).
Ad-W11. Follows in the same way from (2.22) and (3.13), using (2.4) and
(2.14). Note that (2.14) implies that sup E~e2 f'(~2 )~2 ( m. ont n nt
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Corollory. From lemma 3.6 and lemma 3.8 we get

n(q)
P

Cny ~ C~ . ë - 0,1

P
Vnag ~ Va~ . (a.Il) - (0.1).(1.1).(1.2)
~(9)

W(q) P wnll 11'

Lemma 3.9.

n
1 Llxnttnt{fn(óntq) - fn(ónt)} t
~ 1

P
t 2(b -s)' L w x x' E e f'(62 )I ~ 0.nq j nj nt n,ttj nt n,ttj n nt

("3.14)

(3.15)

(3.16)

(3.17)

Proof. Using a Taylor-expansion upto order 2 we get with (2.18), (3.7):

n-1~2I

s n1~2max~~nt - 6nt~2.n-lilentllfn(~nt )Iq q

s Cnnl,2bn.n-lïlentllfn(ont )I'q

n

i xntEnt{fn(antq) - fn(ont) - (óntq-ónt)fn(ónt)}I

From 2.4), (2.6) we 1~2 2( get n bn -~ 0 and so the right hand side of the
inequality is o(1) provided that n-lElEntllfn(óntq) - 0(1). However, using
lemma 2.4 with ~nt - Ent and gn - fn, t~is follows from (2.7) provided
that n EIEn~~ - 0(1), n FlEntllfn(ónt)I - 0(1) or even sup E~entl ~ m'sup E~Entfn(~nt)I' This is implied by (2.3), (2.16). So the left hand side
of the inequality is o(1). Combination with (3.3) leads to (3.7) provided
that n-1,2mn ~ 0 and n-1LIEntfn(Qnt)I - 0(1). This follows from (2.4) and
(2.14). o
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Lemma 3.10.

E{Entfn(ónt)} - 0

z,
E{EntEn,ttjf(ónt)} - 0. E{EntEn,ttjf (ónt)} - 0. ~~ 0

(3.18)

(3-19)

E{EntEn,ttiEn,ttj(f'(~nt})2} - 0, i~ 0, j t 0, i~ j (3.20)

n
Cov{1 F xntEntfn(ont)} ~ V11'~ 1

(3.21)

Proof. The existence of the expectations follows from (2.12), (2.14). The
relations follow from the symmetry of the distribution of Ent. In particu-
lar, the left hand side of (3.21) equals

E{n
t s xntxnsEntEnsfn(ónt)fn(óns)} - n t xntxntE{Entfn(csnt)}

and according to (2.21) this tends to V11. o

Corollory.

n
ï xntEntfn(ant) - 0(f).
1

i,emma 3.11.

(3.22)

1 n 2 P
n i(~ wnjxntxn,ttjEntEn,ttj)fn(ont) ~ -W11' (3.23)

Proof. Write Unt - ~ wnjxntxn,ttjEntEn,ttjfn(ant)' Then the Unt are mn-

dependent. So lemma 3.~ gives n-lï(Unt-E{Unt}) - 0(1) if sup E{Unt} ( m.
From (3.19) we get E{Unt} - wnOxntxntE{Entfn(ónt)}' So with (2.22) we see
that n-lEE{Unt} ~-W11' Therefore it remains to verify that sup E{Unt} C

. We get with (3.20)

E{(J2 }- F F W W x X~ X X' E{EZ E E (f'(62 )2}nt ni nj nt n,tti n,ttj nt nt n,tti n,tij n nt)i j
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- wnOlxnt~4E{ent(fn(ont))2} .

t E wnj~xntl2~xn t~j~2E{enttn ttj(f~(ont))2}j~0

and so with (2.5), (2.18):

E{Unt} 5 c1E{j wnjEntEn,ttj(f (ónt))2}

5 c2E{Ent(j wnjEn.t~j)(f~(ont))2} - c2ElEntontf~(ónt)~2.

With (2.14) this gives sup E{Unt} ~ m, o

Corollory 1. With (3.1), (3.1~) and the lemma we get

n n

1~xntEntfn(óntq) - 1 E xntEntfn(cnt) t 2Wllf (bnq-A) t o(1).f 1 ~ 1

Corollory 2. Using (3.1) and (3.22) it follows from (3.24) that

n
F xntEntfn(óntq) - 0(~).
1

Lemma 3.12.

(3.24)

(3.25)

-1 1 n 2 -1
~(bn,qtl-R) - ~01 ~ i xntEntfn(ont) ~ 2VO1W11~(bnq-g) ' 0(1).

(3.26)

Proof. With (1.6), (3.12), lemma 3.8, (3.25), (3.24) we get

n n
~(bn.9t1-~) - (n F xntxntfn(óntq))-1 1 E

xntEntfn(ontq) -1 f 1

-(V(9))-1n-1~2 ï x E f(~2 )- ~-1n-1~2 E x e f(~2 ) t o(1)-n01 1 nt nt ntq O1 1 nt nt ntq
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n
- ~Oln-1~2

i
xntEntf(ont) r 2VO1W11~(bnq-j3) t o(1). o

Corollory. From (3.1), (3.22) we get

bn~qtl - f~ - 0(l~f). (3.27)

The foregoing lemma's are derived under the induction assumption (3.1) for
step q. The relation (3.2~) shows that then it necessarily holds for step
qtl. It has already been shown that it holds for q- 0. Hence all lemma's
hold for arbitrary q.

Proof of theorem 2.2. The relations (3.14) -(3.16) in lemma 3.8, corollo-
ry hold for arbitrary q. In particular they hold for q- 0. However, this
is just the statement in theorem 2.2. o

Lemma 3.13.

n n
~(bnq-!1) - Aq 1 i xntEntfn(ónt) t Bq 1 ï xntEnt } 0(1) (3.28)

f 1 f 1

with A, B defined in (2.25).q q

Proof. The relation (3.26) holds for any q. Iteration in q and substitu-
tion of (2.25) leads to

n
~(bnq-A) - Aq n i xntEntfn(ont) } Bq~(bno-~) t o(1).

Then (3.28) follows by substitution of b-g in (l.l). ono

The expression at the right hand side of (3.28) is a sum of m-n
dependent random variables. We need a central limit theorem for sums of
that kind.

Lemma ~-1h. (CI:I')

Let (Unt; t- 1,...,n; n - 1,2,...) be prl-dependent. II' V{ï Unt}~n ~ 1 and
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then

m2}2,E - o(n) , sup E~Unt~2}E ( m for some E) 0n

k
kli EI F Unt~2 - 0(1) uniformly in i,k

J-it1

n 1(Unt - E{Unt}) ~ N(0,1).

Proof. The lemma is a reformulation of that in Berk (1973), theorem,
p. 352. See also Genugten (1989) for details. o

Remark. By considering linear combinations the theorem is easily extended
to random vectors. The extension to a non-singular covariance matrix of
the limit distribution is immediate.

Proof of theorem 2.1. We skip the proof of the standard result (1.4),
(2.23) and proceed with (1.7), (2.24) for q z 1. We apply lemma 3.14,
remark to the right hand side of (3.28) by taking Unt - AqxntEntfn(ont) }2t2~o
Bqxntsnt and pn - mn. Note that mn - o(n). From (2.12) and (2.3) we
get sup E~Entfn(~nt)I1}t ~ m and sup E~ent~2}E ( m for some e) 0. There-
fore sup E~Unt~2}E C m using (2.18). From (3.18) we see E{Unt} - 0 and
from (3.19) that Cov{U U}- 0, t~ s. This implies that the conditionnt' ns
concerning uniformity is also fulfilled. What remains to be done is to
calculate the covariance matrix of the limit distribution. Using again the
symmetry of the distribution of the Ent we get from (2.19), (2.21):

Cov{n-1,2ExntEntfn(ont)} - n-1~xntxntE{Entfn(ónt)} ~ ~12

-1~2 -1 2Cov{n ~xntcnt} - n Fxntxntónt ~ C1

-1~2 2 -1~2Cov{n ~xntEntfn(ónt)' n ~xntEnt} -

-
n-1FxntxntE{entfn(6nt)} ~ ~11'
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So this limit equals

AqV12Aq f AqV11Bq . BqV11A' t B C1B'.
9 9 9

This is just the expression (2.24) for ~q and so (1.~) follows. o
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4. Asymptotic efficiencv

We consider a special case for which IWLS is asymptotically effi-
cient (~Q -~). In fact the conditions will give ~q -~ for all q z 1.

For the error distributions we assume that ont is a scale-parame-
ter of the distribution ~(ent). More precisely, we assume that their exist
i.i.d. random variables ~j, j E Z with E{n~} - 0, V{~~} - 1 such that

~(En,ttj,ón,ttj. j E In) -~(~j. j E In) for all n,t. (4.1)

Under (4.1) the condition (2.2) is equivalent to EInQI2}~ C m and (2.3).
Furthermore we assume that the error variances are smooth in the

following sense:

m n
nn ï max~on tt - antl ~ p1 j ~

(with ont - 6n1 for t C 1 and ónt - onn for t) n).
Next, we take for the weight functions the typical example

fn(x) - 1~(xthn)

with

lim sup bn~hn C 1, h ~ 0.n

(4.2)

(4.3)

(4.4)

In section 2 it has already been noted that for such functions the condi-
tion (2.~) holds. The weights are chosen to be equal:

w - l~m .nj n

Finally we assume

m ~ m.n

(4.5)

(4.6)
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Theorem 4.1.
For the example defined by (4.1)-(4.6) we have

~q - ~ . q Z 1

In particular IWLS is asymptotically efficient.

Proof. From (2.21), (2.22) it follows that

V - lim 1 Ex x' E{e2a~(h {62 )~}a(3 n~ n nt nt nt n nt

W11 - n~ wno ~xntxntE{Ent~(hn~~nt)2}

(4.7)

It suffices to prove that Va~ - Ca-~ for (a,j3) -(0,1), (1,1), (1,2).
Since wn~ - l~mn -i 0 according to (4.5), (11.6) wc-~ get W11 - 0 and substi-
tution into (z.23)-(z.25) immediately leaids to ~q - C-i -~ for q z 1.

We consider the expectation on the right hand side of the equation
for VaR. Substitution of (4.1) leads to

E{snt~(hnt6nt)~} - ontE{TiHa~(hntF wnjón t}jn~)~}.
j

From (2.1), (2.3), (2.18) and (4.2) it easily follows that we may replace
2 26n ttj by Gnt (use the mean value theorem for the expression under the

expectation sign as a function of the n~, j~ 0). Hence,

V - lim 1 ïx x' 62(a-J3)E 2a w-2 2~3
a(3 n~ n nt nt nt {n0 ,(hnónt}E wnj~j) }.

j

From (4.5) and the strong low of large numbers we get that L.w n? -~~ nj ~
E{~,~} - 1, a.s. Since hn ~ 0 according to (4.4) the dominated convergence
theorem gives that the expectation factor tends to 1. However, with (2.19)
this leads to Vag - Ca-~. o

The smoothess coridítion ( 4.2) in the theorem above is important. A
typical example is the case ont - 1 . at~n ( ~ ) O) of linear increasing
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standard deviations. More general polynomial behaviour is included too.
Periodic heteroskedasticity is not smooth.

Also important are the conditions hn ~ 0 and mn ~ m in (4.4) and
(4.6). If inf hn ~ 0 or sup mn ~ m then it is likely that asymptotic effi-
ciency cannot be attained.

It is important to get insight in the asymptotic efficiency of
IWLS under other or more general conditions. In particular small values of
mn are desirable. Therefore we consider the asymptotic efficiency R or R

9 9
in the following section in a more general way.



5. The behaviour of R and R- q -- q

The asymptotic efficiency Rq and Rq is determined by the compli-
cated expressions (2.23), (2.24). It can be simplified using further as-
sumptions. This has already been shown in section 4.

As in section 4 we assume that the ónt are scale parameters in the
sense of (4.1).

In this section we emphasize small values of mn. Therefore we take
fixed values not depending on n:

mn - m , wnj - wj , fn - f. (5.1)

We write Im instead of In and w-(wj, j E Im) for the vector in Rm with
elements wj.

Next, we assume the convergence of the simultaneous empirical
distribution of the explanatory variables xnt and the standarddeviations
ónt in the following way. Let Fn be the uniform distribution on the n
points (xnt'ón,ttj for j E Im) E Rk}m, t- 1,...,n. Then we assume

F -~ Fn (5.2)

for some probability distribution F.

The following theorem gives expx~essions for the limits C~, Va~ and

W11 which determine ~, ~q.

Theorem 5.1 (,y - -1,0,1 and (~,j3) - (0,1),(1,1),(1,2))

C~ - ff xx'T~~dF(x,i)

Va~ - ff xx~T~aE{rt~af~(E wjT~Tt~)dF(x.T)
j

W11 - -w0 fJ xx'~~E{r~~f'(E w.T?Ti2)dF(x,T).
j J J J

(5.3)

(5-4)

(5.5)

Proof. Denote the expressions in (2.19), (2.21), (2.22) after lim by Cn~,

VnaJ3' W11 respectively. Then
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n
Cn~ - n F xntxntont - If xx'T~ydFn(x.i)-

1

With (2.1), (2.3), (2.18) we see that all Fn are restricted to a finite
closed interval and that the integrand xx'T~~ is a continuous function of
(x,T) -(x,Tj for j E Im) on that interval. Then (5.2) implies Cn~ ~ Cy
with C~ given by (5.3). The relations (5.4), (5.5) follow in the same way,
e.g.

1 n , 2a j3 2 1 n , 2a 2a g 2 2
~aj3 - n i xntxntE{entf (ónt)} - n i xntxntontE{n0 f(~wjon,ttj~j)} -

- JJ xx'T2aE{~2af~(Lw.iZrf,?) }dF (x,t) .0 0 ,7 ,7 ~ n

Since a 5 1 it follows from E{rt~} C m and the dominated convergence theo-
rem that the integrand is a continuous function of (x,2). o

'Phe expressions (5.3)-(5.5) can be simplif'ied further if we assume
that the explanatory variebles and tlie standarddeviations are asymptoti-
cally independent:

F - G x H (5.6)

where the marginal distributions G of the first k components of F is the
limit distribution of the xnt and the marginal distribution H of the last
m components of F is the limit distribution of the on't}j' ~ E Im'

We introduce

c~, - f TóydH ( T )

va~ - f TDaE(~~af~(ï wjT~rf~)}dH(T)
j

wll --wG f T~E{rf~f'(F w T?n2)dH(T).
j J J J

(5.7)

(5.8)

(5.9)

Then the assumption (5.6) admits a remarkable expression for the asympto-
tic efficiency.
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Theorem 4.2 (independency).

CO - ff xx'dG(x)

~ - COl,c-1

~q - (vl2aqt2vllaqbqtclbq)CO1

where

q
aq - 1-T v01 ' bq - zq , T- 2wOw11~v01.

(5.10)

(5.11)

(5.12)

(5.13)

Proof. Substitution of (5.6) into (5.3)-(5.5) leads to CO given by (5.10)
and C- c C, V - v C, W - w C. Then (2.23) leads to (5.11) andy y 0 a(13 a~3 0 -} 1 11 0
(2.25) to Aq - aqCO , Bq - bqCO . So (5.12) follows from (2.24). o

Corollory. Substitution of (5.10), (5.11) into the determinant-definition
Rq -{det(~)~det(~q)}l~k or the trace-definition Rq - tr(~)~tr(~q) leads
to Rq - Rq for all q z 0 and

1~R0 - c-lcl (5.14)

llRq - c-1(v12aqt2vllaqbq) 4 bq~RO , q Z 1. (5.15)

The corollory of theorem 4.2 is remarkable in the following way. From
(5.14), (5.15) we see that the limit distribution of the explanatory vari-
ables has no effect on the asymptotic efficiency of OLS and IWLS. The
expression (5.15) relates Rq immediately to R0, thereby enabling conclu-
sions about the optimal value q- Q for which Rq is maximal. If f is non-
increasing then wll Z 0; therefore in this case the condition t C 1 is
necessary for IWLS being better than OLS.

For more specific conclusions the expressions (5.7)-(5.9) have to
be evaluated. We give some useful theorems for further reduction in spe-
cial cases.
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If the form of the heteroskedasticity is smooth in the sense of
(4.2) then we can simplify the expressions in (5.~)-(5.9) by replacing the
distribution H by the marginal distribution HD of the 0-th component of H.

We express this rather general result by means of the following
theorem in which we adapt (4.2) in view of (5.1).

Theorem 4.3 ( independency and smoothness).
If the following smoothness condition holds

n

n ilon,ttl - óntl ~ ~

then

c~ - f T~~dH~(T~)

va~ - f T~aE{nÓafs(T~(j wj~~))dH~(T~)

wll - -w~ J T~E{~~f~(T~(~ wjnj)2)dH~(2~).
j

(5.16)

(5.17)

(5.18)

(5.19)

Proof. With (2.3) it follows that F~on,ttj,ont - 1~ - o(n) for all j,
implying that dH(T) - dH(i~) x.., x dH~(TD) for all T-(2., j E I).~ m
Substitution into (5.7)-(5.9) leads to (5.1~)-(5.19). o

A polyniomal behaviour of heteroskedasticy is a simple example of
smoothness. E.g for a linear increasing standarddeviations

ont - 1 t at~n (x ~ 0) (5.20)

the smoothness condition (4.18) is easily verified and H~ becomes the
continuous uniform distribution on [1,1;~]. (Note that the notation with
double indices cannot be avoided without violating the condition (2.3) of
bounded standarddeviations).

Periodic heteroskedasticity is not smooth. E.g for the alternating
type
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ont - 1, t odd and ant - lt~ , t even (a ~ 0) (5.21)

the condition (5.16) is not fulfilled. In this case H is the uniform dis-
tribution on two points ii -{Tij, j E Im}, i- 1,2 with Tij - 1,
T2j - lt~ for even j and Tij - lt~, 2ij - a for odd j.

For the special weight function

f(x) - 1~(x4h) , x Z 0 (5.22)

(wíth h) 0) it follows from (5.1b), (5.1a) that

wil - wOu12 (5.23)

In general the m-dimensional integral in (4.10) or (4.20) representing the
expectation cannot be reduced any further. However, for the special case
of normal error distributions reduction to a one-dimensional integral is
possible.

Theorem 4.4 (normal error distributions).

Let nj ~ N(0,1), j E Im. Then for h) 0, uj Z 0 and integer a z 0 and

E{npa~(htF ujn~)~} -
j

- 2a I'(at1~2) J0 e-htt~-1(lt2tu
)-~-2

(T (lt2tu.)-1~2dt.~(il2)r(~l o o j~o '
Proof. This follows along the lines of' Magnus (1986), sections 3-5. There-
fore we only sketch the proof. Ttie left hand side oF (5.24) is equal to
E{wi~(ó~w2)S}, where wl -(a'n)2, w2 -~,'n~ with ~-(nj), n- diaB(uj),
a-(aj) with a0 - 1, aj - 0 for j~ 0. As a generalization of Magnus
(1986), lemma 4, we get

E{wi~(hiw2)g} - r(1~) f~ e-htt~-i(~aa ~(a.-t)~g-oat,
0 ~9
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where ~p(81,92) - E{exp(9iwit82w2)} is the joint moment generating function
of wl and w2. As in the proof of Magnus (1986), theorem 6, it follows from
the normality assumption that

~(s.-t) - IoI.(1-28a'o2a)-1~z . o - (lm.2tn)-1~2

and so

~8a(F(8.-t)~g-0 - I~I'2a rI'(1~2) ( a o2a)a.

Substitution leads to (5.2~1).

Remark. It is easily checked that (5.24) holds for h-0 provided that S C
afm~2.

Example.

We consider the analytically simple case of standardnormal distributed
errors, smooth heteroskedasticity in the sense of (5.16), equal weights
w~ - l~m and weighting function f(x) - l~x (the limiting case h-0 in
(5.22)). Then (5.18) leads to

va~ - mpca-~E { T1~a~ í Lr~~ ) g} .

With (5.24) for h-0, u~ - 1 we get (J3 C atm~2):

E{~palÍEn?)~} - 2a-j3 r atl 2 r(~-gtm~z)
,7 T"(1~2) i"(atm~2) '

In particular,

~01 - ~12 - wll~m - c-lm~(m-2) , ~11 - 1

provided that m z 3. Substitution into (5.13)-(5.15) leads to T- 2~m and

1~Rq - (1-iq)Z~Í1-T) t 2(1-Tq)Tq ~ T2q~Rp
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with 1~R0 - c-lcl. A numerical evaluation of this relation between R and
9

RO for fixed m easily leads to the conclusion that the gain of efficiency
of IWLS with respect to OLS becomes larger for smaller R0. Note that
Rq -~ 1-T for q~ m but that a higher maximum is attained for finite q
(e.g. for m- 3 the value RO - 0.60 leads to RQ - 0.66 with Q- 1 and
RO - 0.20 gives RQ - 0.43 with Q- 3). For fixed q Z 1 we see that R~ 1

q
if m ~ m.

1'he foregoing example suggests a choice of a large interval Im
with equal weighting coefficients. A further numerical study of the beha-
viour of the asymptotic efficiency has been made, using the results of
this section. It appears that the pattern is rather complicated.

For smooth heteroskedasticity a moderate or large value of n seems
appropriate. A choice h~ 0 or even unequal weighting coefficients can
lead to a further increase of efficiency.

However, for the case of periodic heteroskedasticity the opposite
choice of a small interval Im seems to be the right one. In a lot of par-
ticular cases the choice m-1 appears to be optimal.

In intermediate cases the ctioice is not clear at all. For comple-
tely unknown heteroskedasticity the choice of an interval Im of modest

size with equal weighting coefficients is appealing.



34

References

Anderson, T.W. (19~1) - The Statistical Analysis of Time Series - Wiley,
New York.

Berk, K.N. (1973) - A central limit theorem for m-dependent random va-
riables with unbounded m- Annals of Probability 1, 352-354.

Eicker, F. (1965) - Limit theorems for regressions with unequal and depen-
dent errors - Proc. 5th Berkeley Symp. Math. Stat. and Prob., 59-82.

Genugten, B.B. van der (1989) - A weak law of large numbers for m-depen-
dent random variables with unbounded m- Research Memorandum 412,
Tilburg University.

Rao, C.R. (1970) - Estimation oF heteroskedastic variances in linear mo-
dels - Journal of the American Statistical Association 65, 161-1~2.

Rao, C.R. (1973) - Linear Statistical Inference and its applications, 2nd
edit. - Wiley, New York.

White, H. ( 1980) - A heteroskedasticity-consistent covariance matrix esti-
mator and a direct test for heteroskedasticity - Econometrica 48,
817-838.



IN 1989 REEDS VERSCHENEN

368 Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen de
distributieketen"

369 Raymond Gradus
Optimal dynamic taxation with respect to firms

370 Theo Nijman
The optimal choice of controls and pre-experimental observations

371 Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation

372 F.A. van der Duyn Schouten, S.G. Vanneste
Analysis and computation of (n,N)-strategies for maintenance of a
two-component system

373 Drs. R. Hamers, Drs. P. Verstappen
Het company ranking model: a means for evaluating the competition

374 Rommert J. Casimir
Infogame Final Report

375 Christian B. Mulder
Efficient and inefficient institutional arrangements between go-
vernments and trade unions; an explanation of high unemployment,
corporatism and union bashing

376 Marno Verbeek
On the estimation of a fixed effects model with selective non-
response

377 J. Engwerda
Admissible target paths in economic models

378 Jack P.C. Kleijnen and Nabil Adams
Pseudorandom number generation on supercomputers

379 J.P.C. Blanc
The power-series algorithm applied to the shortest-queue model

380 Prof. Dr. Robert Bannink
Management's information needs and the definition of costs,
with special regard to the cost of interest

381 Bert Bettonvil
Sequential bifurcati.on: the design of a factor screening method

382 Bert Bettonvil
Sequential bifurcation For observations with random errors



11

383 Harold Houba and Hans Kremers
Correction of the material balance equation in dynamic input-output
models

384 T.M. Doup, A.H, van den Elzen, .4.J.J. Talman
Homotopy interpretation of price adjustment processes

385 Drs. R.T. Frambach, Prof. Dr. W.H.J. de E'reytas
Technologische ontwikkeling en marketing. Een oriënterende beschou-
wing

386 A.L.P.M. Hendrikx, R.M.J. Heuts, L.G. Hoving
Comparison of automatic monitoring systems in automatic forecasting

387 Drs. J.G.L.M. Willems
Enkele opmerkingen over het inversificerend gedrag van multinationale
ondernemingen

388 Jack P.C. Kleijnen and Ben Annink
Pseudorandom number generators revisited

3a9 Dr. G.W.J. Hendrikse
Speltheorie en strategisch management

390 Dr. A.W.A. Boot en Dr. M.F.C.M. Wijn
Liquiditeit, insolventie en vermogensstructuur

391 Antoon van den Elzen, Gerard van der Laan
Price adjustment in a two-country model

392 Martin F.C.M. Wijn, Emanuel J. Bijnen
Prediction of failure in industry
An analysís of income statements

393 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters
On Lhe short Lerw objectives of dcii]y intervention by the Deutsche
Bundesbank and the Federal Reserve System in the U.S. Dollar -
Deutsche Mark exchange market.

394 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters
On the effectiveness of daily interventions by the Deutsche Bundes-
bank and the Federal Reserve System in the U.S. Dollar - Deutsche
Mark exchange market

395 A.E.M. Meijer and J.W.A. Vingerhoets
Structural adjustment and diversification in mineral exporting
developing countries

39b R. Gradus
About Tobin's marginal and average q
A Note

397 Jacob C. Engwerda
On ttie existence-qF a positive definite solution of the matrix
equation X t ATX A- I



111

398 Paul C. van Batenburg and J. Kriens
Bayesian discovery sampling: a simple model of Bayesian inference in
auditing

~`~y tfar.s Kremers and Dolf' '1'alman
Solving the nonlinear complementarity problem

400 Raymond Gradus
Optimal dynamic taxation, savings and investment

401 W.H. Haemers
Regular two-graphs and extensions of partial geometries

402 Jack P.C. Kleijnen, Ben Annink
Supercomputers, Monte Carlo simulation and regression r~nalysis

403 Ruud T. Frambach, Ed J. Nijssen, William H.J. F'reytas
Technologie, Strategisch management en marketing

404 Theo Nijman
A natural approach to optimal forecasting in case of preliminary
observations

405 Harry Barkema
An empirical test of Holmstrt5m's principal-agent model that tax and
signally hypotheses explicitly into account

406 Drs. W.J. van Braband
De begrotingsvoorbereiding bij het Rijk

40~ Marco Wilke
Societal bargaining and stability

408 Willem van Groenendaal and Aart de Zeeuw
Control, coordination and conFlict on international commodity markets

409 Prof. Dr. W. de Freytas, Drs. L. Arts
Tourism to Curacao: a new deal based on visitors' experiences

410 Drs. C.H. Veld
The use of the implied standard deviation as a predictor of future
stock price variability: a review of empirical tests

411 Drs. J.C. Caanen en Dr. E.N. Kertzman
Inflat;ieneutrale belastingheffing van ondernemingen

412 Prof. Dr. B.B. van der Genugten
A weak law of large numbers for m-dependent random variables with
unbounded m

1113 R.M.J. Heuts, H.P. Seidel, W.J. Selen
A comparison of two lot sizing-sequencing heuristics for the process
industry



1V

414 C.B. Mulder en A.B.T.M. van Schaik
Een nieuwe kijk op structuurwerkloosheid

415 Drs. Ch. Caanen
De hefboomwerking en de verm~gens- en voorraadaftrek

416 Guido W. Imbens
Duration models with time-varying coefficients

41~ Guido W. Imbens
Efficient estimation of choice-based sample models with the method of
moments

418 Harry H. Tigelaar
On monotone linear operators oci linear spaces of square matrices



v

IN 1990 REEDS VERSCHENEN

419 Bertrand Melenberg, Rob Alessie
A method to construct moments in the multi-good life cycle consump-
tion model

420 J. Kriens
On the differentiability of the set of efficient ( N,a2) combinations
in the Markowitz portfolio selection method

421 Steffen Jrórgensen, Peter M. Kort
Optimal dynamic investment policies under concave-convex adjustment
costs

422 J.P.C. Blanc
Cyclic polling systems: limited service versus Bernoulli schedules

423 M.H.C. Paardekooper
Parallel normreducing transformations for the algebraic eigenvalue
problem

424 Hans Gremmen
On the political (ir)relevance of classical customs union theory

425 Ed Nijssen
Marketingstrategie in Machtsperspectief

426 Jack P.C. Kleijnen
Regression Metamodels for Simulation with Common Random Numbers:
Comparison of Techniques

42~ Eiarry tL 1'igelaar
The correlation structure of stationary bilinear processes

428 Drs. C.H. Veld en Drs. A.H.F. Verboven
De waardering van aandelenwarrants en langlopende call-opties

429 Theo van de Klundert en Anton B. van Schaik
Liquidity Constraints and the Keynesian Corridor

430 Gert Nieuwenhuis
Central limit theorems for sequences with m(n)-dependent main part

~131 Hans J. Gremmen
Macro-Economic Implications of Profit Optimizing Investment Behaviour

432 J.M. Schumacher
System-Theoretic Trends in Econometrics

433 Peter M. Kort, Paul M.J.J. van Loon, Mikulás Luptacik
Optimal Dynamic Environmental Policies of a Profit Maximizing Firm

434 Raymond Gradus
Optimal Dynamic Profit Taxation: The Derivation of Feedback Stackel-
berg Equilibria



V1

435 Jack P.C. Kleíjnen
Statistics and Deterministic Simulation Models: Why Not?

436 M.J.G, van Eijs, R.J.M. Heuts, J.P.C. Kleijnen
Analysis and comparison of Lwo strategies for multi-item inventory
systems with joint replenishment costs

437 Jan A. Weststrate
Waiting times in a two-queue model with exhaustive and Bernoulli
service

438 Alfons Daems
Typologie van non-profit organisaties

439 Drs. C.H. Veld en Drs. J. Grazell
Motieven voor de uitgifte van converteerbare obligatieleningen en
warrantobligatieleningen

440 Jack P.C. Kleijnen
Sensitivity analysis of simulation experiments: regression analysis
and statistical design

441 C.H. Veld en A.H.F. Verboven
De wnardering vzrn corrversierechten ven Nederltuidse converteerbare
obligaties

442 Drs. C.H. Veld en Drs. P.J.W. Duffhues
Verslaggevingsaspecten van aandelenwarrants

443 Jack P.C. Kleijnen and Ben Annink
Vector computers, Monte Carlo simulation, and regression analysis: an
introduction

444 Alfons Daems
"Non-market failures": Imperfecties in de budgetsector

445 J.P.C. Blanc
The power-series algorithm appli.ed to cyclic polling systems

11~16 I,.W.G. St ri jbo:;cli rrnd It.M.J. Ilccil.~;
Modelling (s,Q) invc:ntory systc:ms: parametric versus non-parametric
approximations for the lead time demand distribution

44~ Jack P.C. Kleijnen
Supercomputers for Monte Carlo simulation: cross-validation versus
Rao's test in multivariate regression

448 Jack P.C. Kleijnen, Greet van Ham and Jan Rotmans
Techniques for sensitivity analysis of simulation models: a case
study of the COZ greenhouse effect

449 Harrie A.A. Verbon and Marijn J.M. Verhoeven
Decision-making on pension schemes: expectation-formation under
demographic change



J 1. 1

450 Drs. W. Reijnders en Drs. P. VerstappF-:i
Logistiek management marketinginstrument van de jaren negentig

451 Alfons J. Daems
Budgeting the non-profit. organization
An agency theoretic approach

~152 W.H. Haemers, D.G. Higman, S.A. Hobart
Strongly regular graphs induced by polarities of symmetric desir~n~:

453 M.J.G. van Eijs
Two notes on the joint replenishment problem under constant demand



u u Bibliotheek K. U. Brabantu i i~l 1 ~~ ~ o~i l l u i
1 7 000 01 086047 7


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46

