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ABSTRACT

In experimental designs with unequal response variances, the
number of replications per factor-level combination may be selected such
that the variances of the average responses become equal, i.e., combi-
nations with high variability are more often replicated. Then Weighted
Least Squares becomes identical to Ordinary Least Squares applied to the
average responses. If the response variances are unknown, they can be
estimated through replication. These estimated response variances yield
estimates of the number of replications required to realize approximate-
ly equal variances per average response. This sequential procedure is

evaluated through a Monte Carlo experiment.

1. INTRODUCTION

We consider classical experimental designs - especially Zk.P
factorial designs (with integers k > 1 and p > 0) - in which we sequen—
tially determine the number of replications o, (with 1=1,...,n where n
is the number of factor-level combinations, i.e., in factorials n =
Zk‘p). In other words, during the experiment we analyze the responses
Xij (j-l,...,gi) and use their variance estimators sf in a stopping
rule. Once we stop the experiment we analyze its data, applying Least
Squares. In the foregoing we underlined random variables, because the
random character of the number of replications (gi) is essential and

becomes explicit 1in this notation. (We further use the term "estimate"



becomes explicit in this notation. (We further use the zerm "estimate"

to denote the value of an "estimator".)

The literature investigates stopping rules pricerily in situa-
tions with one or two populations (n=1,2); see the textbooks by Govinda-
rajulu (1981) and Wetherill (1975) and also Kleijnen (1936). In experi-
mental designs the number of replications must often be prespecified. An
important exception, however, are simulation experiments, i.e., experi-
ments with a computer model (or 'code") of some real svstem (for in-
stance, a nuclear reactor, a company, an insect population). In simula-
tion experiments all observations are obtained successively. Therefore

sequential statistical procedures are certainly relevant to simulation.

We further assume that the response variances oi aay differ sub-
stantially. For example, Kleijnen, Van den Burg, Van der Ham (1979, p.
60) report a 26-2 experiment where si ranges between 64 and 93,228. Va-
riance heterogeneity is further discussed in Kleijnen (1985).

2. KNOWN VARIANCES oi

In. the présent section we assume that the response variances oi
are known. Intuitively it seems wise to obtain more replications of

those experimental conditions that have high variabilitv. More specifi-
cally, if we take

mi = ¢ oi (1=1, 00 0,0) (2.0)

where c is a (common) positive constant such that m; becomes integer,

then
var (3,) = = (2.42)
.
where y. = I Zij/mi'



We can analyze the experimental data, applying Weighted Least
Squares (WLS) to the individual responses Zij' It is simple to prove
that the WLS estimate B follows from

min
i

e

Pt N |
{2y 0Py, ™ =51 (2.3)
1 9y

The Ordinary Least Squares (OLS) estimate é follows from

n N
min I {mi(§i-yi)2} (2.4)
i=1

Under condition (2.1), or mi/oi = c, the WLS estimate follows from

8 = #g
min T (y,=y,) (2.5)
(g

i=1
In general, WLS gives little weight to responses with high variability;
OLS gives more weight to conditions replicated often. Now condition
(2.1) means that the optimal WLS estimator based on the individual re-
sponses is identical to the OLS estimator based on the average responses
while ignoring the number of replications on which those averages are
based. Computationally this OLS estimator is simpler, so that we shall
concentrate on the OLS estimator g following from (2.5).

3. ESTIMATING oi and m,

Because the response variances are unknown, we have to estimate
oi and hence my in eq. (2.1). Many estimation schemes are conceivable:
two-stage (Stein estimators), multistage, sequential schemes. We concen-

trate on the following sequential procedure.

(1) We start with a pilot sample of my; = m; responses from each of
the n populations (or combinations), and compute



™
Ty, =302
2 i=1 xij 1
s; = R (1=1;0essn) C3s1)
. : §
In the Monte Carlo experiment of Section 5 we take m = 4, 9, and 25.

0

(2) We use these estimators 53 to obtain the estimators of the re-
quired number of replications. Straightforward application of eq. (2.1)

yields:

»
w

= 2.
2y . 2,0 22}
min (§i')

1 <1i' € n

where [x] denotes the integer closest to x. A refinement of eq. (3.2) is
as follows. If the response variances differ greatly, then impractically

many replications would be taken from the population with the maximum

variance. Therefore we define the ratio

mix (gi)
r=t—0p (3.3)

min (s)

i -i

and in order to control

m:x (gi) =rm (3.4)

we replace mg in eq. (3.2) - not in eq. (3.1) - by the value 1, iff r is
'lbigli:

o, = 1 if r > rmax (3.5)
In the Monte Carlo experiment we take rmax = 3000. This refinement means

that, if r is big, then for the population with the smallest variance

estimate si, we compute tile average §i from only 1 replication; its va-



riance, however, we compute from all replications. In this way, we ob-
tain the most accurate variance estimator possible, while we still apply

OLS to average responses with approximately constant variances.

(3) For each population with L > m, we obtain one new response
(i.e., our procedure is sequential, not two-stage or multi-stage). We

use all available responses to re-estimate ci: we replace eq. (3.1)

(with a deterministic my = mo) by

m
_i = 2
: (Zij-zi(git))

= (3:6)
(l_nit 1)

(@ ) =L

: 8
where m E denotes the number of responses from population i available
after iteration t (t=1,2,...,z) ; m denotes the number of responses ne-

cessary to realize constant response variances (see eq. 3.2) and

Dt
_ s * 35
i it = = (i=1, ee.,n) (3<7)
: (mit) m
' -it

(4) We return to step (2) until (for the first time) the desired

number of replications m does not exceed the available number m, for all

populations:

il T (3.8)

We let T denote the minimum number of iterations for which (3.8) holds.

Once we stop the experiment, we analyze the experimental data, as des-

cribed in the next section.

4. REGRESSION ANALYSIS

We estimate the response for population i from miT responses;

see eqs (3.7) with t replaced by T. (Remember: if r S rpax then Ji:

-

D= 1.) From these averages we derive the OLS point estimator 5,



miT) (4a1)

where ¥ isAthe n x Q matrix of Q independent variables obtained from

the N x Q matrix X by eliminating all identical rows in X, where
By7 (4.2)

-

We approximate the standard errors of g as follows; also see eq.

(2.2). Let D be a diagonal matrix with the following elements on the

main-diagonal:

LI .
G P )
: =1 137 @y
1 = 1
dyy == = var (y ~ )= =
i(m,,.) (m,.-1) m
€1 21T BT ZiT

(i=1,4ee,n) (4.3)

where m and m denote the available and the desired number of responses
respectively (m » m); the first factor is the estimator of var 9]

that uses all available information; the secocd factor corresponds to

the number of responses on which i is based. Eq. (4.1) yields:

-1 '

-GEOTE DX ED (4ad)

19 )

8

I1f our sequential procedure works as expected, then I/Ei = 1/ 2

where (see eqs. 4.3 and 3.6)

10 |

SE

n 2 -
I s; (m,)/m
3 _ ey b LY PAE

s” = = (4.5)



so that eq. (4.4) reduces to

g~ =3 (0! (4.6)

And if ¥ is orthogonal, then the estimators éq are uncorrelated. If X is

a 2k-p design, then var (gq) becomes a constant, namely Ez/n. The square

roots of the main-diagonal elements of gg are the standard errors of
é ; we denote these standard errors by gq (g=1;eee;Q)0
2q g

To obtain confidence intervals for B we use Student's t statis—
tic. Kleijnen, Cremers, Van Belle (1985) investigated different degrees

of freedom y, namely min(mi—l), z(mi—l) and infinity (so that t becomes
i

standard normal). In sequential experiments )::(mi,r - 1) is high; there-

i
fore we restrict ourselves to min(m, - 1) =m_ - 1= v and v. = = (so
i =11 0 1 2
that v becomes non-stochastic). In the next section we investigate

whether the statistic

B_—=B
Sy (1,400,Q) (4.7)
Zq
behaves like a Student t statistic. To study t § we use Monte Carlo
-y,

experimentation.

5. MONTE CARLO INPUTS

We use nearly the same inputs as did Kleijnen, Cremers, Van
Belle (1985). So we have 4 different X matrices:

Case 1: X is a 16 x 13 matrix, namely a 26-2 design including 6
main effects, 6 two-factor interactions and a grand mean 80.

Case 2: X is an 8 x 4 matrix following from a 23 design (with 3
main effects).In case 2 X is a submatrix of X in case 1.

Case 3: X is a 4 x 3 matrix following from a 22 design. X is
again a submatrix of X in case 1.

Case 4: X is again a 4 x 3 matrix as in case 3; however, X is

non-orthogonal. Kleijnen et al. (1985) studied only the first 3 cases.



We combine the above 4 matrices with different degrees of hete-
rogeneity of response variance, measured - as in Kleijner et al. (1985,
p. 88) - by

max (c?) min (c?)
4 3 -5y i
H = (5«1)
i 2
min (o.)
$ p

We fix H at the values 0, 4, and 11.84., Kleijnen et al. (1985) varied H
between 0 and 1,458; the latter value, however, means that o, may be so
high that computer time becomes prohibitive. The indivicual ci values

are shown in the appendix.

Besides X and the diagonal matrix Qy with elezents ci, we must
specify B. We use the B values of Kleijnen et al. (1985, p. 95). The
precise values of B do not affect the interpretation of the Monte Carlo

experiment, so that we refer to the appendix.

We study different sizes of the pilot-sample (), namely 4, 9 and
25. Kleijnen et al. (1985, p. 89) varied my = m betweean 2 and 25; the
value 2, however,.gave bad results. We further take rmax = 3000 in egq.
(3.5), which is so high that r never exceeds rmax. We repsat each Monte
Carlo situation (specified by i, Qy, B, and mo) 150 tires, since Kleij-
nen et al. (1985) found that 150 repetitions reduce noise so much that

clear patterns emerge from the Monte Carlo experiment.

We use the same multiplicative random number generator as in
Kleijnen et al. (1985, p. 96). (Even though the ICL 2960 has been re—
placed by a VAX 785, the NAG generator was maintained.) Zach of the 4
"cases" (combined with different degrees of variance heterogeneity)
starts with the same random number seed. Since the rando- aumber streams
get out of step, the dependence between cases is probably weak (anyhow,

in our analysis we do not need to assume independence).



assumed
distribution t

t\J;a/2

rige. l. Assumed versus actual tails
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6. MONTE CARLO OUTPUT

We first repeat some situations also investigated in Kleijnen et
al. (1985), in order to verify the correctness of our computer program.

We also checked that the estimators of 8 remain unbiased.

As Kleijnen et al. (1985, p. 90) did, we derive two-sided confi-

dence intervals for g , now using t with v=vy, = minm.., - 1 =
q -V 1 i =iT

mo—l and y = Wiy = 1om respectively. We again test the tails of the resul
ting t distribution [see eq. (4.7) where ;q z v;r(g )1z
-V 24 2

)
™ »
a ) |
™
»

>t w2 = (FheenQ) (6.1)
=g

where t avals denotes the tabulated 1- /2 quantile of Student's t
v, q;a
with v = vl and v = vz respectively. We estimate g from the Monte Carlo

experiment (see next paragraph), and formulate 2 slightly different
null-hypotheses:

HO: E(a) = o versus Hl: E(a) # a (6.2)
and .
Hé: E(a) < a versus Hi: E(a) > a. (6.3)

Hjy requires a two-sided test, while Hb corresponds to a one-sided test.

The test statistic is the binomial variable é based on 150 ob-
servations (Monte Carlo repetitions). Under HO we know that E(;) = a
where o is defined in eq. (6.1). We approximate the binomial distribu-
tion by the normal distribution N(;,;(1—§)/150). Since we have Q para-
meters B, we apply the Bonferroni inequality, i.e., we test Hy and Hb
with a type I error rate of 0.05/Q (so that the experimentwise error
rate is 0.05 at most). For a in eqe. (6.1) (the error rate used to derive
a confidence interval per parameter Bq) we use 1%, 5%, and 10%, as did
Kleijnen et al. (1985).



Table I

Testing the tail of the L distribution; Hp: E(a) = a.

ClH11MO&™  *
C1HO4MO4 *
C1HOOMO4
C2H10M04 *
C2HO4MO4 *
C2HOOMO4 * *
C3H10MO04

C3HO4MO4 * *
C3HOOMO4 *

CIH11IMO9
C1H04M09
C1HOOMO9
C2H10MO09
C2HO4MO9
C2HOOMO9
C3H10M09
C3HO4MO9
C3HOOMO9

CIH11M25
C1HO4M25
C1HOOM25 % %

C2H10M25

C2HO4M25 * * * *
C2HOOM25 -

C3H10M25 * * *
C3HO4M25
C3HOOM25

C4H10MO4
C4HO4MO4
C4HOOMO4
C4H10MO9
C4HO4MO9
C4HOOMO9
C4H10M25
C4HO4M25
C4HOOM25 *

* % F *
* % ¥ ¥

* * *
* * B X X ¥ * ¥ F
*

*
* * ¥ F

*
*

* % %k ¥ ok % ¥ ¥ Y
*
%
*

X
*
* ¥

¥
* O
*

*

*
*
*

*
*
*

¥ % Ok Ok % X O

* Notation: Cl refers to case 1 of Section 5; Hll means H = 11 in
eys (5.1); MO4 means a pilot sampling ny = 4.



Table 11

Testing the tail of the Ev distribution; Hb: E(a) < a.

CIH11MO&™
C1HO4MO4
C1HOOMO4
C2H10MO4
C2HO4MO4
C2HOOMO4
C3H10MO4
C3HO4MO4
C3HOOMO4

CIHIIMO9
C1HO4MO09
C1HOOMO9
C2H10M09
C2H04MO9
C2HOOMO9 * * *
C3H10MO09
C3H04MO9
C3HOOMOS

C1H11M25 *
C1HO4M25

C1HOOM25

C2H10M25

C2HO4M25 5 * *
C2HOOM25

C3H10M25

C3HO04M25 *

C3HOOM25

C4H10MO4 * * *
C4HO4MO4
C4HOOMO4 * * *
C4H10MO9
C4HO4MO9 *
C4HOOMO9 *
C4H10M25
C4HO4M25
C4HOOM25

* % % ¥
* ¥ ¥ *
* % F F

* ¥ ¥ *
* ¥ ¥ ¥
@ * % %

* %

* * * *

*
*
*

* Notation: Cl refers to case 1 of Section 5; H1ll neans H = 11 in
eq. (5.1); MO4 means a pilot sample my = 4.
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The binomial test results in Tables I and II. We interpret these
tables as follows; also see Fig. l. Table I shows many asterisks-deno-
ting rejection of Hp: E(é) = a - even if the pilot sample is big (mg =
25). The next question then is: in which direction does o deviate from
a? Table II shows that if we use the standard normal distribution (or
tm; 0/2) th%n we accept Hi € E(é) > a (the smaller the pflot sample o,
the higher o is). Fig. 1 demonstrates that such a high g means a "fat"
tail. Such a tail implies that we reject the true value Bq "too often",
i.e. more often than the nominal a suggests. In other words, our confi-
dence intervals around é are too tight. Instead of the normal distribu-
tion we can use the Student distribution with degrees of freedom

v, = min(miT-l) =m

1 -1l. Obviously we have t > so that our

= 0 Vs @ ®;

confidence intervals become less tight (conservative intervals). Conse-
quently we no longer reject the true value B '"too often", i.e., ; de-
creases and no longer do we reject Hé: E(g) < a. Using v, degrees of
freedom does not yield conservative confidence intervals, if we use

small sample sizes and a "high" nominal a (a=0.10).

Note that we found that the estimated variances of the average
responses (see eqe 4.3) are indeed approximately constant. The averaged
estimated variance 52 (see eq. 4.5) has an empirical distribution (com-
puted from 150 replications) which 1is skew with a long tail to the
right. As we may expect, the variability of EZ increases, as the pilot-

sample size m decreases.

7. CONCLUSIONS AND FUTURE RESEARCH

We examined a heuristic sequential procedure for determining the
nunber of replications per factor-level combination, such that the va-
riances of the average responses become approximately constant. The re-
sulting Least Squares estimator é remains unbiased. Confidence intervals
around é (two-sided intervals) are not exact, even if the pilot sample
size is as high as 25. These intervals are too tight if we use the stan
dard normal variable. These intervals become conservative, if we use the

‘Student statistic with degrees of freedom equal to min(EiT—l) = mo-l
(unless the pilot sample is small and the nominal a is high).



14

We concentrated on a purely sequential approach using as many
responses y as possible, when estimating means and variances. Many va-
riations on this approach are conceivable which seem less efficient but

might have better coverage (true type I or o error). Also see Section 3.

We did not discuss computational issues. For example, we saved
all individual responses (not only sums of responses and squared respon—
ses) because in the sequential procedure we sometimes throw away respon-

ses when estimating the means (namely when m < Wops We estimate the

{7
variances from all miT responses).

A well-known disadvantage of sequential procdures is that it is

impossible to know how much computer time will be needed to execute the

n

total number of runs § = I EiT' Moreover, if the experiment has
i=1 =

R (> 2) types of response, each type with its own variance, then our

procedure needs adjustment (we might replace eq. 2.1 by m; = max ¢ oir -

where r = 1,...,R). If the total computer time is prespecified, then the
sequential procedure might be replaced by a fixed sample procedure (with

mi=m0) accounting for unequal variances; see Kleijnen (1985).
We examined two-sided confidence intervals for B. On hindsight
it is obvious that with negligible extra computer time we could also

have studied one-sided confidence intervals for R.

APPENDIX: DETAILS OF MONTE CARLO INPUT

In this appendix we add some details not already mentioned in

the main text. Most values are taken from Kleijnen et al. (1985).

Case 1: B'= (-1+42,-0.769,13.4,-11.508,3.5,-1.375,140.918,
15.391,0.046,281.098,21.25,11.875,-49.483).,
H =0 g, = | for all is

H = 4: oi = (4,445,5,658:9510,11512,13,55145144.5;16,18,19.5,20)«

e N

H= 11.84: ci = (152;3;4,4+5;5,6,7,745,8,9,9:5,10,11,12,12.8%4).
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Case 2: B'= (-1.42,-0.769,13.44,-11.508).

H=0: of = | Ffor all 4.

= & oi=,(4,6,8,10,12,14,16,20).

B = 10.83: ci = €1,3,4,5,6,7,9,11:83)
Gase 35 B' = (1,251

H = 03 oi = 1 for all 1.

g s oi = (4,10,16,20).

H = 10.38: oi = (1,4,8,11.38).

2

Case 4: See case 3 for g and oy
1 1 -1

¥ = 1 = =1 &

1 =1 1
1 = 1
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