
CBM
R

7626
1986
215

IIINIIÍIIIII IIIIIIIIIIIIII IIIII IIUINIIIIIII~NI - É~
faculteit der economische wetenschappen

RESEARCH MEMORANDUM

1~
ILBURG. UNIVERSITY

EPARTMENT OF ECONOMICS

istbus 90153 - 5000 LE lilburg
etherlands



FE[d
215

~~~,,~ K.U.~3.
,~'' B~~~~~~T~BEEK
,-i~~;' T!LEURG

REGRESSION ANALYSIS OF FACTORIAL DESIGNS
WITH SEQUEA'TIAL REPLICATION

J.P.C. Kleijnen and ~
W. Van Groenendaal ~j ~'

~

January 1986



Keywords: Variance heterogeneity; Weighted Least Squares; pilot sample;
Stein estimator; iteratíve procedure; heuristic.



1

REGRESSION ANALYSIS OF FACTORIAL DESIGNS WITH SEQUENTIAL REPLICATION

J.P.C. Kleijnen and W. Van Groenendaal

Ca[holic University Tilburg
School of Business and Economics

Department of Information Systems and Auditing
5000 L E Tilburg, Netherlands

ABSTRACT

In experimental designs with unequal response variances, the
number of replications per factor-level combination may be selected such
that the variances of the average responses become equal, i.e., combi-
nations with high variability are more often replicated. Then Weighted
Least Squares becomes identical to Ordinary Least Squares applied to the
average responses. If the response varíances are unknow~, they can be
estimated through replication. These estimated response variances yield
estimates of the number of replications required to realize approximate-
ly equal variances per average response. This sequential procedure is
evaluated through a Monte Carlo experiment.

1. INTRODUCTION

We consider classical experimental designs - especially 2k-p
factorial designs ( with integers k~ 1 and p~ 0) - in which we sequecr
tially determine the number of replications mi (with ial,...,n w-here n
is the number of factor-level combinations, i.e., i n factorials n a
2k-p). In other words, during the experiment we analyze the responses
~ij (j~l,...,mi) and use their variance estimators si in a stopping
rule. Once we stop the experiment we analyze its data, applying Leaet
Squares. In the foregoíng we underlined random varíables, because the
random character of the number of replications (mi) is essential and
becomes explicit in this notation. (We further use the term "estimate"
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becomes expiicit in this notation. (We further use the -ern "estimate"
to denote the value of an "estimator".)

The líterature investigates stopping rules pricarily in situa-
tions with one or two populations (n~1,2); see the textbooks by Govinda-

rajulu (1981) and Wetherill (1975) and also Kleijnen (19~6). In experi-
mental designs the ntinnber of replications must often be rrespecified. An
ímportant exceptíon, however, are simulation experiments, i.e., experi-
ments with a computer model (or "code") of some real svstem (for in-

stance, a nuclear reactor, a company, an insect populati~n). In simula-

tion experiments all observations are obtained successi:-ely. Therefore

sequential statistical procedures are certainly televant ~o simulation.

We further assume that the response variances a? ~ay díffer sub-i
stantially. For example, Kleijnen, Van den Burg, Van der Aam (1979, p.
60) report a 26-2 experiment where si ranges between 64 and 93,228. Va-
riance heterogeneity is further discussed in Kleijnen (19g5).

2. KNOWN VARIANCES o2i

In.the present section we assume that the response variances oi
are known. Intuitively it seems wise to obtaín more replications of
those experimental conditions that have high variabilit~. More specifi-
cally, if we take

mi 2z c oi (i~l,...,n) (2.1)

where c is a(common) positive constant such that mi becomes integer,
then

var (yi) : c (2.2)

mi
where y- E y ~m ,

i j~l ij i
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We can analyze the experimental data, applying Weighted Least

Squares (WLS) to the i ndividual responses yi~. It is simple to prove
that the WLS estimate g follows from

n
min L {mi(Yi-Yi~2 2~

i- 1 ai

The Ordinary Least Squares (OLS) estimate S follows from

n „
min E {mi(yi-yi)2}i-1

Under condition (2.1 , or mi~oi ~ c, the WLS estimate follows from

n 2min E (yi-yi)i~ 1

(2.3)

( 2.4 )

(2.5)

In general, WLS gives little weight to responses with high variability;
OLS gives more weight to condítions replicated often. Now condition
(2.1) means that the optimal WLS estimator based on the indívidual re-
sponses is identical to the OLS estimator based on the average responses
while ignoring the number of replications on which those averages are
based. Computationally this OLS estimator is simpler, so that we shall
concentrate on the OLS estimator g following from (2.5).

3. ESTIMATING oi and mi

Because the response variances are unknown, we have to estimate
2oi and hence mi in eq. (2.1). Many estimation schemes are conceivable:
two-stage (Stein estimators), multistage, sequential schemes. We concen-
trate on the following sequential procedure.

(1) We start with a í~ lot sample of mi ~ m0 responses from each of
the n populations ( or combínations), and compute
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2si (i-1,...,n)

In the Monte Carlo experiment of Section 5 we take m0 - 4, 9, and 25.

(2) We use these estimators si to obtain the estimators of the re-

quired number of replications. Straightforward application of eq. (2.1)

yields:

min (si,) m0
1 C i' ~ n

(3.2)

where [x] denotes the integer closest to x. A refinement of eq. (3.2) is
as follows. If the response variances differ greatly, then impractically
many replications would be taken from the population with the maximum
variance. Therefore we define the ratio

max
ir -

min
i

and in order to control

max (mi) - r m0
i

(3.3)

(3.4)

we replace m0 in eq. (3.2) - not in eq. (3.1) - by the value 1, iff r is

"big":

m0 ~ 1 if r~ rmax (3.5)

In the Monte Carlo experiment we take rmax s 3000. This refinement means
that, if r is big, then for the population with the smallest variance
estimate si, we compute t~ie aveïa~c yi from only 1 replication; its va-
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riance, however, we compute from all replications. In this way, we ob-
tain the most accurate variance estimator possible, while we still apply
OLS to average responses with approximately constant variances.

(3) For each population w-ith mi ~ m~ we obtain one new response
(i.e., our procedure ís sequential, not two-stage or multi-stage). We
use all available responses to re-estimate Qi: we replace eq. (3.1)
(with a detetministic mi ~ m~) by

mi
22 .E1 (~ij-~iCIDit))

Si (m ) L m -1it -it
(3.6)

where mit denotes the number of responses from population i avaílable
after iteration t(t-1,2,...,T) ; m denotes the nianber of responses ne-
cessary to realize constant response variances (see eq. 3.2) and

Y1 (mit).3
(i-1,...,n) (3.7)

mit

(4) We return to step (2) until (for the first time) the desired
number of replications m does not exceed the available ntanber m, for all
populations:

~i: mit ~ mit (3.8)

We let T denote the minimum number of iterations for which (3.8) holds.
Once we stop the experiment, we analyze the experimental data, as des-
cribed in the nex[ section.

4. REGRESSION ANALYSIS

We estimate the response for population i from miT responses;

see eq. (3.7) with t replaced by T. (Remember: if r~ rmax then 3i:
miT - 1,) From these averages we derive the OL S point estimator S-
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B - (X'X) ` X' ~ (m )
iT

khere }: is the n x Q matrix of Q independent variables obtained from
the n x Q matrix X by eliminating all identical ro~:s in X, where

n „
N - E miT (4.2)

í~l -

We approximate the standard errors of g as follows; also see eq.
(2.2). Let D be a diagonal matríx with the fcllow-ing elements on the
main-diagonal:

m-iT 2

1 ., j~l (~i]-yl (~iT)) 1dii - .. - var (Y - ) ~ ..
~i i(IDiT) (miT 1) miT

(i-1,...,n) (4.3)

where m and m denote the available and the desired n~ber of responses

respectively (m ~ m); the first factor is the es[imator of var (y)

that uses all available information; the secoLj factor corresponds to
the n~nber of responses on which y is based. Eq. (4.1) yields:

S2S - (X'X) - X D X (X'X) (4.4)

If our sequential procedure works as expected, then l~ci ~ l~c - s2
where ( see eqs. 4.3 and 3.6) - -

n „
E si (IDiT)~miT-2 i-1s - n (4.5)
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so that eq. (4.4) reduces to

-2 '- 1R B ~ s (X X)-

And if X is orthogonal, then the estimators gq are uncorrelated. If X is
a 2k-p design, then var (gq) becomes a constant, namely s`~n. The square
roots of the main-diagonal elements of Sts are the standard errors of
gq; we denote these standard errors by oq (q31,...,Q).

(4.6)

To obtain confidence intervals for s we use Stu~ent's t statis-
q

tic. Kleijnen, Cremers, Van Belle (1985) investigated differen[ degrees
of freedom v, namely min(mi-1), ï(mi-1) and ínfinity (so that t becomes

i
standard normal). In sequential experiments L(miT - 1) is high; there-

i -
fore we restrict ourselves to min(miT- 1) ~ m0 - 1-~:land v2 - m(so

i -
that v becomes non-stochastic). In the next section we investigate
whether the statistic

B - B
t - -q. q-v,q a-q

Cq-1,...~Q) (4.7)

behaves like a Student t statistic. To study t we use Monte Carlo-v,q
experimentation.

5. MONTE CARLO INPUTS

We use nearly the same inputs as did Kleijnen, Cremers, Van
Belle (1985). So we have 4 different X matrices:

Case 1: X is a 16 x 13 matrix, namely a 26-z design including 6
main effects, 6 two-factor ínteractions and a grand mean 30.

Case 2: g is an 8 x 4 matríx following from a 23 design (with 3
main effects).In case 2 X is a submatrix of X in case 1.

Case 3: X is a 4 x 3 matrix-following from a 22 design. X is

again a submatrix of X in case 1.

Case 4: X is again a 4 x 3 matrix as in case 3; however, }{ is
non-orthogonal. Kleijnen et al. (1985) studied only the fírst 3 cases.



We combine the above 4 matrices with differe~t degrees of hete-
rogeneity of response variance, measured - as in Kle`jner. et al. (1985,
p. 88 ) - by

H -

mix (oi) - min (Qi)

min (oi)
i

We fix H at the values 0, 4, and 11.84. Kleijnen et al. (`985) varíed H
betkeen 0 and 1,458; the latter value, however, means that m, may be so-i
high that computer time becomes prohibitive. The ir.di-:i~ual oi values
are shown in the appendix.

Besides X and the diagonal matrix 52y with ele~-a~s ~i, we must
specify g. We use the 8 values of Kleijnen et al. (1985, p. 95). The
precise values of 8 do not affect the interpretation of t-e Monte Carlo
experiment, so that we refer to the appendix.

We study different sizes of the pilot-sample r,fl, r.emely 4, 9 and
25. Kleiinen et al. ( 1985, p. 89) varied mi - m bet-eea 3 and 25; the
value 2, however, gave bad results. We further take rmax ~ 3000 in eq.
(3.5), c:hich i s so high that r never exceeds rmax. We repeat each Monte
Carlo situation (specified by X, Sty, B, and m0) 150 times, since Kleij-
nen et al. (1985) found that 150 repetitions reduce noise so much that
clear patterns emerge from the Monte Carlo experiment.

We use the same multiplicative random number ge~erator as in
Kleijnen et al. (1985, p. 96). (Even though the ICL 2960 has been re-
placed by a VAX 785, the NAG generator was maintained.) ~ach of the 4
"cases" (combined with different degrees of variance reterogeneity)
starts with the same random number seed. Since tlie rando- ~umber streams
get ou[ of step, the dependence between cases is probabl~ weak (anyhow,
in our analysis we do not need to assume independence).



assumed distribution

assu~ed
distribution
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j ~~```1~ actual distribution
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iig. 1. Assumed versus actual tails
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6. MONTE CAA1,0 OUTPUT

We first repeat some situations also investigated in Kleijnen et

al. (1985), in order to verify the correctness of our computer program.
We also checked that the estimators of S remaín unbiased.

As Kleijnen et al. (1985, p. 90) did, we derive two-sided confi-
dence intervals for gq, now using tv with v- vl - min m;T - 1 z

- i - -
m0-1 and v- v2 ~ m respectively. We again test~the tails of the resul
ting tv distribution [see eq. (4.7) where oq - var(gq)]:

~ tv,9~ al2 ~ a (q-1,...,Q) (6.1)

where t denotes the tabulated 1- al2 quantile of Student's t
v, q; al2 ., v

with v- vl and v- v~ respectively. We estimate a from the Monte Carlo
experiment (see nex[ paragraph), and formulate 2 slightly different
null-hypotheses:

and
H0: E(a).- a versus H1: E(a) ~ a

H~: E(a) c a versus Hi: E(a) ~ a.

(6.2)

(6.3)

HO requires a two-sided test, while H~ corresponds to a cne-sided test.

The test s[atistic is the binomial variable P based on 150 ob-

servations (Monte Carlo repetitions). Under HO we know that E(p) - a

where a is defined in eq. (6.1). We approximate the binomial distribu-

tion by the normal distribution N(p,p(1-p)I150). Since we have Q para-
meters 8, we apply the Bonferroni inequality, i .e., we test HO and H~
w-ith a type I error rate of 0.05IQ (so that the experimentw-ise error
rate ís 0.05 at most). For a in eq. (6.1) (the error rate used to derive
a confidence interval per parameter Sq) we use li, SX, and 107, as díd
Kleijnen et al. (1985).
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Table I
Testing the taíl of the t distribution; H0: E(a) - a.-v -

C1H11M04
C11104M04
CIHOCM04
C2H10M04
C2H04M04
C2HOOM04
C3H10M04
C3H04M04
C 3H00?104

C1H~~
C1H04M09
CIHOOM09
C2H]OM09
C2H04M09
C2HOOM09
C3H10M09
C3H04M09
C3HOOM09
C1H11M25
C1H04M?5
CIHOOM25
C2H10M25
C2H04?-125
C2HOOM25
C3H10M25
C3H04M25
C3HOOM25
C4~M04
C4H04M04
C4HOOM04
C4H10M09
C4H04M09
C4HOOM09
C4H10M25
C4H04M25
C4HOOM25

a- 5~ a- l0Í

v- vl v- W v- vl v-~ v- vl v- .

~ ~ ~ ~
~ ~ ~

~ ~
~ ~ ~
~ ~ ~
~ ~ ~ ~

~ ~
~ ~ ~

~ ~
~
~ ~ ~ ~
~ ~ ~
~
~ ~ ~ ~
~ ~ ~
~ ~ ~
~ ~
~

~-~ ~
~ ~ ~ ~
~ ~

~
~
~
~

~ ~ ~ ~
~
~ ~ ~

~ ~ ~~
~ ~ ~
~ ~ ~
~
~
~ ~
~ ~ ~ ~

~
~
~

~ Notation: C1 refers to case 1 of Section 5; H11 means H~ 11 in
ey. ~~.i); M04 means a pilot sampling m0 z 4,
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Table II

Testir.g the tail of the tv distribution; HÓ: E(a) c a.

a - lI a ~ 5Y,

v - vl v

C1H 11 M04
C1H04M04
CIHOOM04
C2H10M04
C2H04M04
C2HOOM04
C3H10M04
C3H04M04
C3HOOM04

a ~ 10 i-

v- vl v L m v z vl v- m

~ ~
~ ~
~ ~
~ ~

~ ~
~ ~
~ ~
~ ~

~1H11M
C1H04M09
CIHOOM09
C2H10M09
C2H04M09
C2HOOM09
C3H10M09
C3H04M09
C3H00'wI09

C1H11M25
C1H04M25
CIHOOM25
C2H10M25
C2H04M25
C2HOOM25
C3H10M25
C3H04M25
C3HOOM25
C H~1 MOri
C4H04M04
C4HOOM04
C4H10M09
C4H04M09
C4HOOM09
C4HIOM25
C4H04M25
C4H00:~125

~ Notation: C1 refers to case 1 of Section 5; H11 means H- 11 in
eq. (5.1); `10; W2a:.s a pilot sample m0 - 4,
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The binomial test results in Tables I and II. We interpret these
[ables as follows; also see Fig. 1. Table I shows many asterisks-deno-
ting rejection of H0: E(a) - a- even if the pilot sample is big (m0 -
25). The next question then is: in which direction does a deviate from
a? Table II shows that if we use the standard normal distribution (or

t, a~2) then we accept H1 : E(a) ~ a(the smaller the pilot sample m0,
the higher a is). Fig. 1 demonstrates that such a high a means a"fat"

taíl. Such a tail implies that we reject the true value E"too often",
q

i.e. more often than the nominal a suggests. In other words, our confi-
dence intervals around g are too tight. Instead of the normal distribu-

q
tion we can use the Student distribution with degrees of freedom
vl - min(miT 1) - m0-1. Obviously

i
confidence intervals become less

we have t ~ t so thatvl; a m; a our

tight (conservative intervals). Conse-
quently we no longer reject the true value Sq "too often", i.e., a
creases and no longer do we reject H~: E(a) t a.
freedom does not yield conservative

de-

Using vl degrees of
confidence intervals,

small sample sizes and a"high" nominal a(a-0.10).
if we use

Note that we found that the estimated variances of the average

responses (see eq. 4.3) are indeed approximately constant. The averaged

estimated variance s2 (see eq. 4.5) has an empirical distributíon (com-
puted from 150 replications) which is skew with a long tail to the

right. As we may expect, the variability of s2 increases, as the pilot-

sample size m0 decreases.

7. CONCLUSIONS AND FUTURE RESEARCH

We examined a heuristic sequential procedure for determining the

number of replications per factor-level combination, such that the va-

riances of the average responses become approximately constant. The re-

sulting Least Squares estimator g remains unbiased. Confidence intezvals

around g(two-sided intervals) are not exac[, even íf the pilot sample

size is as high as 25. These intervals are too tight if we use the stan-
dard normal varíable. These intervals become conservative, íf we use the
Student statistic with degrees of freedom equal to min(miT 1) : m0-1

i -
(unless the pilot sample is small and the nominal a is high).
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~:e concentra[ed on a purely sequential approach using as many
responses y as possible, when estimating means and variances. Many va-
riatior.s on this approach are conceivable which seem less efficient but
Wight have better coverage (true type I or a error). Also see Section 3.

We did not discuss computational issues. For example, we saved
all individual responses (not oniy sums of responses and squared respon-
ses) because in the sequential procedure we sometimes throw away respon-
ses when estimating the means ( namely when

miT ~ miT' we estímate the

variances from all miT responses).

A well-known disadvantage of sequentíal procdures is that it is
impossible to know how much computer time will be needed to execute the

n
total numbec of runs N- E míT. Moreover, if the experiment has

i- 1 -
R(~ 2) types of response, each type c:ith its own varíance, then our
procedure needs adjustment (we might replace eq. 2.1 by mi - max c oir -r
where r- 1,...,R). If the total computer time is prespecified, then the
sequential procedure might be replaced by a fixed sampie procedure (with
mi-m0) accounting for unequal variances; see Kleijnen (1985).

We examined two-sided confidence intervals for s. On hindsight
it is obvíous that with negligible extra computer time we could also
have studied one-sided confidence intervals for B.

APPENDIX: DETAIZS OF MO?~TE CARLO INPUT

In this appendix we add some details not already mentioned in
t}ie main text. Most values are taken from Kleijnen et al. (1985).

Case 1: B'- (-1.42,-0.769,13.4,-11.508,3.5,-1.375,140.918,
15.391,0.046,281.098,21.25,11.875,-49.483).

H- 0: oi - 1 for all i.

H - 4: ai - (4,4.5,5,6,8,9,10,11,12,13.5,14,14.5,16,18,19.5,20).

ri - il.d4: oi - (1,2,3,4,4.5,5,6,7,7.5,8,9,9.5,10,11,12,12.84).
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Case 2: B's (-1.42,-0.769,13.44,-11.508).
H- 0: oi - I for all i.

H - 4: oi-.(4,6,8,10,12,14,16,20).

H - 10.83: oi - (1,2,4,5,6,7,9,11.83).

Case 3: B' - ( 1,1,1).
H- 0: c? - 1 for all i.i
H - 4: ci - (4,10,16,20).

H - 10.38: oi - (1,4,8,11.38).

X -

Case 4: See case 3 for g and oi.

1 1 -1

1 -1 -1

1 -1 I

1 -1 I
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